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Abstract—Convolutional neural networks (CNNs) are increas-
ingly adopted on resource-constrained sensors for in-situ data
analytics in Internet of Things (IoT) applications. This paper
presents a model split framework, namely, splitCNN, in order
to run a large CNN on a collection of concurrent IoT sensors.
Specifically, we adopt CNN filter pruning techniques to split
the large CNN into multiple small-size models, each of which
is only sensitive to a certain number of data classes. These
class-specific models are deployed onto the resource-constrained
concurrent sensors which collaboratively perform distributed
CNN inference on their same/similar sensing data. The outputs
of multiple models are then fused to yield the global inference
result. We apply splitCNN to three case studies with different
sensing modalities, which include the human voice, industrial
vibration signal, and visual sensing data. Extensive evaluation
shows the effectiveness of the proposed splitCNN. In particular,
the splitCNN achieves significant reduction in the model size
and inference time while maintaining similar accuracy, compared
with the original CNN model for all three case studies.

Index Terms—Distributed CNN Inference; Speech Recogni-
tion; Vibration Analysis; Video Analytics.

I. INTRODUCTION

The convolutional neural networks (CNNs) have been in-
creasingly employed in Internet of Things (IoT) applications.
Among numerous deep learning (DL) models, the represen-
tative CNN models such as VGGNet [1], ResNet [2] and
GooglLeNet [3] are state-of-the-art techniques for IoT applica-
tions such as video analytics and speech recognition. However,
due to their complex configurations, the execution of such
advanced CNN models often incurs high computing overhead
and memory usage. For instance, the VGG-19 consists of more
than 21 million parameters and requires a memory size of
about 241MB. Thus, the inference of the CNN models is
traditionally conducted on resource-rich computing devices.
Specifically, the sensing data (e.g., video and audio) are
transmitted from the distributed sensors to a centralized cloud
server or a fog node, where the CNN-based data processing
is executed. However, this offloading method often suffers
from several issues including high transmission latency and
communication bandwidth usage, privacy concerns, and poor
scalability, especially when the wireless communication is
adopted for a cordless setting. As a result, the real-time data
analytics that is critical to delay-sensitive applications (e.g.,
industrial monitoring and inspection) may not be achieved due
to insufficient bandwidth and high communication latency.

To address the above challenges, we propose a model split
framework, called splitCNN, which leverages the filter CNN
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Fig. 1. An illustration of the splitCNN for collaborative speech recognition
on concurrent voice sensing devices.

compression techniques to decompose the multi-class CNN
into multiple small-size models, each of which is sensitive
to a certain number of object classes only. The class-specific
models are deployed on resource-constrained concurrent IoT
sensors which can simultaneously obtain the same or similar
sensing data. These sensors collaboratively perform the dis-
tributed CNN inference by running their class-specific models,
which enables the on-device advanced data analytics with low
latencies. Specifically, given a large multi-class CNN model,
our proposed splitCNN framework begins with determining
the importance of all filters in the convolutional layers for
learning each class. Then, we design an assignment algorithm
that uses rankings of filters to assign all classes to multiple
clusters such that the original CNN model is decomposed into
an appropriate number of small-size models, each of which can
fit in an IoT sensor with a certain memory capacity. Finally,
we adopt a late fusion approach to fuse the outputs of multiple
class-specific models to yield the final result.

Many studies [4]-[10] have proposed various CNN com-
pression techniques which can reduce the memory size and
the computation cost of a large CNN model, such that the
compressed model can fit in the resource-constrained IoT
sensors. These existing studies can be divided into two cat-
egories which are model parameter and filter pruning. The
parameter pruning approaches [4]-[6] focused on reducing
the model size by pruning the redundant model parameters.
However, merely pruning the model parameters may not lead
to significant reduction in the computation overhead which is
proportional to the inference latency. On the other hand, the
filter pruning can reduce both the model size and computation
overhead significantly [7]-[10]. Thus, we adopt a filter pruning



technique to generate the small-size models from a large CNN.

However, the above existing studies only focused on com-
pressing the multi-class CNN model into one model with
reduced size and computation overhead. Since the model size
of a trained CNN model increases with the number of training
classes, one compressed model with many classes may still
not fit in the resource-constrained sensor. Thus, our proposed
approach splits the multi-class CNN model into class-specific
models, each of which is responsible for learning a subset of
the classes. We aim at assigning an appropriate number of
classes to each model, such that it can be always deployed on
an IoT sensor with a certain and limited memory capacity.

We apply the proposed splitCNN framework to three case
studies with different sensing tasks. The first case study aims
at performing the collaborative CNN-based speech recognition
(e.g., keyword spotting (KWS) and automatic speech recog-
nition (ASR)) on multiple concurrent human voice sensing
devices. As illustrated in Fig. 1, the original model is de-
composed into multiple class-specific models deployed on IoT
sensors (e.g., smart home devices and smartphones). Given
a voice sample, each sensor feeds its measured data into its
model. The outputs of all sensors are fused for the speech
recognition at a centralized node. The second case study
is the vibration analysis, which is important for predictive
maintenance in industrial systems [11]. We propose to deploy
class-specific models on multiple vibration sensors that mea-
sure the vibration signal from the same vibrating object (e.g.,
motor). Each sensor runs its class-specific model to process
its measured vibration signal, and then sends the model output
to a centralized unit for result fusion.

The third case study aims at performing low-power video
analytics on wireless cameras. Different from the first and
second case studies that use multiple concurrent sensors,
this one considers deploying all class-specific models in one
wireless camera to execute the CNN inference for video
analytics. At run time, the camera runs these small-size models
on consecutive image frames with similar contents, where
each model is fed with a frame. Then, the model outputs on
these consecutive frames are fused to determine whether the
interested objects appear in the camera’s field of view. Our
approach avoids transmitting the video data from the camera to
a remote node for advanced image processing. The evaluation
results for these three case studies show that the splitCNN
approach can always achieve significant reduction in the model
memory usage and the latency of the advanced analytics, while
achieving the accuracy similar to the original CNN model.

The remainder of this paper is organized as follows. §II
reviews related work. §III describes the design of the pro-
posed splitCNN. §IV presents three case studies. §V presents
evaluation results. §VI concludes this paper.

II. RELATED WORK

A number of studies [4]-[10] have proposed various CNN
compression approaches that allow running deep CNN models
on embedded devices with limited computing resources. The
studies in [4]-[6] focused on pruning the model parameters

(e.g., weights) to reduce the memory required to store and run
the deep CNN models. For instance, Han et al. [4] compressed
a CNN model by removing the redundant connections with
small weights. Then, the weights are quantized to enforce
weight sharing among multiple connections, and reduce the
number of bits representing each connection. They can reduce
the memory sizes of AlexNet and VGGNet by 53x and
49x, respectively. Denton et al. [6] applied singular value
decomposition to compress convolutional layers, and then
fine-tuned these approximated layers to restore the accuracy.
Those parameter pruning approaches can reduce the number of
parameters in the fully connected layers. However, they often
fall short of reducing the parameters in the convolutional layers
which are the most compute-intensive layers.

The studies in [7]-[10] focused on pruning the filters that
play the role of the feature extractors in the convolutional
layers. Both the size and computation load of the CNNs can
be significantly reduced by pruning these filters. For instance,
Fang et al [10] proposed a framework called NestDNN
that includes a triplet response residual method to rank the
importance of filters across the convolutional layers. Then,
the NestDNN iteratively prunes less important filters and
retrains the pruned model to compensate for the accuracy loss
caused by the pruning. The iteration stops when the pruned
CNN cannot provide the minimum accuracy required by the
designer. Yao et al. [7] proposed the DeeploT framework that
keeps the minimum number of non-redundant filters while
maintaining the same accuracy as that of the original CNN.
Alippi et al. [8] pruned a CNN model by keeping a few front
convolutional layers only, and replaced the fully connected
and softmax layers with a trained classifier (e.g., the feed-
forward neural network, vector machine or decision tree). A
filter selection mechanism was proposed to further reduce the
computation load by removing the less important filters.

Our work is inspired by the study in [12] that has shown
the feasibility of decomposing a multi-class CNN model
into multiple binary models, each of which consists of the
important neurons for a specific class only. Similar to [12],
we adopt a filter pruning technique [13] to decompose a
CNN model into multiple class-specific models such that the
high-accuracy and low-latency CNN-based applications can be
achieved on the resource-constrained IoT devices. However,
the approach in [12] only supports decomposing the N-class
CNN model into NV binary models. Beyond that, we propose an
algorithm that assigns N classes into an appropriate number
of the M-class models, where 1 < M < N, such that the
number of required devices is minimized while meeting the
constraint on the model size. Moreover, we also consider a
late fusion approach to fuse the outputs of the class-specific
models to yield the final inference result.

III. DESIGN OF THE PROPOSED APPROACH

A. Approach Overview

In general, a CNN model is formed by four types of layers:
convolutional, pooling, activation and fully connected layers
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Fig. 2. Workflow of splitCNN to decompose a CNN model into multiple class-specific models for the IoT sensors.

among which the convolutional layers are the most compute-
intensive. In particular, the convolutional layer contains a set
of 3D filters which play the roles of extracting invariant local
two-dimensional features. Pruning the filters helps reduce both
the model parameters and computation overhead [10]. Each
3D filter admits the feature maps generated by filters in the
previous convolutional layer inputs to extract output feature
maps that are then fed into the following convolutional layer
for further feature extraction. Let m;_1, w;_1 and h;_1 denote
the number of input feature maps, the width, and height of each
input feature map in the convolutional layer ¢, respectively.
Given the input feature maps m;_1, each filter in the layer [
that is composed of m;_; 2D kernels K € R¥** generates
one output feature map. Thus, pruning one filter f; in the
layer i reduces m;_1k? parameters and m;_1k>w;h; floating
point operations (FLOPs). In the next convolutional layer
l 4+ 1, the my41 2D kernels applied on the output feature
map generated by the pruned filter f; are also removed,
which results in additional reduction of k2ml+1 parameters
and k2m1+1wl+1hl+1 FLOPs. In summary, pruning a filter
can lead to the total reduction of k‘z(ml_l +my41) parameters
and k2(ml,1wlhl + ml+1wl+1hl+1) FLOPs.

Our proposed splitCNN aims at pruning the less important
filters from the original multi-class CNN model to generate the
small-size class-specific models, each of which is sensitive to
a certain number of classes. Fig. 2 overviews the workflow of
splitCNN, which consists of three main steps: filter ranking,
model splitting, and model fusion. In particular, the splitCNN
begins with the filter ranking to determine the importance
of each filter in the convolutional layers in recognizing the
specific classes in the training dataset. The model splitting
step aims at assigning the classes into the appropriate number
of class-specific models, such that the constraint on memory
usage can be satisfied. In the last step, the spitCNN fuses the
results from multiple class-specific models obtained by the
previous steps to yield the final classification result.

B. Workflow of splitCNN

In what follows, we detail how the proposed splitCNN de-
composes a multi-class CNN model into class-specific models
to be deployed on the IoT sensors.

Filter Ranking: Assume that we have a training dataset
consisting of N classes. We first train the original CNN using
the entire training dataset. Then, we sequentially determine

the importance of filters (i.e., neurons) in the convolutional
layers for recognizing every class ¢. In particular, for a class
i, we feed all training data samples of the class to the CNN.
Then, we adopt the average percentage of zero (APOZ) [13]
to measure the importance of the filters. In the CNN model,
each convolutional layer is often followed by an activation
layer for creating the feature maps. The APOZ is defined as
the percentage of zero activation of a filter after the activation
mapping. Let O' denote the output of the channel ¢ in the
convolutional layer [. Then, the APOZlf of the filter f in the
layer [ is calculated as

VISP ROL (k) = 0)
M x D ’

APOZ'; = APOZ(OL) = (1)

where M is the number of input images, D is the dimension
of the activation map of O%, F(.) = 1 if true and F(.) = 0 if
false. The filter with a smaller APOZ value (i.e., fewer zeros
in its output feature map) is more important in recognizing
the class ¢. Thus, we rank the importance of each filter for
each class according to the corresponding AOPZ value. In
particular, a filter is considered important for a specific class if
its AOPZ is lower than a threshold. We use a different APOZ
threshold to prune the less important filters on the different
convolutional layers. For a specific layer, the threshold is
selected to balance the trade-off between the model size and
accuracy. A lower threshold leads to a smaller model size but
more accuracy loss caused by the filter pruning. Let F; denote
a set of important filters for the class 1.

Model Splitting: We assume that the [oT sensor has a
memory capacity of &y, which is not sufficient to run the
original CNN model. This step aims at assigning N classes
into an appropriate number of class-specific models such that
the memory constraint can be satisfied. Let K denote the
number of class-specific models. We consider the following
application scenarios. In Scenario A, the class-specific models
are deployed on concurrent sensors, each of which runs
a model to process the same data input. In this scenario,
our goal is to decompose the original CNN model into the
minimum number of models, while the largest model size
is less than the sensor’s memory capacity of ®y. As such,
the minimum number of sensors is required to perform the
collaborative inference. In Scenario B, all the class-specific
models are deployed on a single sensor. The number of models



Algorithm 1 Assign N classes into K models.

1: Inputs: CNNj is original model; F; is set important filters

for class i; ®. is sensor’s memory capacity.

2 K =[47; T = True;

3: while T == True & 1 < K < N do
4 Ch=0Vk=1,...,K; b setof filters in model k.
5: N={1,...,N}; > set of IV classes.
6: foreach k=1,...,
7
8
9

K do
J =arg§ri1€a;§\ﬁl .
Ck:CkU]:j;./\/:N\{j};

: end for
10: while A # 0 do
11 k = arg Hlnn K|(Ci)|;
12: j = arg ma;\(/(}" NCr);
13: Ck—CkU]:J,N N\{ikh
14: end while
15: for each k=1,...,K do
16: CNNy, = filPrune(CNNy, Cy. );
17: CNNy, = retrain(CNNy,);
18: end for
19: if A then ®,, = max(®y);
20: else if B then ®,, = ::K Dy
21: end if
22: if ®,,, < g, — 6 then
23: K=K-1;
24: else if ®,, > &y then
25: K=K+1;
26: else
27: T = False;
28: end if

29: end while

30: Return: CNNy, ..., CNNg are class-specific models.

is determined such that the total size of all class-specific
models is less than the sensor’s memory capacity of ®y,.

Let N = {1,...,N} denote a set of classes. Denote
by CNNj, the k' model that includes a set of important
filters denoted by Cj for its assigned classes. The detailed
procedure to assign N classes into K models is presented in
Algorithm 1. We set the initial value of K to [4]. Given a
value of K, we aim at assigning N classes into K models
such that the maximum number of filters across K models
is minimized. Our main goal is to minimize the size and
computation overhead of each model which are proportional
to the number of filters, as discussed in §III-A. To achieve
the goal, we first assign K classes with the highest number
of filters among N into K models as shown in lines 7-11
in Algorithm 1. Then, we continue grouping the remaining
classes in A into K models in multiple iterations as shown
in lines 12-17 in Algorithm 1. In each iteration, we assign an
additional class j to the model £ that has the lowest number
of filters. Specifically, among the remaining classes, the class
J that shares the maximum number of the same filters with the

model k£ is assigned to model k, i.e., j = arg \;nijr\lf(ﬁ NCk).
1€

The iteration stops when all remaining classes are assigned.

Finally, we perform the filter pruning denoted by
filPrune(CNNy, Cy;) that removes all less important filters not
in Cj from the CNNg to form the model CNNy. The class-
specific models are retrained to compensate the accuracy loss
caused by the pruning. To avoid the poor accuracy caused by
the unbalanced dataset, we pick the training samples of all
classes assigned into the model CNNy, to form the first half
of the retraining dataset. The second half with the same label
consists of training samples from the remaining classes.

We define ®,,, as the maximum model size or the total
size across/of K retrained models in Scenario A and B,
respectively. Let ®(CNNy) denote the size of the model k.
If the ®,,, is less than @y, — § where § > 0, K is decreased by
1 as shown in line 25 in Algorithm 1. If &, > P, the K is
increased by 1. Then, the assignment process is repeated with
the new value of K. Otherwise, the assignment process stops if
P,,— 6 < P, < Dy,. When &, < Py, increasing the number
of models K by 1 may lead to the model size violation i.e.,
d,,, > ®y,. Thus, we use the margin § > 1 to avoid performing
an additional assignment iteration which results in the model
size violation. Moreover, the minimum and maximum numbers
of models K are 1 and N, respectively.

Model Fusion: In the last step, we adopt a late fusion
approach [14] that aggregates the outputs from the network’s
penultimate layers before the classification layers of K models
to yield the classification result. Specifically, we build a
multilayer perceptron (MLP) model consisting of an input
layer, hidden layers, and an output layer to fuse the output
information from K models. Given an input sample feeding
into K models, we first concatenate the feature vectors that are
the outputs of the penultimate layers of the K models. Then,
the MLP takes the resulting representation vector as input to
generate the final classification result.

C. Application Considerations

In this paper, we apply the proposed splitCNN framework
to decompose a VGGNet [1] into multiple small-size class-
specific models. As mentioned earlier, we use a different
APOZ threshold to prune the filters on the different convo-
lutional layers. From our experiments on various datasets of
different sensing modalities, in VGGNet, the rear convolu-
tional layers have higher sparsity levels of the zero activations.
Thus, we use a lower APOZ threshold for pruning the less
important filters in the rear convolutional layers. Moreover,
the VGGNet includes a fully connected layer consisting of
rectified linear units (ReLUs) before the Softmax output layer.
Thus, the MLP-based fusion module takes the outputs from the
fully connected layers of K class-specific VGGNet models as
inputs to yield the classification result. We apply the class-
specific VGGNet models obtained by the proposed splitCNN
for three case studies, which are speech recognition, vibration
analysis for machinery fault diagnostics, and video analytics.
In particular, in the first and second case studies, we use
the proposed assignment algorithm for Scenario A as shown
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Fig. 3. Examples of vibrating objects in industrial systems. (a) Motor; (b)
Assembly machine; (c) Conveyor.

in Algorithm 1 to split VGGNet into multiple class-specific
models deployed on multiple voice-sensing IoT devices and
vibration sensors, respectively. In the third case study, the
assignment algorithm for Scenario B is used to generate
multiple class-specific models deployed on a wireless camera
to perform video analytics on consecutive image frames.

IV. CASE STUDIES

A. Speech Recognition

The CNNs have been widely adopted for the speech recog-
nition applications such as KWS [15] and ASR [16]. For
instance, Google [15] developed a deep CNN model for pre-
dicting keywords (e.g., “answer call”, “next song”, and “pause
music”) in its KWS systems. The developed CNN model can
achieve a relative improvement up to 44% in the false reject
rate, compared with the Google’s KWS approach based on a
deep feed-forward fully connected neural network. The authors
in [16] have designed an efficient CNN-based ASR system that
achieves better performance than the traditional approaches
based on hidden Markov and Gaussian mixture models.

The IoT applications based on human voice interactions
often require high accuracy and real-time response for good
user experience. Thus, running the compute-intensive CNN-
based speech recognition functions on IoT devices (e.g.,
smart phones and smart remote controller) is not desirable
because these devices are often powered by batteries with finite
capacities. For instance, due to the always-on nature, executing
the CNN-based KWS function on such devices may require
bulky batteries or wired power supply. A common solution is
to offload the audio streams to the cloud, in which the CNN is
used for speech recognition. However, this solution may suffer
from the long latency and privacy concerns.

To address the above challenges, in this paper, we propose
a collaborative CNN-based speech recognition system, in
which multiple IoT devices run the lightweight class-specific
models obtained by splitCNN, as illustrated in Fig. 1. The
devices can run the class-specific models to collaboratively
perform the KWS function. Given a human voice command,
each device runs the inference using its class-specific model.
The outputs are fused to yield the final KWS result at a
centralized node. Another potential application scenario is that
the users in a meeting use their smartphones to collaborate
for ASR-based functions such as automatic transcription. By
enabling the execution of the small-size models on concurrent
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Fig. 4. splitCNN for low-power video analytics on a wireless camera.

voice sensing devices, our proposed approach can perform the
speech recognition with low latency.

B. Vibration Analysis for Industrial Systems

Vibration is an important sensing modality in industrial
systems. In particular, the vibration signals of industrial objects
(e.g., the motors, assembly machines and conveyors as illus-
trated in Fig. 3) reflect their internal states. The malfunction
of such vibrating objects usually results in abnormal changes
in the amplitude and frequency of the vibration signals [11].
Thus, the vibration analysis is an essential task in various
industrial predictive maintenance applications such as mon-
itoring the machinery health [11].

CNNs have been adopted to develop various effective ap-
proaches to analyze the vibration data [17] to detect abnormal
states of monitored industrial objects. For instance, the authors
in [18] trained a VGG-19 model which takes the vibration sig-
nals as inputs to diagnose the faults of the rotating machines.
In [19], a CNN based on LetNet-5 was developed to analyze
the vibration for the industrial fault diagnosis and achieve an
accuracy up to 99.79%. Such CNN-based vibration analysis
approaches are often executed on a centralized resourceful
node. However, collecting the high-rate vibration measurement
data from the sensors to the centralized node is a challenging
task especially when wireless communication is adopted. This
is because the industrial spaces typically have noisy and
time-varying wireless channels due to the moving parts of
production lines and noises from the working machines.

In this paper, we apply our splitCNN to design a vibra-
tion sensing system where multiple sensors are deployed at
different locations of the monitored object. Each sensor is
equipped with an embedded computing unit to execute the
lightweight class-specific CNN model obtained by splitCNN.
Compared with the traditional approach, our proposed system
may require more sensors for the collaborative CNN-based
vibration analysis. However, our approach obviates the need
of energy-intensive data transmission. Moreover, running the
lightweight model to perform in-situ vibration analysis can
achieve low-latency monitoring, which is important for the
time-critical industrial systems.
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Fig. 5. Performance of the original VGG-19 and class-specific models on speech datasets. In (a) and (c), the dotted red and solid blue lines represent results
of the original VGG-19 on Google command and LibriSpeech datasets, respectively. In (b), the size of the original VGG-19 is 241MB and 267MB on Google

command and LibriSpeech datasets, respectively.

Our system design is based on an assumption that the
sensors can obtain the same vibration signal. However, the
sensor deviation and inconsistency may pose challenges for
the deployment of our system in practice. For instance, at run
time, the sensors may have different vibration readings due
to calibration issues and random environment noises. Such
sensing deviations across the sensors may negatively affect the
accuracy of our approach. Thus, advanced signal preprocessing
may be required before feeding the vibration data into the
CNN models to maintain satisfactory accuracy.

C. Low-Power Video Analytics on Wireless Cameras

Today, wireless cameras have been widely deployed for
various visual sensing applications, including traffic control
and industrial activity monitoring. Without replying on ca-
bles for power supply and network connectivity, the wireless
cameras can be deployed at multiple locations in a monitored
space, thus providing wider coverage with better view angles.
The CNNs have shown outstanding performance for video
analytics [20]. However, running the complex CNN-based
video analytics may not be feasible on the wireless cameras
with limited computation and power resources. Offloading
the video data to a remote resourceful node also suffers
from several issues such as high latency and communication
bandwidth usage.

The conventional video analytics systems often adopt high
image frame rates to minimize the miss rate in detecting the
interested objects [20]. As a result, the consecutive frames
have high temporal correlations, i.e., they often have similar
contents. Thus, running the large CNN to process these
frames for video analytics may incur a prohibitive computation
overhead but not contribute to the accuracy improvement.
Existing studies (e.g., [20]) have proposed various approaches
to adapt the frame rate at runtime with the objective of
avoiding capturing consecutive frames with the same contents.
However, the design of these approaches are non-trivial. In this
paper, we propose to use the small-size models obtained by
the proposed splitCNN to process the consecutive frames with
similar contents in the video clips.

As illustrated in Fig. 4, the camera hosts all K class-
specific models that are sequentially executed to process the

consecutive frames in the recorded video clip. The outputs of
these models on K consecutive frames are fused to generate
the video analytics result (e.g., object detection). Different
from the traditional approaches [20] that run the large multi-
class CNN model to process all images in the video, our ap-
proach executes the small-size CNN models on the consecutive
frames with similar contents. As a result, the low-power and
low-latency video analytics can be achieved on the wireless
cameras with limited computing and power resources.

V. EVALUATION

In this section, we conduct experiments to evaluate the per-
formance of the proposed splitCNN for the three case studies.
In particular, we apply the proposed splitCNN to decompose
an original VGG-19 model without the batch normalization
into multiple class-specific models. We use TensorFlow (TF)
2.1 to implement the VGG-19, then prune the filters and retrain
the class-specific models in Python 3.7. For the filter pruning,
we set the APOZ threshold for the first convolutional layer to
60%. The threshold is decreased by 3% for each subsequent
layer. For the fusion, we build an MLP which consists of an
input layer, two hidden layers, and a Softmax output layer. The
first and second hidden layers have 512 and 246 rectified linear
units (ReLUs), respectively. Moreover, we use test accuracy,
model size, and inference time as the evaluation metrics.
Specifically, the mode size is the amount of memory required
to store and run the trained model, while the inference time
is the total execution time of the class-specific model and the
MLP on a Raspberry Pi 4.

A. Case Study 1: Speech Recognition

We use Google Speech Command [21] and LibriSpeech [22]
that are two standard datasets for the KWS and ASR, respec-
tively. Specifically, we use Version 2 of Google Speech Com-
mand which consists of 105,000 one-second audio utterances.
It contains 35 keywords (e.g., “yes”, “no”, “one”, and “two”)
each of which has about 1,500 samples. LibriSpeech contains
about 1,000 hours of English speech corpus sampled at 16
ksps. For each audio sample, we calculate the 40-dimensional
Mel-Frequency Cepstral Coefficients (MFCC) frames. Even-
tually, each sample in Command and LibriSpeech datasets is
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Fig. 6. Performance of the original VGG-19 and class-specific models on vibration datasets. In (a) and (c), the dotted red and solid blue lines represent
results of original VGG-19 on microphone and tachometer measurements, respectively. In (b), the size of the original VGG-19 is 864MB and 841MB on

microphone and tachometer measurements, respectively.

converted to 40 x 44 x 1 and 40 x 50 x 1 MFCC tensors,
respectively. For the experiments with the above two datasets,
we use all samples of ten classes.

Fig. 5 shows the accuracy, model size, and inference time
of the proposed splitCNN and the original VGG-19. With our
proposed splitCNN, the number of class-specific models K
varies from 1 to 10. Given a value of K, the ten classes are
assigned into K models using Algorithm 1. Specifically, with
K =1, only one 10-class model is formed by pruning all less
important filters from the original VGG-19. With K = 10, the
original model is decomposed into ten binary models, each
of which is sensitive to one class. The inference time is the
largest execution time across the K models plus the execution
time of the MLP per voice sample.

From Fig. 5(a), the proposed splitCNN can always maintain
high accuracy similar to that of the original VGG-19 on both
two Command and LibriSpeech datasets. Moreover, Figs. 5(b)
and 5(c) show that the model size and the inference time of
splitCNN decreases with the number of models. This is be-
cause, with more models, each class-specific model is assigned
with fewer classes, which leads to fewer important filters to be
kept. As a result, the model size and computation overhead are
reduced. However, since each class-specific model is deployed
on a sensor, more sensors are required when more class-
specific models are generated.

B. Case Study 2: Vibration Analysis

For the vibration analysis, we use a machinery fault database
(MaFaulDa) [23] that consist of 1,951 samples measured
by eight vibration sensors, including six accelerometers, a
tachometer and a microphone attached on a machinery fault
simulator. Specifically, eight sensors concurrently measure the
vibration signals under six different machinery states which
are normal function, inner and outer bearing faults, imbalance
fault, horizontal and vertical misalignment faults, i.e., the
dataset consists of six classes. For each machinery state, the
measurements of a sensor contain eight traces, each of which
was sampled at 50 ksps during 5s, resulting in a total of
250,000 samples. In our experiments, we use the vibration
samples measured by the microphone and tachometer as two
different sensing modalities to predict the machinery states.

With each sensor dataset, we convert 250,000 samples into
224 x 224 x 1 samples and duplicate each sample twice to
form a three-channel image sample like an RGB image, which
is fed to the CNN model for detecting the machinery state.
Eventually, we have a total of 294 samples that are divided
into the training and testing datasets by a ratio of 9:1.

Fig. 6 presents the performance of our approach and the
original VGG-19 on testing vibration samples. Similar to the
speech recognition in the case study 1, our proposed approach
can also achieve significant reductions in both the model size
and the inference time while maintaining the accuracy level
of the original VGG-19 in detecting the machinery state-based
on the vibration signals.

C. Case Study 3: Video Analytics

Lastly, we evaluate the performance of our approach for the
image classification task in the video analytics. We use Cal-
tech256 [24] and CIFAR-10 [25] image datasets. Caltech256
consists of 30,607 images in 256 classes, each of which
contains a different number of images from 80 to 827. We
select a total of 3,706 images from 10 classes with the highest
number of image samples for our evaluation. We use 2,964 and
742 images as the training and testing samples, respectively.
CIFARI10 consists of 60,000 32x 32 color images in 10 classes.
We use 50,000 and 10,0000 images for training and testing
datasets, respectively.

As shown Fig. 7(a), the proposed splitCNN mostly achieves
the accuracy similar to that of the original VGG-19. Different
from the case studies 1 and 2, in which each class-specific
model is deployed on one sensor, in this case study, all models
are installed on one camera. Thus, in Fig. 7(b), we present the
total memory required to store all class-specific models. As
shown in Fig. 7(b), the total size of all class-specific models
is always less than the size of the original VGG-19 under the
different settings of K. When K < 10, more class-specific
models lead to lower total memory usage. In addition, we
present the image processing throughput in frame per second
(fps) in Fig. 7(c). From Fig. 7(c), splitCNN always achieves
higher throughputs, compared with the original model. The
reason is that with splitCNN, the camera runs a small-size
class-specific model to process each image frame. As result,
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Fig. 7. Performance of the original VGG-19 and class-specific models on image datasets. In (a) and (c), the dotted red and solid blue lines represent the
results of the original VGG-19 on Caltech256 and Cirfar10 datasets, respectively. In (b), the size of the original VGG-19 is 241MB on both two datasets.

the high image processing throughput can be obtained. More-
over, the throughput of splitCNN increases with the number
of class-specific models.

In our evaluation experiments, with a certain number of
class-specific models, the same image frames are always fed
into these models. Thus, the accuracy of splitCNN remains
stable under various settings of the model number as shown
in Fig. 7(a). However, in practice, more class-specific models
may lead to decreased accuracy since the consecutive frames
fed into the class-specific models may have less similar
contents. Therefore, in the practical deployment, the number
of class-specific models needs to be carefully determined to
balance the trade-off between the accuracy, the memory usage
and the processing throughput.

VI. CONCLUSION

This paper designed splitCNN, a CNN model splitting
framework that allows executing the CNN-based advanced
data analytics on a collection of concurrent IoT sensors. We
applied a CNN pruning technique to decompose a complex
CNN into multiple lightweight class-specific models that can
be deployed on the resource-constrained sensors. The sensors
use the class-specific models to perform in-network, low-
latency data analytics on their measurement data. Extensive
evaluation on three case studies and comparisons with the
original CNN show the effectiveness of our proposed splitCNN
approach. Specifically, our approach can achieve significant
reductions in the model size and the inference time while
maintaining the accuracy similar to the original CNN model.
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