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ABSTRACT
Stability assessment is an important task for maintaining reliable
operations of power grids. With increased system complexity, deep
learning-based stability assessment approaches are promising to
address the shortfalls of the traditional time-domain simulation-
based approaches. However, in the field of computer vision, the
deep learning models are shown vulnerable to adversarial examples.
Although this vulnerability has been noticed by the energy infor-
matics research, the domain-specific analysis on the requirements
imposed for implementing effective adversarial examples is still
lacking. These attack requirements, albeit reasonable in computer
vision tasks, can be too stringent in the context of power grids.
In this paper, we systematically investigate the requirements and
discuss the credibility of six representative adversarial example
attacks for a case study of voltage stability assessment for the New
England 10-machine 39-bus system. We show that (1) compromis-
ing the voltage traces of half of transmission system buses is a
rule of thumb requirement; (2) the universal adversarial perturba-
tions that are independent of the original clean voltage trajectory
have the same credibility as the widely studied false data injection
attacks on power grid state estimation, while other adversarial ex-
ample attacks are less credible; (3) the universal perturbations can
be effectively defended with strong adversarial training.

CCS CONCEPTS
• Hardware → Smart grid; • Computing methodologies →

Neural networks; • Security and privacy→ Software and ap-
plication security.
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1 INTRODUCTION
Electric power grid is a critical cyber-physical system (CPS) that
maintains reliable and economical generation, transmission, and
distribution of electricity. It usually consists of the generating sta-
tions that convert the energy from other forms to electricity, the
transmission system that carries the electric power from generating
stations to load buses, and the distribution systems that distribute
the electric power to the end customers. A control center monitors
and manages the power grid to ensure the efficient and sustained
operations [20]. By integrating modern information and communi-
cation technologies (ICTs), the traditional power grids are evolving
into smart grids that possess improved sensing and control capa-
bilities to deal with the new challenges caused by the increasing
deployments of renewable energy, distributed generation, and de-
mand response. Machine learning, as an ICT, has been considered
and adopted for enhancing various grid capabilities such as load
forecasting [34], fault detection [26], and automatic generation
control [40].

The deep neural networks (DNNs) enabled by the advances of
computing hardware acceleration have shown appealing efficiency
in learning sophisticated patterns from big data. Thus, there are
growing interests of applying deep learning to power grids [10, 26,
31, 34, 41]. However, the complex structures of DNNs engender
vulnerabilities under adversarial settings. In this paper, we focus on
the adversarial example threat [13]. It aims at misleading the DNN
to yield wrong inference results by adding minute perturbations to
the inputs. In particular, it is a specific type of the false data injection
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(FDI) attack that has beenwidely studied under the context of power
grid [27].

While DNNs can be used for various power grid operation tasks,
this paper considers a representative task of online voltage stability
assessment (VSA) to substantiate the evaluation and analysis. Losing
stability can lead to widespread, catastrophic blackouts threaten-
ing people’s properties and lives. Thus, maintaining stability is a
fundamental requirement of any power system. The time-domain
simulations used for offline VSA during the design of the power
grid check the stability of the voltages at the transmission system
buses under presumed disturbances. Although a high-fidelity sys-
tem model can yield accurate VSA results, due to the power system
complexities, the simulations are usually much slower than the
evolution of the physical processes and ill-suited for online VSA.
To develop online VSA capability that enables timely and proper
reaction to a contingency, the grid operator can run extensive of-
fline simulations under various disturbances and use the results to
form a look-up table or train a machine learning model for online
VSA on real-time voltage measurements [9]. Applying DNNs to
better capture the inherent complexity of voltage dynamics and ad-
vance online VSA is an ongoing interest of the energy informatics
research [16, 38, 42].

Wrong outputs of the DNN-based VSA can lead to catastrophic
consequences. A false negative in detecting instability can cause
missed or delayed activation of fault isolation, which can potentially
result in widespread blackout; a false positive can cause unneces-
sary load shedding and thereby inconvenience and misery of the
customers losing power. Thus, the cybersecurity risks faced by
DNN-based VSA due to adversarial examples need to be under-
stood. Various adversarial example construction algorithms have
been proposed [3] and their effectiveness have been demonstrated
in the safety-critical CPSes using computer vision (CV) to perceive
the environment. For instance, an adversarial sticker pasted on road
can mislead Tesla Autopilot to direct a car to the opposite lane [2].
However, the requirements for implementing these attacks, though
reasonable in the CV tasks, may be too stringent in the context
of VSA. For example, the attacks often require the original clean
input to compute the malicious perturbation. In the CV-based lane
recognition task, the camera’s view of the road area as the clean
input can be known a priori to the attacker and used to design the
adversarial sticker. However, in VSA, obtaining the read access to all
the transmission buses’ real-time voltages for constructing effective
adversarial examples can be a strong requirement. Coordinating the
real-time eavesdropping and the data tampering in implementing
certain attacks is a subtle task imposing high requirements on the
attacker’s resources and skills.

Therefore, simply transferring every worry from CV applications
to DNN-based smart grid tasks without discrimination may hinder
innovations. To the best of our knowledge, systematic studies on
the credibility of adversarial example attacks with due discrimi-
nation on the requirements of implementing them in smart grids
are still lacking. In this paper, we conduct a systematic case study
to evaluate the effectiveness of various methods for constructing
adversarial examples against VSA, which impose different require-
ments on (1) read access to the original clean voltage measurements,
(2) write access to the voltage measurements, (3) knowledge about
the DNN’s internals, and (4) access to the DNN’s training data. We

also evaluate their effectiveness when the system defender adopts
the prevailing countermeasures ofmodel hardening and input cleans-
ing. By relating the attack effectiveness with the attack requirement
and also analyzing the difficulty/overhead of meeting the attack
requirement, our evaluation results provide a comprehensive un-
derstanding on the credibility of the various adversarial example
attacks on VSA.

From the case study, we summarize a methodology for evaluat-
ing the credibility of various types of adversarial example attacks
on the DNN-based smart grid applications as follows. The method-
ology includes the following steps: (a) to investigate the individual
attack model for each of the considered adversarial example attacks
characterized by the minimal requirements needed to effectively
mislead the DNN of the smart grid application; (b) to evaluate
the credibility of the attacks through analyzing the feasibility of
the requirements under the context of the considered smart grid
application; and (c) to evaluate the effectiveness of prevailing coun-
termeasures in protecting the smart grid application against the
credible adversarial attacks.

The main contributions of this paper are summarized as follows:
• We study six adversarial example construction methods, i.e.,
FGSM [13], PGD [23], DeepFool [30], Carlini-Wagner [6],
Universal Adversarial Perturbation (UAP) [29], and Univer-
sal Adversarial Network (UAN) [14]. We investigate the min-
imal requirement of implementing each of them to achieve
effective attack on VSA.

• We show that tampering with the voltages of half of buses
is a rule of thumb for adversarial examples to be effective.
Moreover, the universal adversarial example attacks (i.e., UAP
and UAN) that do not require read access of bus voltages
have the same credibility as the FDI attack on grid state esti-
mation [27] that has received much research attention. The
other attacks are less credible because of their indispensable
requirement on real-time bus voltage read access.

• We study the effectiveness of model hardening by adversarial
training and input cleansing by APE-GAN [17] in defending
each of the six adversarial example attacks. We show that
the adversarial training using PGD adversarial examples can
effectively protect the DNN-based VSA against the credible
universal adversarial examples.

This paper is organized as follows. Section 2 reviews related
work. Section 3 presents the background and preliminaries. Sec-
tion 4 states the problem studied in this paper. Section 5 and Sec-
tion 6 present the evaluation results on the attack requirement and
defense effectiveness, respectively. Section 7 concludes this paper
and discusses future work directions.

2 RELATEDWORK
Applications of machine learning in power systems. In liter-
ature, machine learning-based approaches have been proposed for
load [34] and price [31] forecasting, wind [31] and solar [41] power
prediction, fault diagnosis [26] and FDI detection [10]. Deep rein-
forcement learning is considered for various power grid controls
such as voltage control [39], frequency control [40], and emergency
control [15]. Applying machine learning for VSA addresses the
limitations of the conventional simulation-based VSA, i.e., poor
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real-time performance [8] and scalability with respect to the power
system size [19]. Machine learning algorithms used for VSA include
extreme learning-based neural networks [38], recurrent neural net-
work [16], and ensemble learning [42]. These studies focus on
devising models that achieve good application performance and
do not consider the potential cybersecurity risks caused by the
use of machine learning models. This paper studies the adversarial
example attacks against the machine learning model used for VSA
and the countermeasures.

FDI attacks on power systems. The use of modern ICTs in
power systems introduce cybersecurity concerns. The work [27]
shows that FDI on power flow measurements can mislead state
estimation and bypass the bad data detection mechanism at the
control center. A further study [11] advances the attack by removing
the requirement on the prior knowledge of the power grid topology.
More studies show that FDI can be designed to mislead electricity
market operations [37], energy routing processes [25], Optimal
Power Flow (OPF) analysis [32], frequency control [35], centralized
voltage control [24], and distributed voltage control [18]. In addition,
the studies [18, 24, 35] consider the optimal FDI that schedules the
FDI sequence to minimize the time left for the power grid to react
[35], maximize the state estimation error [24] and voltage deviation
[18]. Countermeasures against FDIs on power systems have also
been studied, including attack detection [35] and mitigation [5].
The work [24] analyzes a joint detection-mitigation mechanism
based on a Markov decision process formulation. The above studies
consider the strategic planning of FDI. However, the targets of the
FDI are not DNN-based.

Adversarial example attacks on power grid. Adversarial ex-
ample attack is a specific form of FDI that aim at misleading DNN.
A recent work [7] studies the impact of adversarial examples on
the DNN-based load forecasting. Different from the impact analysis
of a single adversarial example attack in [7], we perform a require-
ment analysis for six adversarial example attacks to investigate the
conditions that the adversary needs to satisfy to launch effective
adversarial example attacks based on a case-study application of
VSA. The six attacks are representative ones frequently evaluated
in literature [33]. Meanwhile, the construction of these attacks im-
poses distinct minimal requirement on the adversary. The minimal
requirement provides insights into understanding the credibility
of adversarial examples in the context of power systems. In addi-
tion, we investigate the effectiveness of prevailing countermeasures,
while the existing work [7] does not consider defense.

3 BACKGROUND AND PRELIMINARIES
3.1 DNN-based Online Short-Term VSA
A stable power system can regain an equilibrium state after a dis-
turbance [21]. It is essential to assess the power system stability
against potential disturbances because loss of stability may result
in loss of load in an area or tripping of transmission lines, leading
to cascading failures and even widespread blackout [1]. Stability is
often assessed in terms of rotor angle, frequency, and voltage. From
the time scale of the post-contingency dynamics, short-term and
long-term stability assessments concern time horizons of a few
seconds and up to minutes, respectively. In this paper, we focus on
short-term VSA, which classifies a seconds-long voltage trajectory
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(b) Unstable.

Figure 1: Example of stable and unstable situations.

that consists of the traces of the transmission buses’ voltages into
stable or unstable. Our study can be also extended to other types of
stability assessment. Fig. 1 shows stable and unstable voltage trajec-
tories over 5.0 seconds, which are caused by a fault occurring at 0.1
seconds followed by an automated fault clearance at 0.2 seconds.
In the stable cases, the voltages of all buses restore to acceptable
levels (less than 10% deviations from the nominal values). In the
unstable cases, the voltages remain unacceptably far away from the
nominal values or even collapse.

Offline VSA can be conducted using time-domain simulations
with an extensive set of potential faults occur [20]. In contrast,
online VSA, which needs to yield results based on real-time voltage
measurements before a hard deadline for restorative actions should
the system assessed unstable, faces two main challenges. First, the
system operator often has limited or no information at run time re-
garding the occurred fault, which, however, are needed to bootstrap
the time-domain simulation. Second, the time-domain simulation
is often much slower than the state evolution of the power systems.
To address these challenges, machine learning has been applied
for online VSA [9, 16, 42]. Specifically, based on a training dataset
(X,Y) = [(xi ,yi ), i = 1, ...,m], where xi represents a post-fault volt-
age trajectory generated by an offline time-domain simulation and
yi represents the corresponding stability classification, a machine
learning model f (x;θ ) with weights θ can be trained to classify a
voltage trajectory x at run time. With abundant training data, the
well-trained model f (x;θ ) can handle a wide range of faults.

3.2 Adversarial Example Taxonomy
The study [3] provides a taxonomy of adversarial example construc-
tion methods, which is illustrated in Table 1. In term of applicable
scope of the attack, input-specific means that a crafted perturba-
tion is effective against a specific clean example, while universal
means the perturbation is effective against many clean examples.
In terms of the computation required, an adversarial example can
be constructed by a one-shot computation step (e.g., by using a
closed-form formula) or iterative computation that often involves
a search process. In terms of the knowledge about the target DNN,
the white-box methods require full knowledge about the DNN’s
internals including its architecture and weights, while the black-box
methods only require the access to run the DNN without knowing
its internals. Most effective methods require white-box knowledge.
Some of them are still effective in the black-box setting by using
a surrogate DNN. The adversary can query the black-box target
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Table 1: Adversarial example construction methods.

Attack Categorization [3]
Scope Computation Knowledge

FGSM [13] Input-specific One-shot White/black-box
PGD [23] Input-specific Iterative White/black-box
DF [30] Input-specific Iterative White-box
CW [6] Input-specific Iterative White-box
UAP [29] Universal Iterative White/black-box
UAN [14] Universal Iterative White/black-box

DNN with many input samples, train the surrogate DNN using
the inputs and the target DNN’s outputs, and then construct the
adversarial examples against the surrogate DNN. In Table 1, we
label such methods with “white/black-box.”

As summarized in Table 1, this paper considers six representa-
tive adversarial example construction methods, i.e., Fast Gradient
Sign Method (FGSM) [13], Project Gradient Descent (PGD) [23],
DeepFool (DF) [30], Carlini and Wagner’s method (CW) [6], Univer-
sal Adversarial Perturbation (UAP) [29], and Universal Adversarial
Network (UAN) [14]. While Appendix A provides the formulations
of these six construction methods, we describe their essences as
follows. FGSM adds a one-step perturbation to the clean input sam-
ple. PGD performs multiple small-step FGSMs iteratively. DF finds
the perturbation with the minimum distance from the clean input
sample to the decision boundary. CW applies the Lagrangian re-
laxation to simplify the adversarial example construction problem
(cf. Appendix A) to unconstrained optimization and then searches
the solution. The above four methods are input-specific. The UAP
and UAN are universal. UAP uses DF to find the perturbation for
each clean input sample of the training dataset and accumulates
the perturbations to form a single universal perturbation. UAN is a
generative neural network that transforms a value randomly sam-
pled from a distribution to a perturbation that can likely mislead
the DNN.

3.3 Defenses against Adversarial Examples
Existing defenses can be divided into themodel hardening and input
cleansing categories. Model hardening modifies the target DNN to
improve robustness against adversarial examples. Adversarial train-
ing is a model hardening technique that attempts to improve model
robustness by including adversarial examples with their correct
labels into the training dataset for model training. Existing studies
[28] and the Competition on Adversarial Attacks and Defenses [36]
show that adversarial training gives state-of-the-art performance
on various benchmarks. The input cleansing defenses attempt to
remove or disrupt the adversarial perturbations [3]. Compared with
ad hoc approaches (e.g., data compression, foveation, and random-
ization [3]), APE-GAN [17] is a systematic input cleansing defense
approach that aims to learn a manifold mapping from adversarial
examples to original clean examples. The APE-GAN is trained un-
der the generative adversarial network (GAN) setting [12]. With
the help of a discriminator that aims to differentiate the clean input
samples and outputs of the generator, the trained generator can

cleanse the input adversarial example and output a benign coun-
terpart. The detailed formulations of the adversarial training and
APE-GAN can be found in Appendix A.

4 PROBLEM STATEMENT
4.1 System and Data Description
The power system considered in this case study is the 10-machine
39-bus New England system [4]. The system’s single-line diagram
can be found in Appendix B. We perform extensive time-domain
simulations to generate voltage trajectories. In each simulation, a
three-phase fault that lasts for a random time duration ranging
from 0.1 to 0.3 seconds is injected to a randomly selected bus. The
fault is cleared by a single or double transmission lines tripping,
which simulates different topology change scenarios. Each voltage
trajectory consists of the voltage traces of the 39 buses. The sam-
pling rate is 100 samples per second. We generate 6,536 voltage
trajectories from the simulations that cover a wide range of practi-
cal operating points of the power system. We divide the generated
voltage trajectories into training, validation, and testing datasets
with 4,536, 1,000, and 1,000 samples. Each sample is a 1 × 3900 data
vector containing the 39 buses’ voltage traces over a one-second
duration after the clearance of the fault. For VSA, we use a convo-
lutional neural network (CNN). The CNN has two convolutional
layers with 128 1 × 5 filters followed by a 1 × 2 max pooling layer,
two convolutional layers with 256 1 × 5 filters followed by a 1 × 2
max pooling layer, two fully connected layers with 512 rectified
linear units (ReLUs) each, and a binary-class softmax layer. The
validation accuracy of the trained CNN is 99.5%. Specifically, the
empirically measured false positive rate and the false negative rate
are 0% and 0.5%, respectively, in detecting the instability.

4.2 Threat Models and Research Problem
The general objective of the six adversarial example attacks is to
mislead the target DNN, while minimizing the perturbation. As
summarized in Table 1, the six attack construction methods have
distinct features. Each of them imposes a distinct set of minimal
requirements that need to be satisfied to render the attack effective.
Thus, the six attack construction methods correspond to different
threat models. The union set of their requirements contains the
following four specific requirements.

(1) Read access to the clean voltage measurements: This is
related to the applicable scope (i.e., input-specific or universal) of
the adversarial example. An input-specific attack needs this read
access. It cannot compute the adversarial perturbation until the
whole clean voltage trajectory is obtained using this read access.
In addition, the attack needs to add the perturbation to the voltage
trajectory before it is fed to the DNN for VSA. Differently, the
universal attacks do not need this access.

(2) Write access to the voltage measurements: A voltage
trajectory consists of the voltage traces of all transmission system
buses. The number of voltage traces that the adversary needs to
tamper with is an important attack requirement aspect that is re-
lated to the cost and overhead of launching the attack. The full
write access (i.e., being able to tamper with the voltage traces of
all transmission system buses) apparently implies a strong and
resourceful adversary.
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(3) Knowledge about DNN’s internals: This is related to the
white-/black-box features of the attack as summarized in Table 1.

(4) Access to DNN’s training data: This specifies whether a
considered adversarial example construction method needs the
dataset used to train the target DNN, which can consist of labeled
historical voltage trajectories.

In this paper, we inquire three issues. First, we investigate the
minimal set of requirements that each attack needs to satisfy to
mislead the VSA DNN. The results will depict precisely the threat
models of the attack construction methods. Second, we analyze
the credibility of the adversarial examples based on their minimal
requirements. The different requirement aspects should be weighed
differently, e.g., meeting the real-time requirement aspects (1) and (2)
is oftenmore difficult thanmeeting the static requirement aspects (3)
and (4). Third, we evaluate whether the prevailing countermeasures
can protect VSA against the credible attacks.

5 ATTACK REQUIREMENT INVESTIGATION
5.1 Attack Evaluation Settings
The effectiveness of attack is evaluated in terms of the accuracy of
the target DNN on 1,000 perturbed samples from the test dataset
described in Section 4.1. With an input-specific attack, an 1 × 3900
perturbation vector is computed for each specific test sample using
the target DNN under the white-box setting or the surrogate DNN
under the black-box setting. We set the surrogate DNN to have
the same hyperparameters as the target DNN and train it from
a random initialization using the training dataset. With UAP, we
compute a fixed universal adversarial perturbation vector using
1,000 samples randomly selected from the training dataset and then
apply it to all the 1,000 test samples. With UAN, we train the attack
generator using 1,000 samples randomly selected from the training
dataset. For each of the 1,000 test samples, the generator takes as
input a Gaussian random vector and generates a 1×3900 adversarial
perturbation vector. The generator’s hyperparameters are adopted
from [14].

5.1.1 Implementation of partial perturbation. As discussed in Sec-
tion 4.2, the number of voltage traces that the adversary needs to
tamper with is a key requirement. Now, we present our implemen-
tation of the adversarial example construction that only needs write
access to l buses. The formulation of such partial perturbation is:
δ∗ = argminδ D(x, x′) subject to f (x′;θ ) , y and only the input
dimensions of x correspond to the l buses are modified. We use a
mask M, which is a matrix that has the same shape as the input of
the target model and has unit values in the area corresponding to

Table 2: Requirements for effective attacks against VSA.

Attack
Minimal requirement

Access Knowledge
Read Write DNN internal Training data

FGSM [13] Yes Partial Either
PGD [23] Yes Partial Either
DF [30] Yes Partial Yes No
CW [6] Yes Full Yes No
UAP [29] No Partial No Yes
UAN [14] No Partial No Yes

the l buses where adversarial perturbations are added and zero val-
ues in the area where no perturbation is added.M is used to restrict
the area where the adversary can modify the measurements. For the
one-step adversarial example, i.e., the FGSM attack, the computed
adversarial perturbation is multiplied byM and added to each clean
example. For the iterative adversarial example, the multiplication
is performed at each iteration of the attack construction process.
In the experiments, we set the value of l to be 1, 5, 10, 15, 20, 25, 30,
and 39. For each setting of l , we perturb the fixed first l bus voltage
measurements.

5.1.2 Attack perturbation intensity settings. Intuitively, larger per-
turbations are more effective in misleading the target DNN. Thus,
it is non-trivial to configure the attack perturbation intensity so
that the comparison of attack effectiveness is fair. As DF finds the
minimal perturbation needed to mislead the target DNN, we use
DF to guide the settings of ϵ for FGSM, PGD, UAP, and UAN and
κ for CW. Fig. 2 shows the per-bus average ℓ2-norm of the pertur-
bations found by DF versus the number of attacked buses (i.e., l).
The intensity of the DF perturbation decreases with l because the
needed perturbation intensity is larger to mislead the DNN when
the perturbation is limited to fewer buses. When 1 ≤ l ≤ 25, the
average perturbation intensity is from 0.27 p.u. to 2.12 p.u., which
is unreasonably large since the nominal bus voltage is 1 p.u.. Thus,
we consider 30 ≤ l ≤ 39 for DF such that the average perturbation
intensity is at most 0.16 p.u..

Fig. 3 shows the DNN’s accuracy versus l under various ϵ set-
tings from 0.01 p.u. to 0.2 p.u.. The settings of 0.1 p.u. and 0.2 p.u.
can render the attack effective when the adversary can tamper
with sufficient bus voltage readings. We set ϵ = 0.2 p.u. for FGSM,
PGD, UAP, and UAN. For CW, when we set κ = 0, the average
perturbation intensity is 0.18 p.u., which is similar to that of DF. In
summary, by setting ϵ = 0.2 p.u. and κ = 0, the comparison among
the six attacks has a relatively fair basis. Note that the magnitude
of the adversarial perturbation is a configurable parameter. In the
VSA case study, we set the maximum allowed deviation from the
nominal bus voltage to be ±0.2 p.u.. Under this setting, we evaluate
the worse-case vulnerability of the VSA DNN.

5.2 Attack Effectiveness and Requirements
The evaluation results are summarized in Table 2, which presents
the minimal requirement of each of the six attack construction
methods to effectively mislead the VSA DNN. The “read access”
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Figure 4: Clean, randomly perturbed, and FGSM-perturbed
bus voltage trajectories. The clean sample in (a) is classified
as unstable; the randomly perturbed sample in (b) is cor-
rectly classified as unstable; the FGSM-perturbed sample in
(c) is wrongly classified as stable.

column specifies whether the attack needs to obtain the clean volt-
age trajectory. The “write access” column specifies whether the
attack needs to tamper with the voltage traces of all buses (full) or
just a portion of them (partial) to be effective. The “DNN internal”
and “training data” columns specify whether obtaining the DNN
internal and a training dataset are needed, respectively.

5.2.1 Random perturbations versus adversarial examples. Fig. 4
shows a clean, unstable bus voltage trajectory, and its randomly
perturbed and FGSM-perturbed counterparts. Each element of the
random perturbation is randomly and independently sampled from
the standard normal distribution and clipped to [−0.2, 0.2] p.u.. The
FGSM perturbations are applied to all bus voltage readings with
0.2 p.u. maximum perturbation intensity. In the presence of random
perturbation, the DNN still achieves 99.3% test accuracy, which is
just 0.2% lower compared with the accuracy on clean samples. How-
ever, in the presence of FGSM attack, the accuracy drops to 45.4%.
These results show that, even if the adversarial is strong enough
to compromise all bus voltage readings, they still need to apply
intelligence to schedule the perturbation.

5.2.2 Effectiveness of input-specific adversarial examples. Fig. 5a
shows the accuracy of the DNN in the presence of white-box attacks.
When 1 ≤ l ≤ 15, the effectiveness of the input-specific attacks (e.g.,
FGSM, PGD, DF, and CW) are limited. The lowest accuracy is 84.2%,
which is caused by FGSM with l = 15. When l = 20, the accuracy
of the DNN under FGSM attack drops to 45.5%. The accuracy under
PGD attack drastically drops from 95.4% to 57.6% when l increases
from 15 to 20. These results suggest that by tampering with about
50% of the bus voltage measurements, white-box input-specific
adversarial examples can result in more than 50% VSA accuracy
drops. When 30 ≤ l ≤ 39, the DF attack is very effective. The
DNN accuracies under DF attack are only 15.2% and 8.0% when l is
30 and 35, respectively. The effectiveness of CW is rather limited
when only a portion of bus voltage measurements are under attack
(i.e., 1 ≤ l < 39). However, when CW can tamper with all bus
voltage measurements (i.e., l = 39), the DNN accuracy drops to
15.5%. This suggests that, although CW is often considered the most
effective adversarial example construction method in computer
vision applications due to its optimization-based formulation [3],
its effectiveness against VSA is conditioned on the write access to
all input dimensions. In contrast, the gradient-based methods (i.e.,
FGSM, PGD, and DF) achieve non-negligible attack effectiveness
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Figure 5: DNN accuracy in the presence of attack.

when partial input dimensions are under attack. These results are
summarized in the “write access” column of Table 2.

Fig. 5b shows the results under black-box attacks. In the presence
of DF and CW attacks, the DNN’s accuracy remains at 84.9% and
99.6%, respectively. Thus, DF and CW are ineffective under the
black-box setting. It is because the adversarial examples constructed
by DF and CW overfit to the surrogate DNN and thus have reduced
effectiveness against the target DNN. FGSM adversarial examples
exhibit the highest transferability from the surrogate to the target
DNN, compared with other input-specific attacks. Specifically, the
DNN accuracy decreases from 95.7% to 56.7% when l increases from
15 to 20, which is similar to the results obtained under the white-
box setting. PGD’s effectiveness reduces when switching from the
white-box to the black-box setting. However, the DNN accuracy
still has a non-negligible drop from 63.3% to 46.1% when l increases
from 30 to 35. The observed good transferability of FGSM and PGD
adversarial examples from the surrogate DNN to the target DNN is
because that they underfit the surrogate DNN. The above results
suggest that preserving the confidentiality of the target model is a
weak defense against FGSM and PGD. These results are summarized
in the “DNN internal” column of Table 2. The “either” notes mean
that, under the white-box setting, FGSM and PGD only require the
DNN internal; under the black-box setting, FGSM and PGD require
the training data to build the surrogate DNN.

5.2.3 Effectiveness of universal adversarial examples. Fig. 5a shows
that, when 1 ≤ l ≤ 15, the DNN accuracy remains at above 98.6%
under white-box UAP and UAN attacks. White-box UAP decreases
the DNN accuracy from 99.2% to 50.0% when l increases from 20
to 25. White-box UAN decreases the DNN accuracy from 99.2%
to 62.8% when l increases from 15 to 20. These results show that
the universal adversarial examples constructed in the white-box
manner can decrease the target DNN’s accuracy by up to 49.5%
when only about 50% of bus voltage measurements are tampered
with. Thus, in Table 2, UAP and UAN require partial “write access”.

Fig. 5b shows that UAP and UAN under the black-box setting
achieve similar attack effectiveness as under the white-box setting.
Therefore, UAP and UAN do not require the target DNN internal to
be effective, as summarized in the “DNN internal” column of Table 2.
UAP and UAN start to take effect when l is larger than 25 and 20,
respectively. Therefore, UAN is more effective than UAP. Moreover,
under the black-box setting, universal adversarial example attacks
constructed by UAP and UAN are more effective than the input-
specific attacks. This suggests that UAN can effectively learn the
distribution of the adversarial examples while avoiding overfitting
to the surrogate DNN under the black-box setting.



Understanding Credibility of Adversarial Examples against Smart Grid e-Energy ’21, June 28–July 2, 2021, Virtual Event, Italy

Note that both UAP and UAN need a clean training dataset,
as shown in Table 2, no matter whether they operate under the
white-box or black-box settings.

5.3 Implications and Credibility Analysis
The key observations from the attack effectiveness evaluation re-
sults for VSA obtained in Section 5.2 are summarized as follows:

• Compared with adversarial examples, random perturbations
are ineffective in misleading the VSA DNN.

• Except for CW attacks, all other adversarial example attacks
can decrease the target DNN’s accuracy by about 50% when
tempering with only 50% of the input dimensions.

• CW and DF can be very effective, in that they can decrease
the target DNN’s accuracy to below 20% and 10%, respec-
tively. However, they impose strong requirements such as
read and write access to the voltage traces of many/all buses,
as well as the DNN internal.

• Preserving the confidentiality of the DNN internal is a weak
defense, because four attacks remain effective under the
black-box setting.

• Universal adversarial example attacks are effective against
VSA DNN under both the white-box and black-box settings.

In what follows, we discuss the implications of these results in
the context of smart grids.

5.3.1 Static knowledge needed by attacker. DNN internal and train-
ing data are the static knowledge. From the last two columns of
Table 2, each of the six attack methods needs at least one of them
to be able to construct effective adversarial examples. However,
as DNN internal and training data are static information, the ad-
versary can obtain them in the scenario of advanced persistent
threat (APT). The adversary may use social engineering against
employees of the grid operator. Note that even if the adversary
can only obtain a black-box VSA DNN (e.g., its binary executable),
they can feed massive unlabeled input samples to the black-box
DNN to obtain the corresponding labels, forming a training dataset
for building a surrogate DNN. Then, the adversary can use FGSM,
PGD, UAP, or UAN to construct effective adversarial examples. In
summary, preserving the confidentiality of the static knowledge
(i.e., DNN internal and training data) is a shaky defense under the
APT scenario. Therefore, the weights of the last two columns of
Table 5.2 are marginal in assessing the credibility of adversarial
example attacks against VSA.

5.3.2 Implication of write access requirement. To launch adversarial
example attack, the ability of tempering with the voltage traces
of all or some buses is a must. We discuss the implication of our
results from two facets.

Compromising half of buses is a rule of thumb: Our evalu-
ation results show that some input-specific attacks, i.e., DF and CW,
can nearly subvert VSA when all buses are under attack. However,
because input-specific attacks are less credible as analyzed shortly
in Section 5.3.3, the observed subversion is also less credible ac-
cordingly. Therefore, as shown in Fig. 5, the degradation of VSA
DNN accuracy to about 50% by the universal adversarial exam-
ples is a more credible maximal attack effectiveness. Section 5.2.3
shows that UAN is more effective than UAP. With UAN, there is

a significant drop of DNN accuracy when l increases from 15 to
20. When l increases further from 20, the further accuracy drops
become less salient. Since the cost of the attack increases with l
(which is discussed in the next paragraph), compromising half of
the buses to obtain their write accesses is a rule of thumb for the
adversary.

Attack implementation: There are three possible ways to im-
plement the attack. (1) An adversary within the enterprise network
of the power grid control center can compromise the measurements
of all buses. However, this strong adversary is ill-motivated, because
they should subvert the VSA results directly. (2) An adversary com-
promises the communication links from the buses to the control
center. To launch such attack, on one hand, the adversary must have
the capability to intercept the network transmission of the clean
voltage trajectory on the communication paths, e.g., on a router, in
order to transmit the maliciously perturbed voltage trajectory to
the control center without causing suspicion. On the other hand,
the adversary needs the capability to breach the cryptographic
protection. The adversary may have obtained the master keys of
the compromised links, which represents a strong adversary as
well. Exploiting zero-day vulnerability of the cryptographic protec-
tion (e.g., OpenSSL’s Heartbleed bug) does not require the master
key. However, the availability of such zero-day vulnerabilities is
opportunistic and obtaining them is often costly. (3) An adversary
manipulates the analog sensors by using remote electromagnetic in-
ferences, which have been demonstrated feasible in [22]. However,
such sensor reading manipulation attack is delicate and requires
extensive skills. Through the above discussions, the attacks on the
communication links and the analog sensors, though requiring
significant investment and expertise, have certain credibility and
cannot be complacently ignored.

5.3.3 Implication of read access. We separately discuss the impli-
cations of the input-specific and universal attacks in the context of
VSA, which require full and no read access to the clean input.

Input-specific attacks: Since the adversary cannot construct
the input-specific adversarial example until the whole voltage tra-
jectory is obtained, the sensor reading manipulation by electromag-
netic interference discussed in Section 5.3.2 is not applicable. There-
fore, the adversary has to compromise the communication links
from all buses to the control center, which represents a high over-
head. The full read access requirement renders the input-specific
attacks sophisticated, resource- and skill-demanding.

Universal attacks: Since the universal examples are indepen-
dent of the real-time clean examples, they can be implemented
by either the sensor reading manipulation by electromagnetic in-
terference or compromising the communication links. Thus, the
delicate interception required by the input-specific attacks is not a
must. Note that the widely studied FDI attack against the power
grid state estimation [27] is also a universal attack. Specifically, the
perturbation to the power flow vector is given by a = Hc, where
H is a constant matrix for state estimation and c is an arbitrary
vector. Therefore, H is a static knowledge regarding the power grid
that the adversary should obtain and the perturbation a is inde-
pendent of the real-time power flow state of the power grid. Given
the same nature of the universal adversary example attacks and
the state estimation FDI attack studied in [27], they have the same
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credibility that has substantially concerned the relevant research
communities.

5.3.4 Summary. From the above analysis, the universal adversarial
example attacks pose credible threats against VSA. Between UAP
and UAN, the latter is more effective according to our evaluation.
If the UAN adversary can compromise the voltage traces of more
than half of the buses, devastating effects on VSA will be generated.
While we should not expel the possibility of the input-specific
adversarial example attacks, they are less credible and their results
presented in this section help us understand the attack effectiveness
more comprehensively.

6 EVALUATION OF DEFENSE EFFECTIVENESS
6.1 Defense Evaluation Settings
We employ adversarial training, APE-GAN, or the combination of
them as the defense, which are explained as follows.

6.1.1 Setting of adversarial training. We consider two variants of
adversarial training called FGSM adversarial training [13] and PGD
adversarial training [28], which add 1,000 adversarial examples
crafted by FGSM or PGD, respectively, into the training dataset.
The adversarial training samples are crafted using validation sam-
ples with ϵ = 0.2 p.u.. The DNN hardened by FGSM achieves 99.2%
accuracy on clean test samples and 98.6% on FGSM adversarial
examples constructed from clean test samples. The DNN hardened
by PGD achieves 98.6% accuracy on clean test samples and 98.2%
on PGD adversarial examples constructed from clean test samples.
These results show that the hardening is effective against the con-
sidered attack method. To evaluate the effectiveness of the defense,
we consider both white-box and black-box attacks. In the white-box
setting, the adversary can access the hardened DNN’s internals.
Therefore, this white-box setting follows the Kerckhoffs’s princi-
ple, in which the enemy knows the system including its defense
mechanism. In the black-box setting, the adversary cannot access
the internals of the hardened DNN and constructs the adversarial
examples based on the surrogate DNN that is trained by the adver-
sary using the clean training data from random initialization. Note
that the adversary does not apply adversarial training to harden
the surrogate DNN.

6.1.2 Setting of APE-GAN. APE-GAN is trained using the approach
presented in [17] with all clean training samples and 1,000 FGSM
adversarial examples constructed based on the VSA DNN. The
trained APE-GAN is used before the VSA DNN to cleanse the in-
put samples. To evaluate the effectiveness of the defense, we also
consider white-box and black-box attacks. Under the white-box
setting, the adversary constructs the adversarial examples using the
target DNN. Note that this white-box attack construction does not
consider APE-GAN, because how to construct adversarial pertur-
bations that can bypass APE-GAN is still an open issue. Under the
black-box setting (which is not considered in the paper proposing
APE-GAN [17]), the adversary constructs the adversarial examples
based on the surrogate DNN.

6.1.3 Combination of PGD adversarial training and APE-GAN. The
first combination scheme is to combine a single PGD hardened
DNN and the APE-GAN. During the training, we first apply PGD
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Figure 6: VSA accuracy in the presence of adversarial train-
ing defense. The legends of (b) are the same as (a).

adversarial training to harden the DNN and then train the APE-
GAN using clean training samples and 1,000 FGSM adversarial
examples constructed based on the hardened DNN. During the
inference, the input is first cleansed by the APE-GAN and then
fed to the hardened DNN. To evaluate this defense, we consider
both white-box and black-box attacks. The white-box adversarial
examples are crafted using the target PGD-hardened DNN; the
black-box adversarial examples are crafted using the surrogate
DNN that is not hardened by adversarial training.

The second scheme is to combine multiple PGD-hardened DNNs
and APE-GAN. The decision fusion among the multiple DNNs is
as follows. Given an input, if the percentage of the majority of the
outputs of N PGD-hardened DNNs is greater than a threshold Ts ,
the input is considered clean and the majority is yielded as the
final result; otherwise, the input is considered adversarial. For the
input classified adversarial, we use APE-GAN to cleanse the input,
feed the cleansed input to the N PGD-hardened DNNs, and use
the majority of the DNNs’ outputs as the final classification result.
We set N = 5 and Ts = 100% in the evaluation. These settings
will be explained shortly in Section 6.2.3. This second scheme is
only evaluated with black-box attacks generated by the surrogate
DNN as in the first scheme. Note that how to construct adversarial
examples under the white-box setting against the structure that
fuses multiple DNNs’ outputs is still an open issue.

6.2 Defense Effectiveness Results
This section presents the defense effectiveness results, which are
summarized in Table 3.We say an attack is effective if it can decrease
the accuracy of the target DNN to 80% and below; we say a defense
is effective if it can restore the accuracy of the target DNN to 80%
and above in the presence of an effective attack. From Section 5.2,
the black-box DF and CW attacks are not effective. Thus, we do not
consider these two attacks in this section.

6.2.1 Effectiveness of adversarial training. Fig. 6a and Fig. 6b show
the VSA DNN’s accuracy in the presence of adversarial training
defense versus l under the white-box and black-box attack settings.
First, we analyze the defense effectiveness against input-specific
attacks. In Fig. 6a, FGSM adversarial training is not effective against
white-box PGD attack when l = 35 and l = 39. But PGD adversarial
training is effective against white-box PGD attack. This suggests
that PGD adversarial training is more effective than FGSM adver-
sarial training. Both FGSM and PGD adversarial training defenses
are not effective against white-box DF attack when 30 ≤ l ≤ 39.
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Table 3: Summary of defense effectiveness. “✓” and “✗” represent effective and ineffective defenses. “White” and “Black” refer
to “White-box” and “Black-box” attacks. “N.A.” for the black-box DF and CW attacks means these attacks are not effective and
thus not used to evaluate defense effective. “\” means the results are not available because the attack construction approach
is still an open issue.

XXXXXXXXXDefense
Attack Input-specific attacks Universal attacks

FGSM PGD DF CW UAP UAN
White Black White Black White Black White Black White Black White Black

❶ FGSM adv training ✓ ✓ ✗ ✓ ✗ N.A. ✓ N.A. ✓ ✓ ✗ ✓

❷ PGD adv training ✓ ✓ ✓ ✓ ✗ N.A. ✓ N.A. ✓ ✓ ✓ ✓

❸ APE-GAN ✓ ✗ ✓ ✗ ✗ N.A. ✓ N.A. ✗ ✗ ✗ ✗

❹ APE-GAN+PGD adv training ✓ ✓ ✓ ✓ ✗ N.A. ✓ N.A. ✗ ✗ ✓ ✓

❺ APE-GAN+N PGD adv training \ ✓ \ ✓ \ N.A. \ N.A. \ ✓ \ ✓
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Figure 7: Clean, FGSM-perturbed, and APE-GAN cleansed
bus voltage trajectories. The clean sample in (a) is classified
as stable; the FGSM-perturbed sample in (b) is wrongly clas-
sified as unstable; theAPE-GAN cleansed sample in (c) is cor-
rectly classified as stable.

From Fig. 6b, adversarial training is effective against all effective
black-box input-specific attacks. Then, we analyze the defense ef-
fectiveness against universal attacks. As shown in Fig. 6, PGD
adversarial training is effective against both the white-box and
black-box universal attacks. The results observed from Fig. 6b are
summarized in the two rows of Table 3 headed by ❶ and ❷.

6.2.2 Effectiveness of APE-GAN. Fig. 7 shows a clean, stable bus
voltage trajectory, its FGSM-perturbed counterpart, and the out-
put of APE-GAN when the input is the aforementioned FGSM-
perturbed trajectory. Fig. 8a and Fig. 8b show the VSA DNN’s accu-
racy after the input is cleansed by APE-GAN under the setting of
white-box and black-box attack. First, we analyze the defense effec-
tiveness against input-specific attacks. Under the white-box setting,
APE-GAN is effective against all input-specific attacks except DF.
Under the black-box setting, APE-GAN is ineffective against FGSM
and PGD attacks. Thus, APE-GAN is more effective against white-
box attacks. This is because APE-GAN is designed to eliminate the
adversarial perturbations crafted by white-box adversary based on
the target DNN [17]. Then, we analyze APE-GAN’s defense effec-
tiveness against universal attacks. From Fig. 8a, when l is 15 and 20,
36.1% and 49.5% of the white-box UAP adversarial examples bypass
APE-GAN.When l is 25, 40.4% of the white-box UAN adversarial ex-
amples bypass APE-GAN. As shown in Fig. 8b, APE-GAN performs
worse against black-box universal attacks. In summary, APE-GAN
is ineffective against universal attacks. The results observed from
Fig. 8 are summarized in the row of Table 3 headed by ❸.
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Figure 8: VSA accuracy when APE-GAN defends attacks.

6.2.3 Effectiveness of adversarial training combined with APE-GAN.
From the results in Section 6.2.1, PGD adversarial training is more
effective than FGSM adversarial training. Therefore, we attempt
to combine PGD adversarial training with APE-GAN for better
defense effectiveness.

Fig. 9 shows the VSA DNN’s accuracy when a single hardened
DNN is combined with APE-GAN (i.e., the first scheme discussed in
Section 6.1.3). As both PGD adversarial training and APE-GAN are
ineffective against the white-box DF, the combination of them is
also ineffective against white-box DF. In addition, the combination
has deteriorated defense effectiveness against UAP attacks under
certain settings (i.e., when l = 39 under the white-box attack setting
and 10 ≤ l ≤ 20 under the black-box attack setting), compared
with the sole PGD adversarial training. This suggests that the pre-
processing performed by APE-GAN may reduce the effectiveness
of the DNN hardened by adversarial training in counteracting cer-
tain adversarial examples. Non-monotonicity of accuracy versus l
can be observed in Fig. 8a, Fig. 8b, and Fig. 9b. This is because the
output of APE-GAN is unpredictable and in some cases may disturb
the input samples and decrease the accuracy. Meanwhile, since we
only consider one random combination of l buses to be compro-
mised from all 39 buses, the randomness may also contribute to
the non-monotonicity. We do not consider all combinations of the l
compromised buses because otherwise the number of experiments
to generate one point in the figures will be huge. For example, to
choose 10 buses from 39 ones, there are

(39
10
)
= 635, 745, 396 possible

combinations. The results observed from Fig. 9 are summarized in
the row of Table 3 headed by ❹.
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Figure 9: Defense effectiveness of combining PGD adversar-
ial training and APE-GAN against various attacks.

Next, we evaluate the second combination scheme discussed
in Section 6.1.3. From our extensive evaluation, the settings for
N beyond 5 do not bring substantial benefit in terms of the VSA
accuracy in the absence and presence of attacks. The detailed re-
sults are omitted here due to space constraints. Thus, we set N = 5.
Under the majority fusion rule, with a higher Ts setting, the deci-
sion fusion among the N PGD-hardened DNNs will have higher
false positive rate (FPR), i.e., more clean inputs will be classified
adversarial. As a result, more clean inputs will be processed by
APE-GAN and the second round of DNN executions and decision
fusion will be triggered, which represents higher computation over-
head. Thus, we evaluate the overall VSA accuracy achieved by the
second combination scheme versus FPR, which is shown in Fig. 10a.
The points on a curve are obtained by varying Ts within 60%, 80%,
and 100%. For all attacks except UAN, accuracy increases with FPR,
presenting a trade-off between defense effectiveness and compu-
tation overhead. Although the accuracy decreases with FPR when
the system is subject to UAN attack, when Ts = 100%, the accuracy
is 98.9%, higher than that achieved by a single PGD-hardened DNN
(i.e., 98.7%). Thus, we set Ts = 100% to achieve the best defense
effectiveness. Under the setting of Ts = 100%, Fig. 10b shows the
VSA accuracy versus l under various black-box attacks. The VSA
accuracy is always above 96.7%. In particular, when l = 39, the
accuracy ranges from 96.8% to 99.7%, higher than the counterparts
in Fig. 6b and Fig. 8b. This suggests that fusing multiple hardened
DNNs can improve defense effectiveness. Observations from Fig. 10
are summarized in the row of Table 3 headed by ❺.

6.3 Implication of Results
From Table 3, PGD adversarial training is effective against all at-
tacks except for the white-box DF attack. From our analysis in Sec-
tion 5.3, the input-specific attacks are less credible compared with
the universal attacks. Therefore, the shortfall of PGD adversarial
training in addressing white-box DF attack is mitigated. As FGSM
adversarial training is ineffective against white-box UAN which is
a universal attack, it is less desirable than PGD adversarial training.
The scheme that combines N PGD-hardened DNNs and APE-GAN
is a potential competitor of PGD adversarial training. However,
under the white-box setting, how to construct meaningful adversar-
ial examples against the decision fusion-based structure using the
principle of the six attack methods is still an open issue. Although
begging sophisticated attacks is exorbitant, the uncertainty lying
in the effectiveness of the combination scheme against white-box
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Figure 10: Defense effectiveness of combining 5 PGD-
hardened DNNs and APE-GAN against black-box attacks.

attacks cannot be ignored. In addition, the combination scheme
incurs higher run-time overhead (at least N times) compared with
PGD adversarial training. Based on the above considerations, PGD
adversarial training is still preferred.

After jointly considering the attack credibility analysis presented
in Section 5.3, the PGD adversarial training should be applied to
protect DNN-based VSA against the universal adversarial examples
that generate non-negligible concerns. From the results in Fig. 6,
when PGD adversarial training is applied, the universal attacks
(UAP or UAN) can cause at most 3.6% accuracy drop under any
setting for l , compared with the case without attack.

7 CONCLUSION AND FUTUREWORK
This paper analyzed the requirement and credibility of six adversar-
ial example attacks on the voltage stability assessment. We showed
that effective adversarial example attacks need to compromise the
voltage traces of at least half of the transmission system buses.
The universal adversarial examples pose similar credibility as the
widely studied false data injection on power grid state estimation.
In addition, we found that the model hardening using an adversarial
training approach can effectively counteract the universal adver-
sarial examples. The credibility analysis methodology adopted in
this paper can also be applied to other types of adversarial example
attacks and power grid applications.

For future work, beyond the open issues pointed in this paper,
it is also interesting to follow the approach of ensemble learning
to generate multiple deep models hardened by adversarial training
using different types of adversarial examples and then fuse their
results to output the final result. In addition, how to construct adver-
sarial examples under the white-box setting against the ensemble
and the corresponding attack effectiveness results will improve
our understanding on the cybersecurity of the deep learning-based
voltage stability assessment.
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A ADVERSARIAL EXAMPLE AND DEFENSE
FORMULATIONS

Consider a classifier f (·;θ ) with weights θ that classifies an intact
input x as y, i.e., f (x;θ ) = y. An adversarial example x′ = x + δ ,
where δ is a perturbation, is classified as y′ , y by the classi-
fier. To reduce the chance of being detected, the adversary aims
at minimizing the distance between x and x′, which is denoted
by D(x, x′). Thus, the attack construction can be formulated as a
constrained optimization problem: δ∗ = argminδ D(x, x′) subject
to f (x′;θ ) , y. As this problem is difficult, existing studies propose
various heuristic solutions and the crafted perturbations may not
always meet the constraint f (x′;θ ) , y. The effectiveness of an
adversarial example construction method is often characterized by
the empirical rate of yielding f (x′;θ ) , y. If the input x is a time
series, an additional constraint regarding the autocorrelation of x′
can be integrated into the above formulation, such that the attack
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Figure 11: New England 10-machine 39-bus power system.

traces will follow certain patterns and be smooth. In this paper, we
do not enforce the autocorrelation constraint.

The FGSM [13] is a representative one-step attack construc-
tion method. The FGSM adversarial example is calculated by: x′ =
x + ϵ · siдn(∇J (θ , x,y)), where siдn(·) is the sign function and J (·)
is the loss function of the model. The PGD [23] attack performs
small-sized FGSM for multiple iterations. At iteration i , the PGD ad-
versarial example is updated by: xi = Πϵ (xi−1+αsiдn(∇J (θ , x,y))),
where Πϵ (·) projects xi in the ϵ − Lp (p = 1, 2,∞) neighbor of
x and α determines the step size. The DF [30] aims to find the
minimum perturbation that takes the clean input to boundary of
the region deciding the classifier’s prediction of the input. For
non-linear general classifier, at each iteration i , the DF adversar-
ial example is accumulated by a small vector which is calculated
by δ∗i = argminδ i ∥δ i ∥2 subject to k̂(xi ) + ∇k̂(xi )Tδ i = 0, where
k̂(·) is the estimated classifier derived by linearizing the decision
boundaries of the original classifier f (·;θ ). The CW [6] formu-
lates the attack construction as: δ∗ = argminδ D(x, x′) subject

to L(x′) ≤ 0, where f (x′;θ ) , y if and only if L(x′) ≤ 0. Then,
the Lagrangian relaxation is applied to simplify the problem as:
δ∗ = argminδ D(x, x′) + c · L(x′), where c is a constant weight for
combining the two minimization objectives. The specific form of
the function L(x′) is L(x′) = max{Z (x′)y−maxyi,y {Z (x

′)yi },−κ},
where Z (·) represents the logits output of the classifier f (·;θ ) and
κ controls the strength of the adversarial example. The UAP at-
tack [29] is generated by finding the adversarial perturbation for
each of the data samples from a training set using the DF algo-
rithm and accumulating these perturbations to form a universal
adversarial perturbation. The UAN attack [14] learns a generative
model G(·;ϕ) with parameters ϕ that can take as input a random
vector z sampled from normal distribution and output a universal
adversarial perturbation. The loss function for training G(·;ϕ) is
max{Z (x′)y −maxyi,y {Z (x

′)yi },−κ} + c · D(x, x
′).

The adversarial training [28] follows the idea of robust opti-
mization and formulates a min-max problem to find the robust
model parameters θ∗ = argminθ maxD(x,x′)≤ϵ J (θ , x′,y). The for-
mulation is viewed as the composition of an inner maximization
problem aiming to find the effective adversarial examples and an
outer minimization problem minimizing the adversarial loss given
by the inner attack problem. The loss function for adversarial train-
ing can be Jadv (θ , x,y) = α J (θ , x,y) + (1 − α)J (θ , x′,y), where
α balances the loss on benign and adversarial examples and x′

can be computed by FGSM or PGD attack. For APE-GAN [17],
the loss function for training the discriminator is − logD(x;θD ) +
logD(G(x′;θG );θD ). The loss function for the generator contains
two parts. The first part is a pixel-wise mean square error loss
1
W

1
H
∑W
i=1

∑H
i=1(xi, j −G(x

′
i, j ;θG ))

2, whereW andH represent the
width and height of the input. The second part is the adversarial loss
function 1− logD(G(x′;θG );θD ). The discriminator and generator
are trained together under the GAN setting.

B POWER SYSTEM SINGLE-LINE DIAGRAM
The single-line diagram of the power system considered in the VSA
case study is shown in Fig. 11.
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