Supplementary File

Deliang Yi, Xin Zhou, Yonggang Wen, Rui Tan

03 F
02 F
0.1 |

il ..

“ N} SN
Qq’ Q(p Q/'\

Probability

e B |
N “ Q S Q
RO

Compute-intensive coefficient e

Fig. 1. Distribution of the compute-intensive coefficient e. An e value is
computed for each job; a smaller absolute value of e means that the job
better conforms to the compute-intensive assumption. The y-axis is the
probability that an e falls within a bin on the z-axis.

This document includes the supplementary materials for
the paper titled “Efficient Compute-Intensive Job Allocation
in Data Centers via Deep Reinforcement Learning.”

APPENDIX A
NSCC DATASET PROFILES

As discussed in §4.1 of the paper, under the compute-
intensive assumption, we have u;(k + 1) = u;(k) + m;l—(k)
Thus, we measure a coefficient € = u;(k+1) —u;(k) — mn—(k)
for each allocated job to assess the validness of this assump-
tion. If the assumption holds perfectly, we should observe
e = 0. Fig. 1 shows the distribution of all jobs” € values,
which exhibits a Gaussian-like shape. This means that a ma-
jority of jobs achieve high utilization of the assigned cores.
However, the core utilization behaviors of the computing
jobs can be complex. For instance, a newly admitted job
may contend for low-speed resources (e.g., hard disks) with
existing jobs, leading to a reduction of the overall processor
utilization. The deviations from the ideal compute-intensive
assumption shall be addressed by the first LSTM network.

Fig. 2 shows the processor temperature and the server
power consumption traces when a job is allocated to the
server. We can see that both the temperature and power con-
sumption increase during the job execution period between
the two vertical dash lines. After the completion of the job,
the temperature and power consumption drop gradually.
This shows the temporal dynamics of the processor tem-
perature and power consumption processes. Such dynamics
shall be captured by the second LSTM network.

e D.Yi, X. Zhou, Y. Wen, R. Tan are with School of Computer Science and
Engineering, Nanyang Technological University, Singapore.
E-mail: {yideliang, zhouxin, ygwen, tanrui}@ntu.edu.sg

80 . —— 400

1 300

200

Temperature (°C)
D
S
Power (Watt)

job execution |
Il 1 pe\rlOd Il l Il Il
40 100

0 1 2 3 4 5 6 7 8
Index of time step

Fig. 2. Impact of a job on processor state. The z-axis is the index of time
step; the left y-axis is the processor temperature; the right y-axis is the
processor power consumption.

o
&}

DRL] KXXX]

RR

T
e
1
Probability
<)
greedy
online-optl

Job waiting time (h)

O 8 v E

Q- OQ\ &ebo&Q@) 0 | 1 1
R Y O qx og; oob AP
$ FPFFFFF S

Approaches

(o)

Completion time (hours)

(a) Waiting time (b) Completion time

Fig. 3. Job waiting time & completion time. (a) The z-axis gives various
approaches; the y-axis represents the waiting time before a job is
allocated; the error bar represents s.d. (b) The z-axis represents job
completion time; the y-axis represents the probability distribution under
DRL1; the vertical dashed lines represent the job completion times
under other approaches.

APPENDIX B
JOB PROCESSING THROUGHPUT

From our investigation on the distribution of the time inter-
val between the arrivals of any two consecutive jobs over
the period of 52 days, only 3% of the intervals are smaller
than 10 minutes. Each job allocation approach operates on
a first-come, first-served (FCFS) basis. If a job at the front
of the job queue cannot find an eligible processor with
sufficient spare cores, the job allocator will wait until an
eligible processor becomes available. Thus, the jobs” waiting
times from arrival to allocation and the completion time of
all the 1,500 jobs characterize the job processing throughput
under a certain job allocation approach. Note that DRLI
and DRL2 allocate a single job and two jobs each time,
respectively. Other baseline approaches allocate a single job
each time. To account for the DRL’s randomness, we conduct
the simulation of allocating the 1,500 jobs for 500 times.

Fig. 3(a) shows the waiting time for each job under
different allocation approaches. DRL1 and DRL2 achieve



similar job waiting times because both them continuously
allocate jobs until the queue is empty. With our DRL-based
job allocators, the jobs can be promptly allocated to the
processors for execution. With RR, the jobs experience the
longest waiting time. We also measure the completion time
of all jobs. Fig. 3(b) shows the distribution of the completion
time with DRL1. The completion time is up to 1,286 hours.
The vertical lines in the figure represent the completion
times with other baseline approaches. We can see that DRL1
has slightly shorter completion time (i.e., higher job process-
ing throughput) compared with other baselines. Therefore,
our DRL-based job allocator achieves slightly higher job
processing throughput.

Note that if some other job in the queue that requests
less cores can be allocated before the job at the queue front
that cannot be allocated due to lack of eligible processors,
the job waiting times and the completion times can be
reduced. Our future work will study how to extend the DRL
formulation to address such non-FCFS schemes. Moreover,
the extensions to address specified job priority and job soft
deadlines are also interesting topics for future research.



