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Abstract

Stereo vision plays a critical role in enabling depth perception
for drones, supporting navigation and obstacle avoidance in com-
plex environments. However, the robustness and security of stereo
vision systems remain largely underexplored. In this paper, we pro-
pose Rolling in the Deep (RiD), a novel physical attack that exploits
the rolling shutter effect (RSE) to inject imperceptible, structured
perturbations into stereo image pairs. We analyze RSE formation
in binocular camera setups and show how RSE-based perturbations
can degrade deep learning-based stereo matching by exploiting
model vulnerabilities and sensor misalignments, resulting in incor-
rect depth estimation. Preliminary results show the feasibility of
RiD under realistic stereo configurations, revealing a new class of
threats to drone perception systems.
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1 Introduction

Micro aerial vehicles, commonly known as drones, have gained
widespread adoption across diverse application domains, including
aerial photography, express delivery, precision agriculture, infras-
tructure inspection, environmental monitoring, search-and-rescue
operations, and military combat actions. Their increasing promi-
nence is driven by advancements in autonomous navigation, light-
weight sensor technology, and onboard computational capabilities.
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Accurate perception are fundamental to ensuring safe and effec-
tive operation, especially in dynamic, uncertain, and potentially
hazardous environments.

Among various perception tasks, depth estimation is one of the
most foundamental and critical components for drones to peceive
the surrounding targets for autonomous operation and obstacle
avoidance. While ranging sensors like LiDAR and radar provide
accurate depth measurements, their use in small drones is limited
by cost, size, weight, and power constraints. In contrast, stereo
vision estimates depth by computing pixel-wise disparity between
images captured by two spatially separated cameras. Thanks to
their favorable trade-offs in performance, cost, and weight, stereo
cameras have become the de facto choice for depth sensing in many
high-end commercial drone platforms, including the DJI Mavic and
Phantom series [5, 6], Autel Evo II [1], Skydio 2/X2 [22, 23], and
Parrot Anafi AI [19]. As such, the robustness of stereo camera-based
depth estimation is critical for the safe and intelligent operation of
drones. However, recent work [32] highlights a largely overlooked
vulnerability in stereo vision: a physical attack that manipulates
projected light beams and lens flare artifacts to induce false depth
perceptions.

Building on this direction, we investigate a new class of optical
attacks that exploit the inherent characteristics of image sensors.
Most stereo camera systems in drones use complementary metal-
oxide semiconductor (CMOS) sensors [14, 20, 25], which operate
using a rolling shutter that exposes each scanline sequentially from
top to bottom. Under high-frequency illumination changes, espe-
cially when flicker rates approach the shutter’s scan frequency,
this mechanism produces the rolling shutter effect (RSE), leading
to structured artifacts such as horizontal color stripes. Such RSE-
induced distortions have been observed in commercial drones [33].
Recent studies have shown that adversarially modulated lighting
can exploit RSE to create image perturbations that mislead deep
learning models in single-camera tasks such as classification, object
detection, and traffic light/sign recognitions [10, 11, 21, 30]. How-
ever, the implications of RSE-based attacks on stereo vision remain
unexplored.

In this paper, we present Rolling in the Deep (RiD), the first RSE-
based physical attack targeting binocular stereo depth estimation.
Specifically, RiD deploys an adversarial surface in the target drone’s
operational environment that reflects or emits flickering illumi-
nation. These controlled flickers generate adversarial color stripe
patterns in the drone’s stereo camera views, causing the estimated
depth of the surface to be either increased or decreased. In the real
world, the attack is stealthy, as the flickering frequencies exceed
the perceptual limit of human vision and appear as benign illu-
mination. Moreover, unlike prior work [32], RiD does not require
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(a) Camera stereo vision.

(b) Stereo rectification.

(c) Stereo depth estimation.

Figure 1: Image rectification and stereo depth estimation.

complex aiming maneuvers to direct attack lights into the camera
lens. RiD could be used in military defense or personal property pro-
tection scenarios to disrupt unauthorized drone operations, either
by denying access to protected areas or by misleading the drone
into crashing or becoming trapped. The main contribution of this
paper are summarized as follows:

e We propose RiD, a novel physical adversarial attack against
stereo vision-based depth estimation in drones, leveraging
the RSE.

o We analyze RSE formation in binocular camera setups and re-
veal how RSE-based perturbations can disrupt stereo match-
ing by exploiting model vulnerability and/or temporal and
spatial sensor misalignment.

e We conduct a proof-of-concept evaluation through simula-
tion and demonstrate the feasibility of RiD under various
stereo camera configurations.

Paper organization: Section 2 introduces the background and
reviews related work. Section 3 analyzes RSE in stereo vision and
presents the proposed RiD attack. Section 4 describes the evaluation
setup and reports experimental results. Section 5 concludes the
paper and outlines directions for future work.

2 Background and Related Work
2.1 Background

Stereo rectification & depth estimation. Fig. 1 illustrates the
core principles of stereo vision systems. In Fig. 1a, a point P in
the scene is projected onto the left and right image planes as pr,
and pg, respectively. The line connecting the two camera optical
centers and the point P defines an epipolar plane, whose intersec-
tion with each image plane forms an epipolar line, denoted as ey,
and eg. According to epipolar geometry, the corresponding point
of pr in the right image must lie along the epipolar line eg, and
vice versa. This constraint reduces the correspondence search from
2D to 1D along the epipolar line, simplifying stereo matching. To
further streamline correspondence, stereo vision systems apply
stereo rectification, shown in Fig.1b, which transforms both images
(typically via homographies) so that their epipolar lines become
horizontal and aligned. Rectification serves as an equivalent (and
more practical [18]) alternative to achieving perfect camera copla-
narity, and is a standard preprocessing step in stereo vision systems.
This is because even with high-precision hardware, maintaining
perfect physical alignment is difficult in real-world setups due to
factors such as imperfect calibration, mechanical tolerances, and
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Figure 2: RSE.

misalignment between camera axes. After rectification, correspond-
ing points lie on the same row in both images, allowing efficient
disparity computation. As shown in Fig.1c, the depth Z of the 3D
point P can then be calculated via triangulation from the disparity
d = pr. — pR, using the known focal length f and camera baseline b,
ie., Z = (f x b)/d. In recent years, deep neural networks (DNNs)
have become the state-of-the-art for stereo matching [3, 16, 29],
leveraging learned features to predict disparity d, and most stereo
datasets used for training stereo DNNs are well-calibrated and
rectified [9, 17, 31]

Rolling shutter operation & effect. CMOS sensors with rolling
shutters capture images row-by-row, with each scanline exposed
for a duration texp and read out after a delay ty,, as shown in
Fig. 2. Because of this sequential exposure, different rows are cap-
tured at slightly different times. When the input light changes
rapidly, some scanlines are exposed under different illumination
conditions, resulting in visible artifacts known as the rolling shut-
ter effect (RSE). These manifest as horizontal stripes in the image,
where the stripe pattern depends on the timing and intensity of
the light pulses during each scanline’s exposure. The work [21]
formulates the RSE from flickering LEDs as a mechanism for adver-
sarial stripe optimization against object classification: Since each
scanline is exposed at a different time, a time-varying attack light
intensity f(t) induces structured pixel variations across the image.
The pixel value at pixel point (u,v) can be modeled as: I(u,v) =

Truti (4,0) =Tamp (4,0)  fotro+t,
Tamp (u,0) + MTPW vtr:’ P f(t)dt where I, (u,v)

is the pixel value under ambient illumination only, Ir,;(u,0) is
the image captured with both ambient and full LED illumination.
By pre-capturing these reference images, the attacker isolates the
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Figure 3: RiD attack.

LED’s contribution. The attacker can then optimizes f(¢) by mini-
mizing a loss function to spoof the classfier.

2.2 Related Work

Sensor attack against drones. Acoustic attacks inject resonant
noise into gyroscopes [24, 27], but are limited by short effective
ranges. Optical attacks manipulate visual inputs, such as projecting
moving light patterns onto the ground [4], blinding vision sensors
with lasers [8], or injecting deceptive light patterns into stereo
cameras [32]. These methods often require precise, continuous
aiming of the drone. The work uses physical adversarial patches to
mislead onboard perception [12]. In contrast, RiD can be launched
remotely without continuous aiming, and its adversarial patterns
remain invisible to human eyes.

RSE exploitation for attacks. The work [21] manipulateds
ambient illumination using flickering LEDs to mislead image classi-
fication. The works [11, 30] aim lasers into camera lens to create
monochromatic stripes, interfering with object detection and traffic
light color recognition tasks, respectively. A recent work [10] ad-
justs the timing of LED flickering to produce stable colored stripes
on traffic signs, consistentlyu spoofing traffic sign recognition in
autonomous vehicles. The above works only focus on single-camera
tasks. In contrast, RiD investigates RSE-based attacks against binoc-
ular depth estimation in stereo vision.

Attacks against stereo depth estimation. Previous works
like [2, 26, 28] have digitally injected pixel-level perturbations into
stereo images to disrupt stereo depth estimation. However, physi-
cally deployable adversarial attacks on stereo vision, remain less
explored. The work [32] directs deceptive light beams into stereo
cameras to spoof the stereo depth estimation. A recent study [13]
introduces printable adversarial patches against stereo matching.
Differently, RiD exploits camera sensor’s RSE to create invisible
adversarial attack without continuous aiming.

3 RiD Attack

3.1 Threat Model

Attack form. Fig. 3 overviews RiD attack. The attacker can place
an adversarial surface in the drone’s operational environment to
reflect or emit flickering illumination. For example, a reflective
cover may be attached to surfaces to reflect light from an external
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LED source, or a flickering LED screen can be directly used to emit
the adversarial light.

Attack objectives. RiD aims to disrupt drone operations by
misleading binocular depth estimation, by either increasing or de-
creasing the perceived depth of the adversarial surface, which can
lead to operational disruptions or even crashes. For example, (1)
Hidden Depth Attack (HDA): an increased depth estimation may
cause a drone to unintentionally collide with the adversarial sur-
face, potentially damaging or trapping it. (2) Ghost Object Attack
(GOA): a reduced depth estimate could create a perceived “ghost”
object close to the drone, preventing access to certain critical areas
or even causing instability, such as sudden braking, shaking or
drifting during high-speed flights.

Attacker’s knowledge. We consider two attacker knowledge
scenarios: (1) Black-box attack: Without access to camera parame-
ters or the stereo matching DNN model, the attacker can generate
adversarial stripes using random flickering signals. (2) White-box
attack: With knowledge of the camera and stereo matching DNN
parameters, the attacker can apply gradient-based optimization
to tailor the flickering signal for stronger attacks. Such white-box
access may be obtained through open-source codebases, reverse
engineering of commercial products, or social engineering of man-
ufacturer personnel.

3.2 Analysis of RSE in Stereo Vision

In this section, we analyze how the RSE manifests in binocular
stereo vision systems. We consider three representative cases:
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Figure 4: Case-(D: Perfect sensor alignment and synchroniza-
tion.

m Case-(D): Perfect sensor alignment and synchronization.
In this case, the left and right cameras are identical in specifications
and physically well-aligned (coplanar and horizontally aligned), and
their exposures are tightly synchronized. This alignment ensures
that the adversarial surface, appears at the same vertical position
and with the same size in both views before rectification. Since
both camera sensors expose corresponding rows at the same time,
a flickering light will affect the same row index in both images
simultaneously. As a result, the adversarial surface will exhibit
identical colored stripe patterns in both views both before and
after rectification, as illustrated in Fig. 4, preserving consistency in
appearance across the stereo pair.

m Case-(2): Perfect sensor synchronization with sensor mis-
alignment. This is the most realistic case. As discussed in §2.1,
stereo cameras are often physically misaligned to some extent. For
example, Fig. 5 shows simulated raw views obtained by reversing
rectification using the calibration parameters of a KITTI Stereo 2015
dataset sample [17]. Objects (e.g., the wheel hub and wayfinding
sign) in the two views appear at slightly different vertical positions.
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Figure 5: Example of derived unrectified views from KITTI
dataset. Misalignments in raw images are common in stereo
vision systems.
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Figure 6: Case-(2): Perfect sensor synchronization with sensor
misalignment.

In this case, although the sensors are synchronized, physical mis-
alignment causes them to capture different vertical portions of the
scene at the same time. As a result, the adversarial surface may
appear with variations in vertical position (e.g., due to vertical offset
or tilt), apparent size (e.g., due to different target distances), or even
shape (e.g., due to angular or perspective distortion). as exemplified
in Fig. 6, flickering light then affects different scanlines of the ad-
versarial surface in the two views, producing shifted RSE patterns.
After rectification, the object becomes horizontally aligned, but the
RSE patterns remain inconsistent across views.
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Figure 7: Case-(3): Perfect sensor alignment with drifted syn-
chronization.

m Case-(3): Perfect sensor alignment with drifted synchro-
nization. While accurate stereo vision typically requires precise
sensor synchronization [7], we consider a supplemental case where
the cameras are physically aligned but loosely synchronized. In this
scenario, the left and right sensors expose corresponding rows at
slightly different times due to temporal drift. As a result, although
the adversarial surface appears at the same vertical position in both
raw views, flickering illumination affects the rows differently. This
mismatch produces inconsistent RSE-induced color stripe patterns
across the stereo pair after rectification, as illustrated in Fig. 7.

Dongfang Guo and Rui Tan.

3.3 RSE-based Attack against Stereo Vision

In this section, we illustrate how RiD operates. Depending on the
attacker’s knowledge and capabilities, RiD can be performed in
either a black-box or white-box setting.

3.3.1 Chances of Black-box attacks. In the black-box setting, RiD
can exploit inherent vulnerabilities in stereo DNNs by introducing
unnatural rolling shutter artifacts and leveraging spatial or temporal
sensor misalignment.

HDA via unnatural stripy perturbations. Fig. 8 illustrates
an example where random RSE-induced stripe patterns increase
the perceived depth of the adversarial surface. This effect occurs
even without optimization, likely because such patterns are absent
from the model’s training data, leading to mismatches in stereo
correspondence. In our simulation, depth can be overestimated
by up to tens of meters across a broad area, making parts of the
surface appear as distant background. The drone may interpret
these regions as passable gaps and attempt to fly through them,
risking collision of the drone.

Surface depth error

Left camera view Right camera view

Figure 8: HDA from RSE artifacts (Case-(D). Adversarial sur-
face partially blended into the background.

GOA via misalignment. As stereo DNNs are typically trained
on rectified data with aligned cues, misalignment between stereo
views can cause GOA even without optimization. In Case-@2), as
shown in Fig.9a, slight spatial misalignment causes the same flicker
signal to result in slightly mismatched stripe patterns on the ad-
versarial surface. This disrupts visual consistency and causes the
model to underestimate depth in parts of the adversarial surface.
In Case-(3), as shown in Fig.9b, GOA becomes even more easier
to achieve. Synchronization drift leads to inherent misalignment
in exposure timing, resulting in inter-view mismatches across the
entire field of view, regardless of the adversarial surface location. In
these two examples, the compromised depth can drop from 7 m to
around 2 m which is the DNN’s minimum detectable depth, which
may trigger the false detection of near-field objects. Since drones
typically react to the nearest perceived obstacle, such hallucinations
can induce instability, such as drifting and shaking, and disrupting
navigation and perception [32].

3.3.2  Enhanced attacks with white-box knowledge. We follow the
RSE model described in §2.1 to define a differentiable flickering
signal f(t). With access to the stereo DNN and camera parame-
ters (white-box setting), the attacker can further strengthen RiD
by optimizing the flicker signal f(¢) through Projected Gradient
Descent (PGD) [15], by solving argming ;) £(S(IL, Ir)), where S
is the stereo DNN that processes the stereo pair (I, Ig), and £(.) is
the loss function defined over the adversarial surface region #.
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Figure 9: GOA from inter-view mismatching,.

Enhanced HDA. To enhance HDA, the objective is to reduce
the predicted disparity values within £, enlarging the overall depth
of the surface. The loss is defined as:

1
fpa=y D, ReLU((w.0) = (gp —m))
(u,0)eP

where d(u,v) is the predicted disparity at pixel (u,0), gp is the
ground-truth disparity for the surface (derived from the ground-
truth depth of the patch), and m is a predefined margin. This encour-
ages underestimation of disparity, which increases the perceived
depth of the adversarial surface.

Enhanced GOA. For GOA, the goal is to increase disparity
within the patch, reducing the perceived depth to simulate a phan-
tom obstacle. The corresponding loss function is:

fcoa =ReLU (D - max d(u,0)
(u,v)eP
where D is the upper limit of the DNN’s output disparity. This
encourages the DNN to predict high disparity values, making the
object appear closer than it is.

4 Evaluation

4.1 Evaluation Setup

Dataset and model. We evaluate the RiD attack using the KITTI
Stereo 2015 dataset [17]. The stereo baseline is 0.54 m, and the
camera height is approximately 1.65 m, which can simulate a camera
setup of low-flying drones. Rectified image resolution is 1242 X 375,
while raw images are captured at 1384 x 512. We adopt the widely
used PSMNet [3] as the victim stereo matching model.

RiD implementation. We model the attack surface as a rect-
angular object (size 1.6 X 1.8 m?) on the ground. Using the pinhole
projection model and stereo disparity constraints, we project the
object into both views to simulate its appearance. Following the
RSE formulation in §2.1, we synthesize RiD attacks using real-world
captured reference images I,j; and Iy, of a white surface under
full and ambient illumination, with flicker signals f () to generate
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realistic RSE-induced perturbations. We simulate the three camera
setup cases introduced in §3.2: (1) Case-(D: Rectified images are
scaled back to raw image sizes to simulate perfectly aligned raw
views. The synchronized attack is synthesized in the raw images,
which are then resized back to rectified dimensions for inference. (2)
Case-(2): Rectification is reversed using the dataset’s calibration pa-
rameters to obtain naturally deviated raw views. The synchronized
attack is synthesized in the raw domain, and the images are then
re-rectified for inference. (3) Case-(3): Based on Case-(1), random
temporal offsets are introduced between the stripe patterns in the
left and right views to simulate synchronization drift. With these
setups, the synthesized stereo pairs are passed to the victim model
to generate disparity maps, which are then converted to depth. We
evaluate attack effectiveness by analyzing depth estimation within
the attack surface region.

Metrics. (1) Over-5 Error Rate (O5R): for HDA, we measure the
proportion of pixels on the adversarial surface where the estimated
depth exceeds the ground truth by more than 5 m; (2) Maximum
Reduced Depth (MRD): for GOA, we define MRD as the largest
depth underestimation observed on the adversarial surface.

4.2 Preliminary Results
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Figure 10: Effectiveness of black-box attacks.

4.2.1 Effectiveness of black-box attacks. Fig.10 presents the per-
formance of black-box RiD. The adversarial surface is placed at a
distance of 5m from the camera, positioned in the left (L), middle
(M), or right (R) region of the image. In Case-(D, black-box HDA
achieves considerable O5R across all view regions, as shown in
Fig. 10a. For Case-(2) and Case-(3), we focus on GOA. As shown in
Fig.10b, Case-(2) achieves high MRD in the left and right regions,
approaching the upper bound (indicated by the grey line at the
model’s minimum perceivable depth of 2 m), while being less effec-
tive in the center. This is due to stronger sensor misalignment in
the peripheral areas of the KITTI dataset, as discussed in §3.2. In
Case-(3), shown in Fig. 10c, MRD remains consistently high across
all regions due to pervasive misalignment from temporal synchro-
nization drift. These results provide preliminary evidence of the
feasibility of black-box RiD.

4.2.2  White-box enhancement. Using the Case-(0) setting, we eval-
uate how white-box knowledge improves the effectiveness of RiD.
Fig. 11 compares O5R and MRD under black-box and white-box
settings across different surface distances. Fig. 11a shows that white-
box optimization significantly enhances HDA effectiveness. Fur-
thermore, as shown in Fig. 11b, while GOA is nearly infeasible
under black-box conditions in Case-(D), it becomes effective in the
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Figure 11: Enhancement by white-box optimization.

white-box setting, with MRD approaching the upper bound at 5m
and 6 m distances.

5 Conclusion and Future Work

We proposed RiD, a novel physical attack against stereo depth es-
timation on drones, exploiting the interaction between RSE and
stereo matching process. RiD can increase or decrease the depth
estimation of the adversarial surface, which may lead to opera-
tional disruptions or even crashes of the target drone. Our proof-
of-concept simulations shows the feasibility of such attack under
realistic stereo camera configurations.

Several directions remain open for further exploration. (1) We
plan to improve the design of RiD to generate more robust and
consistent attacks that can maintain effectiveness across diverse
scenes and persist over time, under different environmental and
motion conditions. (2) We plan to systematically evaluate how dif-
ferent factors, such as surface properties, camera configurations,
environmental lighting, and stereo DNN architectures, affect the
vulnerability and impact of RiD. (3) To better understand real-world
implications, we plan to simulate the downstream effects of compro-
mised depth perception on drone navigation using a full-featured
drone simulator. Additionally, we intend to implement and test RiD
on commercial off-the-shelf stereo cameras and drones, assessing
its practicality, stability, and threat potential in physical deploy-
ment scenarios. (4) Finally, we plan to explore defense strategies
to detect and counter RSE-based attacks in stereo vision systems,
with the goal of improving the robustness and trustworthiness of
depth perception in safety-critical applications.
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