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ABSTRACT
Vehicle cybernation with increasing use of information and com-
munication technologies faces cybersecurity threats. This extended
abstract studies action-space attacks on autonomous driving agents
that make decisions using either a traditional modular processing
pipeline or the recently proposed end-to-end model obtained via
deep reinforcement learning (DRL). The action-space attacks alter
the actuation signal and pose direct risks to the vehicle’s behavior.
We formulate the attack construction as a DRL problem based on the
input from either an extra camera or inertial measurement unit de-
ployed. Attacks are designed to lurk until a safety-critical moment
arises (e.g. lane changing or overtaking), with the goal of causing
a side collision upon activation. Our results demonstrate that the
modular processing pipeline is more resilient than the DRL-based
agent, due to the former’s main focus of trajectory following. We
further investigate two enhancement methods: adversarial training
through fine-tuning and progressive neural networks, gaining an
essential understanding of their pros and cons.

1 INTRODUCTION
Recent rapid growth in autonomous driving (AD) has brought re-
search attention to its cybersecurity concerns. Rising autonomy
results in more sensors and connectivity, thereby expanding po-
tential attack targets in AD. Among miscellaneous possible attack
mount points, targeting the actuation of a vehicle is appealing
to the attacker. Adversaries can bypass potential defense mecha-
nisms and directly affect the vehicle’s state. However, action-space
attacks, also referred to as actuator attacks, have gained limited
attention in the context of AD. Most recent studies on action-space
attacks in AD rely on model-based approaches that either require
in-vehicle data for the current system state [6] or vehicle’s kinemat-
ics and structure [2], resulting in a demanding form of white-box
attacks. Meanwhile, attacks in the black-box setting have been
mostly studied in simulation environments like OpenAI Gym [3]
and Mathworks [5], which are not representative of real-world
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Figure 1: Overview of the DRL-based action-space attack.

driving conditions. Additionally, these studies usually concentrate
on a single type of driving system without contrasting the impact
of the attack across various AD designs. In light of this, we study
the action-space attack on two major types of driving agents: 1) the
traditional modular processing pipeline and 2) the end-to-end pol-
icy model trained via DRL. To ensure the realism of the attack, we
assume the attacker has no access to (i) the driving agent’s internal,
and (ii) the driving agent’s sensor readings. Both driving agents
are formulated based on a trajectory-following task while adopting
different design methodologies. We hypothesize that the design dif-
ferences between the two agents will lead to distinct characteristics
in responding to action-space attacks. We further apply adversarial
training to enhance the DRL-based end-to-end driving agent with
two variants, fine-tuning and progressive neural networks (PNN).

2 METHODOLOGY
We treat the entire driving system as a black box, utilizing DRL to
investigate safety-critical moments and to learn how to introduce
disturbances, as depicted in Fig. 1. In our study, the attacker utilizes
either an extra camera or an inertial measurement unit (IMU) to
identify safety-critical moments in the driving system. The former
provides adequate information while its installation demands a
wide field of view, which may attract attention from humans. The
latter provides a less informative inertia trace but can be concealed
within the vehicle, making them nearly undetectable. To explore
IMU’s potential utilization by attackers, we proposed a ‘learning-
from-teacher’ structure to transfer the attack policy from obtained
camera-based attacks to IMU-based attacks. The action-space at-
tack injects additive perturbations into the steering angle of the ego
vehicle at safety-critical moments (i.e., lane changing and overtak-
ing), aiming to create a side collision with another vehicle on road.
The attack is subjected to an attack budget that characterizes the
actuation system’s logistic constraint (i.e., the maximum allowed
adjustment value per actuation step) or the desired degree of attack
stealthiness. We conduct two variants of adversarial training to
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Figure 2: Evaluation under various attack budgets.

enhance the end-to-end driving policy: fine-tuning and PNN. For
the former one, we control the ratio of selecting zero attack budget
(i.e., no attack) to prevent overfitting to adversarial cases and for-
getting the nominal driving pattern. For the latter one, we adjust
the threshold for switching between either the original column or
the adversarially trained column based on the attack budget.

3 EXPERIMENT RESULTS AND DISCUSSION
We conduct experiments in CARLA 0.9.11 [1], with CARLA Autopi-
lot as the modular driving pipeline. We use DRL with a path planner
in the reward design to construct the end-to-end driving agent.
Both camera-based and IMU-based attacks successfully learned
a policy that perturbs the steering angle of the victim vehicle at
lane-changing and overtaking moments, resulting in a side collision
with other vehicles on road. Comparative results of the attack effec-
tiveness under various attack budgets are given in Fig. 2. Nominal
driving rewards assess driving performance based on speed and
traveling distance, and adherence to the planned path. Adversarial
rewards assess attack accuracy and success rate. These results sug-
gest a trade-off between the accuracy and stealthiness of the attack.
When the attacker has direct camera observation, it is easier for
the attacker to time the hijacking of the ego vehicle and remain
silent when the attack conditions are not met. However, when the
attacker only has indirect observations via stealthily installed IMU,
identification of safety-critical moments to produce a desired attack
impact becomes more challenging. We assess the robustness of two
driving agents based on the correlation between steering deviation
from the predetermined path and the attack effort, which is aver-
aged injected perturbations applied over each attack attempt. As
shown in Fig. 3, compared with the end-to-end driving agent, the
modular driving agent can maintain more minor tracking errors
in the trajectory following task when the attack effort is low. The
superior performance of the modular driving agent can be attrib-
uted to the inclusion of a proportional–integral–derivative (PID)
controller in its design. The PID controller calculates the throt-
tle, brake, and steering output needed to keep the vehicle on the
planned path. Once an error in speed heading is observed, the PID
controller adjusts the actuator value instantly. In contrast, the end-
to-end driving agent is trained to optimize a linear combination
of multiple goals, resulting in its tendency of trading precision for
faster speeds. We further explored the performance of the enhanced
agents. Each enhancement involves two variants. As shown in Fig. 4,
the enhanced agent with fine-tuning serves better in the presence
of attacks in terms of trajectory following accuracy. Yet, the cata-
strophic forgetting problems cause degraded driving performance

(a) Modular driving agent (b) End-to-end driving agent

Figure 3: Evaluation of different driving agents under attacks.

Figure 4: Enhanced agent with fine-tuning.

Figure 5: Enhanced agent with progressive neural networks.

with larger deviations from the planned path, even without signifi-
cant attacks. To avoid the forgetting problem, we further extend
the driving agent into PNN. As shown in Fig. 5, when faced with
attacks, it outperforms the former while maintaining its nominal
driving behavior by switching between a nominal and adversarially
trained driving policy. However, it has limitations since it requires
the identification of attacks to switch between policies. Although
action-space attacks are rare, they cannot be ignored. Therefore, our
results suggest that a simplex driving agent [4] capable of switch-
ing between the enhanced driving policy model and the nominal
driving agent when attacks are detected is desirable.
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