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Reporting for Smart Grids
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Abstract—In smart grid, the highly dynamics of electrical
loads introduce uncertainty to the system, which also brings
new challenges for the power grid control and optimization.
Reporting demand information by customers in solving the
economic dispatch control (EDC) problem in power grids is a
promising approach, but it raises important privacy concerns.
One solution is to add random noise to aggregate queries of
demand reports can provide differential privacy (DP) for the
individual customers. However, the noisy query information can
adversely degrade the EDC’s optimality. In this paper, we first
analyze the cost in demand reporting in terms of how DP-induced
noise will increase the total generation cost. We show that the
noise amounts for different customers are intricately coupled
with one another in determining the total cost. To deal with the
coupling, we apply the principle of Shapley value to attribute fair
shares of the total cost to the power grid buses and study the
properties of this cost sharing approach. For efficient sharing of
the privacy cost, in a manner scalable to large power systems with
many buses, we propose heuristic algorithms to approximate the
Shapley value. Moreover, we study important network effects
of the per-customer DP cost within a privacy group attached
to the same bus, in that this cost depends on how many other
customers choose the same privacy group. Accordingly, we design
a pricing scheme for the customers that we prove to be truthful,
i.e., customers have no incentives to deviate from the group that
represents their true privacy needs. We also discuss the impact of
the high-demand customer on other customers’ cost and propose
an approach in the pricing scheme to charge higher cost on the
high-demand customer. Trace-driven simulations based on a 5-
bus power system model validate our analysis and illustrate the
performance of the proposed cost sharing algorithms.

Index Terms—smart grid, differential privacy, demand report-
ing, cost sharing

I. INTRODUCTION

In the era of smart grids, highly dynamics at the electrical
loads are introduced due to, for example, the proliferation
of demand-side renewables (e.g., solar panels), batteries for
energy storage, and smart appliances that can react to their
environments, as well as real-time energy pricing increasingly
required by law for customers [1], which makes the load
demand even harder to predict. The unpredictability of load
brings new challenges for grid operators to optimize the
efficiency of their power networks. The classic economic
dispatch control (EDC) [2], which plans the active power
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outputs of generators to meet future demand at the lowest
total generation cost, is an important example problem. In
current power grids, a forecast-demand vector of the buses
is used in EDC to calculate the optimal power flow and the
output is scheduled at generators. The forecast accuracy of
demand will be necessarily reduced by higher load dynamics
and hence the EDC’s optimality will be undermined [3]. To
combat the uncertainty, one promising solution is the demand
reporting from end customers, in which smart meters installed
at the consumption points report their future demand for the
purpose of the EDC. Demand reporting has also been used in
other demand response applications such as bid-based market
clearing [4].

Demand reporting, although useful, it can lead to natural
privacy concerns, i.e., the knowledge of power consumption
may generally reveal sensitive information such as users’ daily
activities. For example, non-intrusive load monitoring (NILM)
may infer a household’s detailed tasks from a trace of its
power consumption [5]. To mitigate the privacy concern, we
can apply the differential privacy (DP) [6] technique, which is
a rigorous information-theoretic approach to prevent leakage
of individual records by statistical (e.g., aggregate) queries
on a database of these records. DP is relevant to the privacy
of demand reporting for EDC, because EDC requires only
aggregate demand forecast per-bus for its decisions. Hence,
following the principle of DP, we may add random noise to
the aggregate (future) demand reported by the customers and
reveal only this noisy version of the aggregate [5], [7], [8],
[9], [10]. The amount of noise added is commensurate with
the required level of privacy protection. However, due to the
noisy per-bus aggregates, the suboptimal control will be led
in EDC. The resulting increased generation cost represents the
cost of privacy. Understanding this privacy cost is important
to the design of demand reporting.

Based on the above key observations, we study two fun-
damental problems in this paper. First, how to quantify the
system-wide total DP cost of demand reporting for EDC, in
which different groups of customers may require different
levels of privacy? Second, how to attribute fair shares of the
total DP cost to the heterogeneous groups of customers so
that, for example, customers having more stringent privacy
requirements will have to bear a higher privacy cost because
they impose higher inaccuracy of the input to the EDC? Our
analysis and cost sharing algorithms will provide an important
basis for practical implementation of demand reporting for
EDC and other smart grid control applications, by allowing
customers to acquire sufficient privacy protection on a fair cost
basis. The attribution of privacy cost in this study is meant to
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apply in the context of an incentive program that motivates
customers to take part in the demand reporting by passing
on generation cost savings to the customers, although detailed
design of this incentive program is beyond the scope of this
paper. Hence, we do not expect that customers will make net
payments for buying privacy for their demand reports. Rather,
it is expected that they will receive compensation as reward for
their participation in the demand reporting. The privacy cost
may then serve as a negative adjustment to this compensation,
so that the net incentive compensation for a more privacy-
stringent customer will be lower but still positive.

In answering our research questions, we address the fol-
lowing three key challenges. First, existing studies on DP for
smart meter data aggregation have considered only a single
homogeneous level of required DP [5], [7], [8], [9], [10].
We believe that, whereas heterogeneous customers in the real
world will desire different levels of privacy protection, a
demand reporting scheme that admits a range of the provided
DP will be more responsive to their needs. Moreover, existing
studies do not address key features of the physical system,
e.g., the grid’s topology, required by the EDC. In this pa-
per, we analyze heterogeneous DP protection and its impact
based on realistic power grid topology. Second, inaccuracy
of demand reports will mislead the EDC into a generation
dispatch that does not balance the supply and demand, thereby
causing under-/over-frequency. Load-frequency control (LFC),
a closed-loop control system that regulates the grid frequency,
will kick in to fix the mismatch in practice. Thus, we define
the DP cost as discrepancy between the post-LFC generation
cost and the generation cost without DP protection. However,
because of complex dynamics of the LFC, it is non-trivial
to derive the relationship between the post-LFC generation
cost and the noise amounts in demand reports. Third, as our
analysis shows, the noise amounts for different privacy groups
are deeply coupled with one another in determining the total
DP cost. This property precludes independent attribution of
the DP cost for each group in isolation. We must account for
any network effects of the DP between interdependent groups.

In addressing the above challenges, we make the following
contributions:

• We propose a demand reporting scheme in which each
customer chooses a privacy level characterized by an ϵ
value from a predefined offered set according to the ϵ-
DP definition, and all the customers choosing the same
ϵ constitute each privacy group. We extend the approach
in [6] to achieve ϵ-DP for each group.

• Based on a power engineering model of the LFC, we
derive an analytic expression for the total privacy cost.
We prove that it is always non-negative. This expression
is a prerequisite for computing the fair DP cost shares
for the different buses.

• We apply the principle of Shapley value to attribute fair
shares of the total privacy cost to the buses. However,
although the Shapley value is an effective and well
accepted conceptual device, its implementation does not
scale well to a large power system with many buses. Thus,
we propose heuristic algorithms of low complexity for the
DP cost attribution problem among the buses, and similar

baseline algorithms for sharing the per-bus cost among
the privacy groups. We compare their performance with
the Shapley value-based approach.

• We study important network effects of the per-customer
DP cost within a privacy group associated with a bus,
in that this cost depends on each group’s “popularity” or
how many other customers on the bus choose the same
group. We present game-theoretic arguments that the
baseline pricing schemes for the per-bus privacy groups
are not truthful, in that customers may have motivation to
deviate from the group that truly represents their privacy
needs. Accordingly, we ameliorate the pricing scheme of
the groups to ensure its truthfulness.

• We also study the network effects of the high-demand
customer on the per-customer privacy cost, where the
high-demand customer can greatly increase the group
cost due to its high upper bound. To ensure the fairness
for low-demand customers, one alleviation approach is
proposed to impose higher cost to the high-demand
customers in corresponding groups.

• We conduct extensive simulations based on a 5-bus power
system model and real load traces to validate our analysis
and illustrate the performance of cost sharing algorithms.

Our prior work [11] presented the analysis of the grid’s
total DP cost and the design of various cost sharing schemes.
Based on [11], we make the following new contributions
in this paper: 1) For the completeness of the discussion on
the pricing scheme, we analyze several properties of Shapley
cost sharing scheme. Specifically, in Section VI-B1, we add
the introduction of the basics of Shapley value. Then, in
Section VI-B3, we present two key properties on the Shapley
cost sharing scheme, which show how the noise introduced
at each bus can affect the per-bus and overall privacy cost
in the whole system. 2) We add Section VII to study the
important network effects of the per-customer DP cost within
a privacy group. The work [11] only studied the baseline cost
sharing scheme at the customer-level and did not investigate
the customer-level properties. In Section VII of this paper,
we show that the per-customer DP cost within a privacy
group depends on each privacy group’s “popularity” or the
number of customers on the bus choosing the same group.
We present game-theoretic arguments that the baseline pricing
schemes for the per-bus privacy groups are not truthful, where
customers may have motivation to deviate from the group that
truly represents their privacy needs. Therefore, we propose a
novel pricing scheme to ensure the truthfulness and analyze
the properties of this new pricing scheme. Moreover, we
also discuss the impact of the high-demand customer to the
privacy cost in the same group and propose the alleviation
scheme to impose the higher cost to the high-demand customer
who introduces additional privacy cost to other low-demand
customers.

The balance of the paper is organized as follows. Section II
reviews related work. Section III presents preliminaries and
states our problem. Section IV presents the proposed demand-
reporting scheme to support a range of DP requirements.
Section V analyzes the total privacy cost. Section VI presents
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algorithms for attribution of fair shares of this privacy cost
among the buses, as well as among privacy groups of cus-
tomers attached to each bus. Section VII analyses the network
effects of the per-customer DP cost within each per-bus privacy
group, and presents the design of a truthful pricing scheme
for these different groups. Section VIII presents simulation
results. Section IX discusses the impact on customer’s cost
due to the high-demand customer and proposes an approach
to alleviate this impact. Section X concludes.

II. RELATED WORK

DP has been applied in smart metering to protect customers’
privacy [5], [7], [8], [9], [10]. Its implementation is mainly
based on distributing additive random noises [7], [8] among
the smart meter readings to achieve DP of aggregate queries,
such that demand-response aggregators cannot identify the
data of individual customers. Since smart meters may fail, fault
tolerance in modular addition-based encryption of aggregate
meter readings is an important problem [7]. Won et al. [9]
propose a proactive fault-tolerant aggregation protocol based
on future ciphertexts, to ensure DP at higher communication
efficiency and lower errors than previous fault tolerance ap-
proaches. Gulisano et al. [10] argue that DP-induced noises to
metering data may adversely affect certain data analytics appli-
cations, and propose approaches to limiting the noise amounts.
In battery-based load hiding, Zhao et al. [5] show that by
enforcing household battery charging/discharging amounts to
follow a binomial distribution, it is possible for the aggregation
of power consumption over time to satisfy (ϵ, δ)-DP.

Although the research discussed above analyzes privacy in
a power grid context, none of the results address how DP
for customers’ demand reports may impact the optimality of
EDC as an important power grid control problem. We provide
a novel analysis of the system’s privacy cost that considers
key characteristics of the physical control (e.g., power system
topology and interaction between EDC and LFC), and present
original insights of attributing fair shares of the overall cost
among heterogeneous privacy groups of the customers.

EDC and LFC in power grids face new challenges due
to increased supply/demand uncertainty arising from renew-
able generation and dynamic load. To mitigate the loss of
efficiency stemming from this uncertainty, recent work [3],
[12] has proposed to synchronize the EDC and LFC, whereas
traditionally the two control mechanisms operate at different
time scales. In [3], for example, the EDC is incorporated into
generation-side LFC such that they both run at the same pace.
In [12], load-side LFC is additionally integrated. Although
synchronization of the EDC with LFC can improve the control
in the face of uncertainty, such integrated EDC-LFC faces
significant deployment barriers in that it will require major
redesign of existing power grid control systems and electricity
markets. In contrast, in this paper we leverage the increasing
availability of advanced metering infrastructure (AMI) to allow
accurate control without major changes to the EDC and LFC.

III. PRELIMINARIES

In this section, we first present preliminaries of DP and
EDC. Then, we introduce the problem of EDC based on

demand reporting. The notation convention of this paper is as
follows. Take a symbol x as an example. X denotes a matrix,
x a column vector, x[t] the tth sample of a time series x
(we omit the time index [t] when it is clear), x̃ the Laplace
transform of x, ẋ the derivative of x with respect to time.
Rp and Rp×q denote the sets of p-dimensional real column
vectors and real p × q matrices, respectively. D denotes the
domain of data sets. ∥ · ∥ denotes cardinality.

A. Differential Privacy (DP)

In this paper, we use ϵ-DP [6] as our privacy definition. It
is formally defined as

Definition 1 ([6]). A randomized algorithm A : D → Rt gives
ϵ-DP if for all data sets D1 ∈ D and D2 ∈ D differing on
at most one element, and all S ⊆ Range(A), Pr(A(D1) ∈
S) ≤ eϵ · Pr(A(D2) ∈ S).

In other words, a differentially private algorithm A produces
indistinguishable output for any two datasets which differ
on a single element. Thus, an adversary cannot infer the
value of a single user’s data in the dataset. The parameter
ϵ characterizes the level of privacy. A smaller ϵ implies better
privacy. Prior research [13] shows that, by adding independent
and identically distributed (i.i.d.) Laplacian noise to the output
of a function F , we may achieve ϵ-DP. Let Lap(λ) denote a
zero-mean Laplace distribution of probability density function
(PDF) f(x|λ) = 1

2λe
|x|
λ . We have the following lemma.

Lemma 1 ([13]). For all function F : D → Rt, the following
algorithm A gives ϵ-DP: A(D) = F(D) + [x1, x2, . . . , xr]

ᵀ,
where the xi are drawn i.i.d. from Lap(S(F)/ϵ) and S(F)
denotes the global sensitivity of F .

We also introduce an infinite divisibility property [14] of
the Laplace distribution. Denote by Gamma(n, λ) a Gamma
distribution whose PDF is f(x|n, λ) = (1/λ)1/n

Γ(1/n) x
1
n−1e−x/λ,

where Γ(1/n) is the Gamma function evaluated at 1/n. Let
γ1,i and γ2,i denote two random variables that are drawn in an
i.i.d. way from Gamma(n, λ). Then, for any natural number
n, x =

∑n
i=1 γ1,i − γ2,i follows Lap(λ).

B. Economic Dispatch Control (EDC)

EDC is the determination of active power outputs of gen-
erators to meet the system load at the lowest generation cost,
subject to various transmission and operational constraints.
It is a form of tertiary generation control that updates the
setpoints of LFC periodically (e.g., every five minutes or
longer [15], [16]). A formal formulation of EDC is as follows.

Consider a power grid with N buses and L transmission
lines. Denote by G and L the sets of generator buses and
load buses, respectively. For a generator or load bus, say
i, denote by pgi and pli the active power generation and
consumption, respectively, where pgi ≥ 0 and pli ≤ 0 following
the convention that power injection/draw is positive/negative.
To simplify the discussion, we assume that a load bus is
not connected with any generator (i.e., pgi = 0 if i ∈ L)
and a generator bus is not connected with any load (i.e.,
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pli = 0 if i ∈ G). Denote by pg and pl the vectors composed
of pgi and pli for all buses, respectively. EDC is subject to
the following three constraints. First, the following linearized
nodal power flow constraint is widely adopted in power system
analysis [17]:

pg + pl = AᵀBAθ, (1)

where A ∈ RL×N is the incidence matrix characterizing
the power grid topology, B ∈ RL×L is a diagonal matrix
whose diagonal elements represent the susceptance of the
corresponding line, and θ ∈ RN is a vector of the voltage
phase angles at the buses. Second, the difference between the
phase angles of any two connected buses should be within
[−π/2, π/2] to ensure the grid’s stability [18]. This constraint
can be represented compactly as

−π/2 ≤ Aθ ≤ π/2, (2)

where π = [π, . . . , π]ᵀ. Lastly, each generator’s output is
within its capacity, i.e.,

0 ≤ pgi ≤ pgi , ∀i ∈ G, (3)

where pgi represents the capacity of the generator at bus i.
Let Ci(p

g
i ) denote the generation cost of this generator. EDC

solves the following constrained optimization problem:

minimize
pg,θ

∑
i∈G

Ci(p
g
i ), subject to (1), (2), (3). (4)

Note that the input to Eq. (4) is pl. In this paper, we use
EDC(pl) to denote the solution to Eq. (4).

C. Demand Reporting based EDC (DR-EDC)

In today’s deregulated electricity markets, EDC is deeply
integrated with real-time pricing systems [2]. Specifically,
a profit-neutral independent system operator (ISO) takes as
input offers of supply from generators and demand bids from
utilities to compute real-time locational prices to clear the
market. Meanwhile, it uses demand forecast from the bids
as pl to solve the EDC problem in Eq. (4). Thus, improving
the quality and accuracy of the demand forecast will improve
the cost optimality and reliability of the EDC [19]. This is
especially important in the era of smart grids, where there are
increased demand dynamics and uncertainty.

In this paper, we consider a new scheme of EDC that we call
demand-reporting based EDC (or DR-EDC). At the beginning
of each DR-EDC cycle, the smart meters of customers report
their demand in one or more future cycles to their respective
utilities. The aggregated future demand is then used as input to
the EDC. Note that an EDC cycle is typically five minutes or
longer [15], [16], and existing AMIs can already sustain five-
minute reporting intervals [20]. Compared with conventional
EDC driven by utilities’ per-bus demand forecasts, the DR-
EDC driven by direct demand reports from the customers can
better manage load uncertainty. It is because the customers’
own smart meters have much better knowledge of the future
consumption than the utilities, e.g., they have direct access
to control and scheduling decisions of home automation
systems, smart appliances, battery systems, etc. The more

accurate control will reduce generation costs (as illustrated in
Section VIII-A), which will translate generally into monetary
rewards for the customers as incentives or rebates. However,
there is the concomitant need to understand how the privacy
requirements of customers will impact the performance limits
of the DR-EDC and hence their net contributions, which is a
main concern of this paper.

IV. DIFFERENTIALLY PRIVATE DEMAND REPORTING

This section proposes a demand-reporting scheme that pro-
vides ϵ-DP under different ϵ values for different groups of
users. In the following, Section IV-A describes our system and
threat models. Section IV-B describes the proposed scheme.

A. System and Threat Models

1) System model: For simplicity, we assume that the de-
mand (or load) of each customer does not change during an
DR-EDC cycle. Denote by Ni the set of customers attached to
load bus i, pli,j [t] the demand report sent by the jth customer
in Ni at the beginning of the tth DR-EDC cycle. We assume
that each bus i is served by an aggregator, denoted by Ai.
Ai receives the demand reports from the customers in Ni and
reports the aggregated demand to the ISO for the EDC. The
demand aggregation among Ni can be implemented based
on homomorphic encryption [21] to prevent the aggregator
and any intermediate nodes in the aggregation tree from
knowing the individual pli,j . In this paper, we assume that
all the customers participate in the demand reporting. But our
analysis can be readily extended to address non-participating
customers.

2) Threat model: The adversary can be any “curious” entity
having access to the per-bus aggregated demand reports, but
not the actual per-bus power consumption that is available to
the ISO only. For example, the adversary can be an DR-EDC
aggregator or a subscriber to the per-bus aggregated demand
reports (e.g., the DR-EDC operator). The adversary aims to
infer the demand reports of individual customers from the
aggregates. Our scheme provides a guaranteed level of DP
to the customers against such an adversary. Our threat model
is similar to those used in representative DP research for smart
metering (e.g., [7], [8]).

B. DP-Assured Demand Reporting Scheme

This section presents a demand reporting scheme that guar-
antees DP. It is based on the basic principle discussed in
[8], although our scheme is more general in that it supports
multiple levels of privacy requirement. Moreover, our scheme
differentiates customers according to the load buses they are
on, which is needed for analyzing the impact of DP on the
EDC in Section V. The proposed scheme works as follows.

1) Formation and maintenance of privacy groups: Our
scheme offers K different predefined ϵ values denoted by
ϵ1, ϵ2, . . . , ϵK , where 0 < ϵ1 < ϵ2 < . . . < ϵK−1 and
ϵK = ∞. As discussed in Section III-A, a smaller ϵ implies
better privacy. In particular, from Lemma 1, with an infinitely
large ϵ (i.e., ϵK), the variance of the zero-mean Laplace
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distribution Lap(S(F)/ϵ) is zero, which suggests there is zero
noise and hence no DP protection. Each customer chooses
an ϵ from the K values offered, according to her needs.
In practice, smart meters owned by the customer can be
configured and programmed to suitable settings automatically.
At bus i, the set of customers choosing ϵk is denoted by Φi,k,
where 1 ≤ k ≤ K. Thus,

∑K
k=1 ∥Φi,k∥ = ∥Ni∥. In this paper,

Φi,k is also called the kth privacy group of the bus i and k
represents the privacy level. The customers in Ni send their
selected privacy levels to the aggregator Ai. Then, for each
k ∈ [1,K], the aggregator sends the size of the kth privacy
group, i.e., ∥Φi,k∥, to the customers in Φi,k. When a new
customer joins the bus i or an existing customer leaves it or
changes her privacy level, Ai will inform relevant customers
in Ni of the change, to ensure that each customer knows the
current size of the privacy group that she belongs to.

2) Noising demand reports: At the tth DR-EDC cycle, for
the kth privacy group at the bus i, we define the function
F in Lemma 1 as Fi,k(p

l
i,j [t

′]|j ∈ Φi,k, t
′ ∈ [1, t]) =

[
∑

j∈Φi,k
pli,j [1], . . . ,

∑
j∈Φi,k

pli,j [t]]
ᵀ ∈ Rt. At the beginning

of the tth DR-EDC cycle, each customer j in Φi,k draws two
i.i.d. samples, γj,1[t] and γj,2[t], from the Gamma distribution
Gamma(∥Φi,k∥, S(Fi,k)/ϵk). Recall that the customer obtain-
s the parameter ∥Φi,k∥ of the Gamma distribution during the
formation or maintenance of the privacy groups. By extending
the approach in [8] to address privacy groups, S(Fi,k) can be
set to an upper bound of the per-customer demand among all
the customers in Φi,k.1 Then, the customer generates a noisy
version of the demand report, i.e., pli,j [t] + γj,1[t] − γj,2[t].
Through an aggregation protocol based on homomorphic en-
cryption, Ai obtains an aggregated demand for the kth privacy
group denoted by Pi,k[t]:

Pi,k[t] =
∑

j∈Φi,k

pli,j [t] +
∑

j∈Φi,k

γj,1[t]− γj,2[t]. (5)

From Lemma 1 and the infinite divisibility property of the
Laplace distribution (see Section III-A), the scheme above
gives ϵk-DP for the kth privacy group at each bus.

3) DP in demand reporting: As we discussed in Section I,
NILM techniques can infer the appliances’ energy usage
profiles based on the aggregated smart meter readings. Thus,
to prevent the adversary from distinguishing two smart meter
readings, we apply the DP on the smart meter demand report-
ing values. Suppose the aggregated set of demand reporting
Pi,j [t] = {pli,j [t′]|j ∈ Φi,k, t

′ ∈ [1, t]} is the target dataset,
the reported demand is the query F(·), and the noise added is
ni,j [t] = γj,1[t]− γj,2[t], we can formulate the DP in demand
reporting as:

Definition 2 (DP in demand reporting). ∀i ∈ L, given
the dataset Pi,j [t] and the query function F(·), we have a
randomized algorithm A which adds noise ni,j [t] to the query
result to hide pli,j [t] from the adversaries so that ϵ−differential
privacy is guaranteed.

1To guarantee ϵ-DP, the historical peak load of the bus can be used as a
conservative and loose upper bound. The privacy cost analysis in this paper
does not rely on accurate setting of this upper bound. We refer the reader to
[10] for managing large noises resulting from conservative settings.

By building the DR-EDC with DP protection as defined in
Definition 2, the demand reporting privacy can be achieved
by ϵ−DP. In the following, we will analyze the additional
generation cost due to the DP protection.

V. TOTAL COST OF DIFFERENTIAL PRIVACY

In this section, we first define the total cost of DP in the
DR-EDC. Then, we derive its analytic expression and show
that it is always non-negative.

A. Definition of Total Privacy Cost

At the beginning of an EDC cycle, if given the true demand
vector pl, the optimal economic dispatch (denoted by p̊g) is
given by Eq. (4), i.e., p̊g = EDC(pl). However, under the
demand reporting scheme in Section IV to ensure DP, the
ISO obtains a noisy demand vector p̂l = pl + n, where
the ith element of n (denoted by ni) that corresponds to
the load bus i is given by ni =

∑K
k=1

∑
j∈Φi,k

γj,1 − γj,2.
Based on the inaccurate demand vector p̂l, the EDC solution
p̂g
0 = EDC(p̂l) will be a generation dispatch that generally

cannot balance the total generation and the total demand. As
discussed in Section III-B, the EDC solution is used to update
the setpoints of the LFC. Starting from the initial setting p̂g

0,
the LFC will adjust the power outputs of the generators, via a
closed-loop control based on real-time measurements of pl, to
exactly meet the demand and regulate the system frequency at
the required nominal value. Thus, under the LFC, the actual
generator outputs will converge to a new state, which we
denote as p̂g. We note that the control cycle of the LFC is
often two to four seconds and the convergence from p̂g

0 to
p̂g often takes a few LFC cycles. Denote by p̊gi and p̂gi the
ith element of p̊g and p̂g , respectively. For the tth DR-EDC
cycle, the total privacy cost, denoted by c[t], is defined as

c[t] =
∑

i∈G
Ci(p̂

g
i [t])− Ci(p̊

g
i [t]). (6)

Thus, the accumulated total privacy cost up to the tth DR-EDC
cycle is given by

∑t
t′=1 c[t

′].
We now use Fig. 1 to illustrate the total privacy cost for

a certain DR-EDC cycle. The two subfigures of Fig. 1 show
the trajectories of the total generation cost during the DR-
EDC cycle. To simplify the illustration, each customer adds
a positive noise in the demand reporting in Fig. 1(a) and a
negative noise in Fig. 1(b), respectively. In both the subfigures,
the horizontal straight dotted lines represent

∑
i∈G Ci(p̊

g
i ), i.e.,

the minimized total generation cost when the ISO is given the
true demand vector pl. In Fig. 1(a), as the customers report
demand values that are larger than their actual loads during the
DR-EDC cycle, by following the generation dispatch p̂g

0, the
generators will generate more power than actually demanded.
As a result, the total generation cost will be high (as illustrated
by the starting point of the blue curve) and over-frequency will
be observed. After a transient LFC process, at the end of the
DR-EDC cycle, the system frequency is restored back to the
nominal value and the generators’ outputs converge to p̂g. The
associated total generation cost is

∑
i∈G Ci(p̂

g
i ), as illustrated

by the end point of the blue curve. The height of the vertical



6

Privacy
Cost

Time

Generation
Cost

Privacy
Cost

Time

Generation
Cost

(a) (b)

p̂
g

0
p̊g p̊g

p̂g
p̂g

p̂
g

0

EDC

cycle

EDC

cycle

Fig. 1. Illustration of the total privacy cost in DR-EDC. Each customer adds
a positive noise in (a) and a negative noise in (b), respectively.

dashed line represents the total privacy cost. In Fig. 1(b),
as the customers report demand values that are smaller than
their actual loads, the generators will generate less power
than actually demanded, resulting in low total generation cost
and under-frequency. After a transient LFC process, the total
generation cost will be higher than

∑
i∈G Ci(p̊

g
i ).

B. Analytic Expression of Total Privacy Cost

An analytic expression of the total privacy cost is a prerequi-
site for fairly attributing shares of this cost to the customers.
The ISO can compute p̊gi in Eq. (6) right after it measured
the actual bus loads pl. We note that the total power draw
at each load bus is often directly measured in real time (e.g.,
every second) by power flow meters. However, the ISO has to
wait until the convergence of the LFC to measure the p̂gi in
Eq. (6). In this section, through analysis based on a dynamic
model of LFC that is widely adopted in power engineering,
we obtain analytic expressions of p̂gi and the total privacy cost
defined in Eq. (6). The analytic expressions will be needed to
compute the privacy cost shares of buses using the Shapley
value approach in Section VI-B. Moreover, the ISO can use
them to compute the total privacy cost once the pl is measured.
This improves the timeliness of the ISO’s knowledge of the
privacy cost.

Denote by p̂g0,i the ith element of the DR-EDC solution p̂g
0

that corresponds to a generator bus i, and ni the ith element
of n that corresponds to a load bus i (i.e., the total noise in
the aggregated demand report for load bus i). We note that
n and ni can be measured by the ISO once pl is measured,
since n = p̂l − pl. We have the following lemma. The proof
can be found in the appendix.

Lemma 2. For a certain DR-EDC cycle,

c =
∑
i∈G

Ci

(
p̂g0,i +

Gi∑
i∈G Gi

·
∑
i∈L

ni

)
− Ci(p̊

g
i ), (7)

where Gi is the LFC gain for the generator at the bus i.

Note that the LFC gain Gi is a constraint known to the
ISO. We refer to the proof in the appendix for details of this
constant gain. Note that Eq. (7) is not a closed-form formula
for c, because both p̂g0,i and p̊gi are obtained through solving
the constrained optimization problem in Eq. (4). The following
lemma gives an important property of the total privacy cost c.

Lemma 3. For any DR-EDC cycle, c ≥ 0.

Generator 1 (pu)
Generator 2 (pu)

0
100

50

250

C
os

t (
pu

)

100

200
50 150

150

100
50

0 0

Fig. 2. All possible values of
∑

i∈G Ci(p̂
g
i [t]) after LFC converges (repre-

sented by the blue curve) and the minimized generation cost
∑

i∈G Ci(p̊
g
i [t])

(represented by the red flat plane) for the IEEE 14-bus test system.

Proof. After the LFC converges, the generators’ outputs p̂g

must satisfy the steady-state constraints in Eqs. (1), (2), and
(3) with pg replaced by p̂g and pgi replaced by p̂gi . Since p̊g

is the optimal solution that minimizes the total generation cost
subject to the same steady-state constraints that p̂g satisfies, we
must have

∑
i∈G Ci(p̂

g
i [t]) ≥

∑
i∈G Ci(p̊

g
i [t]) and c ≥ 0.

We now use a numeric example to illustrate the above non-
negative property. The example is based on an IEEE 14-bus
test system [22] that has two generators at bus 1 and bus
2, respectively. (There are three synchronous condensers that
output reactive power only.) The following results are for a
certain DR-EDC cycle, where the loads are fixed to their
initial values specified in the system model. In Fig. 2, the
blue curve illustrates all the possible values of

∑
i∈G Ci(p̂

g
i [t])

when the p̂g satisfies the steady-state constraints in Eqs. (1),
(2), and (3). To help illustration, we use a flat plane in Fig. 2
to represent

∑
i∈G Ci(p̊

g
i [t]). We can see that

∑
i∈G Ci(p̂

g
i [t])

is lower-bounded by
∑

i∈G Ci(p̊
g
i [t]).

VI. DIFFERENTIAL PRIVACY COST SHARING

A. Hierarchical Cost Sharing Scheme

Given the total cost of DP, a fundamental question is how
to fairly attribute fair shares of the cost among customers
requesting different privacy levels. We need to address the
challenge in designing the DP cost sharing approaches. The
ISO has different levels of information regarding the buses
and the customers, respectively. Specifically, as discussed in
Section V-B, the aggregated noise in the demand report of
each bus, i.e., ni, can be measured, but the customer-level
noises are not available to the ISO to protect the customers’
DP. Thus, the cost sharing design at the bus level and that at
the customer level should be different.

To address the challenge, we propose a hierarchical cost
sharing scheme. We apply the principle of Shapley value [23]
for attributing privacy costs with several desirable properties
among the buses. However, the computation of Shapley value
has poor scalability to a large number of buses. Thus, we
additionally propose two heuristic but efficient cost sharing
approaches and compare their performance with that of the
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Shapley value approach. After obtaining the per-bus privacy
cost, we further share it between the customers attached to
the same bus using heuristic methods that obey the limited
per-customer information. The rest of this section presents the
details of the bus- and customer-level privacy cost sharing.

B. Bus-Level Privacy Cost Sharing

We now discuss the Shapley value-based privacy cost shar-
ing scheme at the bus level. Before presenting the details, we
first introduce the basics of Shapley value.

1) Shapley value: The Shapley value is a solution concept
for fairly distributing a total value generated by a coalition of
players in cooperative games [23]. It is defined as follows.

Definition 3 ([23], [24]). Consider a set N of N players. For
each subset (coalition) S ⊆ N , denote v(S) be the cost of
coalition S, i.e., if S is a coalition of players which agree
to cooperate, then v(S) determines the total cost from this
cooperation. For a given cost function v, the Shapley value of
player i is

ϕi(v) =
1

N !

∑
π∈SN

(v(S(π, i))− v(S(π, i)\i)) , (8)

where π is a permutation in set N and S(π, i) is the set of
players precede i in the order.

The Shapley value has the following properties [23]:

Property 1. Shapley value’s properties:
1) Efficiency:

∑
i∈N ϕi(v) = v(N);

2) Symmetry: If players i and j are symmetric with respect
to game v, ϕi(v) = ϕj(v);

3) Dummy player: i ∈ N is a “dummy player” if v(S ∪
{i}) = v(S) for all coalitions S that do not contain i.

4) Linearity/Additivity: For any two games v and w, ϕ(v+
w) = ϕ(v) + ϕ(w).

The Shapley value characterizes a player’s marginal contri-
bution to all possible coalitions. The solution concept can be
similarly applied for attributing cost, which is a dual concept
of value. To facilitate presentation, in this paper, we use the
term “Shapley cost” to refer to the cost share of a “player”
(i.e., a bus in the current context) as determined by the Shapley
value principle. Specifically, the Shapley cost of a bus is the
marginal increase in generation cost due to the bus in the
coalition. In the following, we introduce the details of the
Shapley cost-based approach for bus-level cost sharing.

2) Shapley cost-based approach: We now describe how to
compute the Shapley costs of buses. For bus i, if it is in the
coalition, it reports its noisy aggregated demand (i.e., pli+ni)
to the aggregator; otherwise, it reports its actual aggregated
demand (i.e., pli). Denote by S the coalition of buses. From
Lemma 2, the total privacy cost given a coalition of buses S
is c(S) =

∑
i∈G Ci

(
p̂g0,i(S) +

Gi∑
i∈G Gi

·
∑

i∈S ni

)
−Ci(p̊

g
i ),

where p̂g0,i(S) is the initial power output of the generator at bus
i as solved by the EDC based on noisy demand reports from
the buses in S and actual demand values from the remaining

buses. By the Shapley’s principle, the Shapley cost of a load
bus i, denoted by csi , is

csi =
1

∥L∥!
∑

π∈perm(L)

c(S(π, i))− c(S(π, i)\i), (9)

where π is a permutation of the load buses in L, S(π, i) is a
subset of π that includes the buses in π no later than i in order.
From the efficiency property of Shapley value, the total privacy
cost is shared among all the load buses, i.e., c =

∑
i∈L csi . We

note that the Shapley cost of a load bus can be negative (see
the numeric results in Section VIII-C). For example, when
the demand report of the bus has negative noise and all the
other buses use positive noise, the negative noise may offset
in part the positive noise and hence reduce the total generation
cost. In this case, the bus in point should be rewarded with
a negative Shapley cost. For the load bus i, the accumulated
Shapley cost up to the tth DR-EDC cycle is

∑t
t′=1 c

s
i [t

′].
3) Properties of the Shapley cost: From Eq. (9), the privacy

cost at each bus is affected by the noise at the bus. Our
following analysis shows the monotonicity properties of the
Shapley cost, i.e., for a given demand profile of the system,
the change of the noise at a bus affects not only the privacy
cost of the bus itself, but also those of other buses in the
system.

Property 2. The Shapley cost csi (ni) at bus i increases with
ni, where i ∈ L.

Proof. From Eq. (9), the Shapley cost can be expressed as:

csi (ni) =
1

∥L∥!
∑

π∈perm(L)

c(S(π, i))− c(S(π, i)\i),

=
1

∥L∥!
∑

π∈perm(L)

c(nπ, ni)− c(nπ), (10)

As the generation cost increases with the power output, it also
increases with ni. Thus, from Eq. (9), c(nπ, ni) also increases
with ni. Hence, the Shapley value csi (ni) at bus i increases
with ni.

Moreover, we have the following inter-bus monotone prop-
erty.

Property 3. The Shapley cost ci at bus i increases with nj ,
where i, j ∈ L and j ̸= i.

Proof. Assume i and j are two different load buses in L. We
rewrite Eq. (9) as:

csi =
1

∥L∥!

( ∑
π1∈perm(L),j ̸∈π1

c(nπ1 , ni)− c(nπ1)

+
∑

π2∈perm(L),j∈π2

c(nπ2 , ni)− c(nπ2)
)
. (11)

In Eq. (11), the summation in the bracket contains two parts:
the first part calculates the permutation excluding bus j, while
the second part includes bus j. If nj increases, the first part
remains the same. For the second part, as the generation
cost function is increasing and convex, the gap between
c(nπ2 , ni) − c(nπ2) also increases with nj . Therefore, csi
increases with nj .
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4) Heuristic cost sharing: Despite several desirable prop-
erties of the Shapley cost [23], Eq. (9) has exponential
complexity in the number of load buses due to the permutation.
This renders the Shapley cost infeasible to compute for large
power grids. To manage the computational cost, a Monte
Carlo method can be applied to approximate Eq. (9) [25].
However, the method does not guarantee exact answers and
often it still requires high compute overhead for good results
[25]. Therefore, we now present two heuristic cost sharing
approaches based on assigning privacy cost as a function of
the corresponding prescribed noise. Specifically, in the two
approaches we use respectively the magnitude and variance of
ni as weight for proportional sharing of the privacy cost. For-
mally, the cost shares of load bus i, denoted respectively by cni
and cσi for the two approaches, are given by cni = |ni|∑

i∈L |ni| ·c

and cσi =
σ2
i∑

i∈L σ2
i
· c, where σ2

i is the variance of ni. In
the definition of cni , the rationale of using the magnitude of
ni as weight is that either a positive or negative ni should
incur a positive privacy cost (see Fig. 1). The σ2

i in cσi can be
estimated based on historical trace of ni.

In Section VIII-C, we will evaluate the effectiveness of the
above two heuristic approaches by comparing their results with
the corresponding Shapley costs. In terms of the computation
complexity, the Shapley cost sharing scheme has the complex-
ity of O(2|L|), where L is the set of load buses. Differently,
as the heuristic cost sharing scheme calculates the cost based
on the magnitude or the variance of the noise, it has constant
computational complexity O(1) in terms of the power system
scale.

C. Customer-Level Sharing of Privacy Cost

This section discusses how to further distribute the cost
share of bus i, i.e., ci, to customers attached on the bus.
We assume that the customers do not report their actual
power consumption due to privacy protection. Thus, the noise
introduced by an individual customer j, i.e., γj,1 − γj,2,
cannot be measured. As a result, the Shapley cost described
in Section VI-B2 cannot be applied to customer-level cost
sharing. Instead, our proposed baseline approach first divides
ci among the privacy groups, and then further divides a group’s
share to the group’s customers. We adopt a heuristic approach
similar to those proposed in Section VI-B4 that uses the
variances as the weights to distribute ci to the privacy groups
on the bus. The variance of the kth privacy group’s Laplacian
noise that follows Lap(S(Fi,k)/ϵk) is 2 · (S(Fi,k)/ϵk)

2. A
privacy group’s cost share is further divided equally among
all the customers in the group. In the above approach, the
customers who do not require DP (i.e., ϵ = ∞) share no
privacy cost.

Note that the customer-level cost depends on both the bus
cost and the number of customers choosing that privacy level.
Since we know that the generation cost is a convex function
in terms of the demand and the Shapley cost corresponds
to the marginal price as defined in Eq. (9), the per-bus cost
introduced by the high-demand bus will be higher than that of
the low-demand bus. Moreover, since the number of customers
choosing the same privacy levels at different buses can be

different, the cost for customers attached to different buses
can be different even if they choose the same privacy level.

The power distribution network attached to a bus often
adopts a tree topology, in which the customers are the leaf
nodes of the tree. Some intermediate nodes of the tree may
have power meters installed. Therefore, the noise amounts for
demand reports of subtrees rooted at these intermediate nodes
can be measured. Our future work will investigate how to
apply Shapley costs to these subtrees in order to refine the
fairness of the customer-level cost sharing.

D. Implementation Issues

The bus-level privacy cost sharing approaches can be readily
integrated with various ex-post real-time pricing schemes
that are popular in wholesale markets such as New England
ISO, PJM, and Midwest ISO. Ex-post electricity prices are
determined based on load measurements of the buses, which
are often obtained at the end of each EDC cycle. The load
measurements can also be used to compute the privacy cost
shares of the buses using the methods in Section VI-B.

Relaying upstream real-time prices to end customers is
generally considered a desirable feature of smart grids. It
has been implemented by utilities such as ComEd [26] and
Ameren [27]. The customer-level privacy cost sharing can
be readily integrated with such real-time pricing for end
customers.

VII. NETWORK EFFECTS OF COST SHARING & TRUTHFUL
PRICING

Section VI-C establishes a baseline scheme for pricing the
set of privacy groups offered to customers attached to a certain
bus. The baseline scheme uses heuristics to approximate the
Shapley costs of the different groups (attached to the same bus)
at high computational efficiency. This section studies further
network effects of the per-customer DP cost within a group. As
in Section VI-C, we assume that the DP cost of the group is
shared equally by all the customers in the same group, which
is needed because the privacy impact of individual customers
is unavailable due to the privacy protection. Hence, the per-
customer cost depends on each privacy’s group popularity, i.e.,
the number of customers (attached to the bus in question) who
pick the group.

We now define the notion of truthful pricing. Our goal is to
show that the baseline pricing scheme in Section VI-C is not
truthful, and henceforth design a truthful pricing scheme for
privacy groups attached to the same bus.

Definition 4 (Truthful pricing). A pricing scheme is truthful
if none of its customers have incentives to deviate unilaterally
from the privacy groups that represent their respective true
privacy requirements.

We assume that it is not acceptable to any customers to join
a privacy group that is below their true privacy requirements.
Moreover, the geographical location of a customer (e.g., a
household) determines the bus that the customer is attached
to; the customer does not have the freedom to change to
another bus. Now, consider a game-theoretic formulation in
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Fig. 3. Different distributions of privacy groups’ sizes. Each line represents
the size of a privacy group indexed by k, where a higher k represents a less
stringent privacy level. km indicates the privacy level chosen by the most
customers. (a) The number of customers increases with k. (b) Most customers
choose an intermediate privacy level, and progressively fewer customers at
either increasingly more or less stringent privacy levels from that intermediate
level.

which each customer is a player whose strategy is to select
the privacy group among the set of choices on offer. The
utility function of each player, say i, is the satisfaction of
i’s (true) privacy requirement, minus the privacy cost. By the
assumption that the player will join the EDC reporting only
if his privacy requirement is met, the player would derive
a utility of minus infinity by joining any group below this
requirement. Moreover, to ensure that each player’s strategy
is non-trivial, we assume that there exists some privacy level at
which the player’s utility is positive and every player’s utility is
positive at their true privacy level. Consider the game solution
in which every player has chosen its truthful privacy level.
Clearly, no players will deviate to a lower privacy level or
non-participation. Our task is to ensure also that no customers
will be motivated to deviate to a more stringent privacy level,
so that the game solution is a Nash equilibrium and the pricing
scheme in question is truthful.

To assess the truthfulness of the baseline pricing scheme in
Section VI-C, Fig. 3 illustrates two plausible distributions of
the sizes of customers’ truthful privacy groups. In Fig. 3(a), the
group size decreases as the privacy level increases, i.e., towards
smaller k values; we have a triangle shaped distribution. In
Fig. 3 (b), we have a diamond distribution, in which most
customers prefer some “typical” intermediate privacy group.
As the privacy level becomes more (or less) stringent relative
to this typical group’s, progressively fewer customers require
the corresponding privacy group.

According to the baseline pricing scheme in Section VI-C,
given a certain load bus, the privacy cost of a group of cus-
tomers attached to the bus depends on (i) the group’s privacy
level, and hence its required DP noise amount, and (ii) the
global sensitivity of the group’s customers. The privacy cost
of the group is independent of the group size. Moreover, under
the assumption that the global sensitivity does not differ by
specific groups, this cost is strictly increasing with the privacy
level, because of larger DP noises required at the higher levels.
This ensures the truthfulness of the baseline pricing under the
triangle distribution. More generally, however, a higher cost
for the group does not necessarily imply a higher per-customer
cost, because the group cost is shared by all the members of

the group. Indeed, because the baseline pricing in Section VI-C
sets the price of each group independently of the others, under
the diamond distribution of Fig. 3, it is possible for customers
to move up from an “usually relaxed” privacy requirement
towards the more mainstream requirements.

A. Incremental Cost-Sharing Pricing

To address the untruthfulness of the baseline per-group
pricing within a load bus, in this section we design an
improved truthful pricing scheme based on incremental cost
sharing. Denote by cki,j is the privacy cost charged to customer
j in privacy group k (1 ≤ k ≤ K) attached to bus i ∈ L. For
each demand bus, say i, for all non-zero group costs cki > ck

′

i ,
where k < k′ and 1 < k ≤ K − 1, we set the per-customer
cost as follows.

cki,j = ck+1
i,x +

k(cki − ck+1
i )∑k

ℓ=1 N
ℓ
i

, ∀k ∈ [1,K−1], x ∈ Φk+1
i , j ∈ Φk

i ,

(12)
where N ℓ

i is the number of customers at bus i with privacy
level ℓ. From Eq. (12) note that the per-customer cost in each
privacy group is based on the incremental cost this privacy
group brings relative to the lower privacy groups.

We use Fig. 4 to explain the idea of Eq. (12). There are
three privacy groups for bus i, whose privacy costs satisfy
c1i > c2i > c3i . Note that a smaller group number has a higher
privacy level, so that progressively higher noise requirements
introduce higher costs. We denote the number of customers
in the three groups by N1

i , N
2
i and N3

i , respectively. Now for
the group with the lowest privacy cost (i.e., Group 3), as the
cost c3i can be considered also part of the costs of the other
two groups, all the customers (irrespective of their groups)
attached to this bus share this cost. Thus, all the customers
need to pay the cost ĉ3i =

3c3i
N1

i +N2
i +N3

i
.

Next, for the customers in Group 2, beyond the cost c3i
already accounted for above, they introduce an additional cost
of c2i − c3i , and this additional cost can likewise be considered
part of the cost introduced by the customers in Group 1.
Therefore, the customers in both Groups 1 and 2 share this
cost of ĉ2i =

2(c2i−c3i )

N1
i +N2

i
. Lastly, for the customers in Group 1,

they introduce yet another additional cost of c1i − c2i . Thus,
the customers in Group 1 also need to bear this cost, which
is calculated as ĉ1i =

c1i−c2i
N1

i
. In summary, the per-customer

costs for the customers in Groups 1, 2, and 3 are ĉ1i + ĉ2i + ĉ3i ,
ĉ2i + ĉ3i , and ĉ3i , respectively.

Property 4. The incremental cost-sharing pricing scheme has
the following properties:

1) Efficiency, i.e.,
∑K

k=1

∑|Φk
i |

j=1 cki,j = ci, where i ∈ L and
ci is the bus cost of demand bus i.

2) Truthfulness, according to Definition 4.

Proof. Efficiency. Similar to Property 1 for the Shapley cost,
we have the efficiency property here, i.e., the sum of all the
customers’ costs attached to a bus equals the privacy cost of
the bus itself. We consider the sum of cost increments accord-
ing to Eq. (12). For each k, ranging from K−1 down until 1,
the corresponding cost increment is ∆cki =

k(cki −ck+1
i )∑k

ℓ=1 Nℓ
i

, where
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)
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Fig. 4. Illustration of the pricing scheme based on incremental cost sharing.

x ∈ Φk+1
i , j ∈ Φk

i . Each ∆cki involves all the customers from
Group 1 to Group k, i.e., totally

∑k
ℓ=1 N

ℓ
i customers. There-

fore, the overall sum is ∆Ck
i =

∑k
ℓ=1 ∆cℓi = k(cki − ck+1

i ),
where 1 ≤ k < K. Summing up all the incremental costs for
Bus i, we have Ci =

∑K−1
k=1 ∆Ck

i =
∑K−1

k=1 k(cki − ck+1
i ) =

c1i − c2i + 2c2i − 2c3i + · · ·+ (K − 2)cK−2
i − (K − 2)cK−1

i +

(K − 1)cK−1
i = c1i + c2i + · · ·+ cK−1

i =
∑K−1

i=1 cki = ci.
Truthfulness. In the incremental cost-sharing pricing, for

any two customers in two different privacy groups k and
k′ (k < k′) attached to bus i, by Eq. (12), we know that
cki,x > ck+1

i,z ≥ ck
′

i,y, where x ∈ Φk
i , z ∈ Φk+1

i and
y ∈ Φk′

i . Therefore, cki,x > ck
′

i,y and a player’s payoff cannot
be increased by choosing either a higher or a lower group.
This shows that truthful strategies by the players result in
Nash equilibrium, and no players are motivated to unilaterally
deviate from their strategies.

Remark 1. The incremental privacy cost-sharing pricing
and Property 4 are derived for positive bus costs. However,
as discussed in Section VI-B2, negative Shapley costs are
possible. In such cases, our results still hold if we substitute
corresponding absolute values of the costs for the negative
costs.

VIII. SIMULATIONS

Our numeric illustrations are based on the 5-bus power
system model shown in Fig. 5 ([18], Chapter 6, pp.327). In
this system, the two generators’ cost functions are quadratic
functions with different parameters. We simulate a total of
200 customers in the system. For DP, each customer chooses
an ϵ value from {0.5, 1, 1.5, 2.5,∞}. The EDC cycle is five
minutes. Hourly load data traces of U.S. domestic customers in
January 2015 [28] are interpolated and used to set the loading
of buses in our simulations. Unless otherwise specified, all the
power values associated with this 5-bus system are normalized
to per unit (pu) values..

G2

Bus 4

Bus 1

Bus 5

Bus 3Bus 2

G1

Fig. 5. 5-bus system ([18], Chapter 6, pp.327).

TABLE I
DEMAND REPORTING VS. DEMAND FORECASTING

Scheme Additional cost (%)
DR-EDC with 5% customers choosing ϵ = 0.5 3.28
DR-EDC with no customers choosing ϵ = 0.5 2.83

EDC based on demand forecasting 5.02

A. Demand Forecasting vs. Demand Reporting

This set of simulations compares the privacy cost of DR-
EDC with the additional generation cost caused by inaccuracy
of traditional demand forecasting. The demand forecasting
is based on the widely adopted persistence model [29], in
which the immediate past load is used as the current demand
forecast for each bus. To evaluate the DR-EDC, we simulate
the system for 100 rounds, where each round corresponds to
the load traces on one day. At the beginning of each round,
the customers randomly choose their ϵ values. The average
aggregated total privacy cost over the 100 rounds is presented.

Table I shows the results for DR-EDC under two settings,
as well as traditional EDC based on demand forecast. The
additional generation costs due to either DP-induced noise or
inaccurate forecast are in percentages of the total generation
cost. In the first DR-EDC setting, ten out of 200 (i.e., 5%)
customers choose the highest privacy level, i.e., ϵ = 0.5,
resulting in a 3.28% privacy cost; in the second setting, no
customers choose this highest privacy level, resulting in a
2.83% privacy cost. This result is consistent with intuition
that the privacy cost decreases with the customers’ required
privacy. By comparison, the results based on demand forecast
show an additional cost of around 5%, which is higher than
the privacy cost of DR-EDC in either setting.

Note that this 5% additional cost is significant and com-
parable to line loss (e.g., 7% in U.S. [30]). Furthermore, it
would increase with higher demand uncertainty. In contrast,
as our results show, DR-EDC with DP protection can reduce
the additional cost by up to 43%, which is substantial.

B. Total Privacy Cost over a Day

This set of results shows how the total privacy cost changes
with load and customers’ DP-induced noise over time. At the
beginning of the simulation, each customer randomly chooses
a privacy level. The distribution of customers choosing the five
ϵ values from 0.5 to ∞ is 18.5%, 17%, 21%, 24%, and 19.5%.
Fig. 6(a) shows the actual total load (red curve) and aggregate
of the demand reports (blue curve) over a day. Fig. 6(b) shows
the total generation costs of the EDC without DP (red curve)
and the DR-EDC with DP (blue curve). We can see that the
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total generation cost of DR-EDC is always higher than that
of EDC without DP protection. This result is consistent with
Lemma 3.

Fig. 7 shows the magnitude of total noise (i.e., absolute
difference between the two curves in Fig. 6(a)) and the
total privacy cost (i.e., difference between the two curves
in Fig. 6(b)). We can observe that the total privacy cost is
not always proportional to the magnitude of the total noise.
This is because the total privacy cost is also affected by the
distribution of noise among the buses. Intuitively, if a generator
with a low generation cost curve Ci(·) is close to a load bus
with a high noise for its demand report, the noise will not
cause a significant increase in the generation cost.

C. Evaluation of Privacy Cost Sharing Approaches

1) Bus-level cost sharing: We compare the three bus-level
cost sharing approaches discussed in Section VI-B, namely
the Shapley cost (SC) and the two heuristic approaches using
respectively noise magnitude (NM) and noise variance (NV)
as weight to split the privacy cost among the buses. Each
simulation lasts for 300 DR-EDC cycles. Fig. 8 shows the
demand-report noises of the three load buses in four selected
DR-EDC cycles, and the corresponding cost shares under
the SC and NM approaches. In the first DR-EDC cycle,
the buses use similar noises and the total privacy cost is
almost equally shared between them. In the second cycle, the
buses use different noises and their cost shares are roughly
proportional to the noise magnitudes. In these two cycles, the
two approaches of SC and NM yield similar results. In the
third cycle, bus 2 uses positive noise, while the other two
buses use negative noises. As a result, the Shapley cost of bus
2 is negative. This is because bus 2’s presence in the coalition
helps reduce the total generation cost, as its positive noise
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Fig. 8. Total noise amounts of buses in four DR-EDC cycles and the
corresponding privacy cost shares under the SC and NM approaches. In each
bar group of (b), the first and second bars are respectively the results of SC
and NM.

offsets the negative noises of the other buses. Interestingly,
therefore, in this particular cycle bus 2’s noise helps make
the overall demand report more accurate. Under the Shapley’s
principle, bus 2 should be rewarded. We see a similar result
in the fourth cycle, where bus 1 is rewarded because its noise
counteracts the noises of the other buses. We note that, under
the SC approach, the aggregated cost share of a bus over a
long time period is almost surely positive, since it is extremely
unlikely for the noise of any bus to help reduce the overall
inaccuracy all the time. We next illustrate this observation.

We compare the aggregated privacy cost shares over the
300 DR-EDC cycles computed by the three approaches. Fig. 9
shows the results. Consistent with our previous discussion, the
aggregated Shapley cost is positive for every bus. Both the
NM and NV approaches yield similar aggregated privacy cost
shares as the Shapley costs. Specifically, the maximum per-
bus deviations from the Shapley costs are 6.2% and 12.1%
respectively for the NM and NV approaches. From Fig. 9,
therefore, the NM approach appears to perform better. Note
that, to compute the Shapley costs for the 5-bus system,
the EDC problem in Eq. (4) needs to be solved 24 times.
Moreover, as discussed in Section VI-B4, this number will
increase exponentially with the number of load buses, which
renders the Shapley cost approach infeasible for large power
systems. In comparison, the NM approach has much lower
computational time complexity.

2) Customer-level cost sharing: We follow the approach
described in Section VI-C to further distribute the per-bus
Shapley cost among the customers. Fig. 10 shows, for each
bus, the ratio of per-customer aggregated cost in a privacy
group to the sum of privacy costs of all the privacy groups. We
can see that on a certain bus, the per-customer cost increases
with the customer’s required privacy, which is consistent
with intuition. Note that the customers not requiring any DP
protection share no privacy cost.

3) Network effects: We now show how the incremental
cost sharing scheme to maintain the cost sharing fairness for
customers. We set the number of customers choosing different
privacy levels as {5, 5, 20, 8, 2} at Bus 1, which is a realistic
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scenario, i.e., the customer’s privacy level choices’ distribution
is similar to normal distribution. Due to the most customers are
in group 3, the per-customer cost will be smaller without the
incremental cost sharing scheme. However, in Fig. 11 we see
that we can avoid the unfair cost sharing, i.e., the customers
choosing higher privacy level ϵ = 1.5 have higher privacy
cost compared with customers choosing lower privacy level
ϵ = 2.5. Thus, the incremental cost sharing scheme ensures
higher privacy level customers have higher cost, and thus the
unfair cost sharing can be eliminated.

IX. DISCUSSION

A. High-demand customer

The incremental privacy cost sharing scheme is based on
the assumption that the higher level privacy group introduces
higher privacy cost if the global sensitivity of all customers
are similar. However, if there exists very demand customers,
e.g., the industrial customer, choosing the same low privacy
level as other residential customers, the high group privacy
cost will be introduced and thus the low-demand customer
in the group will also have to pay more privacy cost. In the
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Fig. 11. The customer cost after applying the incremental cost sharing
scheme.

following, we will explore this network effect and propose a
solution to charge higher cost on the high-demand customers
due to the high group cost introduced by them.

By Lemma 1, the noise variance in DP is decided by
the global sensitivity once the privacy level is chosen. Thus,
the global sensitivity affects the group’s privacy cost. In our
differentially private demand reporting scheme, the global sen-
sitivity is set as the upper bound of the per-customer demand
among all the customers in a privacy group. As a result,
the customer with the highest demand (e.g., an industrial
customer) will significantly affect the group’s total privacy
cost and the per-customer privacy costs. We now illustrate the
impact of the high-demand customer on the privacy costs using
numeric experiments based on the 5-bus system in Fig. 5.
In our experiments, there is a high-demand customer who
demands three times higher than other customers with equal
demands. Fig. 12 shows the groups’ total privacy costs when
the high-demand customer joins different privacy groups. We
can see that when the high-demand customer is in a group,
the total privacy cost of the group increases.

From the above results, we can see that the presence of a
high-demand customer (i.e., the demand upper bound is at
least twice as that of other users) in a privacy group will
significantly increase the group’s total privacy cost. As the
total privacy cost is equally shared among the customers in
each privacy group, the high-demand can cause undesirable
effects such as unfairness to other low-demand customers,
e.g., residential customers, in the group. Specifically, these
low-demand customers will pay higher privacy cost due to the
presence of the high-demand customer in the same group.

A possible approach to preventing this undesirable network
effect is to share the cost using the customers’ demands as
the weights. However, this approach fundamentally conflicts
with the original goal of preserving customers’ privacy by
not revealing their demands. We now present an approach
to alleviating the undesirable network effect. Specifically, we
propose to divide the high-demand customer’s demand upper
bound into b equal sub-blocks, where the integer b > 1. We
now use the sub-block from demand division as the weights
to assign the cost in the group with high-demand customers.
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Fig. 12. The groups’ privacy costs when the high-demand customer is in
different groups.

Suppose there are Nk
i customers in group k at bus i. Let dki,x

denote the demand upper bound of the high-demand customer
x in group k at bus i, which is also the upper bound of the
demands in the group. Let dki,y denote the upper bound of
any other customer y’s demand in group k at bus i, where
y ∈ Φk

i and y ̸= x. We define the demand sub-block after
demand division is d̂ki,x = dki,x/b < dki,x. If a customer in
group k is a high-demand customer, i.e., d̂ki,x > dki,y, ∃y ∈
Φk

i , and y ̸= x, the additional demand is introduced to this
group. We define Φ̂k

i the set of high demand customers in
group k at bus i. Then the maximum demand sub-block is
d̂ki = max{d̂ki,x}, x ∈ Φ̂k

i . Therefore, when sharing the cost
in this group, we use the demand sub-block as the weight to
decide the cost, i.e., for any low-demand customer y ∈ Φk

i

but y ̸∈ Φ̂k
i , the cost is cki,y = cki /||Φk

i || · (1/d̂ki ) and for the
high-demand customer x ∈ Φ̂k

i , it should pay higher cost as

cki,x = cki,y + cki · (1− 1/d̂ki ) ·
d̂k
i,x∑

j∈Φ̂k
i
d̂k
i,j

. Then, the total cost

for group k at bus i is still cki , but instead of being charged
as the same cost as other low-demand customers, the high-
demand customer has to pay the additional cost introduced by
its demand sub-blocks, which is the punishment for imposing
high noises to this group.

Moreover, the incremental cost sharing scheme in Sec-
tion VII-A can also be applied to all low-demand customers.
To facilitate it, when deciding the cost for the high-demand
customer, we should ensure the privacy cost of all other low-
demand customers is between neighboring higher and lower
privacy groups by reducing or adding α > 0 amount of cost at
the high-demand customer. Then the incremental cost sharing
can be applied to all the low-demand customers in this group
and customers in other groups.

We now evaluate the effectiveness of this approach. We
use the cost ratio of high-demand customer between applying
demand division approach and equally cost sharing approach
as the metric. Similar to the simulation before, a high-
demand customer that demands three times of power than
other customers joins one of the four privacy groups in each
simulation run. If the demand division approach is applied, the
high-demand customer needs to pay additional cost. Fig. 13
shows the high-demand customer’s cost ratio when the high-
demand customer joins this group. The high-demand customer
has to pay much higher cost due to more noises introduced by
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Fig. 13. The high-demand customer cost ratio between applying demand
division approach and equally cost sharing approach.

them compared with equally sharing the cost with other group
members before.

X. CONCLUSION AND FUTURE WORK

We analyzed the cost of differential privacy as increase of
a grid’s total generation cost when its EDC is given noisy
demand reports, rather than the customers’ true demand data,
for the sake of the privacy protection. We then applied the
principle of Shapley value to distribute this total privacy
cost among different buses in the power system. We also
studied the properties of the Shapley cost sharing scheme. To
address large systems, we additionally proposed heuristic cost
sharing algorithms that scale well to large grids, and compared
their solutions to the corresponding Shapley value solutions.
Moreover, we investigated interesting network effects of the
per-customer cost sharing, and designed a truthful incremental
cost-sharing scheme for pricing the privacy groups associated
with a load bus. We also discussed the impact of the high-
demand customer on other customers’ cost. Simulations based
on a 5-bus power system model illustrated the privacy cost, its
Shapley cost shares, and corresponding cost shares according
to the heuristic algorithms.

To improve the accuracy of the DP cost analysis, it is inter-
esting for future work to extend our analysis and simulations to
address line loss and/or AC power flow models. It is also inter-
esting to design incentive programs with effective mechanisms
to motivate customers to participate in the demand reporting.
For instance, an interesting question is how to design the set
of offered ϵ values such that all the customers are sure to pay
less irrespective of their choice of the ϵ value, compared with
the choice of not reporting their demand at all.
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APPENDIX: PROOF OF LEMMA 2
Proof. Denote by E the set of transmission lines and (i, j)
the line connecting the bus i and bus j. Let ∆x represent the
derivation of x from its past steady-state value. Generators’
primary control is described by [17]:

2Hi∆ω̇i+Di∆ωi=∆PMi
−
∑

(i,j)∈E
Bij∆θij , i ∈ G, (13)

Di∆ωi = −∆Pdi −
∑

(i,j)∈E
Bij∆θij , i ∈ L, (14)

∆θ̇ij = ∆ωi −∆ωj , (i, j) ∈ E , (15)

∆ṖMi = KiRi(Li −∆PMi −R−1
i ∆ωi), (16)

where ωi is the grid frequency, Hi is the generator inertia, Di

is the load damping constant, PMi is the mechanical power
input, Pdi is the load, Bij is the susceptance of (i, j), θij is the
difference of voltage phases difference between bus i and bus
j, Li is the reference signal from the LFC, Ki is the primary
control gain, and Ri is the droop [15]. The LFC control law
in the Laplace domain is ∆̃Li = −Gi

s ∆̃ωi [15], where s is
the Laplace operator and Gi is the LFC gain. To simplify the
analysis, we ignore the differences between ωi’s and consider a
globally identical grid frequency ω. This simplification is safe
as the differences are often tiny. It is often adopted in power
system analysis [15]. By replacing ωi and ωj in Eqs. (13)-
(16) with ω, summing Eq. (13) and Eq. (14), and applying the
Laplace transform, we have

∆̃ω =
1

2Hs+D
· (∆̃PM − ∆̃Pd), (17)

where H =
∑

i∈G Hi, D =
∑

i∈G∪L Di, PM =
∑

i∈G PMi ,
and Pd =

∑
i∈L Pdi . The Laplace transform of Eq. (16) is

∆̃PMi = − Ki

s+KiRi
· ∆̃ω +

KiRi

s+KiRi
· ∆̃Li. (18)

The ∆̃PMi can be solved from Eqs. (17), (18), and the LFC
control law ∆̃Li = −Gi

s ∆̃ω:

∆̃PMi =
Ki

s+KiRi

(
1 + RiGi

s

)
2Hs+D +

∑
i∈G

Ki

s+KiRi

(
1 + RiGi

s

) · ∆̃Pd. (19)

At the beginning of an DR-EDC cycle, the generators’
settings are updated such that they output p̂g

0 that is scheduled
based on the noisy demand p̂l = pl + n. Then, the LFC
controls the generators to meet the actual load pl. This process
is equivalent to that, the LFC controls the generators when
there is a step change of load (i.e., n) from p̂l to pl at the
beginning of the EDC cycle. In the Laplace domain, this step
change can be expressed by ∆̃Pd =

∑
i∈L ni/s. By replacing

∆̃Pd in Eq. (19) with
∑

i∈L ni/s and applying the Final Value
Theorem, the steady-state value of ∆PMi in time domain is
given by ∆P∞

Mi
= lims→0 s · ∆̃PMi =

Gi∑
i∈G Gi

·
∑

i∈L ni. As
discussed in Section V-A, LFC converges in a few LFC cycles.
In the steady state after the convergence, generators’ electricity
power outputs equal their mechanical power inputs [15]. Thus,
at the end of the EDC cycle, we have p̂gi = p̂g0,i +∆P∞

Mi. By
applying this result to Eq. (6), we have Eq. (7).
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