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ABSTRACT
Massive fraudulent and phishing robocalls present threats to soci-
eties. The integration of artificial intelligence technologies, includ-
ing dialogue and voice generation systems, renders the robocalls
more deceptive. Existing countermeasures such as caller ID, call
provenance, voiceprint, and fake voice detection have respective
limitations and are heavyweight for end users’ smartphones. This
paper studies detecting the acoustic echo channel on the remote end
of a call based on the received voice. The positive detection result
evidencing the physical setup of an audio system is indicative of a
human caller. However, the acoustic echo cancellation mechanisms
of most audio systems and the use of earphone/headset diminish
echoes significantly. To address these issues, the proposed Telesonar
transmits short chirps during the vulnerable time of echo cancella-
tion, detects the tiny echo remnants from the received voice, and
passively analyzes the timing of caller’s breath sounds to confirm
a human caller. Extensive real experiments under a wide range of
settings show that Telesonar correctly recognizes human callers
with a rate of over 95%, while wrongly recognizing voice robots as
human with a rate of 3.8%.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Ap-
plied computing→ Telecommunications.
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1 INTRODUCTION
A survey in 2021 [37] shows that one third of all calls in the U.S.
were considered nuisances or fraudulent and have caused a total
loss of 29.8 billion US$ in one year. 3.4 million cases of these fraud-
ulent calls are robocalls made with automated programs, which
are 20% more than the year before [14]. Due to the low cost and
low technical barriers, Internet-based robocalls have been used
to pinpoint gullible victims in the first stage of fraud [13]. If the
victim callee responds to the call (e.g., utters or presses some but-
tons following the robocall’s instruction), the robocall program
will forward the call to a human fraudster for the next stage of
the scam. This low-cost victim filtering function prompts the mas-
sive robocalls. Since smartphones have become a primary personal
communication method, in this paper, we aim to develop an edge
sensing technique that can assist a smartphone user to confirm in
real time that the remote end of a received call is not a voice robot.
With such, the risk for the user to be defrauded will be reduced.

Various meta information about a phone call session and features
extracted from the received voice have been used to block/detect
robocalls. They include caller ID (CID), call provenance, voice recog-
nition, and voiceprint. However, each of the existing approaches
has certain limitations, which are discussed in the following.

CID: CID displays the incoming phone number. Telecommunica-
tion companies provide various services to block robocalls
according to their CIDs. However, attackers can leverage
various approaches to spoof their CID to be a legitimate one.
Against the callees, robocalls can use neighborhood spoofing,
e.g., display a CID of the callee’s city.

Call provenance: Call provenance has been used to detect robo-
calls. The Pindrop system [5, 9] determines the traversal
of a call through different networks by extracting and an-
alyzing features from the received voice. The features are
caused by the applied voice codecs, packet losses, and noise
profiles of the traversed networks. A mismatch between
the call source locations claimed by the caller and inferred
by Pindrop should raise a suspicion of fraud. The prove-
nance determination needs extensive prior knowledge about
telephone networks around the world. Although call prove-
nance services [4, 5, 9] have been commercially available,
they are heavyweight due to the need of large databases
and are used by large organizations only, such as bank call
centers. As such, they are ill-suited for resource-constrained
smartphones.

Voice content and voiceprint: For the robocalls playing recorded
voices, it is possible to establish a voice database of such robo-
calls through crowdsourcing and use it to identify fraudulent
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robocalls [6]. However, crowdsourcing incurs high commu-
nication overhead and privacy concerns. Moreover, should
the identification be performed locally by the user’s smart-
phone, it may consume excessive energy especially when
the crowdsourced database is large. Besides content-based
robocall identification, voiceprint, which has been widely
used in customer authentication, is recently used for fraudu-
lent call detection [4]. For example, calls with different CIDs
carry the same voiceprint may imply fraud. Similar to call
provenance determination, the voiceprint analysis is mostly
for enterprise call centers, rather than smartphones.

The latest artificial intelligence (AI) technologies, including text-
speech conversion and dialogue systems, make robocalls more de-
ceptive. Generative adversarial networks (GANs) such as WaveNet
[38] and GANSynth [17] can generate speech that mimics any hu-
man voice and sounds very natural to human perception. Deep
model-powered dialogue systems (e.g., GPT-3 [10]) have developed
capabilities to accomplish real-world conversation tasks. For in-
stance, Google Duplex can call restaurants and hair salons to make
reservations on behalf of the user [1]. There are reported cases
[2, 34] in which the phishing calls have integrated advanced AI
so that the callees do not realize that the caller is a robot. AI can
render the voice content/voiceprint-based countermeasures less
effective for the following reasons. First, as the advanced dialogue
system can generate diverse dialogues, the voice content-based
countermeasures are challenged. Second, as the GAN-based voice
generator can mimic any person, voiceprinting becomes less ef-
fective. The misuse of GANs has triggered interests in applying
machine learning to recognize fake voices [36]. But the existing
solutions are susceptible to the underrepresentation of the train-
ing data, as we will show in §2. In summary, the evident uses of
existing AI technologies in robocalls pose new and real threats to
individuals especially the vulnerable users like elderly and kids.

To advance from the current state of lacking effective techni-
cal countermeasures on smartphones against the crafty threat of
AI-powered robocalls, this paper aims at developing a technique
that assists smartphone users in identifying the nature of the caller.
From a key observation that the AI-powered robocallers only pro-
cess and generate voices using software systems and do not involve
a physical audio system of hardware speaker and microphone, we
explore clues indicative of the presence of a physical audio system
on the remote end of a voice call. In particular, we study the ef-
fectiveness of using the acoustic echoes as the indicator. Acoustic
echo, which propagates from the speaker to the microphone via
multiple paths including the phone’s solid slate and the reverbera-
tion from the environment, is a ubiquitous issue for audio systems.
Thus, most audio systems employ acoustic echo cancellation (AEC)
mechanisms to improve audio quality, which however present a
challenge to our aimed echo channel detection. The AEC renders
the approach of passively detecting the echo channel futile. In addi-
tion, when the remote end uses wired earphones or a headset, the
echo channel is slim or even absent.

In this paper, we design Telesonar1, which uses echo channel
detection and breath sound timing analysis in tandem to determine
the nature of the remote end (i.e., human or voice robot). From our
analysis, AEC is vulnerable in a time duration right after the es-
tablishment of a call session. Thus, Telesonar transmits three short

1Telesonar uses telephone line and operates like a sonar to understand the target,
either in the active or passive mode.

acoustic chirps once a call session is established and then detects
the echo remnants from the received voice data. We extensively
evaluate the chirping parameters, including length, spectrographic
shape, and silence gap, that can bypass AEC better. From our mea-
surements, an effective chirping method uses three exponential
chirps, each sweeping [1, 3]kHz in 0.5 seconds. If no echo chan-
nel is detected, Telesonar passively detects breath sounds in the
received audio. If no breath sound is detected within a time window
or the breath timing distribution is abnormal, Telesonar yields a
negative result indicating a robocaller.

We evaluate Telesonar using both simulations driven by a large
telecommunication dataset and experiments with real phone calls.
Our evaluation covers a wide range of factors: (1) size of rooms
creating reverberation from 2m2 to 100m2, (2) mouth-microphone
distance from 2 cm to 2m, (3) covering sounds (music, ringtone,
pink noise) to reduce the prominence of chirping, (4) remote end’s
speaker volume (fromminimum tomaximum), (5) phone type/model
(landline phone and four smartphones from high end to low end
with different operating systems), (6) phone use mode (handset,
speakerphone, wireless andwired earphone/headset), (7) geographic
distance (domestic and cross-continental calls), (8) various call ap-
plications with different AEC algorithms (GSM, VoLTE, and VoIPs
such as Google Hangouts, Skype, Whatsapp, Facebook Messenger),
(9) different real-world robocalls, (10) human subjects’ acceptance of
being probed. The evaluation shows the effectiveness of Telesonar
under diverse settings and also user acceptance.

The contributions of this paper are summarized as follows:
• We show the limitations of supervised learning approaches
in detecting fake voices under practical settings. The re-
sults suggest that deeply tailored solutions beyond simply
offloading the efforts to the training process will be needed
to effectively address the problem.

• We design Telesonar that identifies the nature of the remote
end (human or voice robot) by detecting echo channel and
analyzing the caller’s breath timing in tandem. The echo
channel detection uses active sensing by transmitting several
short chirps during the vulnerable time of AEC. The breath
timing analysis can detect fake voices with artificial and
natural breath sounds generated by an advanced approach
[33].

• We achieve satisfactory performance under a wide range
of settings. When the remote human caller uses handset,
speakerphone mode, or true wireless stereo earphones (e.g.,
AirPods, Galaxy Buds), Telesonar correctly detects human
caller with a rate of 95%, while wrongly recognizes voice
robot as human with a rate of 3.8%. When the remote human
caller uses wired earphones/headset, the two rates are 84%
and 5%, respectively.

Paper organization: §2 states problem. §3 presents a measurement
study. §4 and §5 present design and evaluation of Telesonar. §6
discusses adaptive attacks on Telesonar. §7 reviews related work.
§8 concludes this paper.

2 PROBLEM DESCRIPTION
In this paper, we consider a call session established between a caller
and a callee via a telecommunication link that may go through
one or more networks such as public switched telephone network
(PSTN) and Internet. The presentation of this paper is from the
perspective of the callee. Thus, the callee’s audio system is referred
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to as near end; the caller’s audio system is referred to as far end.
The aim of our work is to explore approaches to sense information
indicative of a caller’s nature (i.e., human or voice robot) based on
the voice data received by the near end. Throughout this paper, we
use the following terminology for the sensing results:
Positive is the detection result indicating a human caller;
Negative is the detection result indicating a voice robot;
False positive refers to wrongly detecting a voice robot as a hu-

man caller;
False negative refers to wrongly detecting a human caller as a

voice robot.
In §2.1 of this section, we investigate the effectiveness of several

recent fake voice detection approaches. Their limitations moti-
vate us to study a new cyber-physical approach that is outlined in
§2.2.The challenges in implementing the cyber-physical approach
are discussed in §2.3.

2.1 Limitations of Fake Voice Detection
As GAN-based voice generation is the state of the art, we investigate
the effectiveness of several latest approaches on the ASVspoof
competition [7] in detecting spoofed voices. ASVspoof has two
sectors: the logical access (LA) sector, in which the attacker can
access the ASV system directly and add spoofed voices; and the
physical access (PA) sector, in which the attacker can set up a speaker
and replay the voice samples over the air. Most detection approaches
of ASVspoof are based on supervised learning. We test an open-
sourced detector [3] of the LA sector that ranked 15th among 50
detectors [36]. It employs an ensemble of three ResNets that use
different speech representations as the input. We also test two
baseline detectors of the PA sector [27, 35] provided by ASVspoof
[36], which apply Gaussian mixture models (GMMs) on LFCC and
CQCC features of the input speech. The three detectors have been
trained by their authors using the ASVspoof database including
both genuine and spoofed speeches. The equal error rate (i.e., the
common value of false positive rate and false negative rate) of the
three detectors on the ASVspoof database can be found in Table 1.
Note that the false negative rate is the ratio that the genuine data
samples from CallHome dataset are misdetected as spoofed. They
achieve equal error rates of less than 10%.

Then, we use the CallHome American English Speech dataset
[11] with 60 hours of telephone conversations to test the detectors.
We prepare 240 genuine human voice samples, each having the same
length as the ASVspoof test samples. As shown in Table 1, the false
negative rates of the three detectors on CallHome are very high.
Such underperformance is due to the pattern mismatch between the
ASVspoof and CallHome databases. The genuine human speeches in
ASVspoof are clean, whereas the CallHome voice traces are subject
to background noises and telecommunication channel effects.While
it is possible to engineer the training dataset to encompass patterns

Table 1: Equal error rates and false negative rates of three
fake voice detectors on ASVspoof & CallHome datasets.

Spoofed
voice detector

Equal error rate (%) False negative rate (%)
Validation Test CallHome

ResNets [3] 0.00 6.02 77.08
LFCCs + GMM [27] 2.71 13.54 100.00
CQCCs + GMM [35] 0.43 11.04 100.00
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Fig. 1: Two scenarios of a call session. Upper right diagram
shows the scenario of a human caller at the far end with an
acoustic echo channel. Lower right diagram shows a robo-
caller without an acoustic echo channel.

occurring during telecommunication calls, this approach can be
exhaustive and tedious. This result is related to domain shift, a
fundamental and pervasive challenge faced by supervised learning
in real-world applications. Hence, it is desirable to design a robocall
detector that is training-free and robust to domain changes, which
can work as an alternative/complementary approach to the existing
learning-based detectors.

2.2 System and Threat Models
The limitations of fake voice detection motivate us to study a cyber-
physical approach of detecting the presence of far-end acoustic
echo channel instantly on the establishment of the call session. The
echo channel is an effective indicator of a human caller. We use
Fig. 1 to illustrate the two scenarios with and without the presence
of the far-end echo channel.

In the first scenario that captures human callers (upper right part
of Fig. 1), the far-end speaker plays out the voice signal received
from the near end. The played-out sound, after attenuation, arrives
at the far-end microphone via multiple paths, including the direct
propagation over the solid structure of the far-end device and the
reverberations from the far end’s indoor environment, forming
acoustic echoes. Thus, the far-end microphone captures the mix of
the caller’s voice and the acoustic echoes. Then, the far-end AEC
processes the signal, aiming at removing all echoes. The result is
then transmitted to the near end via the telecommunication link.

In the second scenario (lower right part of Fig. 1) that captures
typical AI-powered robocallers, the far end applies a speech-to-text
algorithm on the voice signal received from the callee. Then, it uses
a dialogue system to generate the response in text. Finally, it applies
a text-to-speech algorithm such as WaveNet [38] to generate the
voice signal and transmits it to the callee via the communication
link. The key difference between the two scenarios is that, the far
end in the second scenario does not have an acoustic echo channel.

In this paper, we make the following assumption for the robo-
caller, i.e., the operator of the robocaller does not set up physical
speakers and microphones to create real acoustic echo channels.
The reason is that, since a robocaller usually makes massive calls
in parallel, setting up a separate physical audio system for each
call incurs prohibitive overhead. Targeted fraud and phishing that
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Fig. 4: Spectrograms of signal captured by microphone 𝑦 (𝑡)
and AEC’s output 𝑠′ (𝑡).

make a single or a limited number of calls at a time can use physical
setups, but then the necessity of skillfully employing voice robots
diminishes – the adversary should make the calls manually to sim-
plify the procedure and maximize the success chance of targeted
fraud. Dealing with fraud calls made by genuine humans is out of
the scope of this paper.

We aim to detect the presence of the far-end echo channel based
on the voice signals transmitted and received by the callee. The de-
tection is performed at the near end only. The near end device needs
to have the capability of inserting a probe signal to the transmitting
audio, and listening to the incoming audio. Since we do not need to
modify the telecommunication infrastructure, the near end device
can be any device that can run our algorithm, such as a smartphone,
a landline phone, a VoIP program, or even an automatic answering
system (e.g., Google Assistant [39]).

2.3 Objectives and Challenges
This paper attempts to answer the following questions. First, how
effective is the passive sensing approach of detecting the far-end
echo channel, in which the near end does not introduce any probe
signal irrelevant to the voice conversation? Second, how effective
is the active sensing approach of detecting the far-end echo channel,
in which the near end introduces some probe signals? On a related
question, how to design the probe signal for the effective detection
while not downgrading the voice quality much and not annoying
the human caller?

In this section, we discuss three main challenges in implementing
the far-end echo channel detection.

2.3.1 AEC. Fig. 2 illustrates the principle of AEC at the far end
[20]. Denote by 𝑡 the time and by 𝑥 (𝑡) the voice signal received from
the callee. Now, we analyze the essential acoustic process at the
far end, with the distortions introduced by the far-end speaker and

microphone hardware ignored. Denote byℎ(𝑡) the impulse response
of the acoustic echo channel; by 𝑑 (𝑡) the acoustic echo; by 𝑠 (𝑡) the
human caller’s voice; by 𝑦 (𝑡) the acoustic signal received by the far-
end microphone. We have 𝑑 (𝑡) = ℎ(𝑡) ∗ 𝑥 (𝑡) and 𝑦 (𝑡) = 𝑠 (𝑡) +𝑑 (𝑡),
where the operator ∗ represents convolution. AEC has two inputs:
𝑥 (𝑡) and𝑦 (𝑡). Denote by ℎ̂(𝑡) the estimated impulse response of the
echo channel. AEC predicts the echo by 𝑑 (𝑡) = ℎ̂(𝑡) ∗ 𝑥 (𝑡). Denote
by 𝑠′ (𝑡) the output of AEC, i.e., the estimated caller’s voice after
echo removal. AEC removes the echo by 𝑠′ (𝑡) = 𝑦 (𝑡) −𝑑 (𝑡). If AEC
obtains a perfect estimate of the echo channel (i.e., ℎ̂(𝑡) = ℎ(𝑡)), the
echo can be completely removed (i.e., 𝑠′ (𝑡) = 𝑠 (𝑡)).

Most AEC algorithms adopt adaptive filters that adjust the pa-
rameters of ℎ̂(𝑡) to make the feedback error 𝑠′ (𝑡) zero. Now, we
discuss the following four cases.

Case 1 (callee talk), in which callee keeps talking (i.e., 𝑥 (𝑡) ≠ 0)
and the caller keeps silent (i.e., 𝑠 (𝑡) = 0): The feedback error signal
is 𝑠′ (𝑡) = 𝑦 (𝑡)−ℎ̂(𝑡) ∗𝑥 (𝑡) =

(
ℎ(𝑡) − ℎ̂(𝑡)

)
∗𝑥 (𝑡). Once the adaptive

filter converges (i.e., 𝑠′ (𝑡) = 0), we have ℎ̂(𝑡) = ℎ(𝑡) since 𝑥 (𝑡) ≠ 0.
Case 2 (caller talk), in which callee keeps silent (i.e., 𝑥 (𝑡) = 0)

and the caller keeps talking (i.e., 𝑠 (𝑡) ≠ 0): The error signal 𝑠′ (𝑡) =
𝑦 (𝑡) − ℎ̂(𝑡) ∗ 𝑥 (𝑡) = 𝑠 (𝑡). Thus, there is no way for the adaptive
filter to converge.

Case 3 (silence), in which both the callee and the caller keep
silent (i.e., 𝑥 (𝑡) = 𝑠 (𝑡) = 0): The error signal 𝑒 (𝑡) = 𝑦 (𝑡) − ℎ̂(𝑡) ∗
𝑥 (𝑡) = 0. Thus, there is no useful feedback error signal for the
adaptive filter to learn ℎ(𝑡).

Case 4 (double-talk), in which both the callee and the caller
keep talking (i.e., 𝑥 (𝑡) ≠ 0 and 𝑠 (𝑡) ≠ 0): The error signal is 𝑠′ (𝑡) =
𝑦 (𝑡) − ℎ̂(𝑡) ∗ 𝑥 (𝑡) =

(
ℎ(𝑡) − ℎ̂(𝑡)

)
∗ 𝑥 (𝑡) + 𝑠 (𝑡). As the error signal

contains two exogenous time-varying signals 𝑥 (𝑡) and 𝑠 (𝑡), it is
difficult for the channel estimation to converge and make 𝑠′ (𝑡) = 0.

The above analysis gives the following key insight: the callee’s
voice 𝑥 (𝑡) and the caller’s voice 𝑠 (𝑡) are the constructive and de-
structive factors, respectively, to the far end AEC’s learning of the
far-end echo channel. AEC implementations have integrated vari-
ous heuristics to seize the Case 1 opportunities. For instance, the
AEC can detect Case 1 based on the intensities of 𝑥 (𝑡) and 𝑦 (𝑡).
When 𝑥 (𝑡) is intense and 𝑦 (𝑡) is weak, the AEC learns the initial
ℎ̂(𝑡) or updates it to adapt to the changes of the echo channel.

AEC performs well in most cases. Thus, it presents a challenge
to detecting the echoes from the output of AEC. To illustrate this,
we conduct an experiment to mimic the far end. We set up an
audio system, with its speaker playing a dual-tone 𝑥 (𝑡) and its
microphone capturing𝑦 (𝑡) that is the mix of a human voice and the
echo of 𝑥 (𝑡). Fig. 4a shows the spectrogram of 𝑦 (𝑡), in which the
human speaks from around the 20th to the 30th second. We can also
see the dual-tone echo, with components at 1 kHz and 3 kHz. We
feed the 𝑥 (𝑡) and 𝑦 (𝑡) to the AEC component of WebRTC, which is
a widely adopted real-time communication library. Fig. 4b shows
the spectrogram of the AEC output 𝑠′ (𝑡). During the time period
before the human speaks which belongs to Case 1, the ℎ(𝑡) can
be estimated well and the echo of 𝑥 (𝑡) can be effectively removed.
When the human speaks, the frequency components of the human
speech at around 1 kHz and 3 kHz are suppressed by AEC. This
over-suppression is due to that the estimate ℎ̂(𝑡) is not perfect, but
it does not impede the human’s perception of the voice content.
From Fig. 4b, the echo of 𝑥 (𝑡) has been almost completely removed.
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The above analysis and experiment suggest that, to effectively
detect the far-end echo channel, Telesonar needs to exploit the
vulnerable times of AEC. A short time right after the call session
establishment is a promising vulnerable time, because the AEC has
not experienced Case 1 to learn a good ℎ̂(𝑡). The changes of ℎ(𝑡)
in the midst of a call, e.g., caused by the movements of the far end,
can also present vulnerable times. However, the changes of ℎ(𝑡)
are opportunistic.

2.3.2 Constraints from telecommunication systems. Limited chan-
nel bandwidth for each voice call session is a constraint from the
telecommunication systems. The narrowband and wideband voice
telecommunications restrict the bandwidth to be 3 kHz and 8 kHz
[31], respectively. In the active sensing approach, the probes trans-
mitted by the near end need to fit into the bandwidth. The probes
will be audible. Thus, we should design the probes to minimize the
negative impact on the hearing comfort of the human caller.

2.3.3 Slim echo channel of wired earphone. The acoustic echo chan-
nel can be slim or absent when the far end uses a wired earphone
or headset with a separate microphone. Merely relying on echo
channel detection may lead to excessive false negatives.

3 MEASUREMENT STUDY
This section presents a measurement study to obtain insights into
addressing the challenges discussed in §2.3.

3.1 Measurement Setup and Methodology
Experimenting with real telephony systems faces various barriers
(e.g., prohibited access to voice data) and overheads. Thus, we con-
duct our study and drive the Telesonar design using a simulator that
integrates real acoustic signal processing algorithms. The designed
Telesonar will be then evaluated in real telephony systems. Our
simulator, CallSim, integrates four software modules as illustrated
in Fig. 5 and can capture the two scenarios depicted in Fig. 1. The
four modules are described as follows:

① Room simulation. This module simulates an enclosed room
environment and computes the acoustic echoes in response to a
given acoustic signal. We use the python library pyroomacoustics
[29] to compute the reverberations. We simulate a 3 × 3 × 3m3
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Fig. 6: Spectrograms of voice signals during a call session
under passive echo channel detection.

space with two sources 4 cm apart, as illustrated in Fig. 3. The first
source is the callee’s voice played by the far end’s loudspeaker; the
second source is the caller’s voice. The output of this module is
the sum of the echo computed by pyroomacoustics and the caller’s
voice.

② AEC. We use the AEC of WebRTC, an open-source library
for constructing real-time multimedia communication applications
running on modern browsers and native clients.

③ Echo channel detection. This module has two inputs: (1)
the callee’s voice signal that is transmitted from the callee to the
caller; (2) the output of AEC that is transmitted from the caller to
the callee. It aims to detect the echo remnant from the output of
AEC. The detection is based on the Pearson correlation coefficient
(PCC) between the spectrograms of the two input voice signals.
The details are presented in §4.2.

④ Chirp generator. This module is used in the active sensing
approach to generate probe signals. The sum of callee’s voice and
the generated probe signal is transmitted to the caller.

We use the CallHome dataset [11] that includes 120 real do-
mestic and cross-continental telephone conversations involving
many people. Each conversation is 30 minutes long, consisting of
two concurrent narrowband audio streams. One of the streams is
the caller’s voice; the other is the callee’s voice. The voice traces
capture realistic factors such as the microphone distortions and
telecommunication noises/jitters.

We use a 30-minute conversation from CallHome to drive the
measurement study. We compare the PCCs computed by the echo
channel detection module under the passive sensing and active
sensing schemes. For both sensing schemes, we investigate how
the talk cases (caller talk, callee talk, and double-talk) affect the
PCC. For active sensing, we investigate the impact of the probe
signal configurations (i.e., choice between constant tones and chirp,
choice between linear and exponential chirps, and the duration of
the probe) on the PCC.

3.2 Measurement Results
3.2.1 Passive sensing versus active sensing. Fig. 6 shows the results
of passive sensing. Fig. 6a shows the spectrograms of the caller’s
voice 𝑥 (𝑡), callee’s voice 𝑠 (𝑡), and the output of AEC 𝑠′ (𝑡), as well
as the PCC between 𝑥 (𝑡) and 𝑠′ (𝑡), when the far end has an echo
channel. The AEC effectively cancels the echoes of callee’s voice
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Fig. 7: Spectrograms of voice signals during a call session
under active echo channel detection, in which the callee
transmits three exponential chirps.

and removes some components of the caller’s voice when double-
talk occurs. This is consistent with our observation in Fig. 4. Fig. 6b
shows the results when the far end has no echo channel. The PCC
traces shown in Fig. 6a and Fig. 6b are similar. Specifically, when
double-talk occurs, the PCC can be up to 0.75; when there is no
double-talk, the PCC is near-zero. The high PCCs during double-
talks are primarily due to the similar harmonics of caller’s and
callee’s voices. Since the double-talks result in similarly high PCCs
in the absence and presence of the echo channel, passive sensing is
not promising.

Fig. 7 shows the results under an active sensing approach, in
which the near end uses an exponential chirp that increases from
1 kHz to 3 kHz to detect the far-end echo channel. Fig. 7a shows
the results in the presence of far-end echo channel. We zoom in the
areas of the spectrogram of 𝑠′ (𝑡) that are expected to have the echo
remnants. We can see that the AEC cannot completely remove the
echoes. The corresponding PCCs shown in Fig. 7a at the beginnings
of the first and second chirps are up to 0.9. The PCC for the third
chirp is low, because although 𝑠′ (𝑡) contains the echo remnant,
it is mainly the caller’s voice 𝑠 (𝑡). Therefore, although AEC may
not perform well during double-talks, it is non-trivial to detect the
AEC output’s inclusion of the echo remnants. From the results in
Fig. 7a, the caller’s silence period is a good timing for transmitting
the probe signal, because we can leverage the convergence process
of AEC to create salient echo remnants in the AEC outputs. Fig. 7b
shows the results in the absence of far-end echo channel. The PCCs
between the exponential chirp and the caller’s voice are always
low.

3.2.2 Design of probe signals. §3.2.1 shows that active sensing is
promising. Now, we investigate the impact of the shape and length
of the probe signal, as well as the gap between two consecutive
probe signals on the effectiveness of the echo channel detection. We
adopt a threshold of 0.1 for the PCC to detect the far-end echo chan-
nel. We use the true positive rate to characterize the effectiveness
of the probe signal design. The true positive rate is measured as
follows. In an experiment where the far end has the echo channel,
the callee transmits the probe signal periodically over the entire
30-minute conversation. The ratio of the positive detection deci-
sions to the total number of detection decisions made is the true
positive rate. Fig. 8a shows the true positive rates when a constant
tone, a linear chirp, and an exponential chirp are adopted. The
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linear chirp and the exponential chirp sweep the frequency range
of [1 kHz, 3 kHz]. The exponential chirp gives the best detection
performance.

Fig. 8b shows the impact of exponential chirp length. In general,
the detection performance increases with the chirp length. However,
long chirps (e.g., 2 seconds, 5 seconds or 10 seconds) are disturbing.
Telesonar adopts 0.5 seconds, because longer chirps do not bring
much improvement, i.e., proportional improvements to that from
0.3 to 0.5.

Fig. 8c shows the impact of the gap between two chirps. When
the gap is larger than 0.3 seconds, the performance becomes worse.
This is because with larger gaps, the chirps are more sporadic and
will be removed by AEC due to its built-in heuristics. Telesonar
adopts 0.1 seconds by default.

3.2.3 Breath sound timing. Breath sounds are pervasive in telecom-
munication audios and may indicate human callers. Thus, when
the echo channel is slim or absent, we aim to exploit breath sounds
to passively determine the nature of the far end. A recent research
[33] proposes a state-of-the-art deep learning-based technique that
synthesizes voices with spontaneous breath sounds, which are per-
ceived as natural ones by human. This technique may be used by
the robocaller to improve the deceptiveness of the robot voice. Thus,
instead of only examining the existence of breath sounds in the
far-end voice, we also examine the timing of breath sounds. Specifi-
cally, we consider four cases of breath timing: a) at the beginning of
an utterance; b) at the end of an utterance; c) within an utterance;
d) standalone (i.e., no concurrence with an utterance). Fig. 9 shows
the spectrograms of the four cases of breath sounds detected by
an existing algorithm [16]. Fig. 10 shows the distributions of the
four cases, for the real CallHome traces and the synthetic traces
made publicly available by the work [33]. The results show that real
breath sounds appear mostly standalone or at the end of utterances



Telesonar: Robocall Alarm System by Detecting Echo Channel and Breath Timing SenSys ’22, November 6–9, 2022, Boston, MA, USA

handset earphone/headsetspeakerphone

Fig. 11: Three use modes of human caller’s far-end device.

sometimes. But the breath sounds from synthetic voice traces are
more likely to appear at the beginning of utterances. The results
show that it is possible to detect the robocaller according to breath
sound’s timing even if breath sound is synthesized and added to
the generated voices.

4 DESIGN OF TELESONAR
4.1 Overview of Design
We consider three use modes of the far-end device as illustrated in
Fig. 11: (1) handset mode, in which the phone plays the received
voice using its top speaker; (2) speakerphone mode, in which the
far-end device (e.g., a smartphone, a tablet, and a laptop) is held
in hand or placed on a table and plays the received audio using
its loudspeaker; (3) earphone/headset mode, in which the human
caller uses an earphone or headset connected to the far-end device
to make the call.

In the handset mode, although the volume of the top speaker
is low, the solid slate of the phone forms an effective acoustic
echo channel. In the speakerphone mode, as the speaker’s volume
is high, the direct propagation of the played-out acoustic signal
to the microphone and the reverberation from the surrounding
objects/walls form an effective echo channel. Wireless earphones
such as Apple AirPods, Bose QuietComfort 35, and Samsung Galaxy
Buds, have direct contact with the head skull, and thus can receive
the chirps as well through bone conduction. From the results in §3,
the active sensing approach is promising to detect the presence of
a far-end echo channel in the handset and speakerphone modes.
For rare cases where the far end uses wired earphones/headsets,
breath timing is a promising feature to confirm that the far end is a
human caller because the microphone is generally placed close to
the mouth.

From the above discussion, the echo channel detection and the
breath sound analysis are complementary for covering the three
use modes. Telesonar integrates these two detection methods by the
workflow shown in Fig. 12. Telesonar runs on the user’s near-end
device. Upon the incoming call session is established, Telesonar
transmits a chirp signal to the far end and detects the echo channel.
Note that there is normally a silent period at the beginning of a call
session due to the human’s delay in responding to the ringing tone
termination indicating call establishment. Telesonar exploit this
silent period as a vulnerable time of AEC. If the far-end echo channel
is detected, Telesonar prompts amessage to the user confirming that
the far end is a human caller. Ideally, this message is prompted once
the user touches a button on the smartphone to accept the incoming
call, because the active sensing-based echo channel detection takes
about one second only. We will present the details of the echo
channel detection in §4.2.

Incoming

Call

Active Sonar Passive Sonar

Echo Channel

Detection

Human Caller

Robocaller
 Breath Sound
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Breath Timing

Distribution

no
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Fig. 12: Workflow of Telesonar.

If no echo channel is detected, Telesonar detects and analyzes
breath sounds. Telesonar uses a signal processing algorithm pro-
posed in [16] to separate human voices and breath sounds based on
the acoustic features related to the vocal tract system. If a breath
sound is detected, Telesonar proceeds to accumulate more breath
sounds to derive their timing distribution. If the distance between
the derived distribution and a reference distribution is smaller than
a threshold, Telesonar decides that the far end is a human caller;
otherwise, Telesonar alerts that the far end is likely to be a robot. If
Telesonar cannot detect a breath sound within 15 seconds, Teles-
onar also asserts robot. The parameter settings presented above
balance the overall trade-off between true and false positive rates
from extensive empirical trials.

The echo channel detection is compute-lightweight (0.1 seconds
compute time on modern smartphones) and instant (1.7 seconds
detection delay), whereas the breath sound detection/analysis needs
more computation and time (12 seconds detection delay on average
as shown in §5). The workflow in Fig. 12 avoids breath sound
detection/analysis when the far-end human caller is in the handset
or speakerphone mode. In these cases, Telesonar gives the decision
instantly.

4.2 Echo Channel Detection
This section presents the design of the echo channel detection.
Each detection session begins with a synchronization process, in
which the callee sends an exponential chirp to the caller. Then, the
callee transmits a sequence of 𝑛 intermittent exponential chirps.
Each chirp lasts for 0.5 seconds and sweeps the frequency band of
[1 kHz, 3 kHz]. This frequency range is similar to that of phone’s
keypad tones from 0.697 kHz to 1.633 kHz. The gap length between
two exponential chirps is 0.1 seconds. The synchronization of the
two ends and the detection of a single chirp’s echo from the voice
signal received from the far end are discussed below.
Synchronization. Both the transmission of voice signal over the
telecommunication link and the AEC computation at the far end
introduce delays. As advised by International Telecommunication
Union (ITU), the AEC computation can take up to 20ms. Thus, we
need to synchronize the data traces of the transmitted chirp and
the chirp’s echo (if any) in the signal received from the far end.
Fig. 13 illustrates the synchronization process. The near end splits
the 0.5-second chirp signal transmitted during [𝑡0, 𝑡0+500ms] into
16 neighboring windows, each lasting for 31.25ms, and applies
the short-time fast Fourier transform to every window to generate
the spectrogram consisting of 16 frequency spectra over time. The
near end applies the same approach to generate the spectrogram
for the signal received from the far end during [𝑡0, 𝑡0 + 1000ms],
since the total delay including the round-trip communication delay
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(shall less than 800ms as per [21]) and local processing delay (nor-
mally below 40ms [32]). This second spectrogram consists of 32
frequency spectra over time. Then, the first spectrogram is slid over
the second spectrogram with a step size of one frequency spectrum.
During the sliding, a PCC between the first spectrogram and the
covered part of the second spectrogram is computed for each step.
If the maximum PCC is obtained at the 𝑖th step, the first window of
the transmitted chirp signal corresponds to the 𝑖th window of the
signal received from the far end, completing the synchronization.
We use 𝑡 ′0 to represent the start time of the 𝑖th window of the signal
received from the far end.
Detection. After the synchronization, the near end computes the
PCC between the frequency spectra of every two corresponding
windows respectively from the transmitted chirp signal and the
signal received from the far end. If the average PCC over the 16 win-
dows is larger than a predefined threshold, the detector produces a
positive detection result for the chirp; otherwise, the detector pro-
duces a negative result. The evaluation performed in this work will
extensively evaluate the impact of the threshold on the detection
performance.

The near end applies the above two steps for each transmitted
chirp in a detection session. After that, the near end applies an OR
decision fusion to aggregate the detection decisions in the detection
session. Specifically, if any one or more detection decisions are
positive, the final detection decision is positive; otherwise, the final
detection decision is negative. This decision fusion effectively deals
with the cases in which the echo is partially or completely removed
by the far end’s AEC. Evaluation in §5.2 will recommend a good
setting for the number of fused decisions (i.e., 𝑛).

4.3 Breath Sound Verification
Echo channel detection can verify the human caller within a short
time in most of cases, i.e., handset mode, speakerphone mode, and

wireless earphones. However, in infrequent cases where the far-
end caller uses wired earphones, the echo channel is slim. Based
on our finding of the varied distributions of breath sound timing
of human’s and synthetic speeches in §3.2.3, Telesonar detects
caller’s breath sounds and compares the distribution of breath
sounds against the template distribution to verify the human caller.
First, we generate a template distribution of breath timing using the
CallHome dataset, containing 60 hours of telephone conversations
from 240 people. During the phone call, when the callee’s device
cannot detect the existence of the caller’s echo channel and breath
sounds are caught in the audio, the breath timing is recorded and
classified based on its location to an utterance, i.e., at the beginning,
in the middle, at the end, or standalone. Then, we compute the
distance between the breath timing from the received audio and
the template distribution. Should the distance be smaller than a
threshold, a positive result is generated.

5 PERFORMANCE EVALUATION
5.1 Evaluation Methodology
We evaluate Telesonar under two settings, i.e., in CallSim and via
domestic/cross-continental voice calls using real smartphones. We
use CallSim to evaluate the impact of various configurable and sit-
uational parameters on the detection performance. The parameters
include decision fusion setting 𝑛, far-end room size, the distance
between the human speaker and the far-end microphone. We also
evaluate how the chirping affects audio quality. With CallSim, we
can easily run many experiments under a wide range of settings to
generate insightful results. Moreover, we deploy Telesonar to a real
smartphone as the near end and use numerous phones (including
smartphone and landline PSTN phone) running various voice appli-
cations as the far end. Real voice applications usually contain audio
processing algorithms and heuristics that CallSim does not include.
For instance, the solid slate of smartphones may present an echo
channel different from the one simulated in CallSim. The voice
applications generally use the device-specific AECs that are opti-
mized by the device manufacturers and provided by the customized
operating systems. Our experiments involve different smartphone
models, different use modes (handset, speakerphone, earphone),
and different voice call applications.

We use receiver operating characteristic (ROC) and precision-
TPR curves as performance metrics. ROC shows true positive rate
(TPR) versus false positive rate (FPR). The “positive” here means
a detection decision of human caller. The two rates are defined as
follows. Let𝑁𝑥 denote the number of instances for a detection result
type 𝑥 , where 𝑥 can be true positive (TP), false negative (FN), and
false positive (FP). The two rates are TPR = 𝑁𝑇𝑃/(𝑁𝑇𝑃 + 𝑁𝐹𝑁 )
and FPR = 𝑁𝐹𝑃/(𝑁𝐹𝑃 + 𝑁𝑇𝑁 ). A ROC curve is generated by
varying the detection threshold, which depicts the sensitivities of
Telesonar to both ground-truth cases. We also use precision-TPR
curves to characterizes how much we can trust Telesonar’s positive
detection results. The precision is computed by 𝑁𝑇𝑃/(𝑁𝑇𝑃 + 𝑁𝐹𝑃 ),
and the recall rate is the same as TPR. In each experiment, Telesonar
continuously emits 0.5s-chirps separated by 0.1s gaps throughout
the call session and performs echo channel detection for every
group of three chirps. This evaluation methodology is different
from our proposed design of only emitting three chirps at the
beginning of a call (cf. §4), but it allows us to have enough detection
results to calculate TPR and FPR. Since AEC performs worst at
the beginning of the call, the performance of Telesonar that only
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Fig. 14: Impact of decision fusion.
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Fig. 15: Impact of room size.

performs detection at the call start will be better than that measured
in our evaluation.

5.2 Evaluation with CallSim
We use all CallHome data traces to drive the simulations. In the
simulations, we disable the breath timing analysis in the workflow
shown in Fig. 12, i.e., Telesonar detects robocalls based on absences
of echo channel and breath sounds. The breath timing analysis is
enabled in the experiments with real phones presented in §5.3.

Impact of decision fusion.We use decision fusion discussed
in §4.2 to improve Telesonar’s sensitivity. With a larger 𝑛 setting,
Telesonar transmits more chirps and requires a longer time to gen-
erate a fused decision, which negatively affects detection timeliness.
For each CallHome trace, we vary 𝑛 from 1 to 10. No decision fusion
is applied when 𝑛 = 1. Fig. 14 shows the ROC and precision-TPR
curves of different 𝑛. Fig. 14a shows that, for the same FPR, TPR
increases with 𝑛. Fig. 14b shows that precision increases with 𝑛 for
the same TPR, When 𝑛 increases from 1 to 3, there are substantial
ROC/precision improvements. With 𝑛 = 3, the total chirping time
is 1.7 seconds. Higher 𝑛 settings, though leading to better detection
performance, cause more disturbances. Thus, we adopt 𝑛 = 3.

Impact of room size. The far end’s room enclosure may affect
the echo channel. We vary the room size from 2m2 (like a wash-
room) to 100m2 (like a hall). The room height is 2.6m. For each
room size, we run 20 experiments. In each experiment, the loca-
tions of the human speaker and the microphone at the far end are
randomly generated. The ROC and precision-TPR curves in Fig. 15
show that the room size has little impact on the echo channel de-
tection performance. This is because the echo propagating via the
direct path from the far-end speaker to the microphone is the main
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echo component. It implies that the echo channel detection perfor-
mance highly depends on the effectiveness of the direct echo path
(e.g., the solid slate of a smartphone), whereas the reverberation
from the ambient plays a less significant role. When the far end is
in a smaller room, the detection performance is slightly worse. This
is because, in a small room, the caller’s voice can be better captured
by the microphone, drowning out the echoes.

Impact of distance between human speaker and far-end
microphone. In different calling scenarios at the far end, the con-
sidered distance varies. The voice volume captured by the far-end
microphone, which depends on the distance, may affect the far-end
AEC and the echo channel detection at the near end. We vary this
distance, which is denoted by 𝑑 in Fig. 3, from 2 cm to 2m. The ROC
and precision-TPR curves in Fig. 16 show that Telesonar performs
better when the𝑑 is larger. This is because when the human speaker
is closer to the microphone, the captured voice volume is higher,
drowning out the probe.

Impact of covering sounds. Telesonar can make the probe
signal less noticeable by mixing it with other sounds that the caller
may be familiar and comfortable with. We evaluate the impacts of
three covering sounds on the echo channel detection performance,
i.e., a music clip, a ringtone, and pink noise. Fig. 17 show the re-
sulting ROC and precision-TPR curves. The curve labeled “N/A”
is the result using the bare probe signal. We can see that music
and ringtone introduce little impact on the echo channel detection
performance. However, pink noise degrades the performance. This
is because pink noise has a wide frequency range that fully covers
the chirp’s frequencies, causing AEC to suppress the chirp. The
above results suggest that we can embed the probe signal into music
or ringtones for a less weird probing process. Note that §5.4 will
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report the results of a user study regarding the impact of the probe
signal on the human caller’s comfort.

Breath sound detection.We evaluate the breath sound detector
presented in §4.1 using 120 CallHome genuine human voices and
120 synthetic audio samples from the Fake-or-Real dataset [25]. It
achieves 79.17% TPR and 10.83% FPR. It takes 12 seconds on average
and up to 20 seconds to yield the first detection result.

Overall detection performance. On the 120 CallHome traces
and 120 synthetic samples, the concatenated echo-breath detection
achieves 98% TPR when FPR is 10%. Note that CallSim simulates
the loudspeaker mode.

5.3 Experiments with Real Phones
We conduct a set of experiments using real smartphones as near
and far ends. Upon the call establishment, the near end transmits
three chirps. To evaluate Telesonar’s effectiveness on various caller
devices, we use four smartphones (iPhone 11 Pro Max, iPhone 8,
Moto Z, and Redmi 2) and a landline PSTN phone as the far end.
The first three smartphones are high-end models that may have
optimized audio systems. We make the calls through both VoIP
applications (Google Hangouts, Skype, Whatsapp, and Facebook
Messenger), cellular networks, and PSTN. For smartphones, we
experiment in all the handset, speakerphone, and earphone modes.
Several experiments are conducted with the caller and callee located
in two cities more than 10,000km apart.

To improve consistency and comparability of experiments, we
use a voice played by the loudspeaker of a smartphone to mimic
the human speaker’s voice. Thus, this smartphone is referred to as
the pseudo human speaker. The distance between the tested phone
and the pseudo human speaker is 10 cm. Note that we adopt a
pseudo human speaker in most tests to make the speech content
same for the human caller and non-human caller cases, which can
evaluate Telesonar’s performance under the exact same speech. In
addition, the pseudo human speaker can ensure fair comparisons
with various impacting factors. We also evaluate Telesonar with
a real human caller at the end of this subsection. At the near end,
to superimpose chirps and analyze the received data, we need to
access the voice transmitting and receiving processes at the same
time. To achieve this, we connect the callee’s smartphone to a
desktop computer via Bluetooth. The computer runs Ubuntu 18.04.3
with BlueZ 5.48 and PulseAudio 11.1 as the Bluetooth and audio
drivers. We configure the smartphone to use Bluetooth HeadSet
Audio Gateway (HSP/HFP) profile in PulseAudio’s volume control
panel so that the smartphone acts as a relay for the computer. The
computer runs the echo channel detector. This setup allows us to
experiment with the phone’s built-in voice call function and off-
the-shelf VoIP applications that are installed on both the near-end
and far-end smartphones.

The ground truth in the above setup is human caller. To have
the ground truth of robot, we make phone calls to several local
service lines with automatic answering, which include a telephone
company’s customer service, a postal company’s enquiries line,
and a bank’s hotline. The calls are made with the following two
near-end devices: an Apple iPhone 11 Pro Max using telephone
company A’s GSM network, and a Google Pixel 4 using telephone
company B’s VoLTE network. We connect a laptop to the phones as
a Bluetooth headset for transmitting the chirps and recording the
incoming voice. Our setup acts as the near end running Telesonar.
A positive detection result of echo channel is a false positive.
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Fig. 18: Echo channel detection performancewith real phones
over telecommunication systems.

Fig. 18 shows ROCs from 15 experiments under various settings.
The results are explained as follows.

Handset mode. The TPR is obtained from the case where the
far-end phone is used in the handset mode; the FPR is obtained
from the calls to the local service lines. Experiments #1 to #4 in
Fig. 18a are conducted using Google Hangouts. Consistent with our
results in Fig. 7b, Telesonar can detect the echo remnants in the
voice received by the callee. Among the four experiments, when
the requested FPR is below 5%, the TPR is above 95%. Experiment
#5 in Fig. 18a makes a phone call through the cellular network
where the far-end phone is used in the handset mode. Because the
far-end AEC is yet converged when the call is just established, the
beginning part of the callee’s received audio has shown clear chirp
echoes. Hence, Telesonar achieves 100% TPR.

Speakerphonemode. The TPR is obtained from the case where
the far-end phone is used as a speakerphone; the FPR is obtained
from the calls to the local service lines. Experiments #6 to #10 in
Fig. 18b show that Telesonar works well on both Google Hangouts
and cellular calls. TPR is above 93% when FPR is below 5%. Some
parts of the far-end audio are erased. Thus, Telesonar has slightly
lower TPR in the speakerphone mode, compared with the handset
mode. This is because that the loudspeaker is much louder than
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the top speaker and the far-end device uses heuristics to deal with
double-talk for better audio quality.

Performance of Telesonar on other VoIP applications. We
evaluate the cases where the far-end phone runs Skype, Whatsapp,
and Facebook Messenger. We conduct four experiments, i.e., #11 to
#14. The results are shown in Fig. 18c. The ROCs show that Teles-
onar performs satisfactorily on all these VoIP applications. When
FPR is below 5%, the average TPR is 86%. Telesonar has slight per-
formance degradations on these VoIP applications compared with
Hangouts. This may be caused by their more effective proprietary
AEC, compared with that of the open-sourced WebRTC used by
Hangouts.

Wireless earphones/headsets.We evaluate Telesonar when
the far end is connected to popular wireless earphones or headsets.
In particular, we test four earphones (i.e., Samsung Galaxy Buds
Pro, Huawei Freebuds Pro, Apple AirPods 2nd generation, Apple
AirPods Pro) and one headset (i.e., Bose QuietComfort 35). The ROC
curves in #16 to #20 show that Telesonar has perfect performance
when an iPhone 11 is connected with five popular Bluetooth ear-
phones/headsets. We note that Telesonar achieves slightly lower
accuracy in #18 on Apple Airpods (2nd generation) because the
longer distance between the microphone and the speaker/head
skull results in reduced signal strengths of the received echoes.
Nevertheless, the results confirm that wireless earphones/headsets
can receive the probe signal through bone conduction because of
its direct contact with the head skull.

Landline PSTN.We evaluate Telesonar when the far end is a
landline PSTN telephone. Experiment #15 in Fig. 18c shows that
when FPR is low than 5%, TPR is at least 100%.

Geographic distance. The experiments #4 and #12 are con-
ducted with the callee and caller located in two cities more than
10,000km apart, while other experiments are conducted with the
callee and caller located in the same city.When FPR is below 5%, The
TPR involving the cross-continental calls is 8% lower than the aver-
age of the domestic calls. The results show that the long-distance
calls result in slightly lower ROCs. This is because of the increased
noise and distortion levels of the voices due to the cross-continental
telecommunications.

In summary, from the 15 experiments presented in Fig. 18, the
echo detection of Telesonar achieves at least 86%, 93%, 96% TPR
when FPR is 1%, 5%, 10%, respectively. The full workflow in Fig. 12
achieves 90%, 95%, 96% TPR when FPR is 0.5%, 3.8%, 6.9%, respec-
tively. In all experiments, the precision is above 99.77%. Due to
space constraints, the details regarding precision are omitted.

Wired earphones/headsets.We make calls over cellular net-
works to a far-end device of Apple iPhone 11 Pro Max with wired
earbuds and headsets. The breath detector yields TPR of 84% and
FAR of 5%.

Loudness of the probe chirp. We transmit the probe signal
over cellular networks and measure its loudness on the far end by
following ITU-R BS.1770-4 standard [24]. The chirp loudness at
the far end is −23.7 dB LUFS, which is closed to recorded phone
conversations from CallHome (−22.7 dB LUFS on average). This is
because most telephone systems have adaptive volume control.

Far end speaker volume setting.We set the speaker volume of
the iPhone 11 ProMax as the far end to the maximum andminimum
(but not muted) under both the handset and speakerphone modes.
The results in Fig. 19 show that the far-end speaker volume has
little impact on Telesonar’s performance. In particular, when FPR is
5%, the minimum volume setting causes 4.55% and 0% TPR drop in
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Fig. 21: An end-to-end experiment with a human caller.

the handset and speakerphone modes, respectively. This is because,
even with the lowest volume setting, the direct propagation path
over the phone’s solid structure is still effective.

Counteracting attack with generated breath sounds. As
the source code of the voice synthesis approach with spontaneous
breath sounds [33] is not publicly available, we are unable to build
an advanced voice robot with spontaneous breaths. Thus, we sepa-
rately evaluate FPR in CallSim driven by the synthetic traces made
publicly available by [33] and TPR with real phones. Fig. 20 shows
the ROCs when Telesonar collects different numbers of breath
sounds for breath timing analysis. When FPR is below 10%, the
TPRs are 44%, 81%, 88%, and 91% when the breath sound count is
5, 10, 20, and 25, respectively. As the median of an adult’s breath
interval is 3.75 seconds [18], Telesonar can achieve acceptable ac-
curacy (10% FRP, 81% TPR) via 30 seconds passive sensing against
such a crafted robocaller.

Real human caller. Previous experiments use loudspeakers as
pseudo human speakers for good reproducibility and fair compari-
son regarding various affecting factors. We conduct an end-to-end
experiment with a human caller using an iPhone 11 via Google
Hangouts in either handset or speakerphone mode. The callee plays
the chirps at the beginning of the call. Figs. 21a and 21b show the
ROC and precision-TPR curves of the experiments, in which Teles-
onar performs better when the callers are in the handset mode. This
aligns with the observations in the tests with non-human callers.
Both experiments show that Telesonar achieves satisfactory results
with human callers and real phones under practical settings.

5.4 Caller Acceptance Study
As the human caller is subject to Telesonar’s probing, we conducted
an acceptance study. (IRB approval has been obtained. Details are
omitted for anonymity.) We recruited 50 and 76 adult volunteers
in two rounds. The study consists of the following steps. (1) We
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Fig. 22: User study of Telesonar.

introduce the background of Telesonar. Specifically, we play two
recordings of AI agents making phone reservations with a hair
salon and a restaurant [8] and state that Telesonar is designed to
detect robocalls that may apply similar AI agents for massive frauds.
(2) We play a one-minute real phone call conversation recording
without probe signals using a loudspeaker. After that, we play the
same conversation recording with the probe signals added at the
beginning. In addition, we ask each volunteer to listen to the two
recordings using earphones. (3) We ask the volunteers to fill a
questionnaire regarding the annoyance level of the probe signal, as-
suming that they are the callers who hear the probe signal. We play
the probe signal without and with background music in the two
rounds. Fig. 22(a) and (b) show the distributions of the volunteers’
responses. In the first round without background music, most vol-
unteers find the probe slightly annoying; in the second round with
background music, most volunteers find it not annoying at all. The
volunteers feel that the probe from the earphone is more annoying
than that from the loudspeaker. Some volunteers comment that the
probe signal at the beginning of a call sounds a bit weird, but do not
feel uncomfortable. Some volunteers mention that the probe signal
sounds less annoying after being listened to multiple times. These
results are not out of our expectations, because the probe signal’s
frequencies are similar to the phone keypad tones. (4) Lastly, we
ask the volunteers to give an overall rating on whether they accept
Telesonar’s probing. Fig. 22(c) shows the distribution of the ratings.
Without background music, a majority of volunteers rate “likely
accept”; with background music, a majority of volunteers rate “very
likely accept.” These results give useful information for understand-
ing the human callers’ acceptance. We believe that Telesonar can
easily get acceptance if it is only used to protect vulnerable users
such as the elderly and kids.

6 ADAPTIVE ATTACKS
The results in §5 show that Telesonar is effective against the present
robocalls that play pre-recorded voices or employ the existing voice
robots. Such present robocalls have caused widespread threats to
the population, especially the vulnerable people. In this section, we
discuss several potential approaches that an adaptive adversary can
take to further upgrade the robocall system based on the details of
Telesonar to bypass detection. We would like to highlight that these
attack upgrades are speculative and inexistent at present. Although
they may not be fully addressed by Telesonar and its enhancements
discussed below, the high costs of implementing the upgraded at-
tacks as analyzed below provide important understanding that they
are unlikely launched at large scales.

Replay attack.An adaptive attacker can record the probe signal,
process it to generate a signal that mimics the echo. Then, the

attacker plays this fake echo in the subsequent calls. As Telesonar
only uses the echoes that match in timing and spectrographic shape
to confirm echo channel, Telesonar can be enhanced to counteract
the replay attack by introducing randomness to the probe signal’s
timing and spectrographic shape. This enhancement will force
the attacker to perform real-time detection of the chirp with an
unknown spectrographic shape, which presents technical barriers.
The real-time generation of the fake echo also demands significant
computing power, similar to the simulating echo channel attack that
will be analyzed shortly. Although the robocall operator may use a
powerful server for the real-time processing, the total delay is likely
to exceed Telesonar’s detection window. Alternatively, the attacker
may stream a scaled-down version of any received audio back to
the callee, which avoids the need of performing real-time chirp
detection. To counteract this, Telesonar can perform the probing
and detection at random times during the entire call. This will
enforce the attacker to perform the straightforward streaming-back
all the time, rendering the attack easily noticeable by the callee.

Simulating echo channel. The attacker may simulate the echo
channel using a setup similar to CallSim to fool Telesonar. However,
the simulation incurs compute overhead, e.g., a delay of 40.6ms on
a premium i9-7900X CPU running at its turbo frequency of 4.3 GHz.
This delay violates ITU’s requirement of 20ms [32]. The i9-7900X
is one of the commodity CPUs with the highest turbo frequencies.
The persistent attacker needs to accelerate the execution by par-
allel computing on multiple CPU cores or more GPU cores due to
lower frequencies, which however present technical challenges. In
addition, such cores are exclusively used to handle a single robocall
session. Non-trivial monetary hardware investment and operating
expenses are needed to make massive robocalls in parallel. From
this sense, Telesonar, as a low-/zero-cost solution, increases the
costs of successful attacks.

Breath timing simulation The adaptive attacker may extract
the distribution of breath sound timing from CallHome dataset
as Telesonar does. However, the barrier of generating human-like
breath sounds with a given distribution is non-trivial. The rea-
sons are two-fold. First, evaluations in §5.3 test Telesonar on the
speech generated by the state-of-the-art DNN-based audio synthe-
sis method with natural breath sounds [33]. The model’s design in
[33] has already considered the timing of breath sound and can be
successfully detected by Telesonar. Second, another adaptive attack
is to mix recorded breath sounds into the speech audio based on
the template distribution of breath timing. However, the unnatural
breath sounds can be easily noticed by the callee. The attacker may
attempt to re-engineer the approach described in [33] to achieve a
target breath sound timing distribution. Since the training data and
source codes of [33] are not available (even after request), we were
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unable to attempt this. Note that re-engineering the training of the
two DNNs in [33] to be bound to a target breath sound timing is
a one-time effort and can possibly bypass Telesonar’s detection.
However the re-engineering it is a non-trivial task. In addition, it
is highly likely that the loss functions for training the two DNNs
need to be re-engineered.

7 RELATEDWORK
This section reviews the existing studies on acoustic voice liveness
and genuity detection.
Voice liveness detection. The prevalence of voice controllable
systems (VCSs), e.g., Apple Siri, triggers research’s attention on
their security. The hidden voice command attack [12] can generate
human-indecipherable sounds that will be interpreted by speech
recognition systems as meaningful voice commands. The study [26]
leverages the non-linearity of microphone to create high-frequency
sounds that are beyond human’s hearing range but are recorded as
audible sounds by the microphone. As such, attackers may use ul-
trasonic speakers to send inaudible commands to a victim VCS [42].
Given the above attacks, countermeasures determining the liveness
of any received voice are important. The liveness here means that
the voice is generated by a human in real time. Voiceprint recog-
nition that determines the genuity of voices cannot be employed
for liveness detection because it is vulnerable to the replays of
genuine voices. Zhang et al. [44] proposed a liveness detection ap-
proach that uses a smartphone’s two-channel stereo microphones
to capture the time-difference-of-arrival (TDoA) of phonemes pro-
duced at different physical positions of the user’s vocal tract system.
However, the approach requires the user to hold the smartphone
at a specific position. In [43], Zhang et al. proposed another live-
ness detection approach that uses the smartphone’s loudspeaker to
emit an inaudible acoustic tone at 20 kHz and the microphones to
capture the reflections from the user’s moving articulators when
speaking a passphrase. The Doppler frequency shifts due to the
articulators’ movements suggest liveness. This approach requires
that the smartphone is held either to the user’s ear or in front of
the mouth.

Telesonar can be classified as a liveness detection approach, in
that it detects the presence of live speaker and microphone at the
far end. Telesonar is different from the audio liveness detection
approaches in [43, 44], in that it detects the liveness on the far end,
whereas the approaches [43, 44] perform local detections only. Thus,
the approaches [43, 44] cannot be used to detect robocalls, because
we cannot require the attackers’ devices to run their detection
algorithms.
Voice genuity detection. Since the emergence of voice conversion
[30] and speech synthesis technologies [40, 41], speech misuse has
been concerned. Identifying synthetic audio has drawn increas-
ing research interests. Various approaches are proposed leveraging
extracted features, such as the average inter-frame difference of
log-likelihood in [28] and relative phase shift in [15]. However,
these approaches tackle known attack techniques only. Recently,
GAN-based voice generation like [38] can generate speech which
sounds like a real person. DNN-based approaches [22, 27, 35, 36]
have been proposed to verify the voice genuity. However, as shown
in §2, three recent pre-trained detectors perform very poorly when
being tested with a dataset of genuine human voices recorded dur-
ing phone call sessions. Our results point to the adaptation issue of
learning-based approaches. In addition, there are extensive works

[19, 23] on the generation of adversarial examples serving as inputs
to mislead the classification results of a victim model. Adversarial
examples can be generated with either full or no knowledge about
the victim model, which can be used to bypass such AI-based robo-
caller detectors. However, Telesonar exploits the existence of the
physical echo channel, which is hard to manipulate for large-scale
robocallers. Nevertheless, along with the advance of voice genuity
detection, Telesonar provides complementary information regard-
ing the physical setup of the far end, in the pursuit of robocall
detection.

8 CONCLUSION
This paper investigated the possibility of detecting the acoustic
echo channel at the far end of a voice call. Major challenges are
from the AEC mechanism of most audio systems and the use of
earphone/headset. As such, we integrate 1) an active detector of
transmitting short chirps from the near end and then detecting the
echo remnants and 2) passive breath sound detection and timing
analysis. We conducted extensive experiments with a simulator and
real phones under a wide range of real-world settings. The results
show that Telesonar achieves satisfactory detection performance.
While Telesonar well suits smartphones, under a broader scope, the
information regarding the presence of an acoustic echo channel
and also human breath timing at the far end can be used with other
forensic metrics such as caller ID, call provenance, and voiceprint
to counteract the increasingly misused robocalls for fraudulent and
phishing purposes.
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