
Poster Abstract: Mobile Vision Dynamic Layer Dropping against
Adversarial Attacks

Zimo Ma1, Xiangzhong Luo2,1, Qun Song3, Rui Tan1
1Nanyang Technological University, Singapore

2Southeast University, China
3Singapore University of Technology and Design, Singapore

zimo001@e.ntu.edu.sg,xiangzhong.luo@seu.edu.cn,qun_song@sutd.edu.sg,tanrui@ntu.edu.sg

Abstract
Deep neural networks (DNNs) have achieved notable success in mo-
bile vision tasks, yet they show vulnerability to adversarial attacks.
When carefully crafted perturbations are introduced, these models
can be easily misled into wrong classifications, posing significant
risks for safety-critical mobile systems like autonomous vehicles.
Although various defense strategies, both static and dynamic, have
been proposed, many fail to address adaptive attacks or overlook the
resource constraints of mobile systems. To address these limitations,
in this paper, we present GuSoDrop, a lightweight dynamic defense
framework that applies stochastic layer dropping. GuSoDrop lever-
ages randomness to counteract adaptive attacks while selectively
dropping less important layers to reduce computation overhead.
Our preliminary evaluation shows that GuSoDrop outperforms
state-of-the-art defense methods against different adaptive attacks
and improves efficiency in reducing computational overhead.

CCS Concepts
• Security and privacy→ Domain-specific security and pri-
vacy architectures.
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1 Introduction
Deep neural networks (DNNs) have demonstrated strong perfor-
mance in vision-based sensing perception, such as driver assistance
and face authentication [1]. However, recent studies have exposed
DNNs’ vulnerability to adversarial attacks, where carefully crafted
adversarial perturbations are added to the input, causing DNNs
to produce incorrect outputs. For instance, adversarial patch per-
turbations on traffic signs can mislead the recognition system of
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autonomous driving agents [2]. Thus, developing effective defense
techniques against adversarial attacks is critical to ensure the secu-
rity of mobile vision systems.

Numerous defense mechanisms, such as adversarial training [3],
input transformation [4], have been proposed to enhance DNNs’
security against adversarial perturbations. However, these defenses
assume that attackers lack knowledge of their design and employ
deterministic countermeasures, where identical inputs always fol-
low the same processing path without variation. As a result, they
are vulnerable to advanced adaptive attacks, where the attackers
can exploit knowledge of the defense mechanisms to refine their
attack strategies and achieve a higher attack success rate.

Dynamic defense strategies have emerged as a promising re-
search direction for mitigating adaptive attacks. These methods
introduce randomness into their defense process, preventing adver-
saries from reliably optimizing their attacks. For example, Sardino
[5] proposes a dynamic ensemble, where model weights are up-
dated in real-time and ensemble members change adaptively to
counteract adaptive attacks. However, this dynamic defense in-
curs increasing computation costs due to the reliance on multiple
models for joint decision-making, rendering them impractical for
resource-constrained mobile systems.

To address the above challenges, we propose GuSoDrop, a dy-
namic defense framework that leverages dynamic layer dropping.
Specifically, GuSoDrop first learns a probability distribution over
layer dropping policies and then samples them stochastically via a
Gumbel-Softmax mechanism to dynamically skip less important
layers. A reinforcement learning–based decision network under-
pins this process, determining which layers to drop for each input.
This design introduces randomness to enhance adversarial robust-
ness, while also reducing computational overhead through selective
layer dropping, and preserving accuracy on clean inputs.

2 Design
GuSoDrop leverages a decision network with Gumbel-Softmax
mechanism to generate dynamic layer dropping decisions for the
given model, which can drop less important layers with minimal
accuracy loss during inference.We take ResNet [6] as the default tar-
get model, which consists of multiple residual blocks with stacked
layers. ResNet employs a shortcut mechanism that directly adds
the input to the output of the current residual block, which can
keep the overall network connectivity after some residual blocks
are dropped. Note that we can easily achieve similar layer dropping
mechanisms for other DNNs using layer gates.

However, randomly dropping layers may lead to significant accu-
racy loss. However, for a target DNN with 𝑁 layers, the number of
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Figure 1: Overview of GuSoDrop: leverages dynamic layer dropping
to enhance adversarial robustness against adaptive attacks while
reducing computation redundancy.
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(a) BIM attack.
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(b) PGD attack.

Figure 2: Comparisons of adversarial accuracy under two attacks on
GTSRB dataset. Maximum Perturbation denotes the upper bound of
input perturbation magnitude.

possible layer routes grows exponentially (i.e., 2𝑁 ), making it chal-
lenging and time-consuming to explore all layer routes for the given
input. To address this issue, we introduce an efficient reinforcement
learning algorithm as the decision network, enabling simultaneous
decision-making across all layers. More importantly, the decision
network can learn the optimal layer dropping distribution without
the labeled data, avoiding the need to evaluate accuracy for each
possible route. The decision network is a lightweight model, which
is much smaller than the target model ResNet18 and thus only
incurs negligible computational overheads.

Directly sampling layer routes from the resulting optimal layer
dropping distribution is not differentiable, posing a challenge for op-
timizing the decision network’s layer-dropping strategy. Therefore,
we introduce a Gumbel-Softmax sampling mechanism, a differ-
entiable approximation of the categorical distribution, enabling
gradient-based optimization for discrete layer dropping behaviors
to the target model. This mechanism allows GuSoDrop to stochas-
tically sample layer routes from the learned distribution, applying
them to the target model to enhance robustness against adaptive at-
tack while reducing computation redundancy, all while preserving
accuracy on clean inputs.

3 Preliminary Evaluation
To evaluate the feasibility of GuSoDrop, we conduct an experiment
on the GTSRB dataset [7], using ResNet18 as the target model for
layer routing. We evaluate its robustness against two common
adversarial attacks, FGSM [8] and PGD [3]. We compare GuSoDrop
with baselines, ResNet18 [6], Adv_training [3], Sardino [5].

We first evaluate the defense performance of GuSoDrop and
baselines under two adaptive attacks, shown in Figure 2. Compared
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Figure 3: Runtime of continuous frames processing for GuSoDrop
and its target model, ResNet18.

to the baselines, GuSoDrop consistently demonstrates superior ad-
versarial accuracy under both attacks, where GuSoDrop can show
a maximum 37.2% accuracy improvement. This improvement is
attributed to the introduction of randomness in layer routing deci-
sions, making it a dynamic defense mechanism, which complicates
the adversary’s ability to construct attacks.

When no adversarial perturbation is applied (maximum perturba-
tion set to 0), we assess model performance on clean data. ResNet18
trained on GTSRB achieves 98.5% accuracy, while GuSoDrop attains
97.7%, reflecting only a marginal decrease, due to the model’s em-
phasis on learning more robust and generalized features. A similar
trend is observed in Sardino and Adv_training, which exhibit 96.0%
and 95.8% clean accuracy, respectively, even lower than GuSoDrop.

We also test the latency performance of GuSoDrop and its tar-
get model ResNet18 when processing continuous frames, shown
in Figure 3. The results demonstrate that GuSoDrop consistently
achieves lower latency compared to ResNet18, as GuSoDrop dynam-
ically eliminates redundant layers during inference. On average,
GuSoDrop reduces latency by 32.3%, highlighting its efficiency in
resource-constrained mobile environments.
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