
Towards Efficient Personalized Driver Behavior Modeling with
Machine Unlearning

Qun Song∗
q.song-1@tudelft.nl

Delft University of Technology

Rui Tan
tanrui@ntu.edu.sg

Nanyang Technological University

Jianping Wang
jianwang@cityu.edu.hk

City University of Hong Kong

ABSTRACT
Driver Behavior Modeling (DBM) aims to predict and model human
driving behaviors, which is typically incorporated into the Ad-
vanced Driver Assistance System to enhance transportation safety
and improve driving experience. Inverse reinforcement learning
(IRL) is a prevailing DBM technique with the goal of modeling the
driving policy by recovering an unknown internal reward function
from human driver demonstrations. However, the latest IRL-based
design is inefficient due to the laborious manual feature engineer-
ing processes. Besides, the reward function usually experiences
increased prediction errors when deployed for unseen vehicles. In
this paper, we propose a novel deep learning-based reward func-
tion for IRL-based DBM with efficient model personalization via
machine unlearning. We evaluate our approach on a highway simu-
lation constructed using the realistic human driving dataset NGSIM.
We deploy our approach on both a server GPU and an embedded
GPU. The evaluation results show that our approach achieves a
higher prediction accuracy compared with the latest IRL-based
DBM approach that uses a weighted sum of trajectory features as
the reward function. Our model personalization method obtains the
highest accuracy and lowest latency compared with the baselines.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; •Human-
centered computing → Human computer interaction (HCI).

KEYWORDS
Driver behavior modeling, inverse reinforcement learning, neural
network, model personalization, machine unlearning

ACM Reference Format:
Qun Song, Rui Tan, and JianpingWang. 2018. Towards Efficient Personalized
Driver Behavior Modeling with Machine Unlearning. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 6 pages. https:
//doi.org/XXXXXXX.XXXXXXX

∗Part of this work was done while the author was at Nanyang Technological University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Driver Behavior Modeling (DBM) [6] aims to model and predict
human driving behaviors such as driving maneuvers, driver in-
tent, vehicle state, etc. DBM models are incorporated as essential
components of the Advanced Driver Assistance System (ADAS) to
improve transportation safety and passenger experience [1]. With
the advancement in artificial intelligence, data-driven approaches
such as imitation learning (IL) [8], which aims to learn the human-
like driving policy from enormous human demonstration data, have
become the prevailing DBM method. Among IL techniques, inverse
reinforcement learning (IRL) [7] assumes that a human driver fol-
lows an optimal internal driving policy with an unknown reward
function for making driving decisions. The goal of IRL is to recover
the reward function and imitate human driving from realistic hu-
man demonstrations. IRL has become an important tool for DBM
due to its capability in providing accurate driver intent prediction
and good generalizability to different driving situations.

However, the existing research on IRL-based DBM is inadequate
for the following reasons. First, existing studies (e.g., [7, 10]) adopt
a linear combination of manually designed human trajectory fea-
tures, such as travel efficiency, ride comfort, risk aversion, etc., as
the reward function. This is inefficient because the manually engi-
neered trajectory features require laborious engineering efforts and
can be biased according to the designer’s scope of knowledge. Sec-
ond, when deploying the reward function on new vehicles that are
unseen in the training stage, the prediction error usually increases
due to the changes in driver preferences and driving conditions.

To address the aforementioned challenges, this paper proposes
a novel deep neural network (DNN)-based reward function for
IRL-based DBM with efficient model personalization via machine
unlearning. To eliminate the laborious manual feature engineer-
ing effort, we use a ConvLSTM-based RewardNet as the reward
function to automatically extract the useful trajectory features for
driver behavior evaluation. To efficiently adapt the general Re-
wardNet from the training stage to an unseen individual vehicle,
we propose a novel model personalization method based on ma-
chine unlearning, which can efficiently adapt a well-trained factory
model to a new user using the observed inconsistency between Re-
wardNet predictions and human executed actions. We evaluate our
approach on a highway simulation environment constructed using
the realistic vehicle trajectory dataset NGSIM [2]. The evaluation
results show that the RewardNet achieves lower prediction error
compared with the reward function in the latest IRL-based DBM
approach [7] that is defined as the weighted sum of manually se-
lected trajectory features. The evaluation results also show that our
model personalization method obtains the highest accuracy among
all the baseline approaches including weighted sum, fine-tuning,
training-from-scratch, and few-shot learning methods. To measure

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference’17, July 2017, Washington, DC, USA Q. Song et al.

the model personalization overhead, we deploy our method on a
server GPU as well as a prevailing embedded GPU platform for
autonomous vehicles, i.e., NVIDIA Jetson AGX Xavier. The exper-
iment results show that our method obtains the lowest average
model personalization latency among all the baselines.

The main contributions of this paper are as follows:
• We propose a DNN-based RewardNet as the reward function
for IRL-based DBM that outperforms the state-of-the-art
approach relying on manual feature engineering.

• We design an efficient model personalization method for
adapting the RewardNet from the training stage to new un-
seen vehicles using the machine unlearning technique.

• We evaluate our approach on a highway simulation con-
structed on a realistic human driving dataset. The evalu-
ation results show that our approach has the highest per-
sonalization accuracy and lowest latency on a server GPU
and an NVIDIA Jetson embedded GPU among all the base-
lines, including the weighted sum, fine-tuning, training-
from-scratch, and few-shot learning methods

The rest of this paper is organized as follows. Section 2 gives the
background of this paper and reviews related work. Section 3 states
the problem and introduces the NGSIM-based driver behavior mod-
eling simulation environment. Section 4 presents our DNN-based
RewardNet and our efficient model personalization method using
machine unlearning. Section 5 evaluates our approach. Section 6
concludes this paper.

2 BACKGROUND AND RELATEDWORK
This section presents the background of our study and reviews the
related work.

2.1 Driver Behavior Modeling with Inverse
Reinforcement Learning

Driver Behavior Modeling (DBM) [6] aims to understand, predict,
and simulate driver behaviors. Rule-based DBM simulates driver
behaviors by creating a set of rules defining how drivers respond to
different stimuli. Besides the laborious manual effort to design the
model, rule-based DBM cannot adapt to environmental changes and
is unable to learn from new data over time. Machine learning-based
DBM has received increasing research attention because of its effi-
ciency in automatically extracting useful features from enormous
human driving trajectories. Imitation learning (IL) is one of the
state-of-the-art machine learning-based DBM methods, which aims
to learn a policy that mimics human behaviors from real human
driving demonstrations [8]. As an imitation learning technique,
behavioral cloning (BC) fits a model from a dataset of expert state-
action pairs using supervised learning. However, it is prone to the
problem of cascading errors [9] under the scenes that are under-
represented in the training data. With the generative adversarial
network (GAN) technique, generative adversarial imitation learn-
ing (GAIL) trains an agent to capture the behavior of a human
driver and a discriminator to distinguish the agent’s outputs and
the real-world trajectories [9]. Inverse reinforcement learning (IRL)
[7] assumes that a human driver uses an optimal internal driving
policy to make driving decisions. The goal of IRL is to recover the
unknown reward function of the driving policy from the observed

human driving behaviors. IRL-based DBM takes into account the
driving context and driver preference, which demonstrates good
generalizability to unseen scenes. Thus, in this work, we consider
IRL-based DBM.

2.2 Machine Learning Model Personalization
In general, model personalization belongs to domain adaptation,
where a machine learning model is adapted from the source do-
main defined by the training dataset to a specific user or task in the
target domain [9]. Transfer learning [11] is a prevailing method to
address domain shifts, which retrains the model with new target-
domain samples. However, existing transfer learning techniques
require enormous target-domain data samples and incur high post-
deployment overhead. Few-shot learning [12] aims to adapt the
model from the source domain to the target domain using a small
amount of data. However, since few-shot learning is usually trained
on a limited amount of data, it suffers from the issues of overfitting
and decreased accuracy on unseen data. In this work, our goal is to
retain the useful knowledge learned from the factory production
stage, while fine-tuning the model with the newly collected data of
an individual driver. Specifically, we aim to improve the fine-tuning
performance by rectifying the inappropriate model’s behaviors in-
dicated by the inconsistency observed between the driver’s action
and the model’s output. Thus, we consider the machine unlearning
technique. Machine unlearning aims to delete the influence of some
particular training data points on the target model’s parameters [4].
For non-adaptive machine learning algorithms (e.g., naïve Bayes),
it is possible to know exactly how a training data point contributes
to the model parameters and delete this contribution [4]. However,
for adaptive machine learning algorithms (e.g., neural networks),
the model’s parameter update depends on any previous iteration.
Thus, it is difficult to know how each data point affects the target
model. Retraining the model from scratch on the remaining data
can completely unlearn a data point, but incurs impractical compute
overhead. Therefore, the existing approaches focus on more effi-
cient retraining-based unlearning. The work in [3] trains multiple
submodels on different non-overlapping training data shards and
stores many intermediate states of each submodel. Then, data point
unlearning is achieved by only retraining the submodel related to
the data to be unlearned from the last intermediate state of the sub-
model that has not yet been trained on the data. This method incurs
excessive storage overhead and may result in weak learners. In this
work, we design a more compute- and memory-efficient machine
unlearning algorithm that, by modifying the loss function during
the fine-tuning stage, rectifies the model’s predictions inconsistent
with human behaviors.

3 CONSTRUCTING DBMMODEL
3.1 Problem Statement
In IRL-based DBM, it is assumed that human driving follows the
below behavioral procedures [7]. Trajectory generation: given a ran-
dom traffic scene, a driver generates multiple candidate trajectories
in mind. Trajectory evaluation: for each candidate trajectory, the
driver anticipates the outcome of executing it. In particular, the
driver uses an internal reward function to evaluate each trajectory
and each trajectory is assigned an execution probability based on



Towards Efficient Personalized Driver Behavior Modeling with Machine Unlearning Conference’17, July 2017, Washington, DC, USA

its reward value. Trajectory selection: the driver executes the final
trajectory according to the trajectory probability distribution. In
IRL-based DBM, it is usually assumed that human drivers execute
the candidate trajectories by following the Boltzmann distribution
[7], i.e., the probability of executing a candidate trajectory is expo-
nential to the reward of that trajectory:

𝑃 (Z | 𝜽 ) = 𝑒𝑅 (Z ;𝜽 )

𝑍 (𝜽 ) ≈ 𝑒𝑅 (Z ;𝜽 )∑𝑀
𝑖=1 𝑒

𝑅 (Z𝑖 ;𝜽 )
, (1)

where Z is a candidate trajectory, 𝑅(·;𝜽 ) is the reward function
with parameters 𝜽 , and 𝑍 is the integration of all possible tra-
jectories. Since 𝑍 (\ ) is intractable due to high dimensionality, it
can be approximated using a group of 𝑀 candidate trajectories
{Z1, Z2, . . . , Z𝑀 }. In this work, we generate candidate trajectories
in the NGSIM-based simulation as described in Section 3.2 and
Section 3.3. To derive the execution probability distribution of the
candidate trajectories, the key element is the reward function. After
the form of the reward function 𝑅(·;𝜽 ) is decided, e.g., weighted
sum or neural network, we need to find out the parameters 𝜽 of the
reward function such that the driving policy characterized by the
reward function matches human’s demonstrations. The previous
work [7] assumes a linear reward function, which is defined as the
weighted sum of the selected features, including travel efficiency,
ride comfort, risk aversion, and interaction. In this work, we ap-
ply a DNN-based reward function to avoid the laborious manual
feature engineering, which will be discussed in Section 4 shortly.
Formally, the problem can be stated as follows: given a set of human
driving trajectories D =

{
Z ∗1 , Z

∗
2 , . . . , Z

∗
𝑁

}
, derive the DNN-based

reward function with parameters 𝜽 that generates a driving policy
to maximize the output reward values of human demonstrations
among all the candidate trajectories. To fit the reward function
parameters, we use the maximum-entropy IRL algorithm that is
commonly adopted in existing works [19]. However, the derived
reward function may suffer from increased error when deploying
for unseen vehicles due to domain shifts caused by distinct driving
preferences, changes of environment, etc. Thus, a related problem
is that, given an unseen vehicle, to adapt the reward function pa-
rameters 𝜽 to reduce the prediction error on this new vehicle. We
aim to maximize the reduced error while minimizing the model
personalization overhead.

3.2 Highway Simulation Environment
In this work, we build the highway simulation environment based
on the open-source Next-Generation Simulation (NGSIM) dataset
[2]. Specifically, the NGSIM dataset contains detailed vehicle trajec-
tory data collected at 10Hz from the US Highway 101 and Interstate
80 Freeway for 45 minutes each. The US Highway 101 covered
in NGSIM is about 640 meters long and has five main lanes and
one auxiliary lane with on-ramp and off-ramp. The Interstate 80
covered in NGSIM is about 500 meters long and has six freeway
lanes, including one high-occupancy vehicle lane and an on-ramp.

We now describe our highway simulation environment built
based on the NGSIM dataset. We construct the multi-lane high-
way as described in the dataset. The vehicles are spawned on the
road at the time instances recorded in the dataset. The vehicles’
dynamics follow the kinematic bicycle model [13]. At each driving

Figure 1: Trajectory generation in the Frenét-frame.

scene, we select an ego vehicle to be observed and consider its
surrounding vehicles within a perception range. By default, the
surrounding vehicles follow their original trajectories in the dataset.
If the gap between a vehicle and its front vehicle is smaller than a
pre-defined threshold, this vehicle’s longitudinal responses will be
overridden by the parametric car-following intelligent driver model
(IDM) [15] to give an acceleration command in order to reach a
target velocity as well as maintain a minimum safety distance with
respect to the front vehicle. The lateral response is characterized by
the steering wheel angle command. Specifically, the lateral speed
command is obtained using a proportional controller with gain
KP𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = − 1

3 (1/𝑠) to steer the vehicle to follow the center of
the lane that it is running on. The lateral speed command will be
converted to a heading reference. The heading reference is then
used to generate a heading rate command using a proportional con-
troller with gain KPℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 1

0.2 (1/𝑠). This heading rate command
will be converted to the steering angle command according to the
bicycle model. Then, the bicycle model is used to propagate the
state of the overridden vehicle taking the acceleration and steering
angle commands as input. The state contains the vehicle’s position,
velocity, and heading.

3.3 Trajectory Generation
This section describes how we generate the candidate trajecto-
ries to be evaluated by the reward function. In the simulation,
the trajectory generation is performed on the Frenét space [5].
The transformation is depicted in Fig. 1. Specifically, the Frenét
coordinates are built upon a reference path, which is the central
line of the highway lane in our case. The position of a vehicle is
described using the variables 𝑠 and 𝑑 , where 𝑠 coordinate is the
distance along the reference path and 𝑑 coordinate represents the
lateral displacement to the reference path. The translation of the
coordinates on the Frenét space to the Cartesian space is given as:
®𝑥 (𝑠 (𝑡), 𝑑 (𝑡)) = ®𝑟 (𝑠 (𝑡))+𝑑 (𝑡) ®𝑛𝑟 (𝑠 (𝑡)). Transforming the calculations
on the Cartesian coordinates to the Frenét frame improves the tra-
jectory computation efficiency by employing simpler computations
for the longitudinal and lateral trajectories separately [17]. Given
the initial and target states of the vehicle, we aim to generate a trajec-
tory that has minimized jerks along the path. Thus, the cost function
is given by the integral of the square of jerk: 𝐽𝑡 (𝑝 (𝑡)) ≜

∫ 𝑡1
𝑡0
𝑝2 (𝜏)𝑑𝜏 ,

where 𝑝 can be 𝑑 or 𝑠 . It has been proven in [14] that the solution to
any jerk optimization problem can be expressed using a polynomial
function: 𝑝 (𝑡) = 𝛼0+𝛼1𝑡 +𝛼2𝑡2+𝛼3𝑡3+𝛼4𝑡4+𝛼5𝑡5. Therefore, given



Conference’17, July 2017, Washington, DC, USA Q. Song et al.

NGSIM datasets

..
.

...

...

..
.

Driving scene 1 Driving scene S

Ego vehicle

...

t = 0 s t = T s

Unseen scene

Initial state
Trajectory

Trajectory

Human trajectory

..
.

..
.

NGSIM simulation

..
.

...

...Fully-

connectedConvLSTM

RewardNet

...

Human trajectory

      probability

Well-trained

 RewardNet
No

update

Training stage

Step 3

..

Human trajectory

..
. ..

.

True

False

5. Update RewardNet by maximizing human trajectory 

probability and minimizing the probabilities of the 

trajectories that are wrongly assiigned high reward values

Figure 2: Illustration of the proposed approach.

the initial state [𝑋𝑠 , 𝑌𝑠 ,𝑉𝑥𝑠 ,𝑉𝑦𝑠 , 𝐴𝑥𝑠 , 𝐴𝑦𝑠 ] at 𝑡 = 0 and the target
state [𝑋𝑒 , 𝑌𝑒 ,𝑉𝑥𝑒 ,𝑉𝑦𝑒 , 𝐴𝑥𝑒 , 𝐴𝑦𝑒 ] at 𝑡 = 𝑇 , as well as the required
time 𝑇 to reach the target state, the coefficients of the polynomial
functions can be decided. Thus, the location of the vehicle at each
time instance is derived and the trajectory is generated.

We determine the target sampling space for the candidate tra-
jectories as follows. Given an initial state of the ego vehicle, we
consider two variables for the target state, i.e., the target longitudi-
nal velocity 𝑉𝑦𝑒 and target lateral position 𝑋𝑒 . That is, we set the
remaining target space variables to zero. We sample ten possible
target longitudinal velocities from the range [𝑉𝑦𝑠 − 5,𝑉𝑦𝑠 + 5]. The
ego vehicle may plan to make decisions of changing lane to left,
to right, and keeping in lane. Thus, the target lateral positions can
be [𝑋𝑙𝑠−1, 𝑋𝑙𝑠 , 𝑋𝑙𝑠+1], where 𝑙𝑠 is the lane ID for the initial state
and 𝑋𝑙𝑠 is the center lateral position of lane 𝑙𝑠 . Note that when the
vehicle is initially in the leftmost lane, the target lateral positions
can only be [𝑋𝑙𝑠 , 𝑋𝑙𝑠+1]. A similar rule is applied when the vehicle
is in the rightmost lane. Therefore, for each initial driving scene,
we generate 20 or 30 possible trajectories to be evaluated. In partic-
ular, we rule out the trajectories that end with collision or off-road
situations in the simulation.

4 APPROACH
This section presents the proposed approach, as illustrated in Fig. 2,
to personalized DBM with machine unlearning.

4.1 Data Preprocessing
For each vehicle on the highway, we extract multiple driving scenes
each lasting for𝑇 seconds. In this work, we set𝑇 = 5𝑠 . Each driving
scene contains the trajectory of the ego vehicle and the trajectories
of its surrounding vehicles. In total, each driving scene consists of
50 time steps with the sampling rate of NGSIM simulation set to 10
Hz. For each time step of a driving scene, we encode the driving

trajectories into an occupancy grid. If a grid cell has a vehicle on it,
this grid cell is assigned a value of one. Otherwise, it is assigned a
value of zero. Note that a vehicle (e.g., a truck) may occupy multiple
grid cells. The ego vehicle appears in the longitudinal center of
the grid. The lateral position depends on the lane that it is on. The
width of the occupancy grid equals the width of the highway (all
lanes) in the NGSIM simulation. We assume that the perception
range of the ego vehicle is 150 feet. Thus, the grid covers an area of
72 feet in width and 300 feet in length. Each grid cell has a width of
6 feet and a length of 15 feet. Each input data sample to the DNN-
based reward function presented in Section 4.2 consists of𝑇 -second
consecutive driving scene snapshots in the form of occupancy grids.

4.2 DNN-based Reward Function for IRL-based
DBM

Instead of manually engineering the trajectory features and de-
termining the parameters of the reward function with respect to
the selected features, we train a DNN-based RewardNet to auto-
matically extract useful features from the driving trajectories and
output the reward values. The input data samples to the RewardNet
are the raw trajectories preprocessed by following the procedures
in Section 4.1. Since driving trajectories are time-series data, we
adopt the ConvLSTM [18] architecture in the RewardNet to better
extract the time correlation embedded. The ConvLSTM module
of the RewardNet has one layer with 16 hidden channels and ker-
nel size of 3. The ConvLSTM module is then cascaded by two
fully connected layers with 128 neurons each. The output layer of
the RewardNet has one neuron which generates the reward value.
The goal of training the RewardNet is to maximize the probabil-
ity of human trajectory 𝑃 (Z ∗ | 𝜽 ). Thus, with the preprocessed
training data samples, the RewardNet is optimized via the maxi-
mum entropy IRL algorithm [19] using the following loss function:



Towards Efficient Personalized Driver Behavior Modeling with Machine Unlearning Conference’17, July 2017, Washington, DC, USA

J (𝜽 ) =
∑
Z ∗∈D − log 𝑃 (Z ∗ | 𝜽 ). The loss function is minimized

using gradient descent.

4.3 Efficient RewardNet Personalization via
Machine Unlearning

After the training stage, we derive a well-trained general Reward-
Net that captures the human driving behaviors observed from the
training dataset. However, this general RewardNet may suffer from
increased error when deployed for unseen driver’s trajectories. To
address this problem, we develop an efficient model personaliza-
tion method using machine unlearning for adapting the general
RewardNet on an individual vehicle. The workflow is as follows.
During the deployment stage on a new individual vehicle, we use
the general RewardNet to evaluate the human trajectory as well as
the generated candidate trajectories in each driving scene. Given
a driving scene, if human trajectory obtains the highest reward
value, we do not update the general RewardNet. Otherwise, the
scenario where the output reward value for the human trajectory
is not the highest means that the driving policy characterized by
the RewardNet predicts actions inconsistent with the human dri-
ver’s. Under such scenarios, we unlearn the general RewardNet
on this driving scene. Specifically, we aim to adapt the general
RewardNet by maximizing the probability of human trajectory
𝑃 (Z ∗ | 𝜽 ) and minimizing the probabilities of the trajectories that
are wrongly assigned high reward values. We consider the top 𝐾
trajectories excluding the human trajectories that have the high-
est reward values output by the RewardNet. Thus, we still apply
the maximum-entropy IRL algorithm and use the following loss
function for RewardNet personalization:

J (𝜽 ) =
∑︁

Z ∗∈D
(− log 𝑃 (Z ∗ | 𝜽 ) +

∑︁
Z𝑘 ∈K

log 𝑃 (Z𝑘 | 𝜽 )), (2)

whereK contains the 𝐾 candidate trajectories that obtain the high-
est reward values, excluding the human trajectory. This updated
loss function is optimized using gradient descent.

5 EVALUATION
This section presents the evaluation of our approach.

5.1 Evaluation Settings
We conduct the experiments on our computing server. The server
has 10-core Intel Core i9-7900X 3.30GHz CPU and runs Ubuntu
18.04. The server is equipped with NVIDIA GeForce RTX 2080 Ti
11GB graphics processing units (GPUs). All our codes are imple-
mented using Python 3.7. To measure the model personalization
latency, we deploy our approach on both the computing server and
an NVIDIA Jetson AGX Xavier, which is a prevailing embedded
GPU platform equipped with an octa-core 2.26GHz ARM CPU, a
512-core Volta GPU, and 16GB RAM.

To train the general RewardNet, we randomly select 100 vehicles
from the NGSIM dataset and follow the procedures described in Sec-
tion 3.3 to generate candidate trajectories. We train the RewardNet
until the training loss converges. Then, we randomly pick another
100 vehicles that are not included in the training data for testing.
To evaluate the prediction accuracy, we compute the average dis-
placement error (ADE) of the predicted trajectories with respect to

Table 1: Training and post-deployment average displacement
errors (ADEs) of our approach and the work in [7] that uses
theweighted sumofmanually selected features as the reward
function.

RewardNet (ours) Weighted sum [7]
Training ADE (m) 0.00 2.12

Post-deploy ADE (m) 0.53 2.68

the human trajectories as the evaluation metric. Specifically, we
compare the general RewardNet with the reward function in [7]
which is defined as the weighted sum of manually designed trajec-
tory features. Note that the work in [7] is one of the latest research
for IRL-based DBM. We use the same training and testing data as
our approach for comparisons.

To evaluate the model personalization performance, we consider
the following baselines. The fine-tuning method only maximizes the
human trajectory probability for the new driving scenes where the
trajectories predicted by the general RewardNet are inconsistent
with human’s demonstrations; The training-from-scratch method
trains a new RewardNet for each individual vehicle. In particular, for
each vehicle, we train its RewardNet for 200 iterations. The general
method directly applies the general RewardNet on each individual
vehicle, ignoring the inconsistent observations. Lastly, we follow the
description in [12] and implement the few-shot regression method,
which is a few-shot learning method that utilizes Bayesian meta-
learning with deep kernels for cross-domain adaption using limited
training samples. To evaluate the model personalization accuracy,
we randomly select 150 vehicles that are different from the ones
used for training and testing the general RewardNet. For each
individual vehicle, we adapt the models using 30 driving scenes and
evaluate the performance using 20 driving scenes.

5.2 Evaluation Results
The training and post-deployment ADEs for the general RewardNet
and weighted-sum approach [7] are presented in Table 1. We can
see that the RewardNet achieves much lower ADEs in both the
training and post-deployment stages. This is because the work in
[7] requires manually selecting trajectory features that are relevant
to driving behavior. However, the selected features can be biased
according to designer’s experience and may not be the optimal ones.
In comparison, our RewardNet employs a DNN to automatically
extract useful features from raw trajectories, which is more efficient.
However, from the results, we can also observe an increased ADE on
new unseen vehicles during the post-deployment stage compared
with the training stage for both RewardNet and weighted sum
approaches. In what follows, we present the performance of our
unlearning-based model personalization method in reducing this
domain shift error.

The average ADEs for different model personalization methods
are presented in Fig. 3. It is shown that the unlearning and fine-
tuning methods have similar prediction accuracy, with unlearning
approach achieving slightly lower ADE as shown in Table 2. How-
ever, the unlearning method also has lower model personalization
latency as presented in Table 2. The ADE for the general RewardNet
without personalization is 0.529m, which is in accordance with



Conference’17, July 2017, Washington, DC, USA Q. Song et al.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Unlearn Fine-tune General Scratch Few-shot

A
D

E
(m

)

Approach

Figure 3: ADEs for different model personalization ap-
proaches. Note that whiskers represent the minimum and
maximum; box represents the 25th and 75th percentiles; red
dot represents the mean; gray bar represents the median.

Table 2: ADE and average model personalization latency on
server GPU and embedded GPU.

Unlearn Fine-tune Scratch Few-shot
ADE (m) 0.457 0.466 0.964 1.14

Server latency (ms) 298.98 306.30 3389.49 302.81
Embedded latency (s) 12.43 12.80 139.57 12.55

the post-deployment ADE of RewardNet presented in Table 1. The
ADE for the training-from-scratch method is higher than that of
the general RewardNet. This is because the knowledge extracted
from multiple human demonstrated trajectories in a wide range of
driving scenes implemented can be transferred to a new unseen in-
dividual vehicle. However, the training-from-scratch approach can
only learn from a limited amount of trajectories for each individual
vehicle. Thus, the general knowledge cannot be utilized to improve
the prediction accuracy. The few-shot regression approach has the
highest ADE. The potential reason is that few-shot learning tends
to overfit to a small amount of data used for model adaptation and
is less generalizable to new unseen data points [16].

Lastly, we measure the average model personalization latency.
From the results shown in Table 2, we can observe that our unlearn-
ing method obtains the lowest average execution latency among
all the baselines on both the desktop-level GPU as well as the em-
bedded GPU platform.

6 CONCLUSION
In this work, we proposed a novel deep learning-based reward func-
tion for IRL-based DBM with efficient model personalization via
machine unlearning. In a highway simulation environment con-
structed based on realistic human driving datasets, we showed the
satisfactory performance of the DNN-based RewardNet in human
trajectory prediction. We also presented that the model personaliza-
tion method utilizing the machine unlearning technique is effective
in reducing the increased error during the deployment of Reward-
Net on unseen vehicles and is efficient running on both the server

GPU and embedded GPU. The approach proposed in this paper can
also be applied to other IL techniques for DBM, such as the GAIL.

ACKNOWLEDGEMENT
This research is supported in part by the National Research Foun-
dation, Singapore and National University of Singapore through its
National Satellite of Excellence in Trustworthy Software Systems
(NSOE-TSS) office under the Trustworthy Computing for Secure
Smart Nation Grant (TCSSNG) award no. NSOE-TSS2020-01, and
in part by a project from Hong Kong Research Grant Council under
GRF 11200220.

REFERENCES
[1] Najah AbuAli and Hatem Abou-Zeid. 2016. Driver behavior modeling: Develop-

ments and future directions. International journal of vehicular technology 2016
(2016).

[2] Federal Highway Administration. 2020. Next Generation Simulation (NGSIM).
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[3] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141–159.

[4] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine
unlearning. In 2015 IEEE Symposium on Security and Privacy. IEEE, 463–480.

[5] Manfredo P Do Carmo. 2016. Differential geometry of curves and surfaces: revised
and updated second edition. Courier Dover Publications.

[6] S Hamdar. 2012. Driver behavior modeling. Handbook of intelligent vehicles 33
(2012), 537–558.

[7] Zhiyu Huang, Jingda Wu, and Chen Lv. 2021. Driving Behavior Modeling Using
Naturalistic Human Driving Data With Inverse Reinforcement Learning. IEEE
Transactions on Intelligent Transportation Systems (2021).

[8] Parham M Kebria, Abbas Khosravi, Syed Moshfeq Salaken, and Saeid Nahavandi.
2019. Deep imitation learning for autonomous vehicles based on convolutional
neural networks. IEEE/CAA Journal of Automatica Sinica 7, 1 (2019), 82–95.

[9] Alex Kuefler, JeremyMorton, TimWheeler, andMykel Kochenderfer. 2017. Imitat-
ing driver behavior with generative adversarial networks. In 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 204–211.

[10] Mehmet F Ozkan, Abishek J Rocque, and Yao Ma. 2021. Inverse reinforcement
learning based stochastic driver behavior learning. IFAC-PapersOnLine 54, 20
(2021), 882–888.

[11] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22, 10 (2010), 1345–1359.

[12] Massimiliano Patacchiola, Jack Turner, Elliot J Crowley, Michael O’Boyle, and
Amos J Storkey. 2020. Bayesian meta-learning for the few-shot setting via deep
kernels. Advances in Neural Information Processing Systems 33 (2020), 16108–
16118.

[13] Philip Polack, Florent Altché, Brigitte d’Andréa Novel, and Arnaud de La Fortelle.
2017. The kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?. In 2017 IEEE intelligent vehicles symposium
(IV). IEEE, 812–818.

[14] Arata Takahashi, Takero Hongo, Yoshiki Ninomiya, and Gunji Sugimoto. 1989.
Local path planning and motion control for agv in positioning. In Proceedings.
IEEE/RSJ International Workshop on Intelligent Robots and Systems’.(IROS’89)’The
Autonomous Mobile Robots and Its Applications. IEEE, 392–397.

[15] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic
states in empirical observations and microscopic simulations. Physical review E
62, 2 (2000), 1805.

[16] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

[17] MoritzWerling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. 2010. Optimal
trajectory generation for dynamic street scenarios in a frenet frame. In 2010 IEEE
International Conference on Robotics and Automation. IEEE, 987–993.

[18] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. In Advances in neural information processing
systems. 802–810.

[19] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. 2008.
Maximum entropy inverse reinforcement learning.. In Aaai, Vol. 8. Chicago, IL,
USA, 1433–1438.

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Driver Behavior Modeling with Inverse Reinforcement Learning
	2.2 Machine Learning Model Personalization

	3 Constructing DBM Model
	3.1 Problem Statement
	3.2 Highway Simulation Environment
	3.3 Trajectory Generation

	4 Approach
	4.1 Data Preprocessing
	4.2 DNN-based Reward Function for IRL-based DBM 
	4.3 Efficient RewardNet Personalization via Machine Unlearning 

	5 Evaluation
	5.1 Evaluation Settings
	5.2 Evaluation Results

	6 Conclusion
	References

