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ABSTRACT
Mobile cloud offloading is indispensable for inference tasks based
on large-scale deep models. However, transmitting privacy-rich
inference data to the cloud incurs concerns. This paper presents
the design of a system called PriMask, in which the mobile device
uses a secret small-scale neural network called MaskNet to mask
the data before transmission. PriMask significantly weakens the
cloud’s capability to recover the data or extract certain private
attributes. The MaskNet is cascadable in that the mobile can opt
in to or out of its use seamlessly without any modifications to
the cloud’s inference service. Moreover, the mobiles use different
MaskNets, such that the collusion between the cloud and some
mobiles does not weaken the protection for other mobiles. We
devise a split adversarial learning method to train a neural network
that generates a new MaskNet quickly (within two seconds) at run
time. We apply PriMask to three mobile sensing applications with
diversemodalities and complexities, i.e., human activity recognition,
urban environment crowdsensing, and driver behavior recognition.
Results show PriMask’s effectiveness in all the three applications.

CCS CONCEPTS
• Security and privacy → Privacy protections; • Networks
→ Cloud computing; • Computing methodologies → Mobile
agents.
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1 INTRODUCTION
Recent years have witnessed the forming fabric of machine learning
andmobile computing. While running neural networks on resource-
constrained mobile devices has received extensive research [36, 74],
large-scale neural networks may still incur lengthy execution times
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that impede user experiences and drain excessive battery energy.
For instance, on Huawei P20 Pro, recognizing a face using Inc-
ResNet-V1 with hardware acceleration requires 26 seconds [30].
Such neural networks and those beyond the mobiles’ capabilities
should run in the cloud. Besides technical constraints, neural net-
works may have high values and design costs (e.g., 1.3 million US$
cost for training a natural language processing model [63]). Thus,
many inference services are proprietary and remain in the owners’
clouds. As such, cloud inference is indispensable.

To use cloud inference, the mobile sends the inference sample
to the Inference Service Provider (ISP) and receives the result. As
mobiles are often used in private spaces and times, the samples
may contain privacy. For instance, the voice samples for using a vir-
tual assistant contain rich information about the user, e.g., gender,
age, mood, and voiceprint. Although the network transmissions
can be protected by cryptography against external eavesdroppers,
protecting the user’s privacy against an honest-but-curious ISP
while maintaining the accuracy of the cloud inference is a chal-
lenging problem. While the ISP honestly executes inference, it may
purposely or accidentally extract the users’ privacy.

To achieve privacy-preserving inference, homomorphic encryp-
tion and neural network masking approaches have been proposed.
In the homomorphic encryption approaches [18, 20, 55, 75], the
data owner sends the homomorphically encrypted sample to the
ISP for performing inference in the encryption domain. However,
for resource-constrained mobiles, homomorphic encryption incurs
high computation overhead. For instance, it takes more than ten
minutes for a 900MHz quad-core processor to encrypt a 28 × 28
grayscale image [32]. Differently, neural network masking views
several neural network layers as a data masking operation. Thus,
the data owner runs these layers and sends the output to the ISP that
runs the inference neural network (InferNet) on the masked data.
However, the existing masking approaches [14, 37, 38, 40, 50, 67]
only counteract the privacy threat from the external eavesdroppers
who do not have the details of the masking. An eavesdropping
attack occurs when an attacker intercepts, deletes, or modifies data
that is transmitted between two devices [31, 53, 73]. In above ap-
proaches, since the ISP knows the layers used for masking, it can
launch themodel inversion attack [26, 27] to reconstruct the original
data.

Running a small-scale neural network has become feasible on
mobiles and even lower-profile wearables. Thus, from the perspec-
tive of engineering an workable privacy-respecting cloud inference
system for mobiles, neural network masking is a promising basis.
In this paper, we design such a system called PriMask with the
following four objectives. First, different from the existing studies
[14, 37, 38, 40, 50, 67] that address external eavesdroppers, Pri-
Mask considers the privacy threat from the honest-but-curious ISP.
Second, PriMask is resilient to the collusion between any mobile
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(a) Cascadability ensures no modifica-
tions required for the inference neural
network (InferNet) running in cloud.
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(b) Heterogeneity (illustrated
by distinct background
patterns) provides resilience
against the potential collusion.

Figure 1: Properties of heterogeneous MaskNets.

and ISP, in that the collusion does not weaken the privacy protec-
tion for non-colluding mobiles. This collusion-resilient property is
important because otherwise the system is susceptible to any com-
promised individual amongmanymobiles.Third, PriMask does not
require any changes to the ISP’s InferNet that was designed without
privacy preservation considerations. This frees the ISP from the
costly redesign and/or retraining of the InferNet. Thus, both the
new and legacy mobiles with and without neural network masking,
respectively, can coexist in using the cloud inference service. De-
pending on the remaining battery energy, a mobile can also opt in
to or out of PriMask seamlessly without needing to inform the ISP.
We say this kind of privacy preservation mechanism cascadable.
Fourth, PriMask scales well with the number of mobiles using the
inference service.

We now describe a basic design to meet the first three objec-
tives except scalability. To implement the cascadable feature, the
mobile applies a small-scale mask neural network (MaskNet) on
the inference sample and then transmits the output to the ISP. The
MaskNet can be obtained by training the concatenation of MaskNet
and InferNet. During the training, the InferNet’s parameters are
fixed and only the training loss is backpropagated from the InferNet
to the MaskNet. Fig. 1(a) illustrates the cascadable feature achieved
by MaskNet. To counteract the privacy threat from the curious ISP,
the training is performed by a Privacy Service Provider (PSP) that is
trusted by both the mobiles and the ISP. To keep the confidentiality
of the ISP’s proprietary InferNet, split learning [66] is applied such
that the MaskNet and InferNet are not revealed to ISP and PSP,
respectively. To be collusion-resilient, independent split learning
processes can be performed with distinct initialization seeds to
yield heterogeneous MaskNets for mobiles. The heterogeneity is
essential to collusion resilience, because otherwise the model inver-
sion attack [26, 27] launched by the ISP using a colluding mobile’s
MaskNet is effective to all mobiles using the sameMaskNet. Fig. 1(b)
illustrates the heterogeneity that provides the resilience against the
potential collusion.

The above basic design requires a separate split training process
for each mobile, rendering it non-scalable. For scalability, we ad-
vance the design with inspiration from HyperNet [22], which is a
generative neural network supervising the parameter updates of an-
other neural network. Given random seeds, a HyperNet generates
neural networks with identical architecture but distinct parameters

for the same inference task. This is consistent with the heterogene-
ity requirement for collusion resilience. Thus, if we can replace the
process of training a MaskNet in the basic design with inferencing
a HyperNet that is much faster, PriMask becomes more scalable
in terms of the generation speed of MaskNets. However, we need
to address two issues. First, different from the original concept of
HyperNet that generates neural networks for a certain inference
task, we need a new design of HyperNet to generate MaskNets sub-
ject to the ISP’s existing InferNet. Second, as HyperNet-generated
MaskNets are correlated, the model inversion attack constructed
against a specific MaskNet may be transferable to other MaskNets.
To address these two issues, we design a split adversarial learning
(SAL) method to train the HyperNet. Specifically, the PSP iteratively
trains the HyperNet as defender and an attack neural network (At-
tackNet) as attacker that implements model inversion or private
attribute extraction. During SAL, the HyperNet and InferNet are
not revealed to the ISP and PSP, respectively. On the completion
of SAL, it is difficult for any adversary who obtains any HyperNet-
generated MaskNet to construct an effective AttackNet.

This paper’s contributions are summarized as follows:

• Different from the existing neural network masking methods
[14, 37, 38, 40, 50, 67] addressing external eavesdroppers,
PriMask counteracts curious ISP, mobile-ISP collusion, and
requires no changes to the ISP’s inference service.

• We design HyperNet and its SAL training method to improve
PriMask’s scalability. Inferencing the HyperNet to generate
a MaskNet takes only milliseconds up to two seconds on a
workstation-class PSP.

• We apply PriMask to three mobile sensing applications with
diverse modalities and complexities, i.e., human activity
recognition with inertial time series data, urban environ-
ment crowdsensing with one-shot tabular data, and driver
behavior recognition with image.1 Evaluation shows Pri-
Mask’s privacy protection performance and scalability to
support up to 100,000 mobiles.

For simplicity of exposition, this paper assumes that the PSP
is trusted by the mobiles. Understood in a different way, PriMask
escalates the trustworthiness of the ISP to the level of the PSP. The
trustworthiness escalation is useful in practice. For instance, a ma-
jor cloud computing service provider (e.g., Google) can act as the
PSP to escalate the trustworthiness of its small-business tenants
who provide inference services. Indeed, Google has provided veri-
fication service for small business corporation [2]. Therefore, the
potential partners can trust the small business company with verifi-
cation from Google. Similarly, in our scenario, the mobile users can
trust the inference services at the level that they trust the major
cloud computing service provider. As an analogy in the problem of
Internet identity verification, the certificate authorities escalate the
trustworthiness of the content providers.

Paper organization: §2 reviews related work. §3 states the prob-
lem. §4 presents the design of PriMask. §5, §6, and §7 present the
three mobile sensing applications and evaluation. §8 discusses re-
lated issues. §9 concludes this paper.

1Our implementations are released on the github. https://github.com/jls2007/Primask.
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2 RELATEDWORK
This section reviews recent studies on privacy-preserving machine
learning and inference.

Privacy-preserving machine learning is often based on a sys-
tem model consisting of data owners that contribute training data
and a model trainer that performs or coordinates the model train-
ing process. In the distributed machine learning (DML) schemes
including federated learning [15, 25, 45, 47, 60, 76], the data owners
maintain and update local models and exchange the model param-
eters through the trainer or peer-to-peer communications. As no
raw training data are exchanged, DML is considered friendly to
privacy-sensitive data owners. To improve DML’s privacy preser-
vation, mechanisms including secure aggregation [9] and additive
perturbation for differential privacy [70] have been integrated. To
prevent malicious programs from eavesdropping on data in the
local training process, the work [47] applies federated learning in
the Trusted Execution Environment (TEE). For mobile devices as
data owners, DML imposes high computation overhead due to local
model training and also high communication overhead due to its
iterative nature. Split learning has also been proposed to protect
user data privacy [7, 61, 66]. Specifically, it splits a deep neural
network into two parts, one at the data owner and the other at the
server. Therefore, the server has no direct access to the raw data.
However, a recent study [51] finds a privacy vulnerability leakage
during split learning. Specifically, it applies adversarial learning to
develop a feature-space hijacking attack that shifts the feature do-
main. Thus, the curious server can reconstruct the training samples
or infer their private attributes. A recent study [57] applies gen-
erative adversarial network (GAN) to address the problem of how
a data owner publishes labeled training data with certain private
attributes preserved while maintaining the utility of the published
data for machine learning. However, as training GAN is highly
compute-intensive, this approach is suitable for resource-rich data
owners. In addition, the inference model on the published data is
jointly trained with the GAN. Thus, the approach is not cascadable.

Privacy-preserving inference is based on a similar system
model consisting of data owners and an ISP. PriMask belongs to
this category. In CryptoNets [18], homomorphically encrypted in-
ference sample is transmitted to the ISP for performing inference in
the encryption domain. However, the high computation overhead
of homomorphic encryption renders CryptoNets unpractical for
resource-constrained devices. As mentioned in §1, neural network
masking approaches [14, 37, 38, 40, 50, 67] have been proposed for
privacy-preserving inference. To enhance preservation strength,
the work [50] uses dimension reduction and Siamese fine-tuning;
the work [67] adopts nullification and additive perturbation for
differential privacy. The studies [37, 38, 40] apply adversarial learn-
ing to train the neural network encoder, aiming at negating the
adversary’s capability of reconstructing the original data or ex-
tracting private attributes. However, as discussed in §1, these ex-
isting approaches [14, 37, 38, 40, 50, 67] only counteract external
eavesdroppers and do not consider the threat from the curious
ISP. Because they jointly design the neural network partitions for
masking and inference, they are not cascadable. In addition, as they
do not impose maskers’ heterogeneity, they are susceptible to the
collusion between the external eavesdropper and any single data

Figure 2: System model.

owner. We will show this in §3.2. Besides, they also do not con-
sider fast generation of maskers. Therefore, PriMask differs from
these existing approaches [14, 37, 38, 40, 50, 67] in all four design
objectives stated in §1. The studies [23, 44] apply autoencoder to
publish inertial measurement traces, where the encoder preserves
a private attribute and the decoder’s output tries to maintain the
waveform of the original trace. However, the waveform of many
sensing modalities (e.g., image and voice) are privacy-rich, where
data publishing is ill-suited.

3 PROBLEM STATEMENT
3.1 System Overview and Threat Model
As illustrated in Fig. 2, we consider a system consisting of a cloud-
based Inference Service Provider (ISP), many mobile devices that
desire to use the ISP’s service, and a Privacy Service Provider (PSP)
that aims at enabling the mobiles to use the ISP’s service with
certain privacy preserved. The privacy notion will be defined in
§3.2. We assume that the ISP uses a pre-trained deep neural network
called InferNet to provide the inference service based on raw input
data. InferNet can be large-scale and/or proprietary. Before PSP can
serve the mobiles, it works with the ISP by following a protocol to
train a neural network called HyperNet. The details of the training
approach and the protocol are in §4. The mobiles that do not desire
privacy preservation can send the raw data to ISP for inferencing
InferNet. For each mobile that desires privacy preservation, the
PSP inferences the HyperNet with a random seed to generate a
small-scale neural network called MaskNet and releases it to the
mobile. The MaskNet has identical input and output dimensions.
The MaskNets used by the mobiles are identical in architecture
but heterogeneous in parameters. When a mobile desires privacy
preservation, it feeds the raw data to its MaskNet and sends the
output (i.e., masked data) to the ISP. Then, the ISP feeds the masked
data to InferNet and returns the result to the mobile. Each mobile
should keep its MaskNet confidential.

PriMask’s threat model has three aspects:
■ Honest-but-curious ISP: The honest-but-curious (also called

semi-honest) adversary is a legitimate participant in a scheme who
does not deviate from its function in the defined scheme but at-
tempts to learn extra information from legitimately received mes-
sages [43, 48]. In this paper, we consider the honest-but-curious
ISP. Specifically, the ISP honestly executes the InferNet and does
not tamper with the received data and the inference results. The
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ISP also honestly follows the protocol with the PSP to train the Hy-
perNet. However, the ISP is curious about the private information
contained in the data received from mobiles and aims at launching
privacy attack.
■ Potential collusion between mobiles and ISP: Collusion has been

widely studied in the network economics, especially in the auction
design [54, 71]. In 2016, a number of water tank suppliers were
fined over £2.6 million for breaking competition law by collusion
of fixing the price of certain tanks [1]. In cloud computing and
cloud storage, user-server collusion is regarded as a main privacy
concern against cloud service providers for searchable symmetric
encryption (SSE) [24, 52, 69]. In this paper, we consider that some
mobiles may collude with the ISP to find out other mobiles’ privacy.
Such colluding mobiles surrender their MaskNets to the ISP, which
tries to launch privacy attack on non-colluding mobiles. In practice,
the ISP may recruit such colluding mobiles by offering monetary
benefits. The privacy preservation for such compromised mobiles
becomes void. The case in which the ISP pretends mobiles to request
MaskNets from the PSP is equivalent to colluding with mobiles.
■ PSP trusted by mobiles and ISP: The trusted third party (TTP)

performs important roles in cryptography [72, 77]. In this paper,
we regard the PSP as the TTP. Specifically, the PSP honestly per-
forms its role, aiming at ensuring the ISP’s quality of service while
protecting the privacy of the mobiles and ISP. Thus, the PSP is
trusted by the mobiles. Note that, in spite of the trust, PSP shall not
request the mobiles’ inference data and the ISP’s InferNet, which
are their role-defining properties in the considered system. As a
service provider, the PSP may gain monetary benefits from the ISP,
since privacy-preserving mechanism motivates more users to use
the cloud inference service.

3.2 Privacy Notation and Attacks
PriMask aims at preserving the non-colludingmobiles’ privacy from
the privacy attacks launched by the ISP solely or in collaboration
with the colluding mobiles during the inference phase.

Adversary goal: After receiving the masked inference samples
from the non-colluding mobiles, the ISP aims at either reconstruct-
ing the original inference samples, or extracting a certain private
attribute from each masked sample. These two adversary goals are
referred to as inversion attack and private attribute extraction. Data
form confidentiality is an immediate and basic privacy requirement
in many applications; private attributes are crucial for mobiles.
Note that other privacy attacks (e.g., membership inference attack
[49, 58], model extraction attacks [35, 58]) are possible but not the
focus of this paper. The level of privacy protection can be measured
by the average dissimilarity between the original and reconstructed
samples and the accuracy of the extracted private attributes, re-
spectively. In this paper, we adopt both mean squared error (MSE)
and structural similarity index measure (SSIM) as the dissimilar-
ity/similarity metric. Note that recent studies also consider the same
privacy notions defined by inversion attack [11, 13, 26, 27, 38, 40]
and private attribute extraction [23, 38, 40, 57, 62].

Now, we discuss the implementations of the privacy attacks after
the ISP obtains theMaskNet. The discussions also explain PriMask’s
system model presented in §3.1.

(a) Original (b) Masked (c) Reconstructed

Figure 3: Inversion attack on MNIST dataset.

■ Inversion attack: The study [26] presented an inversion attack
approach using maximum likelihood estimation. Here we describe
a training-based approach. Specifically, the ISP feeds many samples
to the MaskNet and obtains the outputs to form a training dataset.
Then, the ISP trains a neural network called InvNet that estimates
the MaskNet’s input from its output. The InvNet can use a mirrored
architecture of the MaskNet. Now, we show the effectiveness of
the inversion attack using the MNIST handwritten digit dataset
[4]. The MaskNet is generated using our approach described in §4.
It is a two-layer multilayer perceptron (MLP). The InvNet with a
mirrored architecture is trained with MSE of the inversion as the
loss function. Fig. 3 shows the original, masked, and reconstructed
samples for two digits. The MaskNet can effectively mask the data.
However, once the ISP obtains the used MaskNet, it can train the
InvNet and reconstruct the original data to certain extents.
■ Private attribute extraction: Once the ISP obtains the MaskNet,

it can also train a neural network called ExtNet to extract a certain
private attribute from the masked data. Specifically, the ISP can
feed many samples with private attribute labels to the MaskNet.
The MaskNet’s outputs labeled with the corresponding private
attributes form a training dataset that can be used to train ExtNet.
As shown in our human activity recognition application (§5), once
the ISP obtains the MaskNet, it can train the ExtNet to re-identify
the user among 30 users with 63% accuracy.

The above privacy attack results give the following implications.
First, the generation and release of MaskNets should be performed
by the PSP. An authority or a certified organization can be the
PSP. Moreover, as discussed in §1, a major cloud computing service
provider can be the PSP to pass the same trustworthiness on to its
small-business tenants that provide inference services. Second, the
mobiles’ MaskNets should not be identical. Otherwise, the ISP can
launch effective privacy attacks on all mobiles once any one of them
colludes with ISP. Third, the MaskNets and proprietary InferNet
should be kept confidential to the ISP and PSP, respectively.

3.3 Other Threats
This section discusses other threats that are not addressed by Pri-
Mask or irrelevant to PriMask. First, PriMask does not regard ISP’s
inference result as private information. CryptoNets [18] protects
confidentiality of inference result since ISP can only obtain the
homomorphically encrypted result. However, the homomorphic en-
cryption of CryptoNets is still not practical for resource-constrained
devices. CryptoNets is also not cascadable and requires a redesign
of the InferNet. Second, PriMask does not consider the issue of
preserving the privacy contained in the training data used by the
ISP to pre-train the InferNet, because it is a separate problem and
has been studied in literature (e.g., [32, 39, 47, 51, 59, 70]). Third,
the private attribute extraction attack studied in [43] that requires
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Figure 4: Proposed split adversarial learning (SAL) framework for training the HyperNet used to generate MaskNets. In SAL,
the PSP needs unlabeled training data x, which can be from an open dataset or the ISP as illustrated in the figure.

the mobile to execute a maliciously designed deep neural network
is irrelevant to PriMask. Specifically, the study [43] proposes an
approach to train a privacy-leaking neural network that encodes
a private attribute into the neural network’s output. The mobile’s
privacy is compromised if the mobile executes the malicious neural
network and transmits the output to a curious party. Differently,
in PriMask, the mobile does not execute any maliciously designed
neural network. Once the data is masked, the concerned private
attribute is preserved. Thus, the attack method in [43] is irrelevant
to this paper.

4 PRIMASK DESIGN & IMPLEMENTATION
This section is organized as follows. §4.1 presents the preliminary on
HyperNet. §4.2 presents the split adversarial learning (SAL) frame-
work for the HyperNet used to generate MaskNets. §4.3 presents
the SAL protocol between the PSP and ISP. §4.4 discusses the gen-
eralizability and implementations of PriMask. §4.5 presents the
results on MNIST as a simple case study.

4.1 Preliminary on HyperNet
HyperNet [22] is a neural network generating the parameters of
the target neural network. In this paper, we use HyperNet to gen-
erate MaskNets. As illustrated in Fig. 4, the HyperNet consists of
an encoder network and 𝑛 weight generator networks, where the
HyperNet’s parameters 𝝓 = {𝝓𝐸 , 𝝓𝐺 }, 𝝓𝐸 denotes the encoder’s
parameters, 𝝓𝐺 denotes all generators’ parameters. The encoder
takes as input a random vector z sampled from a normal distri-
bution N(0, I). The encoder maps z to 𝑛 latent codes denoted by
{𝑐𝑖 |𝑖 = 1, 2, . . . , 𝑛}, which are then fed to 𝑛 weight generators, re-
spectively. Each weight generator outputs the parameters of a layer
of the target neural network. The above process of inferencing the
HyperNet, which is represented by ℎ(z; 𝝓), can complete in a short
time. By repeating the process with different inputs z, many distinct

neural networks can be generated. Such HyperNet-generated neu-
ral networks have been applied to detect out-of-distribution inputs
[28] and adversarial examples [56], and assess the uncertainty on
an inference sample [64, 68]. The training of HyperNet is addressed
in the following subsections.

4.2 Split Adversarial Learning Framework
Fig. 4 illustrates the proposed SAL framework for training Hy-
perNet to generate MaskNets. It integrates the principles of split
learning [66] and adversarial learning [29]. It consists of four mod-
ules: InferNet at ISP, HyperNet and 𝑀 AttackNets at PSP, and 𝑀

temporary MaskNets generated by HyperNet. The𝑀 is a training
hyperparameter that can be dynamically adjusted during training
to accelerate convergence. For simplicity, we initially set𝑀 equal
to the batch size. The AttackNets trained by the PSP form the ad-
versary of the adversarial learning [29], which assists the PSP to
train the HyperNet that can generate MaskNets more robust against
the privacy attack launched by the ISP. Depending on the privacy
protection goal (inversion attack or private attribute extraction),
the AttackNet can be either InvNet or ExtNet. The core of SAL is
the definitions of the training loss functions.

The notation used in this subsection is defined as follows. De-
note by x = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } the set of training samples, by y =

{𝑦1, 𝑦2, . . . , 𝑦𝑁 } the corresponding class labels, and by a = {𝑎1, 𝑎2, . . . , 𝑎𝑁 }
the corresponding private attribute labels, where 𝑁 is the cardi-
nality of the training dataset. Denote by 𝑓Mask (·;𝜽𝑚) the𝑚th tem-
porary MaskNet, where 𝜽𝑚 represents the parameters generated
by the HyperNet, i.e., 𝜽𝑚 = ℎ(z𝑚 ; 𝝓). Denote by 𝑓Inf (·;𝝍) the pre-
trained proprietary InferNet, where 𝝍 represents the parameters
that are constant during SAL. Denote by 𝑓Att (·; 𝝃𝑚) the 𝑚th At-
tackNet, where 𝝃𝑚 represents the parameters. During adversarial
learning, the𝑚th AttackNet is used as the adversary against the
𝑚th temporary MaskNet. Denote by 𝐽 (ypred, y) the cross-entropy
loss function, where y and ypred are the ground-truth and predicted
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labels. The cross-entropy loss function also admits privacy labels,
i.e., 𝐽 (apred, a). Denote by 𝐸 (x𝑎, x) the MSE loss, where x and x𝑎

are the original samples and those reconstructed by InvNet.
Now, we define the loss functions. When a batch of𝑀 HyperNet-

generated MaskNets are used, the ISP’s quality of service is charac-
terized by the following cross-entropy loss:

𝐽1 =
1
𝑀

𝑀∑︁
𝑚=1

𝐽 (𝑓Inf (𝑓Mask (x;ℎ (z𝑚 ; 𝝓)) ;𝝍) , y) . (1)

Depending on the privacy protection goal, the effectiveness of PSP’s
𝑚th AttackNet is characterized by the following loss:

𝐽2,𝑚(𝝃𝑚)=
{
𝐸
(
𝑓Att

(
𝑓Mask (x;ℎ (z𝑚 ; 𝝓)) ; 𝝃𝑚

)
, x
)
, for InvNet;

𝐽
(
𝑓Att

(
𝑓Mask (x;ℎ (z𝑚 ; 𝝓)) ; 𝝃𝑚

)
, a
)
, for ExtNet.

The SALworkflow is as follows. First, HyperNet is trained tomin-
imize 𝐽1, i.e., 𝝓∗ = argmin𝝓 Ez𝑚∼N(0,I),∀𝑚∈[1,𝑀 ] [𝐽1]. Then, each
AttackNet is trained to minimize 𝐽2,𝑚 against the corresponding
temporaryHyperNet-generatedMaskNet: 𝝃 ∗𝑚 = argmin𝝃𝑚 𝐽2,𝑚 (𝝃𝑚),
∀𝑚 ∈ [1, 𝑀]. Lastly, the HyperNet is refined to achieve a multi-
objective goal of minimizing 𝐽1 and maximizing each 𝐽2,𝑚 (𝝃 ∗𝑚),
where the latter aims at defeating the privacy attack. We represent
the multi-objective goal using a single composite loss function to
direct the refinement of the HyperNet:

𝝓∗∗=argmin
𝝓
Ez𝑚∼N(0,I)

[
𝐽1−

𝜆

𝑀

𝑀∑︁
𝑚=1

𝐽2,𝑚 (𝝃 ∗𝑚)
]
, (2)

where the adversarial learning factor 𝜆 balances the objectives of
maintaining the ISP’s quality of service and defeating the privacy
attack. The 𝜆 can be used to tune the trade-off between the inference
service quality and the privacy protection level. In §4.3, we will
discuss how to set 𝜆.

The existing studies [28, 65] also apply adversarial learning to
train HyperNets, for approximating predictive distributions [28]
or capturing complex policy distributions [65]. In these studies, a
single distribution discriminator is used as the adversary of the
adversarial learning. Differently, in PriMask’s SAL, each temporary
MaskNet has a separate AttackNet, which is consistent with the fact
that the ISP can craft custom AttackNet for any obtained MaskNet.

4.3 Split Adversarial Learning Protocol
This section presents the protocol between ISP and PSP to imple-
ment SAL. To drive SAL, the PSP needs to feed unlabeled data sam-
ples X from the training dataset (X,Y) to the HyperNet-generated
MaskNets. If the training dataset is not publicly available, the ISP
transmits X (excluding Y) to the PSP, as illustrated by step ➀ in
Fig. 4. Then, ISP and PSP start training. In each loop of a training
epoch, the SAL protocol has the following three phases.

(1) Updating HyperNet: The PSP samples a mini-batch x from
X. On x, the PSP draws 𝑀 random vectors z1, z2, . . ., z𝑀 from
N(0, I) and generates𝑀 MaskNets using the current HyperNet, as
illustrated by step ➁ in Fig. 4. The masked mini-batch by the𝑚th

MaskNet is denoted by xmask
𝑚 . To compute the gradient of Eq. (1),

the PSP sends {xmask
1 , xmask

2 , . . . , xmask
𝑚 } to the ISP, as illustrated

by step ➂ in Fig. 4. The ISP feeds the received masked data to the
InferNet to obtain the predictions {ypred1 , ypred2 , . . . , ypred

𝑀
}. Then,

the ISP computes the cross-entropy loss 𝐽1 for the mini-batch using

the ground truth labels y and sends the backward gradients of
{xmask

1 , xmask
2 , . . . , xmask

𝑚 } to the PSP, as illustrated by step ➃ in
Fig. 4. The InferNet’s parameters remain unchanged during SAL;
they are solely used to compute the backward gradients. Upon
receiving the backward gradients, the PSP backpropagates them
through the MaskNets without updating their parameters and then
through the HyperNet to update its parameters 𝝓 for minimizing
the cross-entropy loss 𝐽1.

(2) Updating AttackNets: After updating 𝝓 on x, PSP enters
the adversarial learning phase to update the 𝑀 AttackNets. Specifi-
cally, the PSP regenerates𝑀 MaskNets using newly sampled ran-
dom vectors {z1, z2, . . . , z𝑀 } and the latest 𝝓. The masked mini-
batch xmask

𝑚 produced by the𝑚th updated MaskNet is fed into the
corresponding AttackNet, as illustrated by step ➂ in Fig. 4. The
MSE/cross-entropy loss is backpropagated to update the Attack-
Nets’ parameters {𝝃 1, 𝝃 2, . . . , 𝝃𝑀 } to minimize 𝐽2,𝑚 , as illustrated
by step ➄ in Fig. 4. For the same mini-match, the PSP repeats the
above process for multiple times to gain better AttackNets.

(3) Refining HyperNet: The last phase on the current mini-
batch x is to refine the HyperNet according to the composite loss
function in Eq. (2). Similar to Phase (1), the PSP sends the latest
masked data samples {xmask

1 , xmask
2 , . . . , xmask

𝑚 } to the ISP and re-
ceives the backward gradients corresponding to the loss 𝐽1. The
PSP also computes the backward gradients of the AttackNets corre-
sponding to the losses {𝐽2,1, 𝐽2,2, . . . , 𝐽2,𝑀 }. PSP updates HyperNet’s
parameters 𝝓 according to Eq. (2).

The PSP repeats the above three phases on multiple mini-batches
in the current training epoch. Once all the training samples are
utilized in the current epoch, the PSP proceeds to the next epoch.
Upon the completion of the training, the PSP is ready to serve the
mobiles. Specifically, to respond to a mobile’s service request, the
PSP feeds a random vector z sampled fromN(0, I) to the HyperNet
to generate a MaskNet and releases it to the mobile.

Now, we discuss the setting of the adversarial learning factor
𝜆. The setting of this factor 𝜆 is task-specific and may not transfer
across inference tasks. The PSP may perform SAL for multiple
rounds with different 𝜆 settings to train multiple HyperNets. For
each SAL process, the PSP may measure the average test accuracy
and the metric characterizing the effectiveness of the privacy attack
(e.g., the average MSE of the inversion attack on non-colluding
mobiles). Based on the validation on average test accuracy and
estimation of the privacy attack, the PSP can publish a table of
suitable 𝜆 settings and the associated test accuracy and privacy
attack effectiveness metric. Each mobile may inform the PSP with
its preferred 𝜆 setting and obtain a MaskNet generated by the PSP
using the corresponding HyperNet. We generate the table of 𝜆
settings and corresponding metrics on MNIST in §4.5.

4.4 Generalizability and Implementations
As SAL is agnostic to InferNet, PriMask can be applied to different
inference tasks. In §4.5, we apply PriMask to a simple handwritten
digit recognition task as a starting case study. In §5, §6, and §7,
we apply PriMask to three mobile sensing tasks of human activ-
ity recognition (HAR), urban environment crowdsensing (UEC),
and driver behavior recognition (DBR). As summarized in Table 1,
the three applications have diverse sensing modalities, data types,
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Table 1: PriMask applications and benchmark results includ-
ing model sizes, training time (unit: minute), bandwidth us-
age (unit: Mb/s), communication volumes per sub-epoch and
compute times (unit: millisecond).

Application MNIST HAR UEC DBR

Sensor camera IMU multiple∗ camera
Data type 28x28 time one-shot 240x240

image series tabular image
Sample size 784 1,152 5 57,600
Private attribute n/a identity location identity

InferNet size (MB) 0.08 8.35 0.06 226.37
HyperNet size (MB) 12.64 113.01 0.20 3310
MaskNet size (MB) 0.20 1.76 0.003 54

HyperNet training† 70 95 10 ∼7200
Comm. vol. (MB) 7.58 11.13 0.04 556.89
Bandwidth Usage 3.375 0.69 0.04 0.875

MaskNet generation† 1.5 2.3 1.6 2130
MaskNet execution‡ 0.011 1.33 0.03 42.02
MaskNet execution★ 0.078 1.14 0.05 21.24
∗Light, microphone, air pressure, temperature.
†On two computers with i7-6850K CPUs and Quadro RTX 6000 GPUs.
‡On Jetson Nano’s quad-core Cortex-A57 processor.
★On Google Pixels 4’s octa-core Qualcomm Snapdragon 855 processor.

and InferNet complexities. All these four applications use similar
MaskNet and HyperNet architectures. Therefore, PriMask has good
generalizability.

We use PyTorch [5] to implement the InferNets and HyperNets
on workstation computers. We use PyTorch and PyTorch Mobile [6]
to implement the on-device MaskNet-based data masking on Jetson
Nano [3] running Ubuntu OS and Google Pixel4 smartphone run-
ning Android OS, respectively. Table 1 shows the sizes of the models
used by PriMask and the compute overhead measurements for all
the four applications. If no privacy protection is implemented, the
mobile transmits raw inference data to the ISP. Thus, the computa-
tion overhead in Table 1 fully attributes to PriMask. The HyperNet
training time is the average value over 10 rounds; the MaskNet
generation and execution times are average values over 1,000 exe-
cutions. For each application, the size of HyperNet is larger than
the size of InferNet. As HyperNets are executed on PSP’s server-
class computers, their large sizes are not a concern. The time for
executing HyperNet to generate a MaskNet is at most 2.13 seconds.
Executing MaskNet to mask a sample on Jetson Nano and Pixel4
just takes tens of milliseconds at most, representing low overheads.
Note that the training of HyperNet involves communications be-
tween PSP and ISP. The maximum bandwidth usage of 3.375Mb/s is
not a high overhead, especially in today’s Wi-Fi/5G environments.

4.5 A Simple Case Study on MNIST
As the MNIST dataset facilitates visualization, we use it as a starting
and simple case study. MNIST consists of 60,000 training samples
and 10,000 testing samples. Each sample is a 28×28 image showing a
handwritten digit. The pixel value is normalized to [0, 1]. We design
a convolutional neural network (CNN) as the InferNet. The CNN

Random vector 
z

Figure 5: HyperNet architecture.
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Figure 6: Impact of PriMask on MNIST test accuracy and
privacy protection. 𝜆 is adversarial learning factor (𝜆 = 0
means that adversarial learning is not enabled).

consists of two convolutional layers with max pooling, three dense
layers with Rectified Linear Unit (ReLU) activation, and a softmax
function to generate the classification result. The test accuracy of
the InferNet on raw testing samples is 98.7%. The MaskNet adopts
an MLP architecture with a single hidden layer consisting of 32
neurons. There are 25,120 trainable parameters between the input
and hidden layers, and 25,872 trainable parameters between the
hidden and output layers. Thus, HyperNet’s output consists of two
parts corresponding to the above two groups of parameters. Fig. 5
shows the HyperNet’s architecture.

The training samples including labels are used by ISP to build
InferNet. The training samples excluding labels are used by PSP
to build HyperNet in collaboration with ISP according to the SAL
protocol. To evaluate a MaskNet generated by HyperNet, we feed all
test samples to the MaskNet-InferNet pipeline and measure the test
accuracy. Since our focus is to understand the impact of MaskNet on
the inference, there is no need to simulate the system by assigning
disjoint portions of the test dataset to all mobiles. We follow this
evaluation methodology throughout this paper.

Impact of PriMask on InferNet accuracy: We use the HyperNet to
generate MaskNets for 100 mobiles. First, we evaluate the InferNet’s
test accuracies when the 100 MaskNets are used. Fig. 6(a) shows the
cumulative distribution functions (CDFs) of test accuracies when
the adversarial learning factor 𝜆 = 0 and 𝜆 = 0.6. When 𝜆 = 0,
the adversarial learning of SAL is not enabled. In this case, the
InferNet’s test accuracies corresponding to the 100 MaskNets are
mostly within (95.5%, 97.6%), with an average value of 97.2%. When
𝜆 = 0.6, the test accuracies are mostly within (91.5%, 95.9%), with
an average value of 94.5%. Compared with the original test accuracy
of 98.7%, PriMask results in average test accuracy losses of 1.5%
and 4.2%, when the adversarial learning is disabled and enabled,
respectively. We will show shortly that the adversarial learning
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(a) Original (b) Masked (c) Inverted (d) Masked (e) Inverted

Figure 7: Original, masked, reconstructed samples. (b) and
(d) show the masked sample while (c) and (e) show ISP’s
reconstructions with the smallest MSEs when adversarial
learning factor 𝜆 is 0 and 0.6, respectively.

enhances the privacy protection. Therefore, there is a trade-off
between maintaining test accuracy and preserving privacy.

Resilience against mobile-ISP collusion: For this MNIST example,
we only consider the privacy threat of inversion attack. Suppose
one of the 100 mobiles colludes with ISP. We measure the MSEs and
SSIMs of the inversion attack on the non-colluding mobiles. MSE
and SSIM are complementary in characterizing the privacy loss
caused by the inversion attack. MSE measures the average pixel-
wise difference between the original and reconstructed samples.
However, MSE falls short of characterizing their correlation. SSIM,
which is a perceptual metric quantifying quality degradation of
reconstructed image, captures the correlation. Fig. 6(b) shows the
CDFs of the MSEs when 𝜆 = 0 and 𝜆 = 0.6. The vertical line in
Fig. 6(b) shows the inversion MSE for the colluding mobile when
𝜆 = 0, which is 0.71. The inversion MSEs for the non-colluding
mobiles are distributed from 0.76 to 1.25, larger than that for the
colluding mobile. When adversarial learning is not adopted (i.e.,
𝜆 = 0), the inversion MSEs for all the non-colluding mobiles are
higher than that of the colluding mobile. When adversarial learning
is adopted with 𝜆 = 0.6, the inversion MSEs of the non-colluding
mobiles are dispersed in a much wider range of 1.77 to 2,630, larger
than the MSEs when 𝜆 = 0. Fig. 6(c) shows the CDFs of SSIMs
when 𝜆 = 0 and 𝜆 = 0.6. Note that the maximum value of SSIM is
1, indicating the highest structural similarity. From Fig. 6(c), the
SSIMs when 𝜆 = 0.6 are smaller than those when 𝜆 = 0, suggesting
that adversarial learning reduces the structural similarity. Fig. 7
shows the original and masked samples and the ISP’s inversion
results with the smallest MSE for a non-colluding mobile when
𝜆 = 0 and 𝜆 = 0.6. These samples show that adversarial learning is
effective in counteracting the collusion-based inversion attack.

Comparison with PAN [40]: As discussed in §2, the existing neu-
ral network masking approaches [14, 37, 38, 40, 50, 67] have two
basic differences from PriMask. First, they only address external
eavesdroppers and do not consider curious ISP. Second, they are
not cascadable since they apply custom designs for the InferNets. In
this paper, we compare PriMask with Privacy Adversarial Network
(PAN) [40] when the ISP is curious and colludes with a mobile. To
enable the comparison, we set PAN’s encoder’s output dimension
equal to the dimension of the MNIST samples. Table 2 shows the the
statistics of test accuracy and median MSE achieved by the inver-
sion attack under PAN and PriMask over 10 tests. The median MSEs
achieved by the attack are 0.50 and 1.77 under PAN and PriMask,
respectively. This suggests that, under PAN, the curious ISP can
better reconstruct the inference samples. The test accuracy ranges
under PAN and PriMask are similar. These results show that PAN

Table 2: Comparison between PAN [40] and PriMask.

Test accuracy Mean Median MSE
percentiles (10%,90%) test accuracy of AttackNet

PAN (0.92,0.99) 0.96 0.50
PriMask (0.92,0.98) 0.95 1.77

Table 3: Setting of 𝜆.

𝜆 Mean test accuracy Median MSE of AttackNet

0.2 0.96 1.62
0.4 0.95 1.67
0.6 0.95 1.77
0.8 0.94 1.89

provides weaker privacy protection. In §5.2.4, we further compare
PAN and PriMask under the private attribution extraction attack.

Setting of 𝜆: As discussed in §4.3, the PSP can perform SAL
with different 𝜆 settings and validate them using a small vali-
dation dataset. Table 3 shows the 𝜆 setting versus test accuracy
and MSE of the inversion attack. We only show the results when
𝜆 = 0.2, 0.4, 0.6, 0.8 since the training of adversarial learning is sen-
sitive to the combination weights 𝜆 of multiple losses [21]. With the
increase of 𝜆, the mean test accuracy drops moderately while the
mean MSE of AttackNet increases slightly. Note that with different
𝜆 settings, the converge speeds are different. The results shows that
the PSP can perform SAL for different 𝜆 settings for heterogeneous
users with different privacy budgets.

5 HUMAN ACTIVITY RECOGNITION
Human activity recognition (HAR) with the data from the inertial
measurement units (IMUs) of a user’s mobile is a basic building
block of mobile sensing applications. However, IMU data may con-
tain private information related to identity, gender, and age [17, 41].
In this section, we apply PriMask to an HAR system to counteract
both the inversion attack and private attribute extraction.

5.1 HAR Dataset, InferNet, and HyperNet
We use a public dataset [8] collected from 30 human volunteers
performing six types of daily activities (walking, walking upstairs,
walking downstairs, sitting, standing, and laying). Each volunteer
carried a waist-mounted smartphone for recording the accelerom-
eter and gyroscope data. The recorded data include 3-axial linear
acceleration with/without gravity and 3-axial angular velocity sam-
pled at 50 sps. Thus, each record has nine components. The record
traces are pre-processed by noise filters and then arranged in slid-
ing windows of 2.56 seconds with 50% overlap. The trace within a
window is referred to as a data sample. Thus, each data sample is
a tensor sized 9 × 1 × 128. Each data sample has an activity label.
The dataset contains 10,299 data samples that are partitioned into
the training and testing subsets by 7:3. Each data sample also has a
volunteer identity label to indicate which volunteer that the sample
was collected from. We regard the identity as the private attribute.

We design a CNN InferNet, consisting of two convolutional lay-
ers with max pooling, three dense layers with ReLU activation,
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Figure 8: Impact of PriMask on HAR test accuracy and pri-
vacy protection. Legends denoted by ‘r’ and ‘p’ are for Hyper-
Nets adversarially trained with inversion attack and private
attribute extraction, respectively.

Table 4: Statistics of InferNet’s test accuracies across 100,000
MaskNets (𝜆 = 0.1; AttackNet = ExtNet).

Post-generation validation test accuracy range mean

Not applied (0.52, 0.90) 0.87
Applied (0.80, 0.90) 0.88

and softmax function. The first convolutional layer admits a 1,152-
dimensional vector flattened from the data sample tensor and ap-
plies 32 1 × 9 convolution filters. The second convolutional layer
applies 64 1 × 9 filters. The three dense layers have 1,000, 500, and
6 neurons. To avoid overfitting, we adopt dropout on dense layers.
The test accuracy of the trained InferNet on raw data is 92.5%.

The MaskNet adopts a two-layer MLP architecture. For both the
input and output layers, the number of neurons is 1,152. The middle
layer has 200 neurons. There are 230,600 trainable parameters be-
tween the input and middle layers, and 231,552 between the middle
and output layers. The HyperNet adopts a similar architecture as
shown in Fig. 5, with modifications on the number of neurons.

5.2 Evaluation Results for HAR
We train three HyperNets. For the first HyperNet, adversarial learn-
ing is disabled (i.e., 𝜆 = 0). Therefore, this HyperNet is agnostic to
the type of privacy attack. The other two HyperNets are adversari-
ally trained to counteract the inversion attack (with 𝜆 = 0.3) and
private attribute extraction (with 𝜆 = 0.1), respectively. By default,
we use each HyperNet to generate 100 MaskNets for evaluation. We
also generate 100,000 MaskNets to evaluate scalability of PriMask.
Note that the scalability in this paper is in terms of the number of
the generated MaskNets. The computational scalability of the ISP
depends on the hardware specification of the ISP server and the
concurrency of the service requests. The ISP can invest sufficient
computational capacity to meet the demand.

5.2.1 Impact of PriMask on InferNet accuracy. Fig. 8(a) shows the
CDF of the InferNet’s test accuracy corresponding to the three
HyperNets. The test accuracies are distributed within (80%, 90%).
The average test accuracies for the three CDFs are 87.6%, 87.0%,
87.5%. Thus, on average, there are accuracy drops of 5% to 5.5%.

We further evaluate PriMask’s scalability in terms of InferNet
accuracy. We generate 100,000 MaskNets using the HyperNet ad-
versarially trained against private attribute extraction with 𝜆 = 0.1.
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(a) HyperNet trained without adversarial learning, i.e., 𝜆 = 0
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(b) HyperNet trained against inversion attack (𝜆 = 0.3)
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(c) HyperNet trained against private attribute extraction (𝜆 = 0.1)

Figure 9: Traces of raw and ISP’s reconstructed data for the
first axis of linear acceleration, as well as the first dimen-
sion of masked data for a certain non-colluding mobile. The
ground truth human activity is standing.

The first row of Table 4 summarizes InferNet’s test accuracies across
all MaskNets. The mean value of the test accuracies (i.e., 87%) re-
mains at the same level as in Fig. 8(a). This result is supportive
of PriMask’s scalability in terms of InferNet accuracy. However,
a few MaskNets lead to low InferNet accuracy of down to 52%.
Less than 2% of all the MaskNets lead to InferNet accuracy lower
than 80%. This suggests a long-tail distribution of InferNet’s accu-
racies across the MaskNets. To avoid outlier MaskNets, we apply a
post-generation validation process. Specifically, for each generated
MaskNet, the PSP uses a small validation dataset and works with
the ISP to measure the InferNet’s test accuracy. The PSP regenerates
the MaskNet until the InferNet’s test accuracy exceeds a passing
threshold. Only the validated MaskNets are released. The second
row of Table 4 summarizes the results if the validation is applied,
where PSP’s validation dataset includes 100 samples and passing
threshold is 80%. The average test accuracy increases to 88%.

5.2.2 Resilience against a single colluding mobile. We consider a
system of 100 mobiles and one of them colludes with ISP. Fig. 8(b)
shows the CDFs of MSEs achieved by InvNet for non-colluding
mobiles when the HyperNet is trained without or with adversarial
learning. The vertical line represents the inversion MSE (i.e., 0.02)
for the colluding mobile when 𝜆 = 0. The MSEs for non-colluding
mobiles are higher than that for the colluding mobile. In addition,
when adversarial learning is applied, MSEs are larger.

Fig. 8(c) shows the CDF of the attack success rate (ASR), i.e., the
accuracy of the extracted private attribute, achieved by ExtNet on
raw IMU data and masked data from non-colluding mobiles. The
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Figure 10: Impact of ISP’s ExtNet architecture and number
of colluding mobiles on ASR. In (a), ExtNet#1 is also the
architecture used by PSP in SAL. Whiskers of an error bar
represent maximum and minimum.

two CDFs are results for the HyperNets with and without adversar-
ial learning against ExtNet. The vertical line represents ASR on raw
IMU data (i.e., 84%). Note that since the data samples are collected
from 30 volunteers [8], the random guessing strategy yields an ASR
of 1/30 = 3.3%. The 84% ASR suggests that the IMU data contains
abundant information regarding user identity. When adversarial
learning is applied, the CDF is higher than that without adversarial
learning. This shows that adversarial learning is effective in reduc-
ing ASR. The average ASRs with and without adversarial learning
are 28.3% and 17%, respectively. Although MaskNets under the set-
ting of 𝜆 = 0.1 cannot reduce ASR to the random guessing level,
they have already achieved significant reductions in ASR compared
with the case without private attribute protection. By setting larger
𝜆, the ASRs for non-colluding mobiles will further decrease. But
InferNet’s accuracy will decrease too.

The three subfigures of Fig. 9 show the traces of the raw and
ISP’s reconstructed data for the first axis of linear acceleration, and
the first dimension of the masked data, for a certain non-colluding
mobile adopting the three HyperNets, respectively. For linear ac-
celeration, the peaks are salient features. From Fig. 9, the masked
traces do not have salient peaks. In Fig. 9(a), without adversarial
learning, the reconstructed trace still pronounces peaks at the same
times of the original peaks. In Fig. 9(b), with adversarial learning,
the reconstructed trace no longer pronounces peaks at the same
times of the original peaks, suggesting better protection against
inversion attack.

Next, we investigate the impact of the ExtNet architecture used
by ISP on ASR of private attribute extraction. We consider a system
of 1,000 mobiles and one of them colludes with ISP. The HyperNet
adversarially trained against ExtNet with 𝜆 = 0.1 is used to generate
MaskNets. We design four ExtNet architectures used by ISP, which
are illustrated as:

• ExtNet#1: C32-C64-D1664-D1000-D500-D30-softmax
• ExtNet#2: C32-C64-C128-D1152-D500-D30-softmax
• ExtNet#3: D1152-D100-D50-D30-softmax
• ExtNet#4: D1152-D500-D100-D30-softmax

where C𝑛 represents a convolutional layer with 𝑛 filters followed
by max pooling, D𝑛 represents a dense layer of 𝑛 neurons with
ReLU activation. The ExtNet#1 architecture is identical to that used
by the PSP’s adversarial learning. In Fig. 10(a), each error bar shows
the average, maximum, minimum of the ASRs across the 999 non-
colluding mobiles when ISP adopts a certain ExtNet architecture.
No ExtNet architecture shows clear advantage for ISP in terms of
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Figure 11: Comparison between PAN [40] and PriMask.

average ASR. This suggests that the resilience against collusion is
insensitive to the ExtNet architecture used by the ISP.

5.2.3 Resilience against multiple colluding mobiles. We consider a
system of 1,000 mobiles and vary the number of mobiles colluding
with ISP. For a certain set of colluding mobiles, to build the training
dataset for constructing ExtNet, ISP feeds each original training
sample to all colluding mobiles’ MaskNets to obtain multiple sam-
ples for training ExtNet. Thus, the ISP’s trained ExtNet is expected
to address all colluding mobiles’ MaskNets. Fig. 10(b) shows the
error bars of non-colluding mobiles’ ASRs versus the number of
colluding mobiles. While the average ASR exhibits an increasing
trend when the number of colluding mobiles is lower than 10, it
becomes flat at around 20% when the number of colluding mobiles
is up to 800. Recall that, without PriMask’s protection, ASR is up
to 84% (cf. §5.2.2). The above results suggest that PriMask is re-
silient to increase of colluding mobiles. Note that the range of ASR
shows a decreasing trend with the number of colluding mobiles.
This is partly due to decreasing number of non-colluding mobiles
for generating the ASR statistics (i.e., minimum/maximum).

5.2.4 Comparison with PAN. In this experiment, we compare the
resilience of PAN and PriMask against the private attribute extrac-
tion attack. Similar to §4.5, to enable the comparison, we adjust the
encoder structure of PAN [40] such that the size of the encoded
features equals the dimension of the raw data sample. Specifically,
we design an encoder with two convolutional layers and the output
size of 1152. We adopt a two-layer MLP for inference. ExtNet in
PAN also adopts a similar two-layer MLP architecture. Fig. 11 shows
the error bars of InferNet accuracy and ASR, as well as InferNet
accuracy versus ASR under PAN and PriMask (privacy-utility trade-
off points). For PAN, each data point corresponds to a setting of
the Lagrangian multiplier 𝜆𝑝 , which affects the privacy protection
level of PAN [40]. For PriMask, the trade-off data points correspond
to the HyperNet-generated MaskNets. The trade-off points show
that with the enhancement of privacy protection, the test accu-
racy under both PAN and PriMask drops gradually. However, from
the results, PriMask achieves better privacy protection than PAN,
subject to similar InferNet test accuracy.

6 URBAN ENVIRONMENT CROWDSENSING
We study the data [10] collected in a city-wide experiment that in-
volves over 10,000 school students in our city to understand urban
environment in a crowdsensing manner. In the experiment, each
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participant carries a wearable device on a neck lanyard which inte-
grates several sensors to record the surrounding environment con-
ditions of the participant. The sensor measurements are transmitted
opportunistically to a central cloud portal through over 18,000 Wi-
Fi hotspots deployed across our city. On this crowdsensing platform,
we develop an urban environment crowdsensing (UEC) application
that classifies the ambient conditions of participants and identifies
those which may result in discomfort for human beings. We investi-
gate the potential of location leakage and apply PriMask to protect
participants’ location privacy in such a circumstance.

6.1 Dataset, InferNet, ExtNet, and PriMask
The dataset consists of 640,000 samples. Each sample includes five
sensor readings of light intensity, noise level, atmospheric pressure,
ambient temperature, and body-reflected temperature. Each sample
is geotagged using location information inferred from the wearable
device’s nearby Wi-Fi hotspots. To build the UEC application, we
only use the five sensor readings. To investigate location privacy
leakage, we study the correlation between the sensor readings
and the geotags. The city-wide experiment collected geotags for
ground truth only. After the privacy-preserving UEC application is
developed and deployed, geotags are no longer needed.

The wearable device used in the experiment does not support
the participants to key in their real-time comfort feelings. In fact,
requesting the participants to continuously or frequently provide
feedback is impractical. Thus, we follow several first principles to
generate the ground truth information regarding the discomfort
level of the environment condition. The procedure is as follows.
First, we normalize each sensor reading to [0, 1]. Then, we apply
the following three scoring functions on the normalized sensor
readings to generate discomfort scores: 𝑑1 (𝑥) = 𝑥 , 𝑑2 (𝑥) = 1 − 𝑥 ,
and 𝑑3 (𝑥) = 4 · (𝑥−0.5)2. As human discomfort in general increases
with noise level, we apply 𝑑1 (𝑥) to score noise level. In the climate
zone of our city, as low atmospheric pressure is in general posi-
tively correlated with human discomfort, we apply 𝑑2 (𝑥) to score
atmospheric pressure. As the light intensity, ambient temperature,
and body-reflected temperature should be in their respective proper
ranges, we apply the quadratic function 𝑑3 (𝑥) with the minimum
(i.e., the least discomfort) at 𝑥 = 0.5 on them. Lastly, we sum up
the five scores to obtain a final score to characterize the overall
human discomfort. The users with high discomfort scores may need
attention and preventative actions.

We generate the private attribute labels as follows. First, we apply
the 𝑘-means algorithmwith 𝑘 = 10 to cluster the data’s geotags into
ten zones. We view the zone ID as the private attribute. However,
the numbers of samples in the clusters are imbalanced. To simplify
the presentation of the evaluation results, we re-sample the data to
ensure class balance. The re-sampling generates a training dataset
of 60,000 samples (i.e., 6,000 samples in each zone) and a testing
dataset of 4,481 samples (i.e., about 448 samples in each zone).

Transmitting the participants’ data to the cloud portal is pre-
ferred, because it supports various posterior data analytics including
UEC. If raw data is transmitted, the scoring functions can be applied
directly. However, to admit masked data, a regression InferNet is
needed to approximate the sum of the scoring functions. We design
an MLP with three hidden layers as the InferNet, which have 10, 20,
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Figure 12: Impact of PriMask on UEC test accuracy and pri-
vacy protection. Legends denoted by ‘r’ and ‘p’ are for Hyper-
Nets adversarially trained with inversion attack and privacy
extraction.

and 10 neurons with ReLU activation. The output layer is a single
neuron giving the predicted discomfort score. We still use the test
accuracy to characterize the performance of the InferNet. Specifi-
cally, if the difference between the predicted score and the ground
truth is less than 0.5 (i.e., 10% of the maximum discomfort score),
we regard the prediction correct. The trained InferNet achieves a
test accuracy of 99.2% on the raw test data.

Then, we train an ExtNet using the training data and the associ-
ated zone IDs. The ExtNet has two hidden layers, with 200 and 50
neurons using ReLU activation, respectively. It has an output layer
with 10 neurons corresponding to the 10 zones. On the raw testing
data, the ExtNet’s ASR is 42%. As the strategy of randomly guessing
the zone has 10% ASR only, the ExtNet’s 42% ASR suggests that
the sensor readings leak information regarding the participants’
locations.

The MaskNet is an MLP with a single hidden layer. The input,
hidden, and output layers have five neurons each. The MaskNet has
60 trainable parameters. The HyperNet adopts a similar architecture
as shown in Fig. 5, with minor modifications on the number of
neurons for MaskNet compatibility.

6.2 Evaluation Results for UEC
We train three HyperNets with the following settings: 1) 𝜆 = 0; 2)
𝜆 = 0.2 against inversion attack; 3) 𝜆 = 0.1 against private attribute
extraction. Fig. 12(a) shows the CDFs of the test accuracies when
the three HyperNets are used. The average test accuracy for the first
two HyperNets are 98.3% and 96.2%, respectively. Thus, compared
with the test accuracy obtained on raw test data (i.e., 99.2%), there
are 0.9% and 3% accuracy drops. When the third HyperNet is used,
the average test accuracy drops to 80.1%. This is because 𝜆 = 0.1
is an aggressive setting against private attribute extraction. We
will explain this issue along with the achieved privacy protection
strength shortly.

Suppose a mobile colludes with ISP. Fig. 12(b) shows the CDFs
of inversion MSEs when the first and the second HyperNets are
used. The adversarial learning improves resilience against inversion
attack in the presence of collusion. Fig. 12(c) shows the CDFs of
ASRs when the first and the third HyperNets are used. When no
adversarial learning (i.e., 𝜆 = 0) is applied, PriMask reduces ASR
from the original 42% to 14.2% on average. As the 14.2% ASR is
close to its lower bound of 10%, intuitively, more data utility will be
sacrificed to further reduce ASR. Thus, when 𝜆 = 0.1 that produces
an average ASR of 11%, we observe significant test accuracy drops
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Figure 13: Impact of PriMask on DBR accuracy & privacy.

(a) Original (b) Masked (c) Inversion (d) Inversion

Figure 14: Original, masked, reconstructed samples. The in-
version MSE for (d) is the smallest among all non-colluding
mobiles, i.e., this example is the worst case for non-colluding
mobiles. Only a priori global information of the dataset (e.g.,
rough contours of car window and driver) can be seen from
reconstructed samples, which are not specific to a certain
driver and thus not private. In fact, ISP can generate an image
similar to (d) by averaging all training samples.

in Fig. 12(a). Smaller 𝜆 settings can restore the test accuracy, while
the resulting average ASRs will be within (11%, 14.2%), which are
satisfactory.

7 DRIVER BEHAVIOR RECOGNITION
In U.S., one in five car accidents is caused by a distracted driver [12].
Thus, using smartphone to detect driver’s engagement in distracted
behaviors is useful. To incentivize drivers’ participation, the car
insurance companies may provide premium discounts according to
the monitoring results. To facilitate the design of driver behavior
recognition (DBR), an insurance company initiated a competition
[33] by providing a dataset of images captured in cars regarding
drivers’ behaviors. In this section, we train a CNN based on the
dataset. From our implementation, the CNN is heavy (226MB) and
inappropriate for local execution on phones. If we run it in the
cloud, transmitting the raw images to the cloud inevitably incurs
privacy concerns. Thus, in this section, we apply PriMask to design
privacy-preserving cloud-based DBR.

7.1 DBR Dataset and System Design
The dataset consists of 22,424 grayscale images, each sized 240×240.
Each sample has a driver behavior label (in 10 classes) and driver
identity as a private attribute label (in 26 classes). Examples of the
driver behavior include safe driving, drinking, etc. We partition the
dataset into training samples and testing samples by 8:2.

DBR is a complex task. We implement a 32-layer CNN architec-
ture described in [42]. Specifically, the CNN consists of 6 groups of

convolutional, ReLU, and batch normalization, max pooling, and
dropout layers, followed by 3 dense layers with ReLU, batch nor-
malization, and dropout. The CNN’s test accuracy on raw testing
samples is 98.46%. It consists of more than 59 million parameters
and requires 226MB memory space. Thus, this CNN is heavy for
smartphones. Continuously running it on smartphone drains bat-
tery quickly. Thus, running it in the cloud is preferred. The overhead
for the phone to transmit the images to the cloud is low. Assuming
the phone records an image every five seconds and no image com-
pression is applied, the phone only needs a bandwidth of 92 kbps
to sustain the transmission, which is little for today’s broadband
cellular connectivity.

The MaskNet uses a two-layer MLP architecture. For both the in-
put and output layers, the number of neurons is 57,600. The middle
layer has 120 neurons. The MaskNet has 13.9 million parameters
and requires 53.61MB memory space. Thus, it is 7x smaller than
InferNet in terms of memory usage. Moreover, MaskNet’s dense
layers require much less compute time than InferNet’s convolu-
tional layers. HyperNet architecture is similar to Fig. 5, with minor
changes on neuron numbers for MaskNet compatibility.

7.2 Evaluation Results for DBR
We train a HyperNet with 𝜆 = 0. As this HyperNet achieves good
privacy preservation as shown shortly and adversarial learning
often requires more training epochs, we omit adversarial learning.
Fig. 13(a) shows CDF of the test accuracies corresponding to all
MaskNets. The average accuracy is 93.4%. Compared with that on
the raw data (i.e., 98.46%), there is a drop of 5.1% on average.

Suppose a mobile colludes with ISP. As shown in Fig. 13(b),
the ISP achieves an inversion MSE of 14,069. This MSE is much
larger than those seen for the MNIST example in §4.5, because the
MNIST and DBR samples have different pixel value ranges (i.e.,
[0, 1] vs. [0, 255]). Fig. 13(b) also shows the CDF of the inversion
MSEs for the non-colluding mobiles. Such MSEs are distributed
in a wide range from 16,429 to 556,000, with mean and median of
75,484 and 31,304, respectively. Fig. 14 shows an original sample in
subfigure (a), a non-colluding mobile’s masked data in (b), and ISP’s
inversion results for two non-colluding mobiles in (c) and (d). The
inversion MSEs of Fig. 14(c) and (d) are 28,886 and 16,429, which
are smaller than the average MSE and the smallest MSE among the
non-colluding mobiles, respectively. Thus, Fig. 14(d) is the worst
case for the non-colluding mobiles. However, we cannot observe
useful information specific to the original sample in Fig. 14(a). We
can only observe a priori information that is applicable to the whole
dataset, e.g., rough contours of a car window and a driver. Such
a priori global information of the DBR application should not be
viewed as a particular driver’s privacy. In fact, the ISP can generate
an image similar to Fig. 14(d) by averaging all training samples.
The example shown in Fig. 14 suggests that the HyperNet achieves
good privacy preservation against the inversion attack.

We also evaluate PriMask’s resilience against private attribute
extraction in the presence of collusion. ExtNet adopts the same
architecture as InferNet, except that the last layer has 26 neurons
corresponding to the volunteers. On raw data, ExtNet achieves
99.2% ASR. Fig. 13(c) shows the ASRs based on raw data and the col-
luding mobile’s masked data (i.e., 84.4%), as well as CDF of ASRs for
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non-colluding mobiles. The mean ASR for non-colluding mobiles is
14.8%. Thus, PriMask significantly reduces the attack effectiveness.

8 DISCUSSIONS
Model and privacy leakage during SAL:Although this paper assumes
that the PSP is trustworthy, we discuss whether model leakage
can occur between PSP and ISP. First, we consider whether the
static model extraction attacks [19, 34, 46] can be used by the PSP
to exfoliate the ISP’s InferNet. These attacks share a method of
training a similar model without the private training data samples.
However, the method requires that the attacker (i.e., the PSP in the
current context) can query the static victim model (i.e., InferNet
in the current context) and obtain the predicted labels. As the ISP
in SAL does not release the predicted labels and only renders the
gradients of masked training samples to the PSP, the attack method
is not directly applicable. Second, we consider whether the inverted
model extraction attack against split learning studied in [16] can be
used by ISP to extract the PSP’s HyperNet. The study [16] shows
the possibility for the server to extract the client’s model part using
a coordinate gradient descent approach under the split learning
scheme. For PriMask, since the temporary MaskNets as the clients’
model parts are heterogeneous and dynamically generated by the
PSP, whether the attack described in [16] can exfoliate theHyperNet
remains an open problem. From the above discussions, the issue of
model leakage between the ISP and PSP requires further research
for better understanding. There is also a recent study [51] showing
the training data leakage vulnerability during split learning, as we
have discussed in §2. The threat model in [51] in the context of this
paper is as follows: the ISP refrains from transmitting training data
to the PSP and the PSP is curious about the privacy contained in
ISP’s training data. Differently, as highlighted in §3.1, this paper
considers a PSP trusted by the ISP and thus does not consider
protecting the privacy contained in ISP’s training data against a
curious PSP. Advancing PriMask to address a PSP that is not trusted
by ISP is an interesting topic for future work.

Composite privacy threats: In this paper, we separately handle the
inversion attack and private attribute extraction. The SAL method
can be extended to jointly address multiple privacy attacks. Specifi-
cally, the composite loss function in Eq. (2) can incorporate multiple
attack losses (i.e., inversion MSE and ASRs regarding multiple pri-
vate attributes). During the adversarial learning phase, an InvNet
and multiple ExtNets can be trained against a temporary MaskNet.

Validated privacy protection: In §5.2.1, we presented a post-generation
validation process to check the quality of a generated MaskNet in
terms of InferNet accuracy. Similarly, we can also check in terms of
privacy protection against potential mobile-ISP collusion. Now, we
use the private attribution extraction as an example to discuss this.
We say two MaskNets are conflicting if the collusion between any
of them and the ISP leads to ASR against the other MaskNet higher
than a passing threshold. The ASR can be measured using a vali-
dation dataset and the two MaskNets’ respective ExtNets trained
by the PSP. When generating the (𝑛 + 1)th MaskNet, the PSP re-
generates the candidate until it does not conflict with any of the
previously released 𝑛 MaskNets. Now, we analyze the computation
complexity of the above validation process. Assume that the proba-
bility that any two freshly generated MaskNets are conflicting is 𝑝

and the conflict statuses of any two MaskNet pairs are independent.
Then, the expected number of generation processes needed for the
(𝑛 + 1)th MaskNet is 1

(1−𝑝 )𝑛 . Although the validation process is
not scalable in general due to the exponential complexity, it can
support a large enough system depending on the needed level of
privacy protection. For instance, for the HAR application, the ASR
on the raw IMU data is 84%. By setting the ASR passing threshold
to 58%, the validation process enables the system with PriMask
to provide privacy protection that is validated and better than the
system without PriMask. From our measurements, the correspond-
ing conflict probability is about 0.01. As the time for generating
an HAR MaskNet is 2.3ms, if the tolerable validation time is one
minute, the validation can support 1,011 mobiles.

Privacy guarantee: The neural network masking approach be-
longs to a broader category of instance encoding. The formal analysis
in a recent study [11] has given the theoretical limits of instance
encoding in protecting privacy under the notation defined by dis-
tinguishing attack. However, the privacy guarantee of instance
encoding under the notations of inversion attack and private at-
tribute extraction is still an open problem. Despite this uncertainty,
instance encoding has been increasingly used in recent approaches
for resource-constrained devices [14, 23, 38, 40, 44, 50, 67]. This
can be due to the practical limitations of other two families of ap-
proaches despite their theoretical guarantees [11]: cryptographic
techniques (including multiparty computation and homomorphic
encryption) incurs high computation and communication over-
heads; differential privacy is typically achieved with high utility
losses. Nevertheless, the theoretic limits of neural network masking
against inversion attack and private attribute extraction deserve
future research.

Distribution shift: The distribution shift between training dataset
and testing dataset often generates impact on the test accuracy in
machine learning. For the privacy-preserving propose, the distribu-
tion shift can also affect the attack success rate of ExtNet. Thus, the
privacy-utility trade-off points may change with the distribution
shift. However, the detailed analysis on the impact is slightly out of
the scope of this paper. We leave it as an open problem for exploring
this issue.

9 CONCLUSION
This paper presented PriMask, a cascadable and collusion-resilient
data masking approach for mobile devices to use the cloud inference
services. In PriMask, the mobile only needs to execute a small-scale
neural network called MaskNet to mask the inference data and
then sends the result to the cloud. This helps preserve certain pri-
vate information contained in the inference data. We design a split
adversarial learning method to train a neural network used to gen-
erate MaskNet for many mobiles. The heterogeneity of MaskNets
provides desirable resilience to the potential collusion between any
mobile and the cloud. We apply PriMask to three mobile sensing
tasks of human activity recognition, urban environment crowdsens-
ing, and driver behavior recognition. The results show PriMask’s
good generalizability and effectiveness in preserving privacy while
maintaining the cloud inference accuracy.
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