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Abstract
Camera-based object detection excels but remains vulnerable to
adversarial attacks that suppress target detection (object-hiding
attacks). Here, we propose PaSED, a Parameterized Stochastic
EnsembleDefense, which leverages HyperNetworks to enable rapid
and diverse updates for detection models in the ensemble. At its
core, we introduce functional diversity to enhance the defense
robustness. It adapts each generation process to the input image
preprocessing parameterized by HyperNetworks’ random noise
input. In our preliminary evaluations against physically deployed
attacks, PaSED outperforms five baseline defenses without requir-
ing attack knowledge. It recovers attacked objects in 92% and 98%
of frames in the indoor and outdoor testbeds, respectively.

CCS Concepts
• Security and privacy→ Systems security; • Computer systems
organization → Dependable and fault-tolerant systems and
networks.
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1 Introduction
Camera-based object detection powered by deep neural networks
excels in accuracy but remains susceptible to adversarial examples,
i.e., carefully crafted perturbations that exploit model vulnerabilities
to induce errors. Recent studies demonstrate that such attacks can
be realized in the physical world by mounting adversarial patches
or LCD screens on objects, posing severe risks in safety-critical
applications like autonomous driving. This highlights the urgent
need for robust defenses in object detection.

To address such vulnerabilities, researchers have proposed vari-
ous defense approaches. Among these, adversarial training is widely
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cited as the most effective. It hardens models by training them on
adversarially perturbed, yet correctly labeled, samples. However,
its effectiveness diminishes when confronted with attack types not
represented in the training data. Another approach involves em-
ploying input transformations—such as lossy compression [2, 5],
blurring [6], and selective masking [3, 7, 8]—to neutralize adversar-
ial perturbations. However, these heuristic solutions are typically
static post-deployment, which creates a practical limitation. Attack-
ers can reverse-engineer and adapt their strategies to bypass such
defenses, a vulnerability known as adaptive attacks.

To address the above limitations, we propose PaSED, a parame-
terized stochastic ensemble defense. PaSED uses HyperNetworks,
deep neural networks that generate the weights of the target net-
work based on random noise input, to create stochastic ensembles
at runtime, ideally on a per-input basis. Such dynamics, if not fully
predictable by the attackers, alter the attack surface constantly
and form a moving target effect for improved security against adap-
tive attackers. Ensemble defense relies on diverse model responses
to adversarial examples. To enhance robustness, PaSED promotes
functional diversity along with weight diversity between ensemble
members. Specifically, we reuse the random noise input of Hyper-
Networks for each generation to parameterize the preprocessing
transform applied to the input image during training and testing.
It drives HyperNetworks to generate diverse networks, each for a
unique data distribution mapped from the original distribution.

2 Design Overview
Our defense is based on the state-of-the-art detection model (YOLO)
and uses a clean image dataset (Microsoft COCO) for training.

HyperNetworks. We leverage HyperNetworks to construct and
update an ensemble of detector model variants. We assign each
selected layer in the base detector a dedicated MLP-based genera-
tor. These generators take random noise sampled from a normal
distribution and produce the corresponding weight parameters.

Weight diversity. To ensure diversity among detection models
in the ensemble, a weight diversity loss quantifies differences in
generated weights. We compute a diversity score for each layer in
the ensemble models by averaging the absolute Pearson correlation
between the flattened weight vectors of every unique pair of models.
This score is then squared and aggregated across all layers. The
total training loss balances two objectives: (1) the average detection
accuracy of all models in the ensemble, and (2) the overall diversity
score, controlled by a tunable coefficient 𝛽 .

Functional diversity. To further enhance the robustness, we
introduce additional functional diversity during training and test-
ing. PaSED reuses the HyperNetworks’ random noise input as a
parameter to transform the original image. Among various possible
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Figure 1: Top: Example of permutation process for 𝑃 = 2.
Bottom: Effects of pixel shuffling for 𝑃 = 4 and 𝑃 = 8.
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Figure 2: Preliminary physical evaluation testbeds.

transforms, in this work, we choose the block-wise pixel shuffling
[1, 4] due to its operation efficiency and promising performance in
classification tasks. Specifically, it divides the original image into
non-overlapping square blocks, each sized 𝑃 × 𝑃 pixels. Within
each block, the pixel values are shuffled independently across the
red, green, and blue color channels, where HyperNetworks’ input
vector determines their distinct permutation orders. Fig. 1 examples
the permutation process for 𝑃 = 2 and the effects of block-wise
pixel shuffling for 𝑃 = 4 and 𝑃 = 8.

Detection Fusion Strategy. We observe that the diverse re-
sponses from ensemble members can be potentially used to distin-
guish attacked objects from normal false positives. To ensure clean
accuracy while preserving defense effectiveness, PaSED’s basic idea
is to use the ensemble to recover the objects hidden by the attacks
from the base detector and then selectively merge them with the
base detector’s results.

3 Preliminary Evaluation
To evaluate the robustness of PaSED, we provide preliminary phys-
ical world experiments in both indoor and outdoor testbeds. We
choose the ‘stop sign’ as a representative attack target where the
printed adversarial patches are mounted to hide it from detection.
We compare NoHide with six baseline methods: (1) Vanilla model
without defense mechanism, (2) JPEG [2], (3) LGS [5], (4) SAC [3],
(5) Jedi [6], (6) ObjectSeeker [7]. We use Detection Rate (DR) to mea-
sure the percentage of frames where the target object is successfully
detected. A higher DR indicates better model robustness against
physical adversaries. As shown in Fig. 3, PaSED demonstrates su-
perior robustness compared to established baselines [2, 3, 5–7].
Specifically, NoHide achieves a high DR, reaching 0.92 in laboratory
settings and 0.98 in real-world road environments. Furthermore, it
delivers stable performance across diverse distance ranges and test
environments with varying lighting conditions.

Live Demo. In this demonstration, we will showcase PaSED in
action, defending against physically deployed adversarial attacks
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Figure 3: DR of defense methods against physical adversarial
attack targeting stop sign in two testbeds.

targeting stop signs. We will visualize the rapid and diverse genera-
tion of detection models, and highlight their functional diversity by
showing parameterized image transformations for each generated
model and their diverse detection results. These detection results
will form the final output.
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