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ABSTRACT
At present, a co-location data center often applies an identical and

low temperature setpoint for its all server rooms. Although in-

creasing the temperature setpoint is a rule-of-thumb approach to

reducing the cooling energy usage, the tenants may have different

mentalities and technical constraints in accepting higher tempera-

ture setpoints. Thus, supporting distinct temperature setpoints is

desirable for a co-location data center in pursuing higher energy

efficiency. This support calls for a new cooling power attribution

scheme to address the inter-room heat transfers that can be up to

9% of server load as shown in our real experiments. This paper

describes our approaches to estimating the inter-room heat trans-

fers, using the estimates to rectify the metered power usages of the

rooms’ air handling units, and fairly attributing the power usage of

the shared cooling infrastructure (i.e., chiller and cooling tower) to

server rooms by following the Shapley value principle. Extensive

numeric experiments based on a widely accepted cooling system

model are conducted to evaluate the effectiveness of the proposed

cooling power attribution scheme.
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• Hardware� Impact on the environment; Enterprise level
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1 INTRODUCTION
The advance of Internet of Things (IoT) and the deployments of 5G

networks place proliferated demands on data processing, storage,

and analytics in the back end. This calls for ever growing capacity of

data centers (DCs) as the back-end computing infrastructure. Since

DC construction and operations require extensive expertise and

significant investment, various computing users rent server rooms

from co-location DC operators to host their information technology

(IT) equipment. In a co-location DC, the centralized operations

and management of shared facilities including the cooling systems

reduce the operating expenses of the tenants. As such, co-location

DC has become a major form in the DC industry. By 2019, there

are more than 4,000 co-location DCs operating worldwide [1].

DCs consume lots of energy and use a big portion for cooling. In

2014, the electricity used by DCs in U.S. accounted for 1.8% of the

country’s electricity consumption [20]. In tropics such as Singapore,

this ratio was up to 7% [3]. On average, about 40% DC energy is used

for cooling [20]. Thus, reducing cooling energy is an important mis-

sion. Currently, a co-location DC often applies a low temperature

setpoint (e.g., 21°C) for all server rooms. Research has shown that

increasing the server room temperature setpoint is a rule-of-thumb

approach to reducing cooling energy [15, 17]. Specifically, a 1°C in-

crement can lead to about 4% cooling energy saving [5]. To prompt

higher temperature setpoints, the American Society of Heating,

Refrigeration and Air-Conditioning Engineers (ASHRAE) has been

working on extending the recommended allowable temperature

range of IT equipment [18]. For instance, the servers compliant

with the A3 requirement [4] can operate continuously with inlet

temperature up to 40°C. Many latest servers (e.g., Dell’s gen14 and

HPE’s DLx gen9 servers) are A3-compliant.

However, the tenants in a co-location DC may have different

mentalities and technical constraints in accepting higher tempera-

ture setpoints. For instance, a tenant running a server room with

cold aisle air containment can easily accept higher room temper-

ature setpoints if the supply air is still cold. In the absence of air

containment, the tenants running IT equipment that requires low

temperatures can hardly accept higher room temperature setpoints.

As such, supporting distinct temperature setpoints for server rooms

is desirable for a co-location DC in pursuing higher energy effi-

ciency. To this end, two important new issues need to be studied

to make sense the encouragement of adopting distinctly higher

https://doi.org/10.1145/3408308.3427607
https://doi.org/10.1145/3408308.3427607
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temperature setpoints subject to the tenants’ technical constraints.

First, as these rooms share parts of the co-location DC’s cooling

infrastructure (i.e., chiller and cooling tower), how to fairly attribute

the power usage of the shared cooling infrastructure to the rooms

adopting distinct temperature setpoints?We need to re-examine the

applicability of the prevailing attribution policies (e.g., proportional

splitting based on rooms’ IT loads). Second, as the server rooms of

distinct temperature setpoints may have inter-room heat transfers,

the impact of the heat transfers on the attribution of the cooling

power to the rooms needs to be understood and addressed properly.

This paper investigates the above two issues based on a two-

stage cooling system model that captures the essence of the cooling

system designs in co-location DCs. The first stage consists of the

air handling units (AHUs) in the individual server rooms. An AHU

transfers the heat carried by the return hot air from the IT equip-

ment to the influx cold water. It controls the water flow rate via a

valve and air flow rate via internal fans to maintain the return air

temperature at the setpoint. Thus, the AHU power usage is mainly

due to its internal fans. The second stage is a cooling infrastructure

shared by all server rooms, which consists of a chiller and a cooling
tower. The chiller uses a refrigeration cycle to transfer the heat

from the AHUs to a second water cycle with a higher temperature.

The cooling tower further dissipates the heat carried by the second

water cycle to the ambient air. The power usage by the second

stage is mainly due to the water pumps in the two water cycles, the

compressors in the chiller plant, and the fans in the cooling tower.

Based on the above model, our analysis for distinct room temper-

atures gives the following two properties. First, the second-stage

cooling power (i.e., the shared part) only depends on the total IT

load of all rooms. Second, the inter-room heat transfers affect in-

dividual AHU powers, and do not affect the second-stage cooling

power. Based on the above two properties, we propose a cooling

power attribution scheme that computes the power share of each

room by two components. The first component is the sum of the

metered power usage of the considered room’s AHU and a rectifi-
cation that addresses the AHU’s extra power usage due to the heat

transfers with the neighbor rooms. The second component is a fair

share of the second-stage cooling power based on all rooms’ IT

loads. This paper aims to achieve real-time cooling power attribu-

tion based on the readings of the relevant meters in real time (e.g.,

every minute). The fine time granularity of the power attribution

improves the accuracy of energy accounting and charging. How-

ever, the real-time computations of the above two components face

respective challenges as discussed below.

Significant heat can dissipate from a high-temperature room to

a low-temperature room via the separation (e.g., walls and floors).

From our experiment conducted in a real server room, when its

temperature is 12°C higher than the building ambient, the heat

dissipated through its enclosure is 9% of its IT load. Due to the

inter-room heat transfers, the AHU of a room that receives net

influx heat transfer uses more power to maintain the temperature.

This is because the AHU’s internal fans need to rotate faster to

transfer more heat from the return air to the chilled water. Thus, the

currently prevailing AHU cooling power charging scheme merely

based on the metered AHU power usage will be biased. A rectifi-

cation is needed to address the increment/decrement of the AHU

power caused by the heat transfer with each neighbor room. How-

ever, under a general setting of 𝑛 rooms, estimating

(𝑛
2

)
inter-room

heat transfers from 𝑛 equations each formulating a room’s net in-

flux/outflow heat transfer based on its measured IT load and heat

removed by its AHU is an underdetermined problem. To address

this challenge, we exploit the first principle that the heat transfer

is proportional to the temperature difference and then integrate

sufficient historical measurements with varied temperatures of the

rooms into an overdetermined equation system with

(𝑛
2

)
unknown

heat transfer coefficients. With the estimated coefficients, we can

estimate the real-time inter-room heat transfer based on the tem-

perature difference of any two rooms and use that for rectification.

Attributing the second-stage cooling power to the server rooms

also faces challenges. From analysis, we cannot divide the power

into portions, each determined by an individual room’s IT load only.

For this scenario, the principle of Shapley value [19] can be applied

to achieve certain fairness axioms. However, although the Shapley

value is a well accepted conceptual device, it incurs high compute

overhead due to its complexity of O(𝑛 · 2𝑛). To reduce the compute

overhead, we propose two approaches to approximate the Shapley

power attribution function. The first uses a multilayer perceptron

(MLP) trained using data generated by feeding the Shapley power

attribution function with random IT loads of the rooms. As MLP

inference is fast, the MLP-based power attribution can be executed

in real time. In nature, this approach offloads the intensive Shapley

value computation to the offline training data generation process.

The second approach uses a heuristic algorithm to compute the

power attribution with O(𝑛) complexity. Evaluation shows that the

MLP approximation achieves 2.4% mean relative error (MRE) but

requires lengthy training data generation, whereas the heuristic

algorithm is lightweight and scalable, but gives higher MRE of 6%.

The solutions introduced above form a real-time cooling power

attribution scheme for co-location DC adopting distinct room tem-

perature setpoints. It can be used to encourage the tenants to in-

crease their temperature setpoints without causing controversies.

With our proposed scheme implemented, a co-location DC can take

a more advantageous position on the market since its tenants keen

to hotter server rooms can enjoy lower cooling costs in return.

The contributions of this paper are summarized as follows.

• Based on a representative model of co-location DC cooling

systems, we analyze the impacts of the server rooms’ distinct

temperatures and IT loads on the cooling power usage, while

considering heat transfers among server rooms.

• We design an approach to estimating inter-room heat trans-

fer coefficients. Based on that, we propose an AHU power

usage rectification approach aiming at eliminating the im-

pact of inter-room heat transfers.

• We approximate the Shapley function for the second-stage

cooling power using an MLP or a heuristic algorithm. Thus,

the power attribution can be performed in real time due to

the low compute overhead of the approximations.

Paper organization: §2 reviews related work. §3 presents prelimi-

naries. §4 studies the impacts of room temperatures and IT loads on

cooling power. §5 overviews our scheme. §6 and §7 expatiate AHU

power rectification and second-stage cooling power attribution,

respectively. §8 presents evaluation results. §9 concludes this paper.



Real-Time Cooling Power Attribution for Co-Located Data Center Rooms with Distinct Temperatures BuildSys ’20, November 18–20, 2020, Virtual Event, Japan

2 BACKGROUND AND RELATEDWORK
There are two broad categories of cooling cost attribution policies

used in co-location DCs. The first category charges fixed costs for

cooling to tenants disregarding the actual usages. For instance, the

primitive equal division policy equally distributes the cooling cost

to all server rooms regardless of their IT loads. It is seldom adopted

due to its clear bias [12]. The space-based policy [10] applies a

fixed per-square-foot or per-rack-space rate to compute the cost

for each server room based on the room area or rack space. The

second category of policies charges based on the server rooms’

actual power/energy usages. The load-proportional division (LPD)

policy [10] attributes the instantaneous cooling power to the server

rooms proportionally according to their instantaneous IT loads.

This policy only requires the total cooling power usage and each

room’s IT load. Its simplicity and fairness at the first glance promote

its wide adoption. However, it is also biased since the power usage

of the cooling system is analytically indivisible with respect to the

IT loads of individual server rooms (cf. §3.2). In addition, it does not

consider the inter-room heat transfers, if the server rooms adopt

distinct temperature setpoints. In the performance evaluation of

this paper (cf. §8), LPD is employed as a baseline approach.

The issue of inter-room heat transfer has been considered in

the context of centralized heat provision in multi-apartment resi-

dential buildings, because the residents may have different prefer-

ences on room temperatures. The studies [6, 25] focus on modeling

the relationship between the amount of transferred heat and vari-

ous affecting factors including the temperature difference and the

properties of walls. The studies [14, 21] estimate the amount of

transferred heat between adjacent apartments and then reallocate

the heating costs calculated based on the metered heat delivered

to the apartments. However, the approaches developed in these

existing studies [6, 14, 21, 25] that concern heating provision can-

not be readily applied to cooling provision in co-location DCs. For

instance, as shown in this paper, the inter-room heat transfers af-

fect the power usage of the first-stage cooling in the server rooms.

The apartment heating systems do not have this feedback effect

because the heat exchangers in the apartments do not use power.

In addition, different from these existing studies that build models

of heat transfer from detailed parameters such as building layout,

apartments’ 3D structures, and wall material properties, which are

tedious processes, we apply data analytics to estimate inter-room

heat transfer coefficients without resorting to detailed modeling.

A recent study [11] considers fair attribution of cooling cost to

the server racks that reside in the same server room and belong

to different tenants. Thus, these racks share the same room envi-

ronment and are cooled by the same AHUs. The study [11] applies

the Shapley value principle to attribute the room’s cooling cost to

the racks. Differently, we consider the more common scenario in

which each room is used exclusively by a tenant. Thus, the in-room

cooling cost attribution considered in [11] is not applicable. The

second-stage cooling power attribution is not addressed in [11].

Energy apportionment, i.e., to estimate residents’ energy foot-

prints, has been studied in the context of commercial buildings

[23, 24]. Its core problem is to associate residents’ positions and

activities with the building’s real-time power usage, different from

our problem of precisely attributing cooling power to server rooms.

Figure 1: Two-stage cooling systemmodel in co-locationDCs

3 PRELIMINARIES
This section presents the analytical models characterizing the heat

processes and cooling power usage. These models are used to study

the impacts of temperature and IT load on cooling power in §4, and

drive the evaluation in §8. This paper considers a typical two-stage

cooling system adopted by co-location DCs, which is illustrated

in Fig. 1. The first stage consists of the AHUs deployed in the

server rooms. It transfers the heat carried by the return air from the

servers to the water flowing in the cooling coil. The second stage is

an infrastructure shared by all rooms. It consists of three cycles, i.e.,

chilled water cycle, refrigerant cycle, and condenser cycle. Lastly,

it dissipates the heat through the cooling tower to the ambient.

The supply cold air from the AHU is often conducted to the

server inlets. To improve cooling efficiency, many DCs build air

containment for the cold aisle. The return hot air from the servers

is in general conducted to the server room ambient. This paper

aims to support distinct setpoints for the server rooms’ return air

temperatures (i.e., their ambient temperatures). From [22], 60% DCs

adopt return air temperature as the main condition of server room.

In current DCs, the setpoints are often around 21°C.

In what follows, we analyze the heat processes and the cooling

power. Table 1 summarizes the notation used in this paper.

Table 1: List of notation

Notation Definition

𝑇𝑎𝑠 ,𝑇𝑎𝑟 Supply and return air temperatures

𝑇𝑐ℎ𝑤𝑠 ,𝑇𝑐𝑤𝑠 Chilled and condenser water temperatures

𝑇𝑜 Outdoor air wet-bulb temperature

¤𝑚𝑎𝑖 , ¤𝑚𝑐ℎ𝑤𝑖
Room 𝑖’s air and chilled water mass flow rates

¤𝑚𝑐ℎ𝑤 Chilled water mass flow rate of chiller

¤𝑄𝑡𝑟𝑖 𝑗 Heat transfer rate between room 𝑖 and 𝑗
¤𝑄𝑟𝑖 , ¤𝑄𝑡𝑟𝑖 Room 𝑖’s net heat and heat transfer rates

¤𝑄𝑐ℎ, ¤𝑄𝑐𝑡 Heat rates of chiller and cooling tower

𝑃𝐼𝑇𝑖 , 𝑃𝐴𝐻𝑈𝑖
Room 𝑖’s IT load and AHU power

𝑃𝑐ℎ, 𝑃𝑐𝑡 , 𝑃𝑐ℎ𝑝 , 𝑃𝑐𝑝 Powers of chiller, cooling tower, two pumps

𝑃𝑐𝑤 , 𝑃 Chilled water and DC cooling power

𝛼𝑖 𝑗 Heat transfer coefficient between room 𝑖 and 𝑗

𝑐𝑎, 𝑐𝑤 Heat capacities of air and water
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3.1 Heat Process Model
Consider a co-location DC of 𝑛 server rooms. Denote by 𝑇𝑎𝑟𝑖 the

temperature setpoint of room 𝑖 . If two neighboring rooms 𝑖 and 𝑗

have different temperature setpoints 𝑇𝑎𝑟𝑖 and 𝑇𝑎𝑟 𝑗 , the static heat

transfer rate from room 𝑖 to 𝑗 , denoted by ¤𝑄𝑡𝑟𝑖 𝑗 , is ¤𝑄𝑡𝑟𝑖 𝑗 = 𝛼𝑖 𝑗 (𝑇𝑎𝑟𝑖 −
𝑇𝑎𝑟 𝑗 ), where 𝛼𝑖 𝑗 is the heat transfer coefficient that depends on the

material property and the area of the shared separation between the

two rooms. A negative ¤𝑄𝑡𝑟𝑖 𝑗 means that the heat is transferred from

room 𝑗 to room 𝑖 . A DC building is often built to have good thermal

insulation from the atmospheric ambient for cooling efficiency [2].

Thus, in this paper, we ignore the heat transfer between any server

room and the ambient.

In a server room, the AHU removes heat generated by the IT

equipment and transferred from the neighboring rooms. Denoting

by𝑀𝑖 the set of room 𝑖’s neighboring rooms, the overall heat rate

of room 𝑖 , denoted by𝑄𝑟𝑖 , is
¤𝑄𝑟𝑖 = 𝑃IT𝑖 + ¤𝑄𝑡𝑟𝑖 = 𝑃IT𝑖 +

∑
𝑘∈𝑀𝑖

¤𝑄𝑡𝑟𝑘𝑖 ,
where 𝑃IT𝑖 is room 𝑖’s IT load and ¤𝑄𝑡𝑟𝑖 is the net heat transfer rate
that room 𝑖 takes from 𝑀𝑖 . In this paper, we assume that all the

electrical power used by the IT equipment is converted to heat.

Thus, the IT load is identical to the room’s heat generation rate.

Now, we model the heat exchange in the AHU. The chiller sup-

plies chilled water with a temperature of 𝑇𝑐ℎ𝑤𝑠 . From the law of

conservation of energy, the air and chilled water mass flow rates

(denoted by ¤𝑚𝑎𝑖 and ¤𝑚𝑐ℎ𝑤𝑖
), the AHU’s supply cold air temperature

(denoted by 𝑇𝑎𝑠 ), and the temperature of the chilled water leaving

the AHU (denoted by 𝑇𝑐ℎ𝑤𝑟 ) satisfy ¤𝑄𝑟𝑖 = 𝑐𝑎 ¤𝑚𝑎𝑖 (𝑇𝑎𝑟𝑖 − 𝑇𝑎𝑠 ) =

𝑐𝑤 ¤𝑚𝑐ℎ𝑤𝑖
(𝑇𝑐ℎ𝑤𝑟 −𝑇𝑐ℎ𝑤𝑠 ), where 𝑐𝑎 and 𝑐𝑤 are the heat capacities

of air and water, respectively. Note that the AHU controls its in-

ternal fans and cooling coil to maintain the return and supply air

temperatures at 𝑇𝑎𝑟𝑖 and 𝑇𝑎𝑠 . The resulted ¤𝑚𝑎𝑖 due to the fan con-

trol ensures the heat removal rate of ¤𝑄𝑟𝑖 . An internal valve of the

AHU controls the ¤𝑚𝑐ℎ𝑤𝑖
to maintain the temperature of the chilled

water leaving the AHU at 𝑇𝑐ℎ𝑤𝑟 . As a result, the total mass flow

rate of the chilled water is ¤𝑚𝑐ℎ𝑤 =
∑𝑛
𝑖=1 ¤𝑚𝑐ℎ𝑤𝑖

, which needs to be

maintained by a pump in the chilled water cycle. In this paper, we

follow [7] to set 𝑇𝑐ℎ𝑤𝑠 = 7°C, 𝑇𝑎𝑠 = 17°C, and 𝑇𝑐ℎ𝑤𝑟 = 12°C.

The chiller uses a compressor to lower the temperature of the

returned water and then transfers the heat to the cooling tower by

a condenser. Due to the operation of the compressor, the chiller

consumes a power of 𝑃𝑐ℎ and converts it to heat, as well as removes

the heat at a rate of ¤𝑄𝑐ℎ =
∑𝑛
𝑖=1

¤𝑄𝑟𝑖 . They compose the removed

heat rate of the cooling tower, which is denoted by ¤𝑄𝑐𝑡 . Specifically,
¤𝑄𝑐𝑡 = ¤𝑄𝑐ℎ + 𝑃𝑐ℎ =

∑𝑛
𝑖=1

¤𝑄𝑟𝑖 + 𝑃𝑐ℎ = 𝑐𝑤 ¤𝑚𝑐ℎ𝑤 (𝑇𝑐𝑤𝑟 −𝑇𝑐𝑤𝑠 ), where
¤𝑚𝑐ℎ𝑤 is the mass flow rate of condensed water, 𝑇𝑐𝑤𝑟 and 𝑇𝑐𝑤𝑠
are the temperature setpoints of the water entering and leaving

the cooling tower. Note that these two temperature setpoints are

implemented by the condenser and the cooling tower, respectively.

In this paper, we set 𝑇𝑐𝑤𝑠 = 20°C and 𝑇𝑐𝑤𝑟 = 27°C.

3.2 Cooling Power Model
Let 𝑃𝑐𝑤 and 𝑃𝐴𝐻𝑈𝑖

denote the power usages of the chilled water

system and room 𝑖’s AHU, respectively. The total power usage of

the cooling system, denoted by 𝑃 , is given by 𝑃 =
∑𝑛
𝑖=1 𝑃𝐴𝐻𝑈𝑖

+
𝑃𝑐𝑤 . The 𝑃𝑐𝑤 = 𝑃𝑐ℎ + 𝑃𝑐𝑡 + 𝑃𝑐ℎ𝑝 + 𝑃𝑐𝑝 , where 𝑃𝑐ℎ , 𝑃𝑐ℎ𝑝 , 𝑃𝑐𝑝 , 𝑃𝑐𝑡
are the power usages of the water chiller, chilled water pump,

condensed water pump and cooling tower, respectively. The 𝑃𝐴𝐻𝑈𝑖
,

𝑃𝑐ℎ , 𝑃𝑐ℎ𝑝 , 𝑃𝑐𝑝 , and 𝑃𝑐𝑡 can be modeled as 𝑃𝐴𝐻𝑈𝑖
= 𝑓1 ( ¤𝑚𝑎𝑖 ), 𝑃𝑐ℎ =

𝑓2 (𝑇𝑐ℎ𝑤𝑠 ,𝑇𝑐𝑤𝑠 , ¤𝑄𝑐ℎ), 𝑃𝑐ℎ𝑝 = 𝑓3 ( ¤𝑚𝑐ℎ𝑤), 𝑃𝑐𝑝 = 𝑓4 ( ¤𝑚𝑐𝑤), and 𝑃𝑐𝑡 =

𝑓5 (𝑇𝑐𝑤𝑠 ,𝑇𝑐𝑤𝑟 ,𝑇𝑜 , ¤𝑄𝑐𝑡 ), respectively, where 𝑇𝑜 is the ambient air

temperature and the functions 𝑓𝑘 (𝑘 = 1, . . . , 5) specify the factors

that affect the cooling devices’ power usages. Their detailed forms

depend on the device specifications. In general, they are non-linear.

Note that the 𝑓1 models the power usage of the AHU’s internal fans;

the AHU’s cooling coils do not consume power, because they just

passively transfer heat from the return air to the chilled water.

From the above modeling, the total cooling power is affected

by IT loads (𝑃𝐼𝑇𝑖 ), return air temperature setpoints (𝑇𝑎𝑟𝑖 ), and the

ambient air temperature (𝑇𝑜 ). In this paper, we focus on investigat-

ing the impacts of IT loads and temperature setpoints on the total

cooling power. Thus, we view𝑇𝑜 as a constant. In this paper, we set

𝑇𝑜 = 16°C. Therefore, the total cooling power can be modeled as a

function of the rooms’ IT loads and temperature setpoints. Specifi-

cally, 𝑃 = 𝐹 (𝑃𝐼𝑇1 , 𝑃𝐼𝑇2 , . . . , 𝑃𝐼𝑇𝑛 ,𝑇𝑎𝑟1 ,𝑇𝑎𝑟2 , . . . ,𝑇𝑎𝑟𝑛 ). In general, this

function is non-linear and analytically indivisible. Say, it cannot

be written as 𝑃 =
∑𝑛
𝑖=1 𝐹𝑖 (𝑃𝐼𝑇𝑖 ,𝑇𝑎𝑟𝑖 ) for straightforward power

attribution. Thus, the power attribution is a non-trivial problem.

To apply the cooling power attribution scheme proposed in this

paper, the co-location DC operator needs two power models: AHU

power model 𝑓1 and the second-stage cooling system’s composite

power model 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5. Such models are in general available

to the operator that has detailed information of the facilities in its

premise. In addition, the operator can also use historical data to

build data-driven models. In the numeric experiments of this paper,

we adopt the instantiated models in the ASHRAE’s manual [7] for

𝑓𝑘 (𝑘 = 1, . . . , 5). Due to space limitation, we omit their details here.

4 IMPACTS OF TEMPERATURE AND IT LOAD
ON HEAT PROCESSES

In this section, we conduct a set of numeric experiments to study the

impacts of temperature setpoints and IT loads on the cooling power

usage and heat transfer rate in a co-location DC. The results provide

insights to guide the design of power attribution. In the numeric

experiments, we vary the temperature setpoint from 21°C to 33°C.

These temperatures are within the allowed ranges of ASHRAE A2,

A3 and A4 equipments [4]. Note that most off-the-shelf data center

IT devices meet A2 and A3 requirements.

4.1 Impact of Temperature on Cooling Power
We perform numeric experiments based on the two-stage cooling

system model in §3 to study the cooling power savings achieved

by raising the temperature setpoint. We consider a co-location

DC consisting of ten server rooms, each of which has the same

temperature setpoint and IT load. In the experiments, we vary

the temperature setpoint of each room from 21°C to 31°C with a

step size of 1°C. The room’s IT load is varied from 20 kW to 50 kW

with a step size of 10 kW. We define 𝜎𝑡 to be the relative cooling

power saving achieved by raising the temperature setpoint from

21°C to a certain temperature of 𝑡 °C. Specifically, 𝜎𝑡 is calculated

as 𝜎𝑡 =
𝑃21−𝑃𝑡
𝑃21

× 100%, where 𝑃𝑡 is total cooling power of the ten

server rooms with the same temperature setpoint of 𝑡 °C. Note that

DCs typically adopt a temperature setpoint between 20°C and 22°C .
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Figure 2: Impact of temperature setpoint and IT load on (a)
the cooling power and (b) relative cooling power saving.

Thus, we investigate the relative cooling power saving with respect

to the baseline of 21°C.

Fig. 2 shows the total cooling powers and corresponding rela-

tive power savings versus temperature setpoint under various IT

loads. The cooling power decreases with the temperature setpoint.

Specifically, given a certain per-room IT load between 20 kW and

50 kW, the relative power saving 𝜎𝑡 increases sharply when the

temperature setpoint increases from 21°C to 25°C. Then, the relative

power savings flatten out when the temperature setpoint is greater

than 25°C. Note that the temperature value of 25°C for such an

observation depends on the detailed settings. However, it is intu-

itive that the increment of 1°C in temperature setpoint when the

setpoint is low brings more relative power savings than that when

the setpoint is high. Overall, under a certain IT load, the cooling

power saving has a non-linear relationship with the temperature

setpoint. The reason is as follows. From the model of AHU, i.e.,

¤𝑄𝑟𝑖 = 𝑐𝑎 ¤𝑚𝑎𝑖 (𝑇𝑎𝑟𝑖 −𝑇𝑎𝑠 ), to remove a certain amount of heat ¤𝑄𝑟𝑖 ,
the mass air flow rate ¤𝑚𝑎𝑖 is lower if the temperature setpoint 𝑇𝑎𝑟𝑖
is higher. Thus, the AHU’s internal fans can run at lower speeds

and use less power.

From Fig. 2(a), under the same temperature setpoint, the cooling

power greatly increases with the IT load. This is because the cooling

system needs to operate at a higher cooling capability to remove

more heat generated by the IT equipment. In addition, from Fig. 2(b),

the increased IT load results in a larger relative cooling power

saving under the same temperature setpoint. For instance, with the

temperature setpoint of 31°C, the relative power saving increases

from 2% to 14% when the IT load increases from 20 kW to 50 kW.

The reason is that the second-stage cooling system in general has

higher power efficiency in moving more heat.

Observation 1: The relative cooling power saving increases

with the temperature setpoint and IT load.

4.2 Impact of Heat Transfer on Cooling Power
In this subsection, we conduct a set of experiments with a real

server room to quantify the amount of heat transfer in reality.

Then, we study the impact of the inter-room heat transfers on the

DC’s cooling power usage based on the cooling system model in §3.

4.2.1 Heat transfer from a server room. In this experiment, we

operate a server room hosting a number of IT racks. The server

room has cement separations from its ambient. An AHU is deployed

in this room to move the heat generated by the IT equipment to the

Figure 3: Heat transfer from a real server room. (a) IT load
and removed heat rate normalized with respect to a con-
stant; (b) Relative heat transfer rate with respect to the cor-
responding IT load.

second-stage cooling system. The AHU is equipped with meters to

measure the rate of the heat moved from the room and the return air

temperature. The power distribution unit of the room provides real-

time IT load readings.We run experiments inwhich the temperature

setpoint varies from 27°C to 33°C. Under a certain temperature

setpoint, the experiment lasts for 12 hours. The server room is

located in a building that has a constant ambient temperature lower

than the lowest temperature setpoint in our server room (i.e., 27°C).

Fig. 3(a) shows the IT load and the rate of heat removed by the

AHU, both normalized with a constant, versus the temperature

setpoint. Each point is based on the average value of the measure-

ments over 12 hours. In Fig. 3(a), the slight decrease of IT load

with temperature during the course of the experiment is due to

server workload change. We can see that the removed heat rate is

always less than the IT load. This suggests that a portion of the

heat generated by the IT equipment is transferred out through the

enclosure of the server room. We plot the relative heat transfer rate

with respect to the corresponding IT load in Fig. 3(b). The relative

heat transfer rate exhibits a linearly increasing trend with the room

temperature. This verifies the heat transfer model in §3.1. When

the room temperature is 33°C, the heat transfer rate is about 9% of

IT load. A cooling system expert also investigated the area and the

material of the server room’s enclosure. Our experiment result and

the expert’s roughly calculated heat transfer rate match.

Observation 2: The inter-room heat transfer can be a significant

factor of the heat processes, should the server rooms adopt distinct

temperature setpoints.

4.2.2 Impact of heat transfer on cooling power. We run numeric

experiments based on the cooling system model in §3. We consider

a co-location DC consisting of two neighboring server rooms, i.e.,

room 1 and room 2. Room 1’s temperature setpoint is fixed at 21°C.

Room 2’s temperature setpoint varies from 22°C to 31°C. As a result,

a portion of the heat generated in room 2 is transferred to room 1.

In the experiments, we set the heat transfer coefficient between the

two rooms as 𝛼12 = 0.27 kW/°C.

Fig. 4(a) shows the total cooling power and its breakdown to

the shared second-stage cooling system and the two rooms’ AHUs

under various differences between the two rooms’ temperatures.

The total cooling power changes slightly with the temperature

difference. The power usage of the second-stage cooling system
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Figure 4: Impact of heat transfer on cooling power. (a) Cool-
ing power and breakdown; (b) AHU’s cooling power.

remains the same across various temperature differences. This im-

plies that the heat transfer does not affect the power usage of the

second-stage cooling. This can be formally stated as follows.

Proposition 4.1. Under the cooling system model described in §3,
the second-stage cooling system’s power usage depends on the total
IT load and is not affected by the inter-room heat transfers.

Proof. From the conservation of heat, we have

∑𝑛
𝑖=1𝑄𝑡𝑟𝑖 = 0.

Thus, the rate of heat removed by the chiller from the chilled water

cycle ¤𝑄𝑐ℎ =
∑𝑛
𝑖=1

¤𝑄𝑟𝑖 =
∑𝑛
𝑖=1 𝑃𝐼𝑇𝑖 + ¤𝑄𝑡𝑟𝑖 =

∑𝑛
𝑖=1 𝑃𝐼𝑇𝑖 . Moreover,

the mass flow rate of the chilled water is ¤𝑚𝑐ℎ𝑤 =
∑𝑛
𝑖=1 ¤𝑚𝑐ℎ𝑤𝑖

=∑𝑛
𝑖=1

¤𝑄𝑟𝑖

𝑐𝑤 (𝑇𝑐ℎ𝑤𝑟−𝑇𝑐ℎ𝑤𝑠 ) =

∑𝑛
𝑖=1 𝑃𝐼𝑇𝑖

𝑐𝑤 (𝑇𝑐ℎ𝑤𝑟−𝑇𝑐ℎ𝑤𝑠 ) , where 𝑐𝑤 , 𝑇𝑐ℎ𝑤𝑟 , and
𝑇𝑐ℎ𝑤𝑠 are constants. Thus, the chiller plant’s operating status that is

characterized by ¤𝑄𝑐ℎ and ¤𝑚𝑐ℎ𝑤 only depends on

∑𝑛
𝑖=1 𝑃𝐼𝑇𝑖 . Hence,

the second-stage cooling power depends on

∑𝑛
𝑖=1 𝑃𝐼𝑇𝑖 only. □

Differently, as shown in Fig. 4(b), the power usage of each room’s

AHU changes with the temperature difference. To further inves-

tigate the impact of the heat transfer on the AHU power usage,

we run additional numeric experiments in which the two rooms

are thermo-insulated (i.e., no heat transfer). Fig. 4(b) presents the

power usages of the two rooms’ AHUs in the presence and absence

of thermal insulation. In the presence of thermal insulation, the

power usage of room 1’s AHU remains the same, since the heat

generation rate in room 1 (i.e., the IT load only) is constant. In the

absence of thermal insulation, the power usage of room 1’s AHU

increases with the temperature difference. This is because more

heat is transferred from room 2 to room 1 when the temperature

setpoint of room 2 increases. As a result, room 1’s AHU needs to

operate its internal fans at higher rotation speeds to remove more

heat to maintain the temperature at the setpoint. In the presence

and absence of thermal insulation, the power usage of room 2’s

AHU decreases with the temperature difference. The reason is that

a higher temperature setpoint allows the AHU to operate its inter-

nal fans at lower speeds. The power usage of room 2’s AHU in the

presence of thermal insulation is higher than that in the absence of

thermal insulation. However, room 2’s AHU power usage reduction

caused by the heat transfer is less significant in comparison with

room 1’s AHU power usage increase. This is because AHU power

usage is non-linear with the heat removal rate. In this two-room

example, the heat transfer results in higher total power usage of

the two rooms’ AHUs, in comparison with the case with thermal

Figure 5: A two-room example. Arrow represents heat flow.

insulation. This suggests that the impact of heat transfers on the

cooling power usage should be considered.

Observation 3: The heat transfers among server rooms with

distinct temperatures affect the AHU power usages. They do not

affect the power usage of the second-stage cooling system.

5 PROBLEM AND APPROACH OVERVIEW
5.1 Problem Statement
We consider a co-location DC consisting of multiple server rooms

with distinct return air temperature setpoints. The DC uses the two-

stage cooling system described in §3. Each server room has at least

four meters to measure return air temperature, IT load, the rate of

heat removed by the AHU, and AHU power usage 𝑃𝐴𝐻𝑈𝑖
. The DC

operator also deploys a meter to measure the second-stage cooling

system’s power usage 𝑃𝑐𝑤 . Fig. 5 shows a minimal example of a co-

location DC with two server rooms, illustrating the required meters.

In this paper, we study the problem of attributing the total cooling

power 𝑃 =
∑𝑛
𝑖=1 𝑃𝐴𝐻𝑈𝑖

+ 𝑃𝑐𝑤 to the server rooms. As discussed in

§3.2, we assume that the DC operator has models of 𝑃𝐴𝐻𝑈𝑖
(i.e., 𝑓1)

and 𝑃𝑐𝑤 (i.e., the composite of 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5).
The attribution is challenging due to the following reasons. First,

due to the inter-room heat transfers, the measured 𝑃𝐴𝐻𝑈𝑖
may

be different from the power that the AHU𝑖 is supposed to use to

remove the heat generated by the room 𝑖’s IT equipment only. The

𝑃AHU𝑖
can include power usage for removing heat transferred from

the neighbours with higher temperatures. Also, the 𝑃𝐴𝐻𝑈𝑖
can be

lower than the supposed AHU power usage if the room 𝑖 transfers

heat to its neighbors. Therefore, the 𝑃𝐴𝐻𝑈𝑖
measurement cannot

be directly attributed to room 𝑖 as its AHU power usage. Second,

as discussed in §3, as 𝑃 is non-linear and analytically indivisible,

there is no straightforward attribution to server rooms.

The load-proportional division (LPD) policy is a prevailing power

attribution mechanism. Its simplest form, which is widely adopted,

charges the tenant by: electricity tariff ($/kWh) × IT electricity

usage (kWh) × a constant that factors in the power usage effective-

ness (PUE) of the whole DC infrastructure. When server rooms’

adopt distinct temperatures, the above simplest LPD policy falls

short of considering the impacts of room temperature and inter-

room heat transfers on AHU power usage. It can be improved by

charging the tenant for AHU power based on meter reading and
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second-stage cooling power based on LPD separately. It still does

not address inter-room heat transfers. In addition, applying LPD on

the analytically indivisible power usage of the second-stage cooling

system is a solution offering no profound fairness explanations.

5.2 Approach Overview
From our measurements and analysis in §4, the server rooms’ tem-

perature setpoints and the inter-room heat transfers affect the

power usages of the rooms’ AHUs, and do not affect the power

usage of the second-stage cooling system. The latter only depends

on the total IT load of the rooms. Therefore, in our proposed power

attribution scheme, we address the following two sub problems in

§6 and §7 respectively: (1) AHU power rectification and (2) second-

stage cooling power attribution. The AHU power rectification aims

at rectifying the metered AHU power usage 𝑃𝐴𝐻𝑈𝑖
of each room 𝑖 ,

such that room 𝑖 is attributed with the supposed AHU power usage

that removes the heat generated by room 𝑖’s IT equipment only.

To this end, we perform two steps. First, we develop a data-driven

approach to estimate the heat transfer coefficient between any two

server rooms based on the historical meter measurements. Then,

the real-time inter-room heat transfers are estimated and the ex-

tra AHU powers that are used to remove the incoming heat from

neighboring rooms are determined and attributed back to these

neighbors. The second-stage cooling power attribution adopts the

Shapley value method based on the server rooms’ IT loads. The

attribution by the Shapley value method meets several fairness ax-

ioms. Our main objective in this paper is to avoid the intensive and

long-lasting computation of the Shapley value at run time, because

the instantaneous power attribution needs to be performed with

short periods (e.g., every one minute). To this end, we design an

MLP and train it with sufficient power attribution samples com-

puted by the Shapley value method offline. At run time, by feeding

the MLP with the server rooms’ real-time IT loads, the MLP infer-

ence gives the attribution with low latency. However, the offline

data generation still incurs overhead. Thus, we also develop a fast

heuristic attribution algorithm based on observations on Shapley

attribution, achieving good accuracy and scalability with 𝑛.

6 AHU POWER RECTIFICATION
Inter-room heat transfers are needed to perform the rectification.

However, under a general setting, we cannot estimate the

(𝑛
2

)
inter-

room heat transfer values from a system of 𝑛 equations instru-

mented with the meter measurements, because it is an underdeter-

mined problem. Although the number of unknown heat transfers

can be reduced by considering building topology (i.e., not every

two rooms are adjacent), it may not turn the problem determined.

This issue motivates us to resort to estimating all inter-room heat

transfer coefficients, because with these, we can estimate the instan-

taneous heat transfers based on the rooms’ instantaneous return air

temperatures. §6.1 presents a data-driven approach to estimate the

heat transfer coefficients. §6.2 presents the rectification approach.

6.1 Estimation of Heat Transfer Coefficients
The heat transfer coefficient depends on the material and area of

the separation structure. The estimation approaches described in

existing studies [9, 21] require detailed information such as the

separation material properties. These approaches incur tedious pro-

cesses of modeling all room separations. This paper proposes a

data-driven approach that estimates the heat transfer coefficients

merely based on the historical measurements of server room tem-

peratures, heat removal rates, and IT loads over multiple time steps.

Our analysis uses the following notations. The 𝛼𝑖 𝑗 denotes the

unknown heat transfer coefficient between rooms 𝑖 and 𝑗 . For the

𝑘th time step: ¤𝑄𝑟𝑖 [𝑘] denotes the measured heat rate at which the

AHU removes heat from room 𝑖; 𝑃IT𝑖 [𝑘] denotes the measured

IT load of room 𝑖; ¤𝑄𝑡𝑟𝑖 [𝑘] = ¤𝑄𝑟𝑖 [𝑘] − 𝑃IT𝑖 [𝑘] denotes room 𝑖’s

net influx heat transfer rate; 𝑇𝑖 𝑗 [𝑘] = 𝑇𝑖 [𝑘] − 𝑇𝑗 [𝑘] denotes the
difference between the measured return air temperatures of rooms

𝑖 and 𝑗 . From the first principle governing the heat transfer as

presented in §3.1, we have ¤𝑄𝑡𝑟𝑖 [𝑘] =
∑
𝑝,𝑞∈[1,𝑁 ],𝑝<𝑞,𝑞=𝑖 𝑇𝑝𝑞 [𝑘] ·

𝛼𝑝𝑞 −
∑
𝑝,𝑞∈[1,𝑁 ],𝑝<𝑞,𝑝=𝑖 𝑇𝑝𝑞 [𝑘] · 𝛼𝑝𝑞 , where the first sum is room

𝑖’s total influx heat transfer rate and the second sum is room 𝑖’s total

outflow heat transfer rate. The above equality can be vectorized as

©­­­­«
¤𝑄𝑡𝑟1 [𝑘]
¤𝑄𝑡𝑟2 [𝑘]
.
.
.

¤𝑄𝑡𝑟𝑛 [𝑘]

ª®®®®¬
=

©­­­­«
−𝑇12 [𝑘] −𝑇13 [𝑘] · · · 0

𝑇12 [𝑘] 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 𝑇(𝑛−1)𝑛 [𝑘]

ª®®®®¬
©­­­­«

𝛼12
𝛼13
.
.
.

𝛼 (𝑛−1)𝑛

ª®®®®¬
.

We write the above equation as ¤Q𝑡𝑟 [𝑘] = T[𝑘]𝜶 , where ¤Q𝑡𝑟 [𝑘] ∈
R𝑛×1, T[𝑘] ∈ R𝑛×(

𝑛
2
)
, and 𝜶 ∈ R(

𝑛
2
)×1

. It is underdetermined. If

the return air temperatures vary over 𝐾 time steps, we can inte-

grate the equations into a single equation. Specifically, by defin-

ing matrices ¤Q𝑡𝑟 =
( ¤Q𝑡𝑟 [1]; ¤Q𝑡𝑟 [2]; . . . ; ¤Q𝑡𝑟 [𝐾]) ∈ R𝐾𝑛×1 and

T = (T[1];T[2]; . . . ;T[𝐾]) ∈ R𝐾𝑛×(
𝑛
2
)
, the integrated equation is

¤Q𝑡𝑟 = T𝜶 . A necessary condition for this equation to be determined

is 𝐾 ≥ 𝑛−1
2

. However, if the return air temperature variations over

time are small, the matrix T may be ill-conditioned. Thus, it is

beneficial to integrate many time steps more than the necessary

condition to ensure that the integrated equation is overdetermined

and the least squares approach can be applied to solve 𝜶 .

For a new co-location DC before commission, the DC opera-

tor can perform controlled experiments to vary the server rooms’

temperatures and collect data for the heat transfer coefficient es-

timation. For a commissioned co-location DC, since the server

rooms’ IT loads vary over time and the AHUs have control dynam-

ics, the room temperatures may deviate from their setpoints. The

DC operator may select data in 𝐾 time steps that are unnecessarily

continuous from years’ operation history, such that T has a good

condition number that can be assessed by ∥T∥𝐹 ∥T+∥𝐹 [16], where

T+ is the pseudoinverse of T and ∥ · ∥𝐹 represents Frobenius norm.

6.2 Rectification of AHU Power Usages
We face two major challenges. The first is caused by the non-linear

relationship between AHU’s power usage and its rate of heat re-

moval. Thus, the AHU may use different powers to move the same

amount of heat when it operates on different conditions including

the return hot air temperature. Considering the simplest two-room

case, a room’s AHU power increment and the other’s decrement

caused by the heat transfer is in general different. Thus, in the

absence and presence of thermal insulation, the total AHU power

usages of the two rooms are different. This has been observed in

§4.2.2. Therefore, the hypothetical case of ideally thermo-insulated
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rooms is not an ideal target of the rectification. In our proposed

approach, we follow a principle of using the heat transfer-induced

AHU power usage increment of the lower-temperature room to

rectify the power usages of the two involved rooms. Under this

principle, the sum of all rooms’ rectifications is zero. The rationale

of choosing the lower-temperature room is from the observation

in Fig. 4(b) that the heat transfer has greater impact on the lower-

temperature room’s AHU power.

The second challenge is that, if a room’s influx heat transfer is

from multiple rooms, the room’s power usage increment is indivisi-

ble. We address this as follows. Considering room 𝑖 with metered

PMU power 𝑃𝐴𝐻𝑈𝑖
, we first determine the variation of the air mass

flow rates caused by the heat rates transferred to room 𝑖 from

the rooms with higher temperatures. For instance, considering a

higher-temperature room 𝑘 with metered PMU power 𝑃𝐴𝐻𝑈𝑘
, the

transferred heat rate from room 𝑘 to room 𝑖 is ¤𝑄𝑡𝑟𝑘𝑖 = 𝛼𝑖𝑘 (𝑇𝑘 −𝑇𝑖 ),
where 𝛼𝑖𝑘 is obtained in §6.1. Therefore, the increment of room

𝑖’s AHU air mass flow rate due to ¤𝑄𝑡𝑟𝑘𝑖 , denoted by Δ ¤𝑚𝑎𝑘𝑖 , is
Δ ¤𝑚𝑎𝑘𝑖 =

¤𝑄𝑡𝑟𝑘𝑖

𝑐𝑎 (𝑇𝑖−𝑇𝑎𝑠 ) . We adopt the linear approximation to esti-

mate the increment of the AHU power usage (denoted by Δ𝑃𝐴𝐻𝑈𝑘𝑖
)

caused by Δ ¤𝑚𝑎𝑘𝑖 as Δ𝑃𝐴𝐻𝑈𝑘𝑖
= ∇𝑓1 ( ¤𝑚𝑎𝑖 )Δ ¤𝑚𝑎𝑘𝑖 , where ¤𝑚𝑎𝑖 is the

current air mass flow rate of room 𝑖’s AHU and ∇𝑓1 (·) represents
the first derivative of the function 𝑓1 (·) defined in §3.2. By following
the aforementioned principle of choosing the lower-temperature

room as the common basis of rectification, we subtract Δ𝑃𝐴𝐻𝑈𝑘𝑖

from 𝑃𝐴𝐻𝑈𝑖
and add it to 𝑃𝐴𝐻𝑈𝑘

. We follow above to rectify the

AHU powers of any two rooms having heat transfer.

The rectification process can be modeled by a directed graph,

in which the nodes represent server rooms and a directed edge

represents the directional heat transfer. Fig. 6 illustrates the graph

for a 3-room case, in which 𝑇1 < 𝑇2 < 𝑇3. Each node is associated

with the room temperature and metered AHU power. For the edge

from node 𝑘 to node 𝑖 , we compute the heat transfer rate ¤𝑄𝑡𝑟𝑘𝑖 ,
increment of air mass flow rate Δ ¤𝑚𝑎𝑘𝑖 , and increment of power

usage of the end node’s AHU Δ𝑃𝐴𝐻𝑈𝑘𝑖
. The Δ𝑃𝐴𝐻𝑈𝑘𝑖

is the edge

cost. Accordingly, the rectified AHU power (denoted by 𝑃𝐴𝐻𝑈𝑖
) is

the original AHU power subtracted with all incoming edge costs

and added with all outgoing edge costs. For instance, for rooms 1

and 2 in Fig. 6, 𝑃𝐴𝐻𝑈1
= 𝑃𝐴𝐻𝑈1

−Δ𝑃𝐴𝐻𝑈21
−Δ𝑃𝐴𝐻𝑈31

and 𝑃𝐴𝐻𝑈2
=

𝑃𝐴𝐻𝑈2
− Δ𝑃𝐴𝐻𝑈32

+ Δ𝑃𝐴𝐻𝑈21
.

7 SECOND-STAGE COOLING ATTRIBUTION
This section formulates the second-stage cooling power attribution

problem and presents our MLP-based and fast heuristic approaches.

7.1 Fairness Objective and Challenge
Denote by 𝑁 the set of all 𝑛 server rooms, by 𝑃𝑐𝑤 (𝑁 ) the power
usage of the second-stage cooling to remove the heat generated by

all server rooms, by 𝑃𝑐𝑤𝑟 (𝑖) the attribution of 𝑃𝑐𝑤 (𝑁 ) to room 𝑖 .

The attribution aims to meet the following three fairness axioms:

Efficiency:
∑𝑛
𝑖=1 𝑃𝑐𝑤𝑟 (𝑖) = 𝑃𝑐𝑤 (𝑁 ).

Symmetry: If rooms 𝑖 and 𝑗 contribute equally to the second-stage

cooling power, their attributions are same, i.e., if 𝑃𝑐𝑤 (𝑀 ∪ {𝑖}) =
𝑃𝑐𝑤 (𝑀 ∪ { 𝑗}), ∀𝑀 ⊆ 𝑁 \{𝑖, 𝑗}, then 𝑃𝑐𝑤𝑟 (𝑖) = 𝑃𝑐𝑤𝑟 ( 𝑗).

Figure 6: AHUpower rectifica-
tion graph for three rooms.

Figure 7: Room 1’s Shapley
attributions in three cases.

Dummyplayer: If the second-stage cooling power does not change
in the presence or absence of room 𝑖 , room 𝑖 has zero attribution,

i.e., if 𝑃𝑐𝑤 (𝑀 ∪ {𝑖}) = 𝑃𝑐𝑤 (𝑀), ∀𝑀 ⊆ 𝑁 \{𝑖}, then 𝑃𝑐𝑤𝑟 (𝑖) = 0.

The widely adopted LPD policy does not guarantee the sym-

metry axiom. As the second-stage cooling power has a non-linear

relationship with the rooms’ IT loads, two rooms with different IT

loads may have the same contribution to the second-stage cooling

power. However, the LPD policy will assign different attributions to

the two rooms. The Shapley value approach [19] that is a fair value

attribution game method has been proven to meet all the three

fairness axioms [11]. We take it as the objective as it is considered

the only fair method for cost sharing game [8]. Applying the Shap-

ley value approach in our cooling power attribution context, the

𝑃𝑐𝑤 (𝑀) and 𝑃𝑐𝑤 (𝑁 ) can be considered as the characteristic cost

function of a coalition consisting of a subset𝑀 of𝑚 server rooms

and the cost of the entire server room set 𝑁 , respectively. Under

the Shapley value approach,

𝑃𝑐𝑤𝑟 (𝑖)=
∑

𝑀⊆𝑁,∀𝑖∉𝑀

( |𝑁 |− |𝑀 |−1)!|𝑀 |!
|𝑁 |! (𝑃𝑐𝑤 (𝑀 ∪ {𝑖})−𝑃𝑐𝑤 (𝑀)) . (1)

However, Eq. (1) is computationally intensive. Specifically, the com-

plexity of computing 𝑃𝑐𝑤𝑟 (𝑖) is O(2𝑛). Thus, the compute complex-

ity of the second-stage cooling power attribution is O(𝑛 · 2𝑛). Such
a high compute complexity does not allow the real-time power

attribution when 𝑛 is beyond a certain value.

7.2 Power Attribution Approaches
This section presents two approaches to achieving real-time attri-

bution of the second-stage cooling power that approximates the

Shapley attribution discussed in §7.1. The first approach trains an

MLP using training samples of Shapley attribution generated of-

fline and forwards the MLP for real-time attribution. The second

approach uses a lightweight heuristic algorithm developed based

on a key observation of Shapley cooling attribution. TheMLP-based

approach achieves high approximation accuracy but requires inten-

sive offline computation. The heuristic approach is training-free,

lightweight, but less accurate. They will be evaluated in §8.

7.2.1 MLP-based attribution approach. The MLP takes the server

rooms’ real-time IT loads 𝑃IT1
, . . . , 𝑃IT𝑛 as inputs to predict the

attributions 𝑃𝑐𝑤𝑟 (1), . . . , 𝑃𝑐𝑤𝑟 (𝑛). The MLP is trained offline using

the data samples of 𝑃𝑐𝑤𝑟𝑖 (𝑖 = 1, . . . , 𝑛) which are generated by

feeding the Shapley power attribution function in Eq. (1) with

random IT loads of the rooms. Our current parallel implementation
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Figure 8: Accuracy of heat transfer coefficient estimation.

of the data generation on a workstation equipped with two 12-

core Intel Xeon processors can handle up to 18 server rooms. To

handle more server rooms, cloud computing can be used. Note that

the training data generation is a one-time effort. The trained MLP

is used online to predict the rooms’ second-stage cooling power

usages based on the rooms’ instantaneous IT loads in real time.

7.2.2 Fast Heuristic attribution approach. When 𝑛 increases, the

offline training data generation for the MLP becomes harder. For

the cases of large 𝑛, we develop a fast heuristic attribution approach

based on a key observation as follows: under the second-stage cool-

ing system model described in §3, given 𝑛, the Shapley attribution

for a certain IT load has small variations when the other IT loads

vary. We now illustrate this using a numeric example. We consider

three cases with 𝑛 = 9, 𝑛 = 10, and 𝑛 = 11, respectively. We fix the

IT load of room 1 to be 30 kW. We conduct 1,000 random experi-

ments as follows. In each experiment, we randomly generate the

IT loads of the rooms (except room 1) under the three cases. Each

room’s IT load is within [0, 50 kW]. Moreover, in each experiment,

the total load of all rooms in the 10-room case is same as that of

the 11-room case, and different from that of the 9-room case. Fig. 7

shows room 1’s Shapley attribution 𝑃𝑐𝑤𝑟 (1) under the three cases.
The error bars represent the maximum and minimum during the

1,000 experiments. We can see that (i) the 𝑛 has a major impact on

𝑃𝑐𝑤𝑟 (1) and (ii) the 𝑃𝑐𝑤𝑟 (1) has maximal fluctuations of 0.47 kW,

0.52 kW, and 0.66 kW for the three cases, respectively, which are

just 2.5%, 3%, 3.9% of the respective 𝑃𝑐𝑤𝑟 (1) averages.
Based on above, we compute room 𝑖’s approximated Shapley

attribution as 𝑃𝑐𝑤𝑟 (𝑖) =
𝑃𝑐𝑤 (𝑛×𝑃𝐼𝑇𝑖 )

𝑛 . It is based on a hypothetical

case in which each of the 𝑛 rooms has identical IT load of 𝑃𝐼𝑇𝑖 ; thus,

the Shapley attribution for each room is the second-stage cooling

power 𝑃𝑐𝑤 (𝑛×𝑃𝐼𝑇𝑖 ) divided by 𝑛. The compute complexity is O(𝑛).

8 PERFORMANCE EVALUATION
This section evaluates the proposed power attribution scheme by

numeric experiments driven by the models in §3. We adopt settings

recommended by ASHRAE [7], e.g., 𝑇𝑎𝑠 = 17°C, 𝑇𝑐ℎ𝑤𝑠 = 7°C, and

𝑇𝑐ℎ𝑤𝑟 = 12°C. In this section, an error bar represents the maximum

and minimum over 1,000 repeated experiments.

8.1 Performance of AHU Power Rectification
8.1.1 Accuracy of heat transfer coefficient estimation. We conduct

experiments with 𝑛 increasing from 10 to 100. We generate the adja-

cent relationship between any two rooms by sampling a Bernoulli

distribution with an adjacency probability of 0.6. The ground-truth

Figure 9: Performance of AHU power rectification.

heat transfer coefficient between any two adjacent rooms 𝑖 and 𝑗

is randomly and uniformly sampled from [0.03, 0.05] kW/°C. All

rooms’ IT loads are 30 kW.We generate historical data for𝐾 = 200𝑛

time steps, which is much more than the necessary condition of

𝐾 ≥ 𝑛−1
2
. In each time step 𝑘 , the return air temperature 𝑇𝑎𝑟𝑖 of

room 𝑖 is randomly selected from [21, 30]°C. The ground-truth re-

moved heat rates 𝑄𝑡𝑟𝑖 [𝑘] (𝑖 = 1, . . . , 𝑛) are calculated from the IT

loads 𝑃IT𝑖 and the ground-truth inter-room heat transfer rates.

We account for measurement noises by adding random noises

to the measured net influx heat transfer rates. Specifically, the

simulated measurement is 𝑄̂𝑡𝑟𝑖 [𝑘] = 𝑄𝑡𝑟𝑖 [𝑘] + 𝜖 , where 𝑄𝑡𝑟𝑖 [𝑘]
is the ground truth, 𝜖 is a random noise drawn uniformly from

[−𝛿𝑄𝑡𝑟𝑖 [𝑘], 𝛿𝑄𝑡𝑟𝑖 [𝑘]], and 𝛿 controls the noise level. In our exper-

iments, 𝛿 varies from 0 to 10% that is the maximum error of real

heat meters [13]. By defining relative error as
|𝐸−𝑇 |
𝑇

, where 𝐸 and

𝑇 are the estimated and true values, we use the mean relative error

(MRE) over all heat transfer coefficients as the accuracy metric.

Fig. 8 shows the MREs under various settings of 𝑛 and 𝛿 . The MRE

increases with 𝑛 and 𝛿 , which is consistent with intuition. When

the measurements are noiseless (i.e., 𝛿 = 0), the MRE is at most 1.7%

when 𝑛 is up to 100. When 𝛿 = 10%, the MRE is from 5% to 11.4%,

similar to 𝛿 . These results suggest that our estimation approach

scales well with 𝑛 and 𝛿 .

8.1.2 Performance of AHU power rectification. We perform evalua-

tion under wide ranges of settings for 𝑛, IT load, and temperature

setpoint. We set 𝛿 = 1%. First, we vary 𝑛. Under each setting of

𝑛, each room’s temperature setpoint is randomly drawn from [21,

30]°C while the room’s IT load is fixed at 30 kW. As discussed in

§6.2, the hypothetical case of ideally thermo-insulated rooms is

not a gold standard, because the inter-room heat transfers will

lead to change of total AHU power. Fig. 9(a) shows the relative

difference between the total AHU powers in the absence and pres-

ence of thermal insulation versus 𝑛. The relative difference is less

than 1%. Thus, the AHU powers in the hypothetical case of ide-

ally thermo-insulated rooms can be used as good targets of the

AHU power rectification. Therefore, we evaluate the MREs of the
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Figure 10: Second-stage cooling power attribution.

metered AHU power and the rectified result with respect to that

in the hypothetical case. Fig. 9(b) shows the results. We can see

that the metered AHU powers deviate from the thermo-insulated

case by up to 13% when 𝑛 = 80. Our rectifications reduce MREs

by more than half. Second, we vary the maximum temperature.

Each room’s temperature setpoint is randomly selected from 21°C

to the maximum temperature. Each room’s IT load is fixed at 30 kW.

Fig. 9(c) shows the results. MRE increases with the maximum tem-

perature. This is because a larger setting of maximum temperature

leads to larger amounts of heat transfers. Our rectifications also

reduce MREs by more than half compared with the metered AHU

powers. Third, we vary the maximum IT load. Each room’s IT load

is randomly selected from 0 to the maximum IT load. We set 𝑛 = 50

and maximum temperature to be 30°C. Fig. 9(d) shows the results.

Our rectifications reduce MREs by up to 78%.

8.2 Performance of MLP & Fast Approaches
For different 𝑛 settings, we build different MLPs. An MLP consists

of an input layer, multiple hidden layers, and a linear output layer.

Rectified linear unit (ReLU) is used as the activation function for the

input and hidden layers. Each MLP is trained with 1,000 samples,

for which each room’s IT load is randomly sampled from [0, 50] kW.

TheAdamoptimizer with a learning rate of 0.001 is used for training;

training batch size is 128. The test dataset consists of another 1,000

samples. For each 𝑛 setting, we conduct extensive evaluation to

choose the hyperparamter settings including the numbers of hidden

layers and neurons each layer, to minimize the root mean square

error (RMSE) between the prediction and the Shapley ground truths

of training data. Due to the space constraints, we omit presenting

the optimal hyperparameter settings.

We compare the performance of the prevailing LPD policy, and

our proposed MLP and fast heuristic (FAST) approaches. We mea-

sure the relative error of each room’s attribution with respect to

the Shapley ground truth. We use the MRE over all rooms as the

accuracy metric. Fig. 10 shows MREs of the three approaches versus

𝑛. The MRE of LPD can be up to 19%. MLP is the most accurate.

Its average MRE is 2.38% when 𝑛 is 18. FAST gives higher MREs

compared with MLP, but lower compared with LPD. FAST’s aver-

age MRE is 6.04%. From the above results, MLP can approximate

the Shapley attribution function accurately. However, it requires a

compute-intensive training data generation. When the computing

resources are insufficient for generating training data, FAST is an

acceptable alternative.

9 CONCLUSION
This paper proposes a real-time cooling power attribution scheme

for co-located server rooms with distinct temperatures. First, it

rectifies the metered power usages of AHUs to address inter-room

heat transfers that are estimated in real time based on the heat

transfer coefficients obtained via data analytics. Second, it uses an

algorithm to compute the rooms’ approximated Shapley shares of

the second-stage cooling system’s power usage. Evaluation shows

the effectiveness of the proposed scheme. With it implemented, a

co-location DC can encourage the tenants to raise their temperature

setpoints subject to their own different constraints such that the

DC’s energy efficiency is improved and the tenants keen to hotter

server rooms receive cooling cost savings in return.
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