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ABSTRACT

Existing autonomous vehicles have not utilized the cloud computing
for execution of their deep learning-based driving tasks due to the
long vehicle-to-cloud communication latency. The increasing data
transmission speed of the commercial mobile networks sheds light
upon the feasibility of using the cloud computing for autonomous
driving. In this demo, we introduce the design and implementation
of ECSeg, an edge-cloud switched image segmentation system that
dynamically selects between the edge and cloud to execute deep
learning-based semantic segmentation models. This enables real-
time understanding of a vehicle’s visual scenes while adapting to
dynamic wireless conditions and changing environments.
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« Computer systems organization — Sensor networks.
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1 INTRODUCTION

Autonomous vehicles (AVs) have substantial potential to mitigate
traffic congestion, enhance road safety, and curtail carbon emissions.
Deep learning (DL) has been increasingly employed for various
driving tasks of the AVs. For example, the DL models [2] can be
used for the vehicles to understand their visual driving scenes cor-
rectly, facilitating the safe driving navigation and accurate collision
avoidance. To avoid the long latency of data transmission, the com-
mercial AV platforms (e.g., Apollo [1]) are often equipped with the
resource-limited edge computing devices to directly execute the DL-
based autonomous driving tasks on the vehicles. Meanwhile, the
execution of deep models often requires high demand on comput-
ing resources. Thus, current AV design strategies adopt customized
lightweight, on-board deep models [5] which can be executed by
the edge devices in real time to achieve autonomous driving. This
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design choice compromises the accuracy of the deep models. A
possible approach to address this problem is to increase the com-
puting capabilities of the edge devices which allow implementation
of complex deep models with high accuracy. However, the powerful
computing devices are energy-intensive, which reduces the vehi-
cle’s battery system lifetime. It is also challenging for the vehicle’s
heat dissipation system to handle the tremendous amount of heat
dissipated by the energy-intensive computing devices [4].

Compared with the edge devices, the cloud servers can pro-
vide the AVs with sufficient computing capabilities without power
limitation and heat dissipation issues. In this demo, we present
the design of an edge-cloud switched image segmentation system,
called ECSeg which aims to provide pixel-level understanding of
the vehicle’s visual driving scenes in real time. Specifically, ECSeg
switches between different deep models to obtain the segmentation
result of each image frame captured by the AV’s camera before a
certain deadline (e.g., the time when the next image frame is cap-
tured). To achieve the goal, ECSeg has the following two processing
options. First, edge processing option executes a lightweight con-
volutional neural network (CNN) model locally on the AV’s edge
computing device to obtain the segmentation results of the image
frames. Second, cloud processing option compresses the raw images
and transmits them to a cloud server via the mobile network. Then,
the cloud server executes an advanced CNN model to process the
images and sends the results back to the vehicle.

However, due to the cloud data transmission latency, the vehicle
may not always obtain the segmentation result of a transmitted
image frame before the image’s processing deadline. To mitigate
the long cloud latency issue, the cloud processing option allows the
vehicle to only spend a certain time period to wait for the cloud
result of the current image frame (i.e., current driving scene). We
define the latest frame among the previous frames whose cloud
segmentation results have already arrived at the vehicle as the
source frame. If the vehicle does not receive the cloud result of the
current frame after the waiting period, it will use the segmentation
result of the source frame to interpolate the result of the current
frame. Specifically, we develop an optical flow-based approach [3]
to propagate the segmentation result of the source frame to the
current frame.

2 SYSTEM OVERVIEW

Fig. 1 overviews the design of ECSeg which has two options: edge
and cloud processing options for image segmentation as follows.
m Edge processing option: This option executes a segmenta-
tion model locally to obtain the segmentation results of the captured
image frames on the AV’s edge platform. Given the limited comput-
ing resources of the edge platform, ECSeg employs a lightweight
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Figure 1: Design overview of ECSeg.

CNN-based image segmentation model as the local model such
that the image segmentation result of each image can be always
obtained before its deadline.

m Cloud processing option: This option follows a streaming
mode to continuously transmit the image frames from the vehicle
to the cloud server via a mobile network. To reduce the communi-
cation overheads, we implement a JPEG approach to compress each
image before transmitting it to the cloud server. Upon receiving
the image data, the cloud server employs a JPEG decompressor to
reconstruct the original image. Then, the cloud server executes the
cloud model to process the reconstructed image. To achieve high
image segmentation accuracy, an advanced CNN-based model with
large size is implemented as the cloud model in the cloud server.
Finally, the cloud image segmentation result is sent back to the
vehicle.

Due to the long vehicle-to-cloud communication latency, the
cloud segmentation result of an image frame may not arrive at the
vehicle before the deadline. Thus, we also develop a propagation
approach which uses the received cloud result of a previous frame
as input to obtain the segmentation result for the current frame.

m Switching: The edge processing option can always provide the
image segmentation result within the deadline. However, it suffers
from low segmentation accuracy due to the use of the lightweight
model. In contrast, the cloud processing option can execute an
advanced model to achieve high accuracy, but has high latency
uncertainty due to the dynamic vehicle-to-cloud communication
latency. Due to the vehicle movement and poor wireless channel
condition, the communication latency can be long, which causes
the cloud segmentation results to become stale, decreasing the
segmentation accuracy. To maximize the segmentation accuracy,
at the edge platform, we implement a DRL-based controller which
aims to dynamically switch between the edge and cloud processing
options in response to changes of the communication latency and
driving scene.

3 DELAY-MITIGATED MIOU

To assess the accuracy of the cloud segmentation results obtained
via propagation, we introduce a segmentation accuracy metric,
called delay-mitigated mean intersection over union (mloU). Fig. 2
shows an example of delay-mitigated mIoU, where the i’ h image is
transmitted to the cloud and its cloud result arrives at the vehicle
within the interval between the j‘% and (j + 1)" images. Due to
the vehicle’s movement, the scene captured in the j/# image may
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Figure 2: Delay-mitigated mIoU.

shift from the i*" image, causing the received cloud result to mis-
match with the ji7 image’s ground truth. We adopt the propagation
method to mitigate the mismatch. As a result, the delay-mitigated
mloU for the j'* image is the mIoU between the propagated i‘"
cloud result and the ground truth of the j*# image. When the pixel
content of the i* image differs significantly from that of the j”
image, the delay-mitigated mIoU may decrease.

4 RESULTS AND DEMONSTRATION

Evaluation results. We utilize a laptop equipped with an NVIDIA
GeForce RTX 3080 Ti GPU as the edge platform mounted in the
vehicle. The cloud server is prototyped using a tower server with
an RTX 8000 GPU and an Intel Xeon Gold 6246 CPU located in a
university server room. ECSeg achieves 0.612 delay-mitigate mIoU
on the street scene images under the dynamic mobile network
latency and driving environments.

Demonstration. To demonstrate ECSeg’s effectiveness, we set
up a real-time visualization system on the edge device using pre-
collected image and latency data. The data is stored locally and
displayed on a visual interface. Specifically, to simulate cloud pro-
cessing, we use pre-collected cloud results and corresponding cloud
latency traces. Similarly, edge processing is simulated using pre-
collected edge results. The DRL agent dynamically selects between
edge and cloud processing based on changing conditions. The
switching decisions and corresponding outcomes are visually pre-
sented to illustrate ECSeg’s adaptive capability.
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