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Abstract
Monocular depth estimation (MDE) plays a crucial role in

modern autonomous driving (AD) by facilitating 3-D scene
understanding and interaction. While vulnerabilities in deep
neural networks (e.g., adversarial perturbations) have been ex-
ploited to compromise MDE, existing attacks face challenges
in target accessibility and stealthiness. To address these limi-
tations, we introduce π-Jack, a novel physical-world attack on
MDE via perspective hijacking. It is based on an observation
that MDE relies heavily on perspective cues to infer depth, yet
these cues can be manipulated by strategically placing com-
mon 3-D objects in AD scenes. With an optimization-based
approach, π-Jack “hijacks” the perspective information and
alters the target pixels’ depths perceived by the MDE model
in a black-box manner. We also show via experiments that
π-Jack is effective across various MDE models and scenarios,
confirming generalizability of perspective hijacking. Our ex-
tensive evaluations demonstrate that π-Jack is effective across
different target and attack vectors, and increases the mean
depth error by over 14 meters. Moreover, in our end-to-end
AD simulation, π-Jack results in compromised lane change,
sudden braking, and life-threatening collisions.

1 Introduction
Monocular depth estimation (MDE) is a technique for esti-
mating pixel-wise distances from a single RGB image, al-
lowing low-cost and energy-efficient monocular cameras to
sense depth and replace expensive radar and lidar sensors.
Consequently, autonomous vehicles (AVs) can use MDE to
facilitate downstream tasks with depth information, such as
semantic segmentation [38], 3-D object detection [41], vi-
sual SLAM [69], and visual relocalization [66]. Due to its
benefits and capabilities, MDE has garnered interest from
both academia [21, 67, 68] and industry, including leading
companies such as Tesla [1, 59], Waymo [85, 86], and Toy-
ota [25, 84]. In particular, Tesla regards MDE as a pivotal
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component in their AV-AI ecosystem [1], and has already
integrated MDE into their production-grade vehicles [59].

With the widespread adoption of MDE in the wake of all-
vision autonomous driving (AD) solutions [1, 25, 59, 84, 85,
86], understanding its security vulnerabilities becomes in-
creasingly important. In fact, any deficiencies in MDE could
lead to AVs generating low-quality models of their surround-
ings (the absence of depth sensors in all-vision AD solu-
tions renders it nearly impossible to correct such deficien-
cies), thereby affecting the effectiveness of their decision-
making and trajectory planning. The situation could worsen
significantly if an adversary targets MDE for attack, aiming
to artificially deviate the inference results of MDE. Should
such an attack succeed, AVs would highly likely to undertake
risky maneuvers, such as improper lane changes or braking
actions that may escalate into possible hazardous vehicular
collisions [65]. Therefore, understanding possible attacks on
MDE becomes important due to the substantial real-world
consequences posed by them.

Conventional attacks on MDE are performed in the digital
space [70, 74], which primarily manipulate depth perception
by introducing adversarial perturbations at the pixel level [22,
46]. These perturbations are designed through gradient-based
methods to iteratively modify pixel values in captured images
to maximize depth estimation error. However, applying such
attacks in real-world scenarios faces three challenges. First, it
is difficult for attackers to tamper with the images during data
transfer or storage due to air gap and cryptographic protection.
Second, the intricate adversarial perturbations are not robust to
changes in real-world lighting conditions due to shadow and
weather as well as geometric variations related to view angles
and object surfaces. Third, even if the pixel-level perturbations
are feasible, the unnatural appearance of the perturbations can
alert the AV system and the human driver, thereby triggering
a fail-safe mechanism such as falling back to manual driving
or emergency safe stopping.

More recent physical MDE attacks [9, 71] still act on the
pixel level, by generating adversarial perturbations digitally
and then transferring these perturbations into the physical
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Figure 1: High-level idea of π-Jack: by strategically placing
an attack vector (a clump of grass), MDE for a target object
(a tree) can be hijacked.

world. They attempt to compensate for the drawbacks of digi-
tal attacks by employing methods such as style transfer [9] and
Expectation over Transformation (EoT) [2, 32], as these tech-
niques are designed to make the stickers less conspicuous and
more robust to real-world conditions. However, still operating
at the pixel level, these attacks remain largely impractical. For
example, attaching style-transferred road markings to vehicle
rears [9] still looks unnatural. Additionally, accessing the tar-
gets can be difficult due to restrictions on applying stickers on
certain surfaces. Finally, the effectiveness of physical attacks
is worsened by the presence of invalid colors that cannot be
accurately reproduced during printing [35].

The persistent issue of adversarial perturbations (regard-
less of digital and physical) is their narrow focus at pixel
level only; this calls for novel attack strategies conceived at a
broader level. Inspired by the work [34] that tricks lane detec-
tion of AVs by putting markings on the road, we envision an
attack operating at the scene level. However, designing such
attacks faces two challenges. First, we need to perform an
analysis of MDE’s vulnerabilities and identify a scene-level
depth-altering attack not achievable by previous proposals.
For instance, previous physical attacks on classification tasks
by using lasers [14] and projected patterns [20] are unfeasi-
ble, as they suffer from similar issues of being conspicuous
and susceptible to real-world lighting conditions due to their
reliance on additional light sources. Second, to achieve more
practical and potent attacks, it is desirable to extend 2-D at-
tacks (e.g., on a road sign’s surface) to the 3-D physical scene.
Crafting attack vectors in the 3-D scene, however, is chal-
lenging due to the difficulties in reconstructing the 3-D scene
from a 2-D image and interacting with it.

A reasonable approach to achieving scene-level attack on
MDE involves strategically placing 3-D objects commonly
found on the road, such as traffic signs, barrier poles, and
clumps of grass, as attack vectors. These objects are readily
obtainable and accessible to the attacker. Moreover, these ob-
jects are inconspicuous because traffic inspectors and drivers
consider them ordinary and benign. Furthermore, the texture
and placement of these objects are natural and involve no
delicate adversarial perturbations, making them inherently
robust to real-world lighting condition changes and geometric
variations. These attack vectors manipulate visual cues on

which deep learning implicitly relies for MDE. Among these
cues, perspective information (i.e., the spatial attributes of
geometry and texture that change with distance) is crucial
because it reveals the spatial relationships among the objects.

In this paper, we introduce π-Jack, a physical-world adver-
sarial attack that harnesses the power of perspective hijacking.
Its basic concept is depicted in Figure 1, where we strategi-
cally position an adversarial object (e.g., a clump of grass)
to manipulate the perspective relationships of targets in the
scene. This approach is designed to affect or “hijack” the per-
spective of the target object (e.g., a tree), thereby perturbing
the depth estimation of the target object. We design a 3-D
modeling and rendering pipeline to place the 3-D object and
create composited yet photorealistic scenes. Additionally, we
implement a systematic approach to optimize the position and
pose of the placed 3-D object, maximizing its effectiveness
of attack. This approach also adopts a novel Expectation over
Motion and Illumination (EoM&I) technique to ensure the at-
tack’s robustness to AV motion. Lastly, we conduct extensive
evaluations including tests in real-world scenarios to assess
π-Jack’s performance. In summary, this research provides the
following key contributions:

• We develop a physical-world attack on MDE termed
perspective hijacking. To the best of our knowledge,
we are the first to explicitly manipulate visual cues and
mislead AV-MDE system in an effective, robust, and
inconspicuous manner.

• We offer a 3-D modeling and rendering pipeline allow-
ing the composition of the attack vector into the driving
scene. This pipeline allows π-Jack to test out photorealis-
tic perspective hijacking while considering environment
illumination and shadowing.

• We propose optimization strategies to systematically
optimize the position and pose of the adversarial ob-
ject under the constraints of sensitive perspective region
and physical realization. We also develop an EoM&I
technique to make π-Jack robust to vehicle motion and
illumination variations.

• We provide comprehensive evaluations conducted in
both composited and real-world scenes and on differ-
ent MDE models to demonstrate the effectiveness and
generalizability of π-Jack.

The rest of this paper is organized as follows. Section 2
introduces the background of our work. Section 3 explains
the attack goal and threat model. Section 4 presents the attack
design of π-Jack, while the security analysis is postponed to
Section 7 after obtaining supports from evaluation results.
Section 5 provides π-Jack’s implementation details, exper-
iment setup, and evaluation metrics. Section 6 reports the
evaluation results, followed by security analysis and possible
defense methods in Section 7. Related works are presented in
Section 8. Finally, we conclude our paper in Section 9.



2 Background

MDE is a challenging task because a single 2-D image can
correspond to infinitely many 3-D scenes. However, humans
can infer depth, even with one eye, based on their experience
in navigating and interacting with the physical world. It has
been experimentally shown that humans use visual cues such
as perspective, familiar size, occlusion, shadows, and etc to
make informed depth perception [57]. Drawing inspiration
from this human capability, recent research has introduced
deep learning-based MDE methods that uses the “experience”
of sequential temporal frames as training signals [21, 67, 68].
This novel approach has been adopted by leading AV compa-
nies [1, 25, 59, 84, 85, 86], demonstrating its practical value
and real-world applications.

To design an effective attack against these MDE methods,
we shall identify the most vulnerable visual cues for MDE.
Taking human visual perception as an analogy, it is reasonable
to hypothesize that perspective cues (i.e., the spatial attributes
of geometry and texture that indicate the relative locations
among the objects in the scene) are essential for MDE and
subject to manipulation, as there are various notable optical
illusions that deceive human visual perception [23, 39]. These
illusions involve parallel lines that seem to differ in length, ori-
entation, or slope depending on the surrounding patterns, all
of which distort the perspective cues. These illusions suggest
that deep learning-based MDEs may also rely on perspective
cues, and may be fooled by attacks with similar principles.

To have a preliminary validation of our hypothesis, we
employ the widely-adopted MDE model MonoDepth2 [21]
to generate a depth map with pixel values in the image rep-
resenting depths, i.e., distances from the camera. We then
use the saliency map [53] to understand what the depth es-
timation model focuses on when performing MDE. Specifi-
cally, the saliency map S is constructed by computing the
gradient sum of the pixels inside the specified target re-
gion T on the depth map D, with respect to the input I as
S(u,v) = ∑(ut ,vt )∈T

∂D(ut ,vt )
∂I(u,v) , where (u,v) represents pixel co-

ordinates. A higher gradient means that a small change in
that pixel will cause a large change in the target depth, and
conversely, a lower gradient means a smaller change.

We present two example driving scenes in Figures 2(a)
and 2(b), respectively. Each figure comprises three rows: an
image, its estimated depth map, and its saliency map. We
select a road sign and a car (two important objects in AV)
as the target regions for saliency analysis in the scenes, as
indicated by the red boxes. The saliency maps use brighter
colors to indicate the areas most crucial for determining the
depth of the selected target regions. It can be observed that,
for the road sign, the sidewalk and the distant trees lining the
horizon are the most salient regions; for the car, the road and
the building on the side are the most salient.

All the salient regions underscore the importance of per-
spective cues: the parallel lines of the road converging in

(a) Driving scene 1. (b) Driving scene 2.

Figure 2: MDE rely on perspective cues for depth inference.

the distance, together with the vertical window frames of the
roadside building establish a “spatial grid” that aids in per-
spective analysis. Additionally, the low contrast/saturation
and blurred texture of the trees along the horizon indicate
their remoteness and provide a reference point for perspective.
This reliance on perspective cues motivates us to design the
perspective hijacking attack: if the 3-D object we place in
the scene has a similar geometric structure or texture with
the target but at a different distance, the MDE model might
mistakenly associate or merge our strategically-placed object
with the target, thus the target perspective will be hijacked
and the MDE model will output a wrong depth.

3 Problem Formulation

In this section, we present the attack goal and threat model.

3.1 Attack Goal
π-Jack aims at using 3-D physical-world adversarial objects
in AV scenes to perform perspective hijacking and mislead
AV-MDE model into producing incorrect depth estimation for
specified target regions in the scenes. The adversarial object
placement should meet the following requirements:

• Effectiveness. The objects should be placed in a way that
they can alter the estimated target depth by the largest
possible margins.

• Accessibility. The placed objects should be in valid and
reachable areas in the scene.

• Inconspicuity. The objects should blend in with the envi-
ronment, avoiding unusual shapes or patterns.

• Robustness. The attack should be robust and not affected
by real-world conditions (e.g., lighting).

Given that the objects we use are ordinary 3-D objects that are
generally considered benign, the inconspicuity requirement
can be met. Additionally, since π-Jack does not depend on
“sticker-pasting” or adversarial perturbations, it will not be
influenced by environment lighting much, thus meeting the
robustness requirement. Furthermore, as π-Jack does not ne-
cessitate placing objects in high-alert areas like road signs, the



accessibility requirement can also be fulfilled. Lastly, for the
effectiveness requirement, we provide a comprehensive inves-
tigation of how depth estimation error can be maximized in
Section 4.3 and evaluate the attack effectiveness in Section 6.

Formally, the attack objective of π-Jack can be expressed as
follows. Let I be a scene image and θ(·) be a depth estimation
model such that D = θ(I) is the estimated depth map. Let O
be a collection of ordinary 3-D objects, such as barrier poles,
ladders, clumps of grass, and other similar items that can be
placed into the scene. For each object o ∈ O, we define Po as
the set of coordinates and poses for o in the 3-D space corre-
sponding to I. For each coordinate and pose (x,y,z,ρ) ∈ Po,
we obtain a modified image Io,x,y,z,ρ by inserting o at coordi-
nate (x,y,z) with pose ρ. The corresponding estimated depth
map is denoted by Do,x,y,z,ρ = θ(Io,x,y,z,ρ). We then define
a specific region T that contains the target to be attacked,
where T can be obtained by either manual or automatic (e.g.,
SAM [37]) segmentation. The objective of π-Jack is to find
an object o∗ ∈ O and its coordinate-pose (x∗,y∗,z∗,ρ∗) ∈ Po∗

that maximize the sum of estimated depth differences between
the original and compromised depth maps within the region
T , i.e.,

o∗,x∗,y∗,z∗,ρ∗ =

argmaxo∈O,(x,y,z,ρ)∈Po ∑
(u,v)∈T

∣∣D(u,v)−Do,x,y,z,ρ(u,v)
∣∣ , (1)

where D(u,v) and Do,x,y,z,ρ(u,v) denote the depth values at
pixel location (u,v) in the original and compromised depth
maps, respectively.

3.2 Threat Model
π-Jack focuses on the black-box setting, where the attacker
can only query the AV-MDE system with inputs and observe

the output depth map, without any knowledge of the MDE
model’s internals (e.g., model architecture, parameters, and
other specifics of the victim’s AV implementation). This
scenario is more realistic and difficult than most previous
works on adversarial attacks to camera-based AD percep-
tion [5, 9, 15, 75]. It is worth noting that obtaining the output
depth map has been previously demonstrated possible [17].
Moreover, the attacker is assumed to have access to the cam-
era parameters (both intrinsics and extrinsics) of the victim
AV, which are likely to be public information. As shown in
Section 6.4, π-Jack can transfer the attack vector optimized
for a surrogate MDE model to a previously unseen MDE
model, with a minor trade-off between a slight drop in attack
success rate and depth difference.

In the considered threat scenario, the attacker is capable
of placing new 3-D objects on accessible locations within
the AV scene, including sidewalks, lawns, parking lots, and
some parts of the road shoulders. This threat assumption
is realistic because objects placed in these locations would
not look suspicious or break traffic rules. Additionally, the
attacker is assumed to has access to the 3-D models of these
objects, which can be obtained using photogrammetric 3-D
reconstruction techniques with smartphone photos and related
software [24]. These 3-D models provide the attacker with
the ability to optimize object placement and orientation in the
digital space without the need to physically modify objects in
the real world.

4 π-Jack Attack Design

In this section, we introduce the attack strategy of π-Jack. As
shown in Figure 3, the whole workflow consists of five steps:
i) 3-D object selection, ii) setting the stage for 3-D object
placement, iii) object placement and rendering, iv) expectation
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Figure 3: The workflow of π-Jack’s attack strategy.



over motion and illumination to improve the robustness of
π-Jack attack, and finally v) real-life deployment and testing
(as evaluated in Section 6.5).

4.1 3-D Object Selection

The initial step of π-Jack involves selecting a set of 3-D ob-
jects to be positioned within the scene. As discussed in Sec-
tion 2, the key to successful perspective hijacking is to create
a false connection between the strategically placed object and
the target at a different distance, and thus manipulate the per-
ception of the target’s depth. To accomplish this, we suggest
four criteria for selecting the 3-D object: i) the 3-D object
should possess structures similar to the target, ii) the 3-D ob-
ject should exhibit a texture akin to the target, iii) the 3-D
object should have an extended shape, ensuring its influence
is not limited to a localized area, and iv) the object should be
ordinary and inconspicuous, so that their existence does not
raise suspicion. Note that not all of the first three criteria need
to be satisfied at the same time. Based on these criteria, we
choose nine types of 3-D objects as potential attack vectors.
Note that there are five variants for each type of object. The
detailed properties of the objects are shown in Table 1.

4.2 Setting the Stage for 3-D Object Placement

In this section, we set the stage for 3-D object placement using
information obtained from AV photos. To be specific, in order
to reconstruct a realistic scene, it is crucial to determine the
world model for placing the object and casting the shadow, and
the direction of the light source (e.g., sunlight in the outdoor
driving environments) for proper illumination. Furthermore,
a feasible region must also be identified for placing the 3-D
object, taking into consideration perspective sensitivity and
adherence to traffic rules.

4.2.1 World Coordinate Frame Reconstruction

The goal of world coordinate reconstruction is to perform
the perspective projection of the 3-D coordinates of (x,y,z)
in the real world to its 2-D coordinates on the image plane
(u,v). This allows us to place the selected object in the AV
scene, render it, and evaluate how the π-Jack attack affects the
MDE model. According to the pinhole camera model [56],

the projection can be formulated as follows:[
u v 1

]⊺
= K

[
R t

][
x y z 1

]⊺
, (2)

where R = Rz(ψ)Ry(η)Rx(φ) and t =
[

tx ty tz
]⊺ are

the camera’s extrinsic parameters that represent the rotation
and translation with respect to the world coordinate system,
with ψ, η, and φ being the Euler angles about the z, y, and
x axes respectively, and (tx, ty, tz) describing how the camera
is translated along the three axes. K is the camera’s intrinsic
matrix that encodes the focal length f , the sensor size s, and
the principal point (cx,cy):

K =

 f/sx 0 cx
0 f/sy cy
0 0 1

 .

Essentially, Eqn. (2) sets the coordinate frames of showing
how a strategically placed 3-D object is perceived by the AV
camera.

4.2.2 Illumination Estimation

Estimation of the outdoor illumination is crucial for setting the
stage for 3-D object placement, because it has been demon-
strated that illumination [14] and shadow [80] can be ex-
ploited to attack AV’s deep learning models. The illumination
condition can be readily achieved by analyzing the photo from
the AV’s camera. To be specific, for a clear sky, we model
the sky’s illumination according to [27], and the spectral ra-
diance Lλ in the direction l of the skydome can be expressed
as g(l,λ,τ,α, ls), where λ is the wavelength of the light, τ is
atmospheric turbidity (the haziness or cloudiness), α is the
ground albedo (a measure of the ground reflectivity), and ls
indicates the sun’s position. For a diffuse overcast sky, we use
the sky model g(l,λ,Lz) according to [12], where Lz is the
zenith luminance.

From these radiance models, we further obtain digitized
RGB values by rendering at a discrete number of wavelengths
ranging from 360 to 700nm. We refer to this conversion pro-
cess as gRGB(·), and express the digitized RGB color g′RGB(l)
of a skydome direction l as g′RGB(l) = ωgRGB (l), where ω is
the exposure applied to the red, green, and blue channels. To

Table 1: Properties of the selected 3-D objects.

Barrier pole Flag
Grass
clump

Ladder
Safety
sign

Garbage
bin

Traffic
sign

Roadblock
Hydrant

post
Structural
similarity

Tree trunk,
window

Tree trunk,
window

Tree,
bush

Scaffolding,
fire escape

Vehicle,
tree

Vehicle,
building

Lamp post
signs

Vehicle
Tree trunk,
lamp post

Texture Metallic Glossy Leafy Wooden Plastic Glossy Glossy Coarse Metallic
Extensibility Good Good Fair Good Poor Fair Good Fair Fair

Typical
height×width

0.20m2 0.92m2 0.43m2 1.20m2 0.56m2 1.4m2 0.52m2 0.73m2 0.142m2

Stealthiness Good Fair Good Fair Fair Good Fair Fair Fair



(a) Driving scene. (b) Estimated skydome illumination.

Figure 4: Example AV scene and estimated illumination.

generate a map of the skydome from this model, we further
discretize the skydome into several directions, and render the
RGB values.

Given a skydome panorama Q and the discretized indices
q corresponding to sky pixels in Q , we estimate these pa-
rameters by minimizing the least-square error of skydome
reconstruction using a convolutional neural network (CNN),
as demonstrated in [26]. For a clear sky, we have:

l∗s ,ω
∗,τ∗ = argminls,ω,τ∑q (Q (q)−ωgRGB (lq,τ, ls))2 . (3)

For an overcast sky, we have:

L∗z = argminLz ∑q (Q (q)−ωgRGB (lq,Lz))
2 . (4)

One example driving scene and its corresponding estimated
skydome illumination (clear sky) are shown in Figures 4(a)
and 4(b), respectively. The skydome of Figure 4(b) is oriented
such that its up direction matches the forward road direction
in Figure 4(a). One may readily observe that the reconstructed
sunlight corresponds with the lighting in the driving scene. In
particular, the shadow of the utility pole aligns perfectly with
the sun’s position (as indicated by the red arrows).

4.2.3 Feasible Region Identification

To place the 3-D object properly, we need to determine the
feasible region where it can fit. The feasible region should
meet two requirements: i) it has an impact on the depth esti-
mation of the target, and ii) it should respect both physical
laws and traffic rules. In other words, the region should be the
intersection of the salient region (as mentioned in Section 2),
and the valid region without violating physical laws and traf-
fic rules. However, due to our black-box settings explained
in Section 3.2, we cannot derive the saliency map by directly
calculating the gradient. Following the idea of D-RISE [47],

Figure 5: Feasible region identification.

we generate saliency maps for black-box MDE models by
deleting and in-painting a region of each input image frame I.
We use a binary mask B to indicate the region to be deleted,
and an in-painting function χ to fill in the deleted region with
a realistic context. The saliency map S′ is defined as the sum
of absolute differences between the original and the modified
output values for all pixels in the target object T :

S′ = ∑(ut ,vt )∈T |θ(I)(ut ,vt)−θ(χ(I⊙B))(ut ,vt)| , (5)

where ⊙ denotes element-wise multiplication. We further
apply a Gaussian blur using the kernel G(u,v) to smooth
the saliency map and remove any discontinuities. Then, we
threshold the smoothed map to obtain the salient region with
saliency above the threshold T . As a result, the processed
saliency region Fsal(u,v) can be expressed as:

Fsal(u,v) = I
[
(G∗S′)(u,v)> T

]
, (6)

where I(·) is the indicator function.
Subsequently, we annotate the valid region Fval(u,v) that

satisfies both physical and traffic constraints (e.g., a 3-D object
cannot be placed in the sky due to physical laws, nor can it
obstruct the road against traffic regulations). The valid region
can be obtained either by a human annotator or a semantic
segmentation tool like [42]. Consequently, the feasible region
can be expressed as follows:

F (u,v) = Fsal(u,v)∩Fval(u,v). (7)

An example feasible region is shown in Figure 5. The
target is the road sign highlighted by the dashed yellow box,
the green color represents the thresholded salient region Fsal,
and the red color indicates the valid region Fval. The feasible
region F is the overlapping area containing parts from both
the sidewalk and the lawn.

While the feasible region F (u,v) currently exists in the
image space, our goal is to acquire a feasible region F (x,y,z)
that dictates the 3-D object placement in world coordinates.
To achieve this, we map the 2-D coordinate (u,v) back to the
3-D coordinate (x,y,z). This task poses an ill-posed problem
since infinitely many 3-D points can project to the same 2-
D point on the image plane. Nonetheless, as the 2-D plane
containing the feasible region is known (typically the ground),
we can compute the 3-D coordinates uniquely. This process
is the inverse of the one described in Section 4.2.1 and can be
performed by solving for (x,y,z) based on the equation:

s
[

u v 1
]⊺

= K
[

R t
][

x y z 1
]⊺
, (8)

where s is a scale factor resulting from the fact that the 2-D
coordinates (u,v) are homogeneous coordinates, which means
that they can be scaled by any non-zero factor while still
representing the same point on the image plane. For example,
although (u,v,1) and (2u,2v,2) represent two distinct 3-D
points in the world coordinate frame, they are equivalent



homogeneous coordinates in the image. The scale factor s
accounts for this ambiguity when converting from 2-D to
3-D coordinates. Take a feasible region on the ground as an
example, to obtain the 3-D coordinate, we can solve for s
by substituting z = zground into Eqn. (8) and taking the dot
product with the third row of [R t ], then substitute it back to
get (x,y,zground).1 the feasible region might reside in other
planes as well.

4.3 Object Placement and Rendering
After reconstructing the world coordinate frame and identify-
ing the feasible region, we can model the chosen 3-D object
into the scene. In the modeling process, coordinate (x,y,z) in
the world coordinate frame and pose ρ are obtained by the
heuristic optimization method. We opt for heuristic optimiza-
tion over gradient-based optimization (e.g., backpropagation)
techniques because we cannot compute the gradients of black-
box MDE models. We especially choose the particle swarm
optimization (PSO) [36] in the family of heuristic algorithms
due to its high performance. We compare PSO with other
heuristic algorithms in Section ??. PSO is inspired by the so-
cial behavior observed by a group of animals in nature, such
as fish and birds, that move in the space and share information
about their best position. Technically, PSO solves an optimiza-
tion problem by having a population of candidate solutions,
called particles that move around in the search space seeking
to maximize the fitness function:

ζ = ∑(u,v)∈T
∣∣D(u,v)−Do,x,y,z,ρ(u,v)

∣∣ , (9)

which measures the difference between the modified and
original depth maps.

Each particle has a position p and velocity ṗ in the search
space Po. Note that the position p in Po should not be confused
with the coordinate in the world coordinate frame. Rather, it
is a collective term consisting of the current state of the coor-
dinate (x,y,z) and the pose ρ of the placed 3-D object. Note
that the coordinate (x,y,z) of the 3-D object is constrained
by the feasible region F (x,y,z), as determined by Eqn. (7)
and (8). As such, we represent the position and velocity of
the i-th particle in the search space as pi = (xi,yi,zi,ρi) and
ṗi = (ẋi, ẏi, żi, ρ̇i), respectively. Each particle keeps track of
its best-known personal position ppbest

i and the best-known
position of the entire swarm pgbest. The particles update their
positions and velocities at each iteration based on their ppbest

i ,
pgbest, and some random factors for exploration. We provide
the details of π-Jack’s PSO algorithm in Algorithm 1.

After placement of the 3-D object, we use HDR (high dy-
namic range) lighting [55] with the estimated skydome illu-
mination to cast realistic shadows of the 3-D object on the
ground plane z = zground or any other modeled plane in the
scene. We further employ a path-tracing renderer (e.g., Cy-
cles [31]) to render the object with appropriate shaders and

1The ground is used only as an example here,

Algorithm 1: PSO algorithm for π-Jack.
Input: Scene image I, depth estimation model θ(·),

collection of 3-D objects O, target region T in I
Output: An object o∗ ∈ O and a coordinate and pose

(x∗,y∗,z∗,ρ∗) ∈ Po that maximize fitness function ζ

1 Def stopping criterion ε and acceleration constants c1,c2
2 Initialize the current best fitness function ζ∗ =−∞

3 for each object o ∈ O do
4 Initialize a population of particles with random positions

pi = (xi,yi,zi,ρi) and velocities ṗi = (ẋi, ẏi, żi, ρ̇i) in
the search space of Po

5 Evaluate i-th particle’s fitness: ζi = ζ(pi)
6 Set the individual best position of each particle to its

current position: ppbest
i = pi

7 Set the global best position to the position of the best
particle: pgbest = argmaxpi ζ(pi)

8 while |pgbest− pi|> ε do
9 for each particle do

10 Update the velocity of the particle : pi←
ω ˙[p]i + c1r1(ppbest

i − pi)+ c2r2(pgbest− pi),
where r1,r2 are random numbers in [0,1] and
ω is the inertia weight

11 Update the position of the particle using the
velocity: pi← pi + ṗi

12 Evaluate the fitness of the particle: ζi = ζ(pi)

13 if ζi > ζ
pbest
i then

14 Update the personal best position of the

particle: ppbest
i = pi

15 if ζi > ζ
gbest
i then

16 Update the global best position: pgbest = pi

17 if the attack object o’s best fitness is better than the
current best fitness then

18 Store the best object, position, and pose:
o∗,x∗,y∗,z∗,ρ∗ = o,xgbest,ygbest,zgbest,ρgbest

19 return p∗ = (o∗,x∗,y∗,z∗,ρ∗)

materials. Then, we composite it into the original image. Fi-
nally, we perform color correction and noise reduction to
make the object blend seamlessly into the background image.

4.4 Robust Design and Analysis
In this section, we first introduce an optimization technique
called EoM&I to make π-Jack robust, then perform a mech-
anistic analysis to understand why π-Jack is intrinsically ex-
plainable and robust.

4.4.1 Expectation over Motion and Illumination

The above optimization of the 3-D object placement assumes a
static scene. Nevertheless, the photos are dynamic and evolve
over time due to the vehicle’s motion and illumination varia-
tions, both being important aspects dictating image rendering
and reflecting the inherent dynamics of AD systems and real-
world driving conditions. Therefore, we employ the ideas
in [5, 49] and formally create the expectation over motion



and illumination (EoM&I). To implement EoM&I, we first
define a distribution of photos captured along the vehicle’s
moving trajectory M to model the domain shift of the image
due to different viewing angles in consecutive frames as the
vehicle moves. To ensure that the 3-D object we place stays
at the same location across all frames, we use the Kanade-
Lucas-Tomasi (KLT) algorithm [43] to track the motion of
several anchor points (e.g., corners/edges with high visibility
and distinctiveness) in the feasible region using optical flow,
and get a solution of the camera’s motion. We further use the
solved trajectory of the camera to align our 3-D object at the
same position in the world frame across consecutive photos.

We also consider a distribution of different illumination
conditions G to account for the possible error of illumination
estimation in Section 4.2.2, as well as the shadow and bright-
ness variations as time elapses. These illumination conditions
include different sun directions ls, atmospheric turbidity τ,
exposure ω, and zenith illumination Lz. Collectively, these
parameters encapsulate all the components necessary for the
models [12, 27] described in Eqns. (3) and (4). Since the po-
tential estimation error and parameter difference are usually
small, the new illumination condition is only slightly different
from the original estimated one. Based on the above analysis,
we can reformulate the objective of π-Jack attack as follows:

arg max
o∈O,

(x,y,z,ρ)∈Po

Em∼M ,
g∼G

[
∑

(u,v)∈T

∣∣D(u,v)−Do,x,y,z,ρ(u,v)
∣∣] . (10)

In practice, it is unfeasible to explore all possible photos along
the trajectory in M and illumination conditions in G due to
high computational cost. Thus, we approximate the expecta-
tion in Eqn. (10) by averaging five consecutive frames and
five randomly sampled variations of illumination conditions,
resulting in 5×5 = 25 images in total.

4.4.2 Mechanistic Analysis

The optimization goal of Eqn. (10) is to maximize the per-
ceived depth difference before and after placing the object.
Nonetheless, it is critical to understand that Eqn. (10) does
not inherently predict whether the target will appear closer
or further away following the optimization process. This in-
determinacy is a byproduct of the optimization’s heuristic
nature, which introduces randomness to the attack outcome.
Given these constraints, we perform a retrospective exami-
nation of the attack’s impact, as opposed to making a priori
predictions on the target’s position. Through a careful exami-
nation of post-attack observations (refer to Figures 6 and 19
for concrete examples), we proceed with a posterior mechanis-
tic analysis. This analysis reveals two ways in which π-Jack
manipulates depth perception.

First, π-Jack is able to creates deceptive perspectives by
establishing textural similarity between the target and inserted
objects, and by blending structured lines of objects with exist-
ing linear perspectives. These approaches forge visual links

between the target and the introduced objects, misleadingly
suggesting proximity of the target. Second, π-Jack is also able
to disrupts established perspectives by concealing critical tar-
get boundaries essential for MDE systems’ depth calculations,
and by disrupting the scene’s natural perspective lines with
contrasting linear patterns. These tactics weaken MDE’s re-
liance on genuine perspective cues, associating the target with
distant objects within the scene.

5 Implementation, Setup, and Metrics
In this section, we provide details on π-Jack’s implementation,
and introduce the experiment setup and metrics in our study.

5.1 System Implementation and Setup
We employ Blender 3.6 for 3-D modeling and rendering,
and automate the modeling and rendering process with the
Blender 3.6 Python API. All deep learning algorithms, in-
cluding the illumination estimation and MDE models, are
built upon PyTorch 1.7.1. For illumination estimation, we
set α = 0.3 empirically for an urban driving environment. In
feasible region identification, the standard deviation of the
Gaussian kernel is set to 10 pixels, and the threshold T = 5.
For 3-D object placement, we limit the angles with respect
to the three axes to less than 10◦ to ensure that the object
appears natural and inconspicuous. We employ Python 3.7
to implement and analyze the PSO algorithm and the feasi-
ble regions, setting both acceleration constants of the PSO
algorithm c1 and c2 to 2. For EoM&I, the turbidity variation
is within a range of ±0.5, the exposure variation is within a
range of ±0.005; the variation of the sun position is within a
range of ±5◦ (equivalent to the sun moving 40 minutes); the
variation of the zenith illumination is 100 lux. The camera-
solving process is implemented by the Libmv [82] library.

5.2 Experiment Setup
We select 500 experiment AV scenes from the KITTI
dataset [19], encompassing a broad spectrum of road con-
ditions such as highways, crosswalks, and pedestrian areas.
These scenes also include a variety of background objects
like buildings, trees, trucks, smaller vehicles, traffic signs, and
traffic lights. In addition to this, we gather our own AV scenes,
both with and without strategically positioned objects, to eval-
uate π-Jack in real-world scenarios. For the MDE model, we
choose to evaluate π-Jack using MonoDepth2 [21], Depth-
Hints [67], and ManyDepth [68]. We make this selection
based on their practicality, as they employ a self-supervised
training strategy similar to the ones used by Tesla Autopi-
lot [1, 17, 59] and Waymo [86], eliminating the need for
ground-truth depth while achieving comparable accuracy with
supervised training. Furthermore, they are open-sourced and
readily available.

5.3 Metrics
Mean depth error. For a specific target region T in the image,
the mean depth error is defined as the average discrepancy



between the perceived depth of the original scene and the
modified scene after π-Jack attack at each pixel (u,v) ∈ T .
Intersection over union (IoU). For the downstream task
of road segmentation, we use IoU to quantify the overlap
between ground truth and the prediction pixel sets as the ratio
of their intersecting and union areas.
Average precision (AP). For the downstream task of 3-D
vehicle detection, AP measures the accuracy of detection by
averaging the precision scores at different intersections over
IoU thresholds. A lower AP means that the model misses
some or detects wrong vehicles due to π-Jack attack.

6 Attack Evaluation
We begin by assessing the overall performance of π-Jack.
Following this, we analyze the robustness of the attack un-
der various practical factors, such as object size, and distance
attack vectors. In addition, we conduct an ablation study to
examine how π-Jack performs without the EoM&I techniques.
Subsequently, we compare the PSO algorithm used by π-Jack
with other optimization algorithms, and investigate the gen-
eralization capability of π-Jack to other models. Finally, we
evaluate π-Jack with real-world scenes and attack vectors.
We postpone extended discussions of impact of π-Jack on
downstream tasks such as object detection and semantic seg-
mentation in Appendix A.

6.1 Overall Performance
Figure 6 illustrates some examples of how π-Jack can manip-
ulate depth estimation. In each example, the original scene is

shown in Figure 6(a), with the target object highlighted by a
yellow box. The modified scene after π-Jack attack is shown
in Figure 6(b), with the attack vector highlighted by a red
box. The depth maps of the original and modified scenes are
shown in Figures 6(c) and 6(d), respectively. The absolute dif-
ference between the two depth maps is shown in Figure 6(e).
It is important to understand that changes in depth across the
entire picture are unintended byproducts of optimizing a lo-
calized objective function. Each row of Figure 6 demonstrates
a different scenario and together these scenarios illustrate the
effectiveness and diversity of π-Jack attack.

The first row shows how a ladder can trick the depth esti-
mation system into believing that a faraway tree is almost as
close as the ladder. The second row presents a case where a
simple barrier pole can alter the perceived depth of a large
portion of a building. The third row indicates that a garbage
bin can affect the depth estimation of a moving vehicle, sug-
gesting that downstream tasks such as 3-D vehicle detection
are also vulnerable to π-Jack attack. The fourth row reveals
that a clump of grass can deceive the MDE into thinking that a
distant bush is much closer. It also shows that the attack vector
and the target object do not need to touch in the image space
for the π-Jack attack to succeed. The fifth row depicts how a
“stop” sign can distort the depth of more distant traffic signs.
In the sixth row, it can be observed that a small 3-D object
such as a safety sign can successfully hijack the perspective
of a much larger target object such as a remote tree.

We further evaluate π-Jack ’s performance by measuring
the mean depth error for various targets and attack vectors.

(a) Original scene. (b) Attacked scene. (c) Original depth estimation.(d) Attacked depth estimation. (e) Depth difference.

Figure 6: Example estimated depth maps before and after π-Jack attack.



The average depth error is 14.75m, with detailed results re-
ported in Figures 7(a) and 7(b). Figure 7(a) reveals that the
medians for the mean depth errors of the target tree (TR),
buildings (BD), bush (BS), vehicles (VH), and traffic signs
(TS) are 19.68 m, 16.59 m, 14.87 m, 11.18 m, and 10.15 m,
respectively. The reason behind the observation that trees are
most vulnerable is that any pole-shaped 3-D object may hi-
jack the depth estimation of the trunk of the tree significantly.
Moreover, trees can also be attacked effectively because they
have a texture that can be easily mimicked by plants such as
a clump of grass. Buildings are also prone to π-Jack because
they share many common structural features (e.g., parallel
lines and rectangular patterns) with attack vectors. Although a
bush has a similar texture to trees, its irregular shape and posi-
tion make it less vulnerable to attack vectors in the feasible re-
gions. Traffic signs and vehicles pose the most challenges for
π-Jack due to their placement on perspective-rich roads, dis-
tance from feasible regions, and incongruent colors/textures
with our attack vectors. Nonetheless, their median depth error
exceeding 10m represents a significant threat to AV-MDE.

Figure 7(b) shows the mean depth errors caused by dif-
ferent attack vectors. Barrier poles (BP), flags (FL), grass
clumps (GC), ladders (LD), safety signs (SS), traffic signs
(TS), garbage bins (GB), roadblocks (RB), and hydrant posts
(HP) achieve medians for mean depth errors of 21.10 m,
25.77m, 15.05m, 12.00m, 8.65m, 8.973m, 10.15m, 4.21m,
and 5.76m, respectively. The better performance of BP, FL,
GC, and LD can be explained by Table 1. To be specific, poles
and flags are the best because their superior extensibility al-
lows them to connect and blend with distant targets; grass
clump is the third best because its similar texture with dis-
tant trees and bushes enables it to blend in. Finally, ladders
also perform well due to their fair extensibility and structural
similarities with distant buildings.

6.2 Robustness Analysis

In this section, we analyze π-Jack’s robustness to different
real-life factors. These factors include the size of the 3-D
object as well as the distance between the placed object and
the AV camera. We postpone the robustness analysis of the
vehicles displacement and sun’s position to Section 6.3. We
evaluate π-Jack on an Audi Q7 vehicle, utilizing a factory-
installed front camera. The poses of the attack vectors are
adjusted by placing foam and glue underneath.
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(b) Attack vector.

Figure 7: Overall π-Jack performance.

6.2.1 Effect of Object Size

We measure the planar size (height × width) of the attack
vectors and investigate their impacts on depth estimation er-
rors. The results are shown in Figure 8. Overall, object size is
not strongly correlated with depth error. However, one may
observe some intriguing phenomena: an object that appears
smaller (0.2 m2) to the camera may have better attack per-
formance than an object that appears larger (1.4 m2). This
phenomenon can be attributed to the characteristics of the
objects involved. For example, more extensible objects such
as barrier poles, though visually smaller, demonstrated greater
effectiveness in comparison to bulkier objects like garbage
bins, which lack extensibility, as analyzed in Section 6.1.

6.2.2 Effect of Distance

We investigate the impact of the distance from the placed 3-D
object to the camera and present the results in Figure 9. It
becomes evident that when the distance to the camera falls
within the range of 5m to 20m, the performance of the π-Jack
attack remains largely insensitive to the distance, resulting in
medians for mean depth estimation errors of aroufnd 20 m.
However, as the distance continues to increase, the effect of
the attack starts to decrease, and at a distance of 40m from the
camera, the medians for π-Jack’s induced mean depth errors
can be as low as 3m. The diminishing effectiveness of π-Jack
can be explained by the fact that as the distance increases, the
attack vectors become smaller to the camera, thereby causing
their structure and texture to become less clear and reducing
their ability to hijack the perspective of the targets.

6.2.3 Effect of Object Angle

We further explore the effect of the object’s azimuth angle.
Given the dependency of the optimal angle on the target’s posi-
tion, which can significantly vary, we define the optimal angle
as 0◦ and adjust the azimuth angle in proximity to this refer-
ence point. The robustness analysis presented in Figure 10
reveals that even within a relatively broad azimuth range of
[−3◦,3◦], the median depth error consistently exceeds 10m,
thereby affirming the effectiveness of our approach.

6.2.4 Effect of Object Position

Object distance and azimuth angle in Section 6.2.2 and 6.2.3
are sufficient to position an object. We further examine the
influence of object placement contexts, including roads (RD),
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Figure 8: Impact of size.
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Figure 9: Impact of distance.
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Figure 10: Impact of angle.
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Figure 11: Impact of position.

sidewalks (SW), lawns (LW), parking lots (PL), crosswalks
(CW), and plazas (PZ) in Figure 11. Our findings reveal that
objects positioned on roads induce the greatest depth error.
This can be attributed to the fact that roads are the most salient
regions in camera views. However, while deploying attack
vectors on roads might be most effective, such strategies are
less feasible due to the potential for traffic disruption.

6.2.5 Effect of Illumination
We also study the impact of illumination, as shown in Fig-
ure 12. We evaluate the performance of π-Jack under envi-
ronment illumination from 100lux to 1,000lux. The change
of illumination is achieved by conducting experiments at dif-
ferent times of day. The results indicate that the depth errors
remain relatively consistent, demonstrating limited sensitivity
to changes in illumination.

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Illumination (lux)

0

20

40

M
ea

n
 d

ep
th

 e
rr

 (
m

)

Figure 12: Impact of lux.
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Figure 13: Impact of pose.

6.2.6 Effect of Object Pose
We also examine the effect of object pose variations (including
pitch, yaw, and roll) in Figure 13. The results indicate that the
system, π-Jack, sustains its high level of effectiveness across
a broad range of [−15◦,15◦] for all three angles. Notably,
changes in roll angle result in the most significant decrease
in depth error, attributable to its pronounced change in the
object’s appearance in the camera’s view.

6.2.7 Effect of Target Region Segmentation
We lastly compare the performance of manual target seg-
mentation and SAM [37]. It turns out that the induced depth
errors (on different targets and of different attack vectors) un-
der these two segmentation methods are consistently smaller
than 0.01m, demonstrating the equivalency of these two.

6.3 Ablation Study
In this section, we conduct ablation studies on the EoM and
EoI processes, comparing the results with the original π-Jack

pipeline. The targets and attack vectors are the same as in
Section 6.1. Figures 14,15, and16 illustrate how EoM impacts
π-Jack’s performance during vehicle movement. EoM consis-
tently achieves a median depth estimation above 10m, outper-
forming non-EoM cases by over 3m on average, showcasing
π-Jack’s effectiveness across various velocities. Notably, EoM
manages frame differences of ±2 (at a 25m/s velocity, frame
rate of 10) effectively, maintaining induced errors above 10m,
while without EoM, errors drop below 4m. Similarly, EoM
also handles lateral distances up to ±2 m effectively. Ad-
ditionally, Figure 17 examines the effect of time of day on
depth error estimation. Without EoI, depth error estimation
decreases by 2m under varying illuminations. However, with
EoI, π-Jack’s performance remains stable across the day.
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Figure 17: Time of day.

6.4 Generalization to Different MDE Models
We believe π-Jack is a general attack not limited to any spe-
cific model. To support this claim, we assess the scenes π-Jack
crafts for MonoDepth2 on two other models, DepthHints and
ManyDepth, and present the results in Figure 18. It can be
observed that generalization to DepthHints and ManyDepth
renders the attack vectors slightly less effective, with the mean
depth errors decreased by an average of 2m and 3m, respec-
tively. Nonetheless, even after transferring the π-Jack attack
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Figure 18: Generalizability of π-Jack to different models.

to another model, it still poses a significant threat to the safety
of AD. We believe that by optimizing the attack in a model-
specific manner, the performance drop can be mitigated.



(a) Original scene. (b) Attacked scene. (c) Original depth estimation.(d) Attacked depth estimation. (e) Depth difference.

Figure 19: Evaluation with real-world scenes and attack vectors.

6.5 Evaluation in the Wild
To evaluate π-Jack in real life, we conduct experiments in two
types of locations to ensure there’s no interference from oth-
ers: 1) dedicated test sites, and 2) closed roads under construc-
tion. For the latter, we have secured the necessary approvals
from appropriate authorities, guaranteeing that our experi-
ments proceed without affecting public safety or violating any
regulations. We collect a total 200 scenes. Figure 19(a) shows
three representative scenes for visualization purposes. Fig-
ures 19(b), 19(c), 19(d), and 19(e) show the modified scenes,
the depth maps of the original and modified scenes, and the
map of depth difference, respectively. In the first scene with a
tree as the attack target, π-Jack selects a ladder as the attack
vector. It can be observed that the target tree is “hijacked”
closer to the attack vector. In the second scene with a build-
ing including its skylight as the attack target, π-Jack selects
a roadblock as the attack vector. It can be observed that the
affected area is much larger than the first scene, probably
due to the rectangular structure shared by the roadblock and
a large portion of the building body. In the third scene, the
attack target is a tree, and π-Jack selects a traffic sign “cau-
tion” as the attack vector. One may readily observe that the
target tree is moved further away from the attack vector in the
depth map, creating an “inverse” perspective hijacking effect.
Rather than creating a false perspective and makes targets
appear closer, π-Jack disrupts the perspective information of
the tree by obscuring its root, and makes it blend with a more
distant background tree.
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(b) Attack vector.

Figure 20: Summary of real-world evaluations.
We further present the performance statistics in various

scenes. The average mean depth error is 10.14 m, as illus-

trated in Figure 20. In real-world scenarios, the induced depth
estimation errors are slightly smaller than those in the com-
posited images, as shown in Figure 7. These differences can
be attributed to the bias brought by a smaller number of real-
world scenes requiring laborious placement. However, the
results across the targets and attack vectors exhibit a similar
trend and align with the outcomes obtained from composited
images. The results with real-world scenes and objects show
that the success of π-Jack does not stem from peculiarities or
artifacts in the workflow. Instead, perspective hijacking is a
feasible and effective attack in the physical world.

7 Security Analysis and Defense Discussion
7.1 Security Analysis

Since modern AVs adhere to the “Sense-Plan-Act” design
paradigm [18], any malfunction occurring in the MDE module
(residing in the “Sense” layer), which is targeted by π-Jack,
will propagate to the upper layers. To analyze the security
implications of π-Jack in the entire AD stack, we conduct end-
to-end simulations using the AWSIM [83] and Autoware [60].
We employ the Tokyo West Shinjuku map and a customized
Dallara AV-21R vehicle. The simulation features 30 NPCs
and uses a traffic seed value of 20. Autoware employs the
3-D object detection algorithm BEVDet [28]. We implement
the π-Jack attack by introducing a 3-D model of the attack
vectors into the simulation environment. It is important to
note that we do not aim to involve performing evaluations on
a real AV in the physical world due to the associated costs
and safety considerations.

Our findings from the simulation are quite concerning.
Even in a traffic-free scenario, π-Jack lead to high incidences
of improper lane changes and abrupt braking at rates of 63.4%
and 55.0%, respectively. Furthermore, these flawed decision-
makings result in a 23.9% probability of the vehicle diverting
off its course and colliding with other objects. When introduc-
ing traffic into the scene, the compromised MDE results in a
42.4% likelihood of collisions with other vehicles or pedes-
trians. In stark contrast, the rates of improper lane changes,



abrupt stops, and collisions are all 0% in the absence of the
π-Jack attack. Our observations clearly illustrate that the reper-
cussions of the π-Jack system are not confined to the “Sense”
layer alone, but extend throughout the entire stack of AD sys-
tems. This highlights the critical need for both rigorous unit
testing and comprehensive strategies to address MDE-related
security issues, as indicated by AD industry standards [30].

(a) AV scene. (b) π-Jack’s effect.

Figure 21: Example scenes from AWSIM and Autoware.

We illustrate two example scenes from AWSIM and Auto-
ware in Figure 21. Attack vectors and targets are highlighted
with red and yellow bounding boxes, respectively. In the first
scene, a garbage bin is used as an attack vector to target a dis-
tant truck. As shown in planning, the AV system erroneously
perceives the truck as being on the roadside and changes its
lane to avoid it. In the second scene, a ladder is employed to
target a distant building. The AV system mistakenly thinks the
building is blocking the road and decides to brake abruptly,
resulting in a collision with another vehicle behind, as shown
in the rotate-around scene.
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Figure 22: Impact of velocity.
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Figure 23: Impact of time.

Velocity and timing also influence the rate of flawed
decision-making. In Figure 22, it is shown that the accident
rate remains consistent for velocities under 35m/s but slightly
decreases at higher velocities, likely due to the diminished
temporal effect of π-Jack on the AV system. Consequently,
we further assess the notion of effective time, which we define
as the duration an object remains within the target’s salient
region. The region’s boundary is determined by setting a
threshold at 10% of the maximum value found in the saliency
map. Figure 23 illustrates that when the effective time is be-
low 100ms, the incidence rate decreases, probably due to the
limited perception rate. We leave π-Jack’s evaluation on more
AD systems such as LGSVL and Apollo to future works.

Table 2: Effects of defense by adversarial training.
Mean depth

error (m)
Adversarial training

(conventional)
Adversarial training

([10])

MonoDepth2 13.87 (↓ 0.88) 12.33 (↓ 2.42)

DepthHints 10.93 (↓ 1.89) 9.91 (↓ 2.91)

ManyDepth 9.61 (↓ 1.69) 8.72 (↓ 2.58)

7.2 Potential Defense Methods

One potential defense method to defend against the perspec-
tive hijacking attack is conventional adversarial training. The
idea is to collect AV data with adversarial examples contain-
ing 3-D objects in the model’s training stage to improve the
model’s robustness. We follow the steps in Section 4 to place
100 effective attack vectors, and use the KLT algorithm in
Section 4.4 to insert the 3-D objects into consecutive camera
frames. We anticipate that this kind of training can make the
MDE model less sensitive to perspective hijacking. We train
the MDE model with this method and test its performance
against π-Jack attacks using composited images. Table 2 in-
dicates that this defense can improve the MDE model’s ro-
bustness and raise the attack difficulty. However, the 0.88m,
1.89 m, and 1.69 m decreases in mean depth error are not
very impressive, probably because the limited number of at-
tack vectors we craft cannot cover all vulnerabilities in the
feasible region. We leave a more effective defense based on
adversarial training to future work.

Besides conventional adversarial training, a novel strategy
specifically tailored for self-supervised MDE is introduced
by [10]. This method distinguishes itself from the conven-
tional approach by inserting adversarial objects into only the
latter of two consecutive frames during self-supervised train-
ing. This selective placement can prevent the model from
converging on inaccurate yet robust depth estimations, which
might occur when 3D objects are employed across all frames.
By ensuring depth estimation consistency between consecu-
tive frames with the adversarial object appearing in just the
latter, this approach effectively removes the constant bias in-
troduced by an adversarial object. Table 2 shows that this
refined defense mechanism enhances the robustness of MDE
models, further reducing the depth error by 2.42, 2.91, and
2.58m for three MDE models, outperforming conventional
adversarial training. It should be noted that the refined de-
fense’s success against stronger patch attacks relies on the
MDE model’s familiarity with the attacks, not their strength.
In the π-Jack attack, only a few attributes (e.g., pose and dis-
tance) are manipulated, unlike patch attacks where every pixel
can change. This limitation reduces the defense’s effective-
ness in adapting the MDE model to π-Jack attacks compared
to patch attacks. However, the effectiveness of both adver-
sarial training methods remain somewhat limited due to the
constrained number of attack vectors available, underscoring
the efficacy of the proposed π-Jack attack.

A different approach to defend against π-Jack is adversarial



detection. The method identifies and rejects adversarial inputs
before feeding them to the model. For example, the AV-MDE
system may use auxiliary classifiers to detect anomalous in-
puts that may contain perspective-hijacking patterns. Another
possible defense mechanism is to use multiple sensors or
modalities to estimate depth, such as lidar and radar that di-
rectly measure the distance of objects. By fusing the informa-
tion from different sources, AV can reduce the dependence on
a single cue and increase the robustness to perspective hijack-
ing. However, these methods face additional challenges such
as sensor calibration, data alignment, and computational cost.
Moreover, they might be infeasible as some car manufacturers
such as Tesla rely on the all-vision AV solution [1, 59].

7.3 Safety Considerations
Since most vision-based commercial AD/robotics systems
rely on either explicit or implicit depth estimation in their
object detection and segmentation modules, they should be
universally vulnerable to the π-Jack attack. Testing all of these
systems is beyond the capability of the authors, so we leave
the case-by-case investigation to future research. Section 7.2
presents defenses that, upon enhancement, could potentially
counter the π-Jack attack effectively. It is essential to empha-
size that the exploration of the π-Jack attack adheres to ethical
research standards, with no intention to facilitate real-world
attacks against AVs. Instead, by bringing the π-Jack attack to
light, we seek to alert the academic community to this vulner-
ability, encouraging a concerted research effort to safeguard
against these threats. This proactive disclosure is intended
to preemptively counteract malevolent entities from exploit-
ing these vulnerabilities in real-world scenarios, ensuring the
advancement of cybersecurity in the AV sector.

8 Related Work
8.1 Attack on Autonomous Driving Perception
AD systems rely on sensors such as camera, lidar, radar,
ultrasonic, and IMU for perception [76, 78, 79]. However,
these sensors are vulnerable to spoofing (i.e., broadcasting
false or modified signals that cause the sensors to produce
incorrect results) [3, 6, 48, 52, 64, 72, 73] and jamming (i.e.,
overpowering the signals with noise that overwhelm the re-
ceiver) [52, 72] attacks. These attacks target vulnerabilities at
the signal processing level, without exploiting the algorithms
that process the sensor information. In contrast, more recent
attacks focus on higher levels (e.g., AD perception and au-
tonomy level) by exploiting vulnerabilities intrinsic to AD
software and algorithms. Some examples include attacks on
camera/lidar object detection [6, 8, 54, 75], tracking [33], lo-
calization [51], lane detection [34], intrusion detection [58],
steering angle detection [11], and end-to-end AD [62].

8.2 Digital Adversarial Attacks
Conventional adversarial attacks typically occur in the digital
domain, where crafted perturbations are directly fed to the

model. These perturbations are usually bounded by the lp
norm [7, 22, 44, 77] to remain imperceptible. Digital adver-
sarial attacks can be either white-box or black-box, depending
on the attacker’s access to the model. In white-box attacks, the
attacker has full knowledge of the model (e.g., input, output,
weights) and can use the model’s gradient to generate adver-
sarial perturbations [7, 22, 40, 44, 46]. In black-box attacks,
the attacker can only input data and observe the model’s out-
put, without knowing the model’s architecture and parameters.
However, even in black-box settings, attackers can exploit the
transferability of perturbations to similar models [13, 45, 63]
or estimate model information through multiple queries [29].

8.3 Physical-World Adversarial Attacks
In contrast to digital domain attacks, physical-world adversar-
ial attacks on MDE are more realistic yet more challeng-
ing, as they require robust perturbations that can survive
various environmental factors (e.g., lighting, weather, dis-
tance, and angle) and affect the 3D scene understanding of
autonomous systems. Previous works have investigated the
“sticker-pasting” strategy [15] on the pixel level to attach stick-
ers on traffic signs [15], cars [8, 9, 71], and roads [71] to
mislead deep neural networks such as classfiers [4, 15], ob-
ject detectors [8, 8, 16, 54, 61, 75], and depth estimation
networks [9, 15]. These attacks leverage techniques such as
style transfer [9] and EoT [2, 32] to make the stickers less
noticeable and more robust to real-world conditions.

More recent physical-world attacks exploit light and
shadow phenomena to achieve non-invasive attacks without
physically modifying target objects or scenes. For instance,
AdvLB [14] and DoubleStar [81] use light beams directly
as attack vectors, proving to be effective physical-world at-
tacks on DNNs. OPAD [20] deceives classifiers by projecting
structured illumination with a low-cost projector. Zhong et
al.[80] use natural-looking shadows to mislead traffic sign
classifiers without alerting humans. Sayles et al.[50] leverage
the rolling shutter effect to generate desired outputs. Most of
these attacks work by transferring pixel-level attacks to the
physical world, except for [34], which operates on the scene
level by placing line markings on the road.

9 Conclusion
In this paper, we propose π-Jack as the first physical adver-
sarial attack on AV-MDE systems utilizing perspective hi-
jacking. Exploiting ordinary 3-D objects as attack vectors,
π-Jack offers superior effectiveness, robustness, accessibility,
and inconspicuity. Our experiments validate the high attack
success rate and large depth difference achieved by π-Jack,
demonstrating its successful application in both composited
and real-world AV scenes. We also explore π-Jack’s exten-
sions to two downstream tasks of road segmentation and 3-D
vehicle detection. Our results expose critical vulnerabilities in
widely-used AV-MDE models and hence underscore an urgent
need for enhanced security measures against such risks.
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A Impact on Downstream Tasks

In this section, we evaluate π-Jack’s impact on road segmen-
tation and 3-D vehicle detection.

A.1 Road Segmentation
Road segmentation is critical for AD, enabling the vehicle’s
AI to distinguish drivable from non-drivable areas for safe nav-
igation and accident prevention. Moreover, it assists in com-
prehending the environment for effective decision-making
and planning. Attacks on depth estimation can severely affect
the segmentation by misleading the vehicle on object distance
and location. This can result in an erroneous interpretation
of drivable areas, leading to unsafe driving conditions. To
demonstrate π-Jack’s impact on road segmentation, we em-
ploy the widely used fully convolutional networks to generate
road segmentation before and after π-Jack attack. As illus-
trated in Figures 24(a) and 24(b), the introduction of a flag in



the first row of Figure 24 disrupts the perspective of a distant
tree, causing a complete failure in the segmentation between
the flag and the tree. Similarly, the second row demonstrates
how a clump of grass disrupts the perspectives of both distant
trees and nearby lawns, leading to the recognition of a large
“forbidden” area on the road.

(a) Original scene. (b) Attacked scene.

Figure 24: Road segmentation.

We further quantitatively assess how π-Jack affects road
segmentation. Without the π-Jack, the average IoU between
the segmented road and the ground truth is 0.942. However,
upon launching the π-Jack attack, the average IoU drops
significantly to 0.867. The detailed IoU values for differ-
ent targets and attack vectors are illustrated in Figures 25(a)
and 25(b), respectively. It becomes evident that there is a
negative correlation between the IoU and mean depth error
induced by the π-Jack attack (shown in Figure 7), firmly indi-
cating that the hijacked depth disrupts the downstream task
of road segmentation.
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Figure 25: IoU of segmented road before and after attack.

A.2 3-D Vehicle Detection
3-D vehicle detection is another important task of AD, as
it allows the vehicle to accurately perceive and locate sur-
rounding vehicles in 3-D space, which is essential for safe
navigation and decision-making. Given that 3-D vehicle detec-
tion largely depends on depth information, a π-Jack attack can
significantly compromise the accuracy and reliability of the
detection system. This might lead to incorrect or incomplete
object detection, thereby jeopardizing the safety of the AV and
its passengers. We use the state-of-the-art MonoCon [41] to
perform vehicle detection. Figure 26 illustrates the outcome
of vehicle detection, with the first two rows presenting the
3-D bounding boxes before and after the attack, and the last
two rows showing the detection results from a bird’s-eye view.
It can be clearly seen from Figure 26(a) how the introduction

of a garbage bin can alter the perspective of a distant vehicle
by approximately 5m. Similarly, in Figure 26(b), a ladder can
distort a vehicle’s perspective even without overlapping with
it in the image space.

(a) Example scene 1. (b) Example scene 2.

Figure 26: 3-D vehicle detection.
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Figure 27: AP of detected vehicle before and after attack.

We further evaluate how π-Jack affects 3-D vehicle detec-
tion quantitatively. As shown in Figure 27(a), without the
π-Jack attack, the AP of vehicle detection at IoU thresholds
from 0.5 to 0.9 are 91.04%, 85.63%, 72.38%, 61.27%, and
55.88%, respectively. However, upon launching the π-Jack
attack, the AP decreases to 20.3%, 5.33%, 0%, 0%, and 0%,
respectively, indicating an AP drop of more than 71%. We
further analyze how different attack vectors affect the AP
of vehicle detection, focusing on AP@IoU=0.5 due to the
small APs at IoU thresholds from 0.5 and 0.9. As shown
in Figure 27(b), we determine that the most effective attack
vectors for vehicle detection are grass clump, ladder, and road-
block, with APs of 11.96%, 9.56%, and 10.25%, respectively.
The prominent performance of these attack vectors can be at-
tributed to their similar structures and locations with vehicles
on the road.
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