
1

Efficient Compute-Intensive Job Allocation in
Data Centers via Deep Reinforcement Learning

Deliang Yi, Xin Zhou, Yonggang Wen, Rui Tan

Abstract—Reducing the energy consumption of the servers in a data center via proper job allocation is desirable. Existing advanced
job allocation algorithms, based on constrained optimization formulations capturing servers’ complex power consumption and thermal
dynamics, often scale poorly with the data center size and optimization horizon. This paper applies deep reinforcement learning to
build an allocation algorithm for long-lasting and compute-intensive jobs that are increasingly seen among today’s computation
demands. Specifically, a deep Q-network is trained to allocate jobs, aiming to maximize a cumulative reward over long horizons. The
training is performed offline using a computational model based on long short-term memory networks that capture the servers’ power
and thermal dynamics. This offline training approach avoids slow online convergence, low energy efficiency, and potential server
overheating during the agent’s extensive state-action space exploration if it directly interacts with the physical data center in the usually
adopted online learning scheme. At run time, the trained Q-network is forward-propagated with little computation to allocate jobs.
Evaluation based on eight months’ physical state and job arrival records from a national supercomputing data center hosting 1,152
processors shows that our solution reduces computing power consumption by more than 10% and processor temperature by more
than 4°C without sacrificing job processing throughput.

Index Terms—Job allocation, data center, energy efficiency, deep reinforcement learning.

F

1 INTRODUCTION

ENERGY efficiency is a key metric of a data center serving
the endlessly growing computation demands. In the

U.S., data centers consumed 70 billion kWh of electricity
in 2014, which accounted for 1.8% of the country’s total
electricity consumption [1]. In Singapore, this ratio is up to
7% due to the tropical condition [2]. Despite the adoption
of greener designs and operational improvements in recent
years, the energy consumption of data centers will still
increase due to the rise of hyper-scale data centers [3].
Continual energy efficiency improvement for data centers
remains an urgent and strategic task.

High PUE (power usage effectiveness) with an average
of 1.9 [4] was a major issue in the past decade. However, the
latest facility designs have significantly reduced the PUE
to 1.3 [5] and even 1.06 [6] for commissioned data centers.
Therefore, in this paper, we focus on improving the energy
efficiency of the computing infrastructure, i.e., to reduce the
energy consumed by the servers while maintaining the job
processing throughput. The approach to this goal will be
perpendicular to the efforts of reducing PUE (e.g., by im-
proving cooling system operation [7] or raising server room
temperature setpoint [8]). The computing energy efficiency
improvement will engender various benefits. First, the less
heat generation by the servers reduces the possibility of
processor frequency throttling that degrades the quality of
service. Second, according to the Arrhenius equation [9],
the failure rates of server components increase exponen-
tially with the servers’ internal temperatures. Thus, less

• D. Yi, X. Zhou, Y. Wen, R. Tan are with School of Computer Science and
Engineering, Nanyang Technological University, Singapore.
E-mail: {yideliang, zhouxin, ygwen, tanrui}@ntu.edu.sg

heat generation implies servers’ longer lifetimes and lower
maintenance cost. Third, the reduced heat generation also
lowers the workload and energy consumption of the cooling
systems in maintaining the server room temperatures.

An important approach to improving computing energy
efficiency is to properly allocate the computing jobs to
the servers. With the emergence of big data-driven busi-
ness, scientific research, and social services, the long-lasting
and compute-intensive jobs (e.g., genomic data analysis,
domain-specific optimization and simulations, deep learn-
ing, etc.) form a major portion of today’s computation
demands. Thus, efficient allocation approaches for compute-
intensive jobs are important to the data centers providing
such services. Various job scheduling algorithms have been
proposed [10]–[13]. In cloud computing data centers, the
computation can be allocated by migrating and consolidat-
ing the virtual machines that process massive and short jobs
[10], [11]. However, these approaches are ill-suited for long-
lasting and compute-intensive jobs because the migration
will interrupt the job execution and also cause the over-
head of moving data. Thermal-aware job allocation can be
formulated as constrained optimization problems based on
certain models capturing the power consumption and heat
processes to minimize energy use [12], [13]. However, due to
the complexity of the models, the algorithms solving these
problems generally need extensive search and scale poorly
with data center size and optimization horizon.

Recently, deep reinforcement learning (DRL), which is an
important extension of the traditional reinforcement learn-
ing (RL) method, has been applied to various sophisticated
online optimization problems with large solution spaces. In
a traditional RL system, an agent interacts with an environ-
ment by iteratively sending action to the environment, mon-
itoring the state of the environment, and assessing a scalar

2

reward to guide the next action. The agent’s objective is to
maximize the cumulative reward. During the interactions,
the agent builds a look-up table that can be used afterward
to choose an action based on the state of the environment.
RL approaches can be model-based [14] and model-free [15].
Model-free RL does not require an a priori model on the
state transition of the environment; instead, it learns the
reward dynamics at run time in the iterative interactions
with the environment and eventually approaches to the
optimal action strategy. However, the look-up table will
have an extremely large size for the optimization problems
with large state and action spaces, which may negatively
affect the learning process and model performance. DRL ad-
dresses this issue by replacing the table with a deep neural
network called deep Q-network (DQN). The DQN is trained
during the agent-environment interactions to capture the
optimal action strategy. The approach in this paper belongs
to model-free DRL.

Allocating continually arriving jobs to a large number of
servers in a data center is an optimization problem with a
large solution space, since allocating a pending job to each
server is a candidate solution. Applying DRL to the job
allocation problem gives two key advantages. First, during
the learning phase, DRL learns the end-to-end mapping
from the data center state and the job allocation action to
the resulted reward function that can be defined to cap-
ture one or more optimization objectives such as reducing
energy consumption and server temperatures. Moreover,
after an adequate exploration of the state-action space, the
trained DQN will inherently encompass the job allocation
strategy that maximizes the overall reward for a long-
term period similar to the training period. Second, after
the learning completes, the DRL-based job allocator that
forward-propagates the DQN to allocate jobs has light com-
putation overhead. Thus, different from the model-based
job allocation that adopts explicit constrained optimization
formulations and often scales poorly with data center size
and optimization horizon, the DRL-based solution will be
computationally lightweight after the training process is
fully completed.

However, we face two major challenges in applying DRL
to the job allocation problem. First, in the training phase,
before DRL converges, to adequately explore the state-action
space, it may attempt random and radical actions that may
lead to significant deviations from the optimum and server
overheating. Second, the training convergence time of DRL
is in general proportional to the size of the state-action space
[16]. For the considered job allocation problem, the size
of the state-action space is in quadratic of the number of
servers (cf. §3). Thus, the DRL may have unacceptably long
training convergence time when the number of servers is
large. To tackle these two issues, we adopt an offline training
approach. Specifically, we construct a computational model
based on neural networks to provide system state predic-
tion capability. The computational model can be trained
based on extensive system state and job arrival traces col-
lected from the target data center. Then, the training of
the DRL-based job allocator is performed offline driven by
the computational model and real job arrival history. As
a result, the real-world time for completing the training
is no longer a concern. For instance, we can complete the

training for Singapore’s National Supercomputing Center
(NSCC) hosting 1,152 processors within one day. In contrast,
our simulations show that the online training needs about
40 days to converge. After the completion of the offline
training, the DRL-based job allocator is commissioned to
actuate in the physical data center.

We implement and evaluate our approach for NSCC.
Specifically, based on system state and job arrival traces over
a period of six months, we implement the computational
model for predicting system state (including processors’
temperatures and servers’ power consumption) using long
short-term memory (LSTM) networks and then train the
DRL-based job allocator using the model. The training aims
at maximizing a weighted sum of server power savings
and processor temperature reductions. After that, we reuse
the model to conduct simulations driven by real job arrival
records over a period of 52 days. The evaluation shows that,
with our DRL-based job allocator, the simulated data center
can save more than 10% computing power and reduce the
average processor temperature by more than 4°C without
compromising job processing throughput, compared with
several baseline approaches including a basic round-robin
allocator and a short-horizon online optimizer.

The rest of the paper is organized as follows. §2 reviews
related work. §3 describes the problem and overviews our
approach. §4 and §5 present the designs of the computa-
tional model for system state prediction and the DRL-based
job allocator, respectively. §6 presents evaluation results. §7
discusses several issues. §8 concludes this paper.

2 RELATED WORK

Workload management in cloud computing data centers has
been widely studied. It is often achieved by managing the
virtual machines (VMs) that serve massive, frequent, and
short computing jobs (e.g., web requests). In [11], [17], [18],
the VMs are consolidated and/or migrated to reduce the
number of active physical servers. Different from VM with
migratability as its key advantage, the compute-intensive
jobs considered in this paper can be dependent on massive
data that may have high migration overhead. Thus, the VM
management approaches are ill-suited for our problem.

A variety of computing job allocation and scheduling
algorithms have been proposed. Early studies [19]–[21]
schedule a collection of jobs known a priori. Differently,
we consider jobs that arrive dynamically. Accumulating
sufficient arrived jobs to run the scheduling algorithms
will lead to undesirable job waiting times. Recent studies
schedule computing jobs to achieve various objectives. In
[22], the jobs are scheduled to minimize the average job
waiting time under various resource constraints. In [23],
the jobs are allocated among geographically distributed data
centers to reduce the communication overhead among them.
The above two studies [22], [23] fall short of considering
the thermal effects and requirements. The studies [24]–[26]
develop various constrained optimization formulations that
explicitly address the thermal effects and aim at improving
energy efficiency. The approach in [24] allocates the jobs
to minimize the electricity bills while satisfying several
constraints such as processing time, total electricity budget,
and the number of servers, etc. Based on certain models

3

describing the servers’ power consumption behaviors and
thermal processes, the approaches in [25], [26] use heuris-
tic algorithms to reduce the power consumption of the
data center. Due to the complexity of the thermal pro-
cesses and server/facility power consumption behaviors,
the constrained optimization formulations often lead to
high-complexity solvers that cannot scale well with the size
of the data center and the optimization horizon.

A recent study [27] applies RL techniques to allocate ar-
riving jobs. Specifically, in the proposed two-tier framework,
the global tier applies DRL to allocate jobs to the servers
in a cluster to reduce server power consumption, whereas
the local tier applies the traditional RL to adjust a single
parameter of a server (i.e., a timeout before the server in
the idle state goes to sleep) such that the overhead of server
state transition and the resulted job latency can be reduced.
The local tier builds an LSTM network to predict the arrival
time of the subsequent job. The global tier of [27] and our
proposed approach address a similar problem of allocating
jobs to servers. However, they differ in the following as-
pects. First, the global tier of [27] follows the online learning
scheme that may have undesirably long convergence time
when the number of servers is large. Thus, the evaluation
performed in [27] is limited to 30 servers. Differently, our
approach adopts offline training that is not concerned with
the convergence time in scaling with the number of servers.
For instance, we can build a DRL-based job allocator for
NSCC with 1,152 processors. In §6.4.2, we also conduct
simulations to compare the online learning approach, which
is the essence of [27], and our offline training approach for
NSCC. Second, the study [27] does not consider the thermal
effect of job allocation. The online training may cause server
overheating due to DRL’s random attempts. In contrast, our
approach performs temperature prediction and integrates
processor temperatures into the reward function. As shown
in §6, our offline training scheme can effectively prevent
overheating. Third, the server power consumption model in
[27] is a simplistic binary model (i.e., peak and idle powers).
In contrast, we build LSTM networks to capture the complex
thermal and power consumption dynamics.

Another recent study [28] applies online DRL to allocate
computing resources to arriving jobs such that the job
latency is reduced. However, for compute-intensive jobs
considered in this paper, the job latency is not a key concern.
Different from [28], our approach aims to reduce the power
consumption and heat generation of servers, which are
important factors of the operating cost of a data center.

Our prior work [29] presented our approach of applying
DRL for job allocation. Based on [29], we make two new
contributions in this paper. First, we add job classification
to the computational model and build a separate LSTM
network for each class. Owing to the improved prediction
accuracy, new evaluation shows that our approach achieves
more computing power saving and processor temperature
reduction. Second, we add experiments to measure the com-
putation overhead of our approach and others approaches.

3 PROBLEM STATEMENT & APPROACH OVERVIEW

This paper aims at developing DRL-based job allocation
mechanisms to achieve power saving and temperature re-

duction. This section states the problem and present the
overview of the proposed approach.

3.1 Problem Statement
In this paper, we abstract the computing infrastructure in
a data center as a collection of N processors denoted by
{p1, p2, . . . , pN}. We assume that pi has ni (ni ≥ 1) process-
ing cores. The utilization of pi, denoted by ui, is the average
utilization of pi’s cores. Denote by ti the temperature of
pi, by wi the power consumption of pi and the associated
supporting devices (e.g., main memory, hard disc, etc.). Note
that ui greatly affects both ti and wi.

We consider compute-intensive and deadline-free jobs
with the following characteristics. First, each job is a process
executed on a single processor only and can use multiple
cores on the processor to optimize multithreading perfor-
mance. To meet this requirement, a large-scale computing
task can be decomposed into multiple jobs that will be
allocated to multiple processors. Second, each job is compute-
intensive in that the cores used by the job will be fully
utilized. Thus, each core should be exclusively used by a
single job only, because otherwise the contention among
multiple jobs for a shared core will increase overhead and
cause inefficiency. Third, the jobs do not impose deadlines.
The above characteristics well model many long-lasting
computing tasks, such as those submitted to NSCC.

We define the data center’s system state as follows.
Definition 1 (System state). The data center’s system state is

a vector consisting of all processors’ utilizations, temper-
atures, power consumption, and the numbers of spare
cores. Formally, the state x = [u, t,w, c] ∈ R4N , where
u = [u1, . . . , uN], t = [t1, . . . , tN], w = [w1, . . . , wN],
c = [c1, . . . , cN], ci is the number of spare cores on pi.

To simplify the discussion, we consider a problem of
allocating a single job at the front of a job queue to one of
the N processors for execution. In §5.2, we will present the
extension to allocating multiple jobs at the front of the job
queue to one or more processors for execution. We define
the allocation action as follows.
Definition 2 (Allocation action). The a = [a1, . . . , aN] is the

allocation action, where ai = 1 or ai = 0 means that the
job is allocated to processor pi or not. Thus,

∑N
i=1 ai = 1.

Each job in the queue is described by the number of
cores requested by the job. As the job is compute-intensive,
based on the number of requested cores only, we can predict
the job’s impact on the utilization, temperature, and power
consumption of any processor that the job is allocated to.
This will be shown with more details in §4. Following the
standard formulation of RL, the allocation action a is cho-
sen to maximize the expected return E[R(k)] defined from
the current time step k. Note that we discretize time into
steps in assessing the return. Specifically, the return R(k) is
defined as the exponential average of future rewards, i.e.,
R(k) =

∑∞
τ=0 γ

τr(k+ τ + 1), where γ ∈ (0, 1) is a constant
discount factor and r(k) is a scalar reward in the system
state x(k). The reward function r(k) can be defined by the
data center operator to drive the DRL toward the desired
goal. §5 will present the detailed form of r(k) used in our

4

Fig. 1. Workflow of our offline training approach. The first step is to
construct LSTM-based state prediction model; the second step is to
train the DRL-based job allocator. The trained job allocator makes job
allocation decisions based on the runtime system state.

evaluation. The jobs in the queue are allocated sequentially
and continuously to the processors until the queue is empty.

3.2 Approach Overview
The allocation action a for the job at the queue front should
be chosen according to the current state x(k). The size of
the state-action space is 4N × N , where 4N and N are the
dimensions of the state and action spaces, respectively. As
N is often large (up to thousands) in typical data centers,
it is infeasible to pre-compute the job allocation for every
possible state to maximize the expected return. In this paper,
we apply DRL to address the issue. During the learning
phase, a DQN is trained to capture the allocation policy that
maximizes the expected return. The job allocator trained
with a sufficiently large number of system states is expected
to give the optimal allocation at run time by forward-
propagating the DQN based on the system state. Thus, the
DRL-based job allocator will have low run-time overhead.

During the training phase, the DRL will extensively
explore the state-action space by applying a large number
of tentative actions and then learning the responses of the
system as well as the impact on the reward. These tentative
actions can lead to large deviations of the reward from
the optimum. In particular, they may result in undesirable
service quality degradation and server overheating. Fig. 1
illustrates the workflow of our offline training approach
to address this issue. In the step (1), we collect a large
amount of system state and job allocation records from the
physical data center to train a computational model that can
predict the future system states given the current state and
a job allocation. In the step (2), we use the computational
model and real job traces to drive the offline training of
the DRL-based job allocator. The trained job allocator is
commissioned to actuate in the physical data center. The
following sections of this paper will present the detailed
designs of the computational model and the job allocator.

The computational model can also be used to predict the
consequence of executing a job allocation decision to detect
potential server overheating. The decision that will not
cause undesirable server overheating will be executed. Oth-
erwise, a fallback mechanism that does not try to maximize
the reward will be used to allocate the job. For instance, the
job can be allocated to the coolest processor. Other advanced
thermal-aware job allocators [30] can also be adopted. Note
that the computational model may generate false negatives
in predicting server overheating. In such cases, reactive

LSTM1

...

...

...

...

...

LSTM2

Fig. 2. A tandem of LSTM networks for system state prediction. The first
LSTM network is to predict the utilization; the second LSTM network is
to predict the temperature and power consumption.

measures such as throttling CPU frequency and increasing
cooling capacity of the air cooling unit (ACU) will take effect
to avoid thermal unsafety.

4 SYSTEM STATE PREDICTION

This section presents the design of our system state predic-
tion based on long short-term memory (LSTM) networks
and the evaluation using real data traces.

4.1 Prediction Approach

Data center thermal state prediction is often performed us-
ing computational fluid dynamics (CFD) models. However,
the CFD models generally require extensive calibration by
domain experts for accuracy [31]. Moreover, CFD introduces
notably high computation overhead, making it unsuitable
for driving DRL. In this work, we build neural networks for
the prediction.

Recurrent neural networks (RNNs) can well capture tem-
poral correlations. LSTM [32] is an RNN architecture that
addresses the vanishing and exploding gradient problems
of conventional RNNs. Its outperforming performance has
been demonstrated in a number of sequence prediction tasks
such as speech recognition. Gated RNN [33] is an alterna-
tive with lower compute overhead but inferior prediction
accuracy for sequences with fast dynamics, compared with
LSTM. As the main purpose of the prediction system is for
offline training of DRL, we choose LSTM. We design a bank
of LSTM-based predictors to predict the next system state
x(k + 1) based on the current job allocation a and the latest
l ∈ Z>0 measured system states, i.e., x(k − l + 1), . . . ,x(k).
Specifically, the ith predictor in the bank predicts the next
system sub-state corresponding to the ith processor pi,
which is defined by xi(k+1) = [ui(k+1), ti(k+1), wi(k+
1), ci(k+1)] ∈ R4, based on xi(k−l+1), . . . ,xi(k). Thus, the
LSTM-based predictors in the bank predict the processors’
states separately.

By analyzing the internal causality among the system
state components, we design the predictor as a tandem of
two LSTM networks for utilization prediction and temperature
and power prediction, respectively. The tandem is illustrated
in Fig. 2 and explained as follows.

Utilization prediction: For the ith processor pi, the first
LSTM network predicts the processor’s next utilization
ui(k + 1) based on the past utilizations ui(k − l +
1), . . . , ui(k), the past spare cores ci(k − l + 1), . . . , ci(k),
and the number of pi’s cores to be used by the allocated job,
which is denoted by mi(k). Specifically, if ai = 0 (i.e., the

5

job is not allocated to pi), mi(k) = 0; otherwise, mi(k) is the
number of cores requested by the job.
Temperature and power prediction: The second LSTM
network predicts the processor’s next temperature ti(k+ 1)
and power consumptionwi(k+1) based on the past temper-
atures ti(k−l+1), . . . , ti(k), past power consumption values
wi(k− l+1), . . . , wi(k), and predicted utilization ui(k+1).
Note that the output layer of the LSTM has two units for
temperature and power consumption. After the LSTM, we
add a fully connected layer with 100 units and then another
output layer with two units to yield the final prediction.

The rationale of the above tandem design is that the two
LSTM networks capture two causal processes with different
time constants. The first LSTM network captures a compu-
tation domain process with a short time constant. Ideally,
the processor utilization should respond immediately to the
allocation of the job. Moreover, under the assumption of
compute-intensive jobs made in §3.1, the next utilization can
be predicted analytically as ui(k + 1) = ui(k) +

mi(k)
ni

. The
LSTM captures other realistic factors that are beyond the
compute-intensive assumption such as non-full utilization
of cores due to core swapping during job execution and I/O-
induced waiting, etc. Differently, the second LSTM network
captures a physical domain process with a larger time con-
stant. That is, the responses of the processor temperature
and power consumption to the utilization changes can be
dynamic processes over time. Intuitively, our tandem design
integrating the above knowledge about the system state
evolution will outperform those based on a pure black
box approach. For instance, another design option is to
use a single LSTM network with the past system states
as the input and the next system state as the output. Our
evaluation in §6.2 shows that this single-LSTM design yields
inferior prediction accuracy.

Real system state data traces collected from the target
data center running simple/heuristic job allocation algo-
rithms can be used as the training data to build the LSTM-
based predictors. The two LSTM networks for each proces-
sor are trained separately. We use the mean squared error
(MSE) between the prediction and the ground truth over
a training batch as the loss function. Backpropagation is
used to derive the network gradients and update the LSTM
network parameters.

4.2 Evaluation for a Real Data Center
We apply the prediction approach described in §4.1 to NSCC
hosting 1,152 processors in 16 racks. Each processor has
24 cores. The data center uses both air cooling and liquid
cooling. It offers computing services to multiple scientific
research organizations. Each job submitted by the user
consists of an executable, the number of requested cores,
and the expected execution time. The data center currently
applies a round-robin job allocator. We collect the job al-
location history from the data center for six months. The
system state is sampled every ten minutes. Accordingly,
we set the time step length for state prediction to be ten
minutes. From our results of profiling the job arrivals in this
data center, 97% of the intervals between two consecutive
job arrivals are longer than ten minutes. Thus, with the 10-
min time step length, each of most time steps has one or

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
o

rm
al

iz
ed

 l
o

ss

Epoch

1st LSTM
2nd LSTM

Fig. 3. Running loss of LSTM networks during training. The x-axis
represents the index of the training epoch; the y-axis represents the
loss function value that is normalized using the initial loss value.

zero job arrival only. More profiles about the compute jobs in
NSCC, including the compliance of the jobs to the compute-
intensive assumption and the processor temperature/power
dynamics, can be found in Appendix A.1 We divide the
dataset collected from NSCC into training, validation, and
testing datasets that have 20000, 3126, and 2159 system
states, respectively. We set l = 3.

First, we present the training and evaluation of the
utilization prediction. The hidden size of the first LSTM is
set to be 32. Training settings include: the learning rate is
0.01; mini-batch size is 32; training time is 30 epochs. The
solid curve in Fig. 3 shows the running loss curve during
the training of the first LSTM for a processor. It shows
that the training converges after about ten epochs. The top
part of Fig. 4 shows the ground truth and the prediction of
the utilization of a processor. The root mean square error
(RMSE) of the prediction is 3% only.

Second, we present the training and evaluation of the
temperature and power prediction. The hidden size of the
second LSTM is set to be 128. Training settings include:
learning rate is 0.001; mini-batch size is 15; training time
is 85 epochs. Fig. 3 shows the running loss curve during
the training of the second LSTM for a processor. It shows
that the training converges after about 50 epochs. Compared
with the first LSTM, the second LSTM takes a longer time
to converge. This is because the dynamics of the physical
domain process addressed by the second LSTM is more
complex than the job-utilization process addressed by the
first LSTM. The middle and bottom parts of Fig. 4 show
the temperature and power consumption predictions made
by the tandem of the two LSTM networks for a processor
and the corresponding ground truths. We can see that the
predictions track the ground truths. The RMSEs of the
temperature and power predictions are 1.24°C and 8.29W.

In §6.2, we will present more evaluation results under
various settings of the LSTM networks.

4.3 Improved Prediction Approach
Previous sections consider compute-intensive jobs that will
fully utilize the cores assigned and lead to deterministic
processor utilization. The first LSTM network of the tandem
structure illustrated in Fig. 2 can capture the deviations from
the assumption of compute-intensive jobs. In this section,
we present an improved processor utilization prediction ap-
proach that can better deal with the deviations. Based on the
extensive data traces collected from NSCC, we observe that
the processor utilization traces have certain patterns. Thus,

1. Due to space limitations, all appendixes are omitted and can be
found in the supplementary file of this paper.

6

 0
 20
 40
 60
 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

U
ti

li
za

ti
o
n
 (

%
)

ground truth prediction

 56

 58

 60

 62

 64

 66

0 50 100 150 200 250 300

T
em

p
er

at
u
re

 (
˚C

)

ground truth
prediction

 280
 290
 300
 310
 320
 330
 340
 350

0 50 100 150 200 250 300

P
o
w

er
 (

W
at

t)

Index of time step

ground truth
prediction

Fig. 4. Prediction results for a processor. Top: utilization; middle: tem-
perature; bottom: power usage. The x-axis represents the index of
time step; the y-axes of the three sub-figures represent the processor
utilization, the processor temperature, and the power consumption.

 4
 6
 8

 10
 12
 14
 16
 18

U
ti

li
z
a
ti

o
n
 (

%
)

 20

 30

 40

 50

 60

 0 5 10 15 20

U
ti

li
za

ti
o
n
 (

%
)

Index of time step

Fig. 5. Two example clusters of jobs. The x-axis represents the index of
time step; the y-axes represent processor utilization.

we apply the expectation maximization (EM) algorithm to
construct a Gaussian mixture model (GMM) based on the
processor utilization traces with identical lengths of l time
steps. The number of Gaussian distributions in the GMM,
denoted by K , is predefined. Note that the EM algorithm is
an supervised learning algorithm. Fig. 5 shows the processor
utilization traces in two different clusters generated by
the EM algorithm. We can see that they exhibit different
patterns. In the first cluster, the utilization varies less over
time. Differently, in the second cluster, the utilization varies
more over time. Intuitively, if we construct separate LSTM
networks for different clusters, the prediction accuracy can
be improved.

The training procedure of these separate LSTM networks
is as follows. First, the utilization traces contained in the
training data are classified by the constructed GMM. Then,
the utilization traces in the kth class are used to train
an LSTM network (i.e., LSTM1-k) to predict the processor
utilization. Note that the LSTM1-k also uses the spare core
trace as an input, same as the setting for LSTM1 in Fig. 2.
Fig. 6 shows the running loss trace of LSTM1-k for all three
job clusters (i.e., K = 3) during the training. We can see that
all three LSTM networks converge.

Fig. 7 illustrates the improved processor utilization pre-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 20 40 60 80 100

N
o
rm

al
iz

ed
 l

o
ss

Index of the training epoch

Job cluster 1
Job cluster 2
Job cluster 3

Fig. 6. Running loss of LSTM1-k for three job clusters during the training
process. The x-axis represents the index of training epoch; the y-axis
represents the loss function value that is normalized using the initial
loss value. The total number of clusters K is three.

LSTM1-1

LSTM1-2

LSTM1-K

...

GMMutilization

trace

spare core

trace

Fig. 7. Improved utilization prediction. Solid arrows represent data flows;
dotted line represents selection signal. Based on the GMM’s job classi-
fication result, an LSTM1 network is selected for utilization prediction.

diction when being used for the offline training of DRL
agent, in which the GMM and the LSTM1 networks have
been well trained. To predict the utilization of a processor,
the processor’s utilization trace in the immediately past l
time steps is classified by the GMM. Based on the classifica-
tion result, the LSTM1 network corresponding to the class
is selected to perform the utilization prediction. The inputs
to the selected LSTM1 network include the utilization trace
and the spare core trace. The output of the LSTM1 network
is used as an input to the LSTM2 network shown in Fig. 2
to predict the processor’s temperature and power consump-
tion. In §6.3 and §6.5, we will evaluate the accuracy of the
improved prediction approach and the overall performance
of the DRL agent trained with the improved prediction.

5 DRL-BASED JOB ALLOCATION

To formulate the job allocation as an RL problem, the RL’s
system and action are the data center’s system state x and
job allocation action a defined in Definitions 1 and 2. As
discussed in §1, the traditional RL builds a look-up table
Q(x,a) to assess the value of taking an action a given the
current state x. DRL builds a DQN to approximate Q(x,a)
for problems with large state-action spaces. The DQN needs
to be “deep” to well approximate Q(x,a) that can be highly
complicated due to the complex coupling between the state,
action, and value. This section presents the design of the
DRL-based job allocators that allocate a single job (§5.1) or
multiple jobs (§5.2) each time.

5.1 Design of DRL-Based Job Allocator
As discussed in §3.2, the training phase of DRL follows a
trial-and-error paradigm. Thus, the training may attempt
random and radical actions that will lead to significant
deviations from the optimal values and server overheating.
Thus, we use the system state prediction model presented in
§4 as the environment to train the job allocator in an offline

7

manner. The training can be driven by real historical job
arrival records.

The data center operator can define the reward function
to direct DRL to desired goals. For instance, we may focus
on minimizing the total computing power consumption by
defining the reward to be r(k) = −

∑N
i=1 wi(k). We can

also direct DRL to outperform any baseline job allocator by
defining the reward to be

r(k)=−
N∑
i=1

(
wDRL
i (k)−wBL

i (k)
)
+α
(
tDRL
i (k)−tBL

i (k)
)
, (1)

where the α is a non-negative weight; the superscripts
DRL and BL denote the sub-states under the DRL and the
baseline control schemes, respectively. With a smaller α, the
DRL is driven more toward reducing the total power con-
sumption of processors; with a larger α, the DRL is driven
more toward reducing the average processor temperature.
In §6, we will quantitatively evaluate the impact of the α
setting on the performance of the DRL-based job allocator.

We now discuss the techniques that we use to speed up
the convergence of the DRL training. Many deep learning al-
gorithms assume that the training samples are independent.
However, in the DRL paradigm, the online learning of the
DQN will receive temporally correlated training samples as
the system state transits in response to the actions. Thus, the
online DRL may not converge. Fortunately, with the system
state prediction model as the environment, we can generate
the training samples computationally and perform offline
training. With the offline training data, we use a technique
called experience replay [34], [35] to deal with the training
sample correlation issue mentioned earlier. Specifically, a
number of temporally consecutive training samples com-
pose an episode. In the inner loop of the training algorithm,
a certain number of episodes are randomly selected from
a pool of episodes to form a mini-batch. This technique
effectively breaks the training sample temporal correlation
and improves the efficiency of training data use as each
episode may be used multiple times.

5.2 Allocating Multiple Jobs Each Time
§5.1 presented the DRL-based job allocator when a single
job at the front of the job queue is allocated each time.
This section discusses the extension to allocating J jobs each
time, where J is a fixed integer. Now, the allocation action a
becomes a J ×N (0,1)-matrix, in which the (j, i)th element
aj,i = 1 or aj,i = 0 represents that the jth job is allocated
to processor pi or not. Thus,

∑N
i=1 aj,i = 1. When the

number of pending jobs in the queue (denoted by JQ) is less
than J , we supplement the queue with J − JQ dummy jobs
requesting zero cores. As we build a separate LSTM tandem
for each processor, the system state prediction approach in
§4 can also be applied for the case of allocating multiple jobs.
The training of the DRL is same as that presented in §5.1.
The main challenge caused by allocating multiple jobs is
that the dimension of the action space significantly increases
to NJ . In general, with a larger action space, the DRL
will need more training data and longer training time for
convergence. For instance, the offline training of the DRL-
based job allocator with J = 1 and J = 2 for NSCC takes
about 1 and 1.5 days, respectively. In §6, we will evaluate the

TABLE 1
Impact of hyperparameter settings on prediction accuracy.

Hyperparameters Avg error Accuracy
learn. input hidden batch

ti wi ti wirate size size size
1e-3 3 32 20 1.65 5.45 97.57% 97.21%
1e-3 3 128 20 1.09 4.89 98.42% 97.54%
5e-3 3 128 30 2.05 6.12 96.98% 96.87%
1e-3 5 128 30 1.87 5.34 97.25% 97.26%
1e-3 3 128 40 1.92 5.63 97.17% 97.12%
5e-4 3 64 30 1.43 5.24 97.89% 97.32%
aThe units for temperature and power consumption are °C and W.
bThe Adam optimizer and MSE loss function are used in training.

performance improvement brought by allocating multiple
jobs each time.

6 PERFORMANCE EVALUATION

In this section, we extensively evaluate our DRL-based job
allocator against several baseline approaches.

6.1 Implementation and Evaluation Methodology
This section presents the implementation details of different
approaches and the evaluation methodology.

6.1.1 Implementation of DRL-based job allocator
We build the DQN with three dense layers: the input layer
admits the system state; the hidden layer has 24 nodes; the
output layer consists of N units. The pending J jobs are
allocated to the processors corresponding to the output-
layer units giving the J highest values. The input and
hidden layers use rectified linear units (ReLUs); the output
layer uses a linear activation function. We choose MSE as
the loss function and Adam as the optimizer. The Adam
optimizer is a method for efficient stochastic optimization
that only requires first-order gradients with little memory
requirement. The epsilon of DRL, i.e., the probability that
DRL randomly chooses an action, is set to be 0.2. Addition-
ally, we set two hyperparameters called epsilon decay and
epsilon minimum to be 0.999 and 0.01, respectively. During
the training, the epsilon is decayed by multiplying it with
the epsilon decay every job allocation until the epsilon
minimum. Other settings include: learning rate is 0.001;
mini-batch size is 5; discount factor λ is 0.99. By DRL1 and
DRL2, we refer to the DRL-based job allocators with J is 1
or 2, i.e., to allocate one or two jobs in each time step.

6.1.2 Implementations of baseline approaches
We implement several baseline job allocators as follows.

Round-robin (RR) job allocator: RR allocates the job at
the front of the job queue each time to the processors in a
round robin fashion. If the processor in turn does not have
enough spare cores to admit the job, RR skips this processor
and checks the next processor.

Job consolidator: Different from RR that tries to spread
the jobs to the processors, the job consolidator tries to reduce
the number of processors to serve the jobs. Specifically, it
first identifies a set of eligible processors with enough cores
that can admit the job at the front of the job queue. Then,
it assigns the job to the processor whose post-allocation
utilization would be higher than that of any other eligible

8

processor. Note that the post-allocation processor utilization
can be predicted by the system state prediction model.

Online optimizer: For an optimization horizon of h time
steps, the online optimizer exhaustively searches for the
allocation actions {a(k),a(k + 1), . . . ,a(k + h − 1)} such
that the return R(k) =

∑h
τ=0 γ

τr(k + τ + 1) is maximized,
where the setting for the discount factor γ is same as the
DRL-based job allocator. We consider two variants:

Online-opt1 adopts a reward function of r(k) =
−
∑N
i=1 w

OPT
i (k)+α·tOPT

i (k), wherewOPT
i (k) and tOPT

i (k)
are the computing power consumption and processor tem-
perature under the online optimizer.

Online-opt2 adopts a reward function similar to the DRL-
based job allocator: r(k) = −

∑N
i=1

(
wOPT
i (k)− wBL

i (k)
)
+

α
(
tOPT
i (k)− tBL

i (k)
)
.

Both variants have an exponential complexity with re-
spect to h, i.e., O(Nh). Thus, they scale poorly with h.

6.1.3 Evaluation methodology
We conduct trace-driven simulations to compare the ap-
proaches described in §6.1.1 and §6.1.2. In §4, we have
constructed the system state prediction model using real
data traces collected from NSCC. As discussed in §5.1, we
use the model as the environment to train the DRL-based
job allocator. In our evaluation, we also use the model to
simulate the state evolution of the data center with a job
allocator being evaluated. We drive the simulations using
real job arrival records of the data center. Note that these
records are not used in the training phases of the system
state prediction model and the DRL-based job allocator.
To show the DRL-based job allocator’s robustness against
the inherent randomness of its training process, we run 10
training-testing processes with the same hyperparameters
driven by the same training and testing data. We report the
average and standard deviation (s.d.) of the 10 runs’ results.

6.2 Evaluation Results of System State Prediction
This section evaluates the accuracy of the system state
prediction approach presented in §4.1 under various set-
tings. Denoting by Pm and Tm the prediction and the true
value, respectively, the prediction accuracy is computed
as 1 − 1

M

∑M
m=1

Pm−Tm

Tm
, where M is the number of data

points. Table 1 shows the average prediction error and the
prediction accuracy of processor temperature (ti) and power
consumption (wi) under various combinations of hyperpa-
rameter settings. With the Adam optimizer and the hyper-
parameter settings highlighted by bold text in Table 1, the
minimum average temperature and power prediction errors
are 1.09°C and 4.89W only. The corresponding prediction
accuracies are 98.42% and 97.54%. These results show that
our LSTM tandem can predict the processor temperature
and power consumption accurately.

We also compare our LSTM tandem design with several
alternative design options of (1) single LSTM network, (2)
using stochastic gradient descent (SGD) optimizer instead of
Adam optimizer for the LSTM tandem, and (3) using fully
connected linear network instead of LSTM. Fig. 8 shows
the accuracy of different designs in predicting processor
temperature and power consumption. We can see that our

 50

 60

 70

 80

 90

 100

LSTM tandem Single LSTM SGD Linear

A
cc

u
ra

cy
 (

%
) 98.4% 97.5%

82.5%
77.0%

68.5%
74.4%

54.2%
60.0%

Temperature prediction accuracy
Power prediction accuracy

Fig. 8. Temperature and power prediction accuracy of different ap-
proaches. The x-axis represents the various approaches; the y-axis
represents the accuracy in predicting processor temperature and power
consumption that are differentiated by the bar groups.

TABLE 2
Hyperparameter settings and prediction accuracy for three clusters.

Hyperparameters Avg error Accuracy
learn. input hidden batch

ti wi ti wirate size size size
1e-3 3 128 30 0.46 2.59 98.43% 97.84%
5e-3 3 64 40 0.82 2.72 97.96% 97.98%
1e-3 3 128 30 0.69 2.79 98.63% 98.14%
aThe units for temperature and power consumption are °C and W.
bThe Adam optimizer and MSE loss function are used in training.

design achieves the highest accuracy. Consistent with our
discussion in §4.1, our LSTM tandem capturing knowledge
about the system state evolution outperforms the single
LSTM network that follows the black box design approach.
The other design options of using SGD optimizer and linear
network give worse prediction accuracy.

6.3 Evaluation Results of Improved State Prediction
This section evaluates the accuracy of the improved system
state prediction approach presented in §4.3. The processor
utilization traces in the training data are classified into three
clusters by the EM algorithm. For each cluster, we train a
separate LSTM network for utilization prediction. We follow
the approach in §6.2 to optimize the settings of the hyperpa-
rameters. Table 2 shows the best test accuracies for the three
clusters and the corresponding hyperparameters. Compared
with the results shown in Table 1, the test accuracies for
the first and the third clusters are higher than the best test
accuracy in Table 1. For the second cluster, the test accuracy
for temperature prediction is slightly lower than the best
accuracy of 98.42% in Table 1; but the test accuracy for
power consumption prediction is higher than that in Table 1.

6.4 Evaluation Results of DRL-based Job Allocator
6.4.1 Training convergence of DRL1
We adopt the reward function in Eq. (1) with RR and
job consolidator as the baseline approaches, respectively.

 4

 6

 8

 10

 12

 14

 16

 0 100 200 300 400

T
ra

in
in

g
 r

ew
ar

d
 (

x
1

0
3
)

Running epoch

s.d. range
mean

(a) Training reward

 7
 8
 9

 10
 11
 12
 13
 14
 15
 16

 0 20 40 60 80

V
al

id
at

io
n
 r

ew
ar

d
 (

x
1
0

3
)

Running epoch

s.d. range
mean

(b) Validation reward

Fig. 9. Training and validation rewards of DRL1. Eq. (1) uses RR as
baseline (α = 0.5). Mean and s.d. are obtained from 10 runs. The x-
axis represents the running epoch; the y-axis represents the reward.

9

-6

-4

-2

 0

 2

 4

 6

 8

 0 100 200 300 400

T
ra

in
in

g
 r

ew
ar

d
 (

x
1
0

3
)

Running epoch

s.d. range
mean

(a) Training reward

-6
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

 0 20 40 60 80

V
al

id
at

io
n
 r

ew
ar

d
 (

x
1
0

3
)

Running epoch

s.d. range
mean

(b) Validation reward

Fig. 10. Training and validation rewards of DRL1. Eq. (1) uses job
consolidator as baseline (α = 0.5). Mean and s.d. are obtained from
10 runs. The x-axis represents the running epoch; the y-axis represents
the reward.

Fig. 9 shows the training and validation reward traces when
Eq. (1) is instantiated with RR as the baseline. Note that we
perform a validation epoch every five training epochs. The
mean traces and the corresponding s.d. ranges are obtained
from 10 runs of the training-validation process. We can
see that both the training and validation rewards become
flattened after about 200 training epochs. The positive re-
wards suggest that DRL1 can be trained to outperform the
RR approach. Fig. 10 shows the results when Eq. (1) is
instantiated with the job consolidator as the baseline. The
positive rewards suggest DRL1’s superior performance. By
comparing Fig. 9 and Fig. 10, DRL1 achieves larger rewards
with respect to RR than the job consolidator. This is because
that the job consolidator outperforms RR in terms of the re-
ward concerning power and temperature reduction. In §6.5,
we will show that the DRL-based job allocator trained with
the improved system state prediction approach achieves
more power saving and processor temperature reduction.

6.4.2 Convergence & temperature spikes of online learning
We conduct simulations to investigate the convergence time
and processor temperature profile of DRL when it directly
interacts with the physical data center to perform online
learning. This online learning design is consistent with the
approach described in [27]. The simulations are driven by
real job arrival records collected from NSCC over a period
of 52 days. During the 52 days, a total of 1,500 jobs arrived.
On each simulated day, we train the DRL-based allocator
for one epoch or 400 epochs based on the jobs that have
arrived on that day and before. After the daily update of the
DRL, we perform simulations driven by all the jobs and
the system state predictor constructed in §6.2 to test the
performance of the daily updated DRL-based job allocator.
Figs. 11(a) and 11(b) show the processor temperature and
server power consumption in the daily testing when one
or 400 training epochs are performed for each update. As a
comparison, we test DRL1 that has been adequately trained
during the offline learning phase. The offline training of
DRL1 takes about one day. Fig. 11(c) shows the testing result
for DRL1.

The processor temperatures and power consumption in
Fig. 11(a) are consistently higher than those in Fig. 11(c).
This suggests that the online learning with one training
epoch each day has not converged after 50 days. The
slow online convergence is caused by the large state-action
space and the inadequate training each day. Moreover, from

 42

 46

 50

 54

 58

 0 10 20 30 40 50

T
em

p
.
(˚

C
)

Index of the simulated day

 135

 140

 145

 150

 155

 0 10 20 30 40 50

P
o
w

er
 (

W
at

t)

Index of the simulated day

(a) Online learning with one training epoch per day

 42

 46

 50

 54

 58

 0 10 20 30 40 50

T
em

p
.
(˚

C
)

Index of the simulated day

 135

 140

 145

 150

 155

 0 10 20 30 40 50

P
o
w

er
 (

W
)

Index of the simulated day

(b) Online learning with 400 training epochs per day

 42

 46

 50

 54

 58

 0 10 20 30 40 50

T
em

p
.
(˚

C
)

Index of the simulated day

 135

 140

 145

 150

 155

 0 10 20 30 40 50

P
o
w

er
 (

W
)

Index of the simulated day

(c) Online execution of DRL1 that is trained offline

Fig. 11. Processor temperature & power consumption. Error bar repre-
sents min & max among 1,152 processors over testing data. The x-axis
of (a), (b), and (c) represents the index of the simulated day; the y-axis of
the left parts of (a), (b), and (c) represents the processor temperature;
the y-axis of the right parts of (a), (b), and (c) represents processor
power consumption.

 3.8

 3.9

 4

 4.1

 4.2

 4.3

 4.4

0 5 10 15 20 25 30 35 40 45 50
 8

 10

 12

 14

T
em

p
.
re

d
u
ct

io
n
 (

˚C
)

P
o
w

er
 s

av
in

g
 (

W
)

Day

Temperature
Power

Fig. 12. Temperature reduction (left y-axis) and power saving (right y-
axis) for a processor by DRL1 with respect to RR. The x-axis represents
the index of the simulated day. The α in Eq. (1) is 0.5.

Fig. 11(a), the servers experience spikes of processor temper-
ature and power consumption during the testing. They are
caused by the random attempts of DRL during the online
learning. Differently, in Fig. 11(c), DRL1 does not cause
spikes of processor temperature and power consumption.
From Fig. 11(b), the online learning with 400 training epochs
each day needs about 40 days to converge. It also causes
processor temperature spikes in the first 30 days.

6.4.3 Run-time temperature reduction and power saving
We conduct trace-driven simulations to evaluate the tem-
perature reduction and power saving achieved by the DRL-
based job allocators that are trained under the reward in
Eq. (1) with RR as the baseline and different α and J
settings. The simulations are driven by the real job arrival
records used in §6.4.2, which span 52 days. Fig. 12 shows
the temperature reduction and power saving for a certain
processor when the simulated data center adopts DRL1
(α = 0.5) instead of RR. We can see that for this processor,
DRL1 reduces the processor temperature by about 4°C and
power consumption by about 12W.

10

 7

 8

 9

 10

 11

 12

 13

 14

0.5 1 1.5 2 3 4

P
o

w
er

 s
av

in
g

 (
W

)

α

online-opt2
DRL1
DRL2

(a) Power saving

 4

 5

 6

0.5 1 1.5 2 3 4

T
em

p
er

at
u

re
 r

ed
u

ct
io

n
 (

˚C
)

α

online-opt2
DRL1
DRL2

(b) Temperature reduction

Fig. 13. Impact of α on (a) temperature reduction and (b) power saving
of a processor with respect to RR. The error bar represents s.d.; for
online-opt2, the optimization horizon h = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 9 10 11 12 13 14

C
D

F

Power saving (W)

RR
greedy

onln-opt1

(a) CDF of power saving

 0

 0.2

 0.4

 0.6

 0.8

 1

 3.4 3.6 3.8 4 4.2

C
D

F

Temperature reduction (˚C)

RR
greedy

onln-opt1

(b) CDF of temperature reduction

Fig. 14. CDFs of (a) power saving and (b) temperature reduction by
DRL1 with respect to various baseline approaches. The y-axis repre-
sents the value of cumulative distributed function. The α in Eq. (1) is
0.5; for online-opt1, the optimization horizon h = 1.

We also investigate the impact of the weight α in Eq. (1)
on the temperature reduction and power saving with re-
spect to RR. The results for a certain processor are shown
in Fig. 13. In Fig. 13(a), with smaller α, more power can
be saved. The s.d. of the power saving increases with α.
This is because, with a larger α, the power saving becomes
a less important component in the reward function and
more uncertain at run time. In Fig. 13(b), with a larger α,
DRL1 and DRL2 achieve more temperature reduction. For
the same reason aforementioned, the s.d. of the temperature
reduction generally decreases with α. These results are con-
sistent with our discussion in §5.1 regarding the impact of α
on the training goal. Compared with DRL1, DRL2 achieves
more power savings and temperature reductions. This is
because, compared with sequentially scheduling individual
jobs, jointly scheduling two jobs each time will have a
better chance to further increase the reward. However, DRL2
requires 1.5x training time compared with DRL1.

We also apply the online optimizer online-opt2 with the
horizon h = 1 and the reward function defined with RR as
the baseline. The power saving and temperature reduction
achieved by online-opt2 are also shown in Fig. 13. The impact
of α on the power saving and temperature reduction is
similar to that under the DRL solutions. Compared with the
online optimizer, our DRL solutions (i.e., DRL1 and DRL2)
save more power and achieve larger temperature reduction.
Note that, as evaluated in §6.4.4, online-opt with h = 2 has
unacceptably long computation time (40 minutes) to allocate
a job, rendering the approach unrealistic. Thus, we skip
evaluating online-opt with h ≥ 2.

We investigate the per-processor power savings for all
the 1,152 processors in the data center that are achieved by

TABLE 3
Average relative power saving & temperature reduction achieved by

DRL1 with respect to baseline approaches.

α
Relative power saving (%) Avg temp. reduction (°C)
RR greedy online-opt1 RR greedy online-opt1

0 9.89 9.45 9.28 3.75 3.58 3.34
0.5 9.31 9.16 9.09 4.08 3.94 3.71
1.0 8.51 8.22 8.31 4.46 4.01 3.89
1.5 7.72 7.45 7.42 4.95 4.30 4.02
2.0 6.87 6.81 6.72 4.75 4.38 4.17
3.0 6.57 6.43 6.35 5.31 4.84 4.52
4.0 6.33 6.28 6.29 5.25 5.01 4.87
h = 1 for online-opt1.

TABLE 4
Per-job computation latency.

Approach Mean(s) S.d.(s)
online-opt1 (h = 1, GPU) 2.32 0.13
online-opt1 (h = 2, GPU) 2654 125

DRL (GPU) 0.05 0.003
DRL (CPU) 0.47 0.006

DRL1 with respect to different baseline approaches over the
simulated period of 52 days. Fig. 14(a) shows the cumula-
tive distribution function (CDF) of the per-processor power
savings when α = 0.5. We can see that DRL1 saves the
largest power over RR. It also saves more than 10W over
the online-opt1. Fig. 14(b) shows the CDF of the temperature
reduction. We can see that, compared with the baseline
approaches, DRL1 reduces the processor temperature by
3.4°C to 4.2°C. Table 3 shows the average relative power
saving and temperature reduction with respect to various
baselines under different α settings. The average relative
power saving is computed as 1

M

∑M
m=1

wBL
m −w

DRL
m

wBL
m

, where
the superscripts DRL and BL denote the per-processor
power consumption (w) under the DRL1 and baseline job
allocators, respectively; the M is the total number of data
points for all processors in the 52 days. We can see that,
for any baseline, the relative power saving achieved by
DRL1 decreases with α; differently, the average tempera-
ture reduction achieved increases with α. These results are
consistent with intuition and the result in Fig. 13 for a
single processor. From Table 3, compared with the baseline
approaches, DRL1 saves computing power by more than 9%
and reduces processor temperature by more than 3°C.

6.4.4 Computation overhead

We assess the computation overhead of different job al-
location approaches. The job allocators are executed on a
workstation computer equipped with an Xeon E3-1220 CPU,
32GB memory, and a Tesla K40c 12GB GPU. The forward
propagation computations of the LSTM and Q-network use
the GPU. Table 4 shows the computation time of different
approaches in allocating a single job. We can see that the
online-opt1 with h = 1 takes 46x computation time compared
with DRL1. This is because online-opt1 needs to forward-
propagate 1,152 LSTM tandems for each candidate alloca-
tion action among all the 1,152 candidates. When h = 2,
the online-opt1 takes more than 40 minutes to allocate a job,
which is unacceptable.

In addition, we have also evaluated the job process-
ing throughput of our approach and various baseline ap-
proaches. The results can be found in Appendix B.

11

TABLE 5
Relative power saving & temperature reduction achieved by DRL1 with

improved state prediction with respect to baseline approaches.

α
Relative power saving (%) Avg temp. reduction (°C)
RR greedy online-opt1 RR greedy online-opt1

0 11.52 11.05 10.89 4.88 4.56 4.32
0.5 10.85 10.63 10.26 5.54 5.23 5.08
1.0 10.42 10.18 9.97 5.75 5.23 5.08
1.5 10.25 10.02 9.76 6.02 5.84 5.61
h = 1 for online-opt1.

6.5 Job Allocator with Improved State Prediction
This section presents evaluation results of a DRL-based job
allocator trained with the improved state prediction ap-
proach presented in §4.3. Table 5 shows the average relative
power saving and temperature reduction achieved by DRL1
with respect to various baselines under different α settings.
The method of computing the average relative power saving
is same as in §6.4.3. We can see that, for any baseline, the
relative power saving achieved by DRL1 decreases with
α; differently, the average temperature reduction achieved
increases with α. By comparing the results in Table 5 and
Table 3, we can see that with the improved system state
prediction, the trained DRL-based job allocator can achieve
more power saving and processor temperature reduction.

7 DISCUSSIONS

Adaptability to changes: Our approach requires a training
phase, which is a one-time overhead but brings continued
benefits of reduced computing power and processor temper-
atures. The training data can be readily obtained in today’s
data centers: the core utilization and temperatures can be
recorded by various monitoring tools; the server power
consumption can be recorded by smart racks and servers’
built-in power meters. To adapt to the change of job patterns
and servers’ power/heat models due to aging, the DRL-
based job allocator can be re-trained periodically. When
there are new servers deployed, the LSTM network tandems
trained for the existing servers of the same models as the
new servers can be used to retrain the DRL agent. Thus, the
DRL agent can quickly adapt to new server deployment.
Other changes without adding or removing servers (e.g.,
servers re-layout on the racks) do not require retraining the
DRL agent, because the system state prediction is performed
at the granularity of individual servers.

Scalability to hyperscale data center (HDC): An HDC can
be divided into multiple zones, where each zone hosts a
similar number of processors as in this paper. Then, a DRL
agent is trained for each zone. With this divide-and-conquer
approach, the job allocation computation overhead for the
HDC is proportional to the number of zones.

Policy gradient: This paper adopts DQN to build the DRL
agent. Policy gradient approach is a major alternative for
building DRL agent. Compared with DQN that deals with
discrete action space, policy gradient can additionally han-
dle continuous action space. Policy gradient often gives
faster convergence rate than DQN, but has a tendency to
converge to local optimums. As the job allocation problem
has a discrete action space and convergence rate is not
a key concern of the offline training of DQN, this paper

chooses DQN. However, it is interesting for future work
to extensively compare DQN and policy gradient for large-
scale data center job allocation problem and beyond.

8 CONCLUSION

This paper applies DRL to allocate compute-intensive jobs
to the servers in a data center. We first build a system state
prediction model based on LSTM networks and then use
the model to train the DRL-based job allocator. Our training
approach avoids potential computing service quality degra-
dation and server overheating. For a supercomputing data
center with 1,152 processors, we build the LSTM networks
and use real job arrival records over 8 months to train and
test the job allocator. Results show that with our allocator,
the simulated data center saves computing power by more
than 10% and reduces processor temperatures by more than
4°C while maintaining job processing throughput.

ACKNOWLEDGMENT

This work is funded by National Research Foundation via
Green Data Centre Research (GDCR) and Green Build-
ings Innovation Cluster (GBIC), administered by Info-
communications Media Development Authority and Build-
ing and Construction Authority, respectively.

REFERENCES

[1] E. O’Shaughnessy, C. Liu, and J. Heeter, “Status and trends in
the u.s. voluntary green power market (2015 data),” National
Renewable Energy Laboratory, Tech. Rep. NREL/TP-6A20-67147.

[2] (2018) Singapore is top data center hub in SE Asia: report.
[Online]. Available: https://bit.ly/2LEeV2B

[3] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United States
data center energy usage report,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-1005775, 2016.

[4] A. Sullivan. (2018) ENERGY STAR ™for data centers. [Online].
Available: https://bit.ly/2LdVUoC

[5] Datacenter Dynamics. (2018) Aliyun cools new china data center
using lake water. [Online]. Available: https://bit.ly/2Oceifo

[6] Google Data Centers. (2018) Efficiency: How we do it. [Online].
Available: https://bit.ly/2O84KSz

[7] S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myatt, “Best
practices for data centers: Lessons learned from benchmarking 22
data centers,” The ACEEE Summer Study on Energy Efficiency in
Buildings, vol. 3, pp. 76–87, 2006.

[8] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and
B. Schroeder, “Temperature management in data centers: Why
some (might) like it hot,” in ACM SIGMETRICS, 2012.

[9] JEDEC. (2018) Arrhenius equation (for reliability). [Online].
Available: https://bit.ly/2VjetJi

[10] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient
datacenter resource utilization through cloud resource overcom-
mitment,” in INFOCOM, 2015.

[11] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual
machines consolidation in cloud data centers using reinforcement
learning,” in 22nd Intl. Conf. Parallel Distrib. Netw. Process., 2014.

[12] Q. Tang, S. K. Gupta, and G. Varsamopoulos, “Thermal-aware task
scheduling for data centers through minimizing heat recircula-
tion,” in IEEE Intl. Conf. Cluster Comput., 2007.

[13] M. Polverini, A. Cianfrani, S. Ren, and A. V. Vasilakos, “Thermal-
aware scheduling of batch jobs in geographically distributed data
centers.” IEEE Trans. Cloud Comput., vol. 2, no. 1, pp. 71–84, 2014.

[14] T. Wang, X. Bao, I. Clavera, and et al., “Benchmarking model-
based reinforcement learning,” arXiv preprint arXiv:1907.02057,
2019.

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

12

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[17] Z. Peng, D. Cui, J. Zuo, Q. Li, B. Xu, and W. Lin, “Random
task scheduling scheme based on reinforcement learning in cloud
computing,” Cluster Computing, vol. 18, no. 4, pp. 1595–1607, 2015.

[18] J. J. Jheng, F. H. Tseng, H. C. Chao, and L. D. Chou, “A novel vm
workload prediction using grey forecasting model in cloud data
center,” in Intl. Conf. Inf. Netw., 2014.

[19] Q. Tang, S. K. S. Gupta, and G. Varsamopoulos, “Energy-
efficient thermal-aware task scheduling for homogeneous high-
performance computing data centers: A cyber-physical approach,”
IEEE Trans. Parallel Distrib. Syst., vol. 19, no. 11, 2008.

[20] T. Mukherjee, A. Banerjee, G. Varsamopoulos, S. K. Gupta, and
S. Rungta, “Spatio-temporal thermal-aware job scheduling to
minimize energy consumption in virtualized heterogeneous data
centers,” Computer Networks, vol. 53, no. 17, pp. 2888–2904, 2009.

[21] L. Wang, S. U. Khan, and J. Dayal, “Thermal aware workload
placement with task-temperature profiles in a data center,” The
Journal of Supercomputing, vol. 61, no. 3, pp. 780–803, 2012.

[22] T. T. Tran, M. Padmanabhan, P. Y. Zhang, H. Li, D. G. Down, and
J. C. Beck, “Multi-stage resource-aware scheduling for data centers
with heterogeneous servers,” Journal of Scheduling, no. 12, 2017.

[23] M. W. Convolbo, J. Chou, C. H. Hsu, and Y. C. Chung, “Geodis:
towards the optimization of data locality-aware job scheduling in
geo-distributed data centers,” Computing, no. 12, pp. 1–26, 2017.

[24] C. Gu, C. Liu, J. Zhang, H. Huang, and X. Jia, “Green scheduling
for cloud data centers using renewable resources,” in INFOCOM,
2015.

[25] Q. Tang, S. K. S. Gupta, D. Stanzione, and P. Cayton, “Thermal-
aware task scheduling to minimize energy usage of blade server
based datacenters,” in IEEE Intl. Sym. Dependable Autom. Secure
Comput., 2015.

[26] L. Cupertino, G. Da Costa, A. Oleksiak, W. Pia, J.-M. Pierson,
J. Salom, L. Siso, P. Stolf, H. Sun, and T. Zilio, “Energy-efficient,
thermal-aware modeling and simulation of data centers: the coole-
mall approach and evaluation results,” Ad Hoc Networks, vol. 25,
pp. 535–553, 2015.

[27] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang, “A
hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning,” in ICDCS, 2017.

[28] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in HotNets, 2016.

[29] D. Yi, X. Zhou, Y. Wen, and R. Tan, “Toward efficient compute-
intensive job allocation for green data centers: A deep reinforce-
ment learning approach,” in ICDCS, 2019.

[30] M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain, and
J. Kim, “Thermal-aware scheduling in green data centers,” ACM
Computing Surveys (CSUR), vol. 47, no. 3, p. 39, 2015.

[31] J. Chen, R. Tan, Y. Wang, G. Xing, X. Wang, X. Wang, B. Punch, and
D. Colbry, “A high-fidelity temperature distribution forecasting
system for data centers,” in RTSS, 2012.

[32] F. A. Gers, J. Schmidhuber, and F. A. Cummins, “Learning to for-
get: Continual prediction with lstm,” Neural Computation, vol. 12,
pp. 2451–2471, 2000.

[33] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,”
arXiv preprint arXiv:1412.3555, 2014.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no.
7540, p. 529, 2015.

[35] S. Zhang and R. S. Sutton, “A deeper look at experience replay,”
arXiv preprint arXiv:1712.01275, 2017.

Deliang Yi received the Bachelor degree from
the School of Computer Science, Beihang Uni-
versity, China, in 2017. He is currently a master
student and research engineer with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. His major
research interests include deep reinforcement
learning, time-series data prediction and energy-
efficient data center optimization.

Xin Zhou is now a Research Fellow at the Cloud
Computing and Application Platform (CAP)
group in Nanyang Technological University. He
received the M.E. and Ph.D. from the Depart-
ment of Information Engineering, Hiroshima Uni-
versity, Japan in 2013 and 2016 respectively. He
is expert in thermal-aware ICT subsystem op-
timization via learning-based approaches, such
as DRL and DNN to perform job/task scheduling,
network diagnostics and impact analytics. His
research interests include reconfigurable archi-

tectures, parallel computing, parallel architecture, FPGA computing,
deep reinforcement learning and green data center.

Yonggang Wen (S’99-M’08-SM’14) is a Pro-
fessor with School of Computer Science and
Engineering (SCSE) at Nanyang Technological
University (NTU), Singapore. He also serves as
the Associate Dean (Research) at College of En-
gineering, and the Director of Nanyang Techno-
preneurship Centre at NTU. He received his PhD
degree in Electrical Engineering and Computer
Science (minor in Western Literature) from Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge, USA, in 2008. He has worked extensively

in learning-based system prototyping and performance optimization for
large-scale networked computer systems. Previously he led product
development in content delivery network at Cisco, which had a rev-
enue impact of 3 Billion US dollars globally. His work in Multi-Screen
Cloud Social TV has been featured by global media (more than 1600
news articles from over 29 countries) and received 2013 ASEAN ICT
Awards (Gold Medal). His recent work on Cloud3DView, as the only
academia entry, has won 2016 ASEAN ICT Awards (Gold Medal) and
2015 Datacentre Dynamics Awards 2015 – APAC (’Oscar’ award of
data centre industry). He is the sole winner of 2016 Nanyang Awards in
Innovation and Entrepreneurship at NTU. He is a co-recipient of multiple
best papers awards, including 2015 IEEE Multimedia Best Paper Award,
2016 IEEE Globecom, 2016 IEEE Infocom MuSIC Workshop, 2015
EAI/ICST Chinacom, 2014 IEEE WCSP, 2013 IEEE Globecom and
2012 IEEE EUC. He received 2016 IEEE ComSoc MMTC Distinguished
Leadership Award. He serves on editorial boards for multiple transac-
tions and journals, including IEEE Transactions on Circuits and Systems
for Video Technology, IEEE Wireless Communication Magazine, IEEE
Communications Survey & Tutorials, IEEE Transactions on Multimedia,
IEEE Transactions on Signal and Information Processing over Networks,
IEEE Access Journal and Elsevier Ad Hoc Networks, and was elected
as the Chair for IEEE ComSoc Multimedia Communication Technical
Committee (2014-2016). His research interests include cloud comput-
ing, green data center, distributed machine learning, blockchain, big
data analytics, multimedia network and mobile computing.

Rui Tan (M’08-SM’18) is an Assistant Professor
at School of Computer Science and Engineer-
ing, Nanyang Technological University, Singa-
pore. Previously, he was a Research Scientist
(2012-2015) and a Senior Research Scientist
(2015) at Advanced Digital Sciences Center, a
Singapore-based research center of University
of Illinois at Urbana-Champaign (UIUC), a Prin-
ciple Research Affiliate (2012-2015) at Coordi-
nated Science Lab of UIUC, and a postdoctoral
Research Associate (2010-2012) at Michigan

State University. He received the Ph.D. (2010) degree in computer sci-
ence from City University of Hong Kong, the B.S. (2004) and M.S. (2007)
degrees from Shanghai Jiao Tong University. His research interests in-
clude cyberphysical systems, sensor networks, and ubiquitous comput-
ing systems. He received the Best Paper Awards from IPSN’17, CPSR-
SG’17, Best Paper Runner-Ups from IEEE PerCom’13 and IPSN’14.

