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Modern autonomous vehicles face growing cybersecurity risks, especially from action space attacks that
directly target vehicle actuators. This paper systematically evaluates the resilience of three representative
autonomous driving (AD) architectures, including modular, end-to-end, and feature-fused agents, against
few-shot action space attacks crafted via deep reinforcement learning under a black-box setting. The adversary
perturbs the vehicle’s lateral control only during safety-critical moments, using either a camera or an inertial
measurement unit. Our results reveal distinct vulnerabilities and behavioral patterns across AD architectures,
which underscore the necessity for adaptive and robust defense strategies. However, existing adversarial
training defense methods show limitations of overfitting and reliance on attack knowledge. To address these
limitations, we propose a learning-based Path Correction System (PCS) that integrates traditional feedback
control with an adversarially trained correction loop. The correction loop is selectively activated by a kinematic-
model-based attack detector to counteract abnormal control deviations. Evaluation experiments show that
PCS reduces path-tracking deviation by 78% when the system is under attack.
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1 Introduction
The rapid advancement of autonomous driving (AD) technology in recent years has drawn sig-
nificant research focus to its cybersecurity concerns. While prior work has extensively studied
sensor-level attacks [2, 3, 6, 25], actuator compromise has emerged as a critical threat vector. By
gaining control over actuator units, attackers may circumvent upstream defenses from perception to
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control and have a direct impact on the vehicle’s physical state. These actuator-level threats, known
as action space attacks, pose serious risks to system safety. Although recent studies have revealed
the vulnerability of individual AD agents to such attacks [19, 24, 47], systematic comparisons across
architectural designs remain limited. This gap raises a fundamental question: how does system
architecture influence the resilience of AD agents to action space attacks?

To answer this question, we evaluate three representative AD agents: 1) modular driving agents,
which employ a hierarchical pipeline with dedicated modules for specific driving tasks, 2) end-
to-end driving agents built with deep reinforcement learning (DRL), which directly map sensor
inputs to actuator outputs through a single policy network, and 3) advanced feature-fused driving
agents, which incorporate detailed vehicle state from modular components into DRL training to
improve driving performance. We conduct evaluation experiments in the CARLA simulator [15]
using freeway scenarios that capture key aspects of real-world driving complexity, and measure
the performance of each agent in tracking planned trajectories. Thus, the path tracking deviation is
used as the primary metric to quantify how well each agent maintains stable and accurate control
in the presence of action space attacks.

In this study, we investigate action space attacks that perturb the ego vehicle’s lateral control to
induce side collisions with nearby vehicles. We assume a strategic adversary that performs few-shot
interventions during high-risk maneuvers such as lane changes and overtaking. We refer to these
intervals as safety-critical moments, characterized by narrowed safety margins caused by rapid
changes in relative speed and dynamic interactions between vehicles. For realism of the threat
model, we impose three practical constraints on the adversary. First, the attacker is limited to
additive perturbations on the ego vehicle’s lateral control. Perturbation magnitudes are capped by an
attack budget that is related to either the attacker’s physical capability limit or a stealth-preserving
maximum choice selected to evade potential physics-based attack detectors [11, 17]. Second, the
adversary operates under a black-box setting and has no access to the driving agent’s internal model,
parameters, or decision rules. Third, the adversary may only have partial state observation because
of practical sensing and deployability limits. Under these constraints, we train the adversary’s
policy using DRL and develop two attack variants: a vision-based approach using camera sensors
and a motion-based approach relying exclusively on inertial measurement units (IMUs). These
variants demonstrate a trade-off between sensing modalities and deployability: cameras offer rich
visual information but are difficult for the adversary to mount and conceal, whereas IMUs provide
coarse motion cues but allow covert in-vehicle deployment.

We begin by evaluating the behavioral vulnerabilities of different AD architectures under action
space attacks. Modular agents exhibit strong robustness to minor disturbances but become highly
susceptible under high-budget attacks. In contrast, the end-to-end DRL agent, which processes
raw images, is more resilient to strong perturbations yet loses precision under nominal driving or
under low-budget attacks. The feature-fused agent maintains stability under low-budget attacks
but degrades sharply once the attack budget exceeds a threshold. The results suggest the necessity
of a defense mechanism capable of maintaining robustness across nominal driving as well as under
low- and high-budget attacks. To this end, we first revisit adversarial training, a common approach
to improving policy robustness against action space attacks [26, 41]. In our preliminary study [45],
we investigated fine-tuning-based adversarial training and extended it with progressive neural
networks (PNNs) [37] to enhance adaptation across attack scenarios. Results showed that, while
the adversarial training and its extended variant mitigate some vulnerabilities, they introduce new
limitations such as overfitting and reliance on known attack patterns.
A key insight from our preliminary analysis [45] is that different AD architectures exhibit

complementary robustness. Modular control provides high precision and stability under nominal
driving or mild disturbances, whereas DRL-based policies adapt more effectively to stronger attacks
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and can be further enhanced through adversarial training. This observation suggests that integrating
their strengths could yield more balanced resilience across attack budgets. Guided by this insight,
we design a learning-based Path Correction System (PCS) that unifies their advantages to achieve
balanced robustness across attack budgets. PCS augments the modular agent’s error-minimizing
feedback with a supplementary DRL policy, which effectively reduces path-tracking deviations
and alleviates the overfitting issues associated with adversarial training. To preserve nominal
performance and runtime efficiency, PCS integrates a kinematic-model-based attack detector that
activates the supplementary DRL loop only when an attack is detected.

Our contributions are summarized as follows. First, we present a systematic and comprehensive
evaluation of action space attacks across multiple AD architectures to reveal key architectural
factors that influence robustness. Second, we critically analyze two existing adversarial training
defense strategies and uncover their inherent limitations, motivating the need for more adaptive
and effective solutions. Third, we propose PCS, a novel AD architecture that integrates modular
feedback control and learning-based correction, where the latter is activated by an attack detector.
PCS achieves up to a 78% reduction in path-tracking error when the system is under attack.
Paper organization: Section 2 presents the preliminaries and reviews related work. Section 3

describes the system model. Section 4 details the threat model and the training of the adversary’s
policy. Section 5 presents attack evaluation results. Section 6 evaluates and analyzes existing
defense strategies. Section 7 introduces the proposed PCS architecture and presents its performance.
Section 8 presents the attack detector in PCS. Section 9 discusses several related issues. Section 10
concludes this paper.

2 Preliminary and Related Work
2.1 Autonomous Driving Agent
We categorize AD agents as: 1) modular, 2) end-to-end, and 3) feature-fused driving agent.

Modular driving agent:Modular driving agents adopt a hierarchical decision-making archi-
tecture, in which individual modules are responsible for distinct subtasks such as route planning,
behavior decision-making, motion planning, and path tracking [32]. This design offers clear mod-
ular boundaries and interpretability that facilitate maintenance and system upgrades. However,
decomposing the driving task into multiple interacting modules increases integration complexity
and development overhead [28]. This prompts the search for alternatives.
End-to-end driving agent: End-to-end driving agents have gained growing attention as a

cost-effective alternative to modular pipelines [10]. These approaches replace numerous modules
with a single policy network that maps raw inputs (e.g., images) directly to action distributions.
Typically, end-to-end policies are trained via imitation learning (IL) [33, 42], or DRL [20, 34]. IL
leverages expert demonstrations and follows a supervised learning paradigm, resulting in fast
convergence but with performance ultimately bounded by the quality of the teacher [8]. In contrast,
DRL learns through trial and error, which enables greater adaptability in complex and dynamic
environments. Despite recent progress [5, 16, 46], end-to-end agents continue to facing challenges
in generalizability [12], reproducibility, and remain vulnerable to cybersecurity threats. In this
paper, we implement DRL for end-to-end freeway driving.
Feature-fused driving agent: Feature-fused driving agents employ a hierarchical decision-

making structure that uses essential features, such as path deviations and proximity to surrounding
vehicles, as inputs to policy networks [4, 23]. This approach yields two main benefits: 1) dimension-
ality reduction, which simplifies the model and lowers computational overhead, and 2) mitigation of
the domain shift problem often encountered in end-to-end architectures that use image inputs [43].
This framework improves the system’s adaptability to diverse driving scenarios.

, Vol. 1, No. 1, Article . Publication date: November 2025.



4 Yuting Wu, Xin Lou, Pengfei Zhou, Rui Tan, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer

(a) CARLA freeway driving (b) Attack goal: side collision

Fig. 1. (a) Driving scenario in CARLA involving lane changes and overtaking. Green arrows indicate a safe
reference path. (b) The attacker aims to cause a side collision with an NPC vehicle; the dashed line indicates
the vehicle’s trajectory over the past 3 seconds.

2.2 Safety and Security Challenges of DRL in Autonomous Driving
DRL has been successfully applied to a range of AD tasks, including lane keeping [9], lane changes
[1], ramp merging [4], and intersection navigation [23]. However, despite ongoing efforts to
enhance the safety and reliability of DRL for AD [36], the lack of strict safety guarantees and
limited explainability remain significant barriers to its adoption in real-world systems. In addition
to these challenges, DRL-based systems are vulnerable to security risks arising from adversarial
attacks. Such attacks can be categorized as either white-box attacks, which require knowledge of
the target model’s internal details, or black-box attacks, which only require access to the executable
agent. Attacks can further be classified as state space attacks, which target the agent’s inputs by
altering input images at the pixel level [27] or manipulating the observed environment [18], and
action space attacks, which directly manipulate the agent’s outputs to drive the system into unsafe
states [26]. In this study, we design a black-box action space attacker that induces side collisions,
thereby revealing vulnerabilities in safety-critical AD scenarios.

3 System Model
In this section, we describe the analyzed modular, end-to-end DRL, and feature-fused DRL AD
agents along with the freeway driving scenario used for evaluation. All agents are implemented or
trained in CARLA 0.9.11 [15], an open-source simulator widely used in AD research.

3.1 Freeway Driving Scenario Setup
We construct a freeway driving scenario in CARLA Town 4 (Fig. 1(a)), involving lane changes and
overtaking. The ego vehicle, indicated by green vehicle color in Fig. 1(a), is tasked with overtaking
six non-player character (NPC) vehicles, while maintaining a target speed of 16 m/s. Each NPC
vehicle travels at 6m/s. The task must be completed within 250 simulation steps, each lasting 0.1
seconds. This scenario is chosen for its representative complexity, characterized by dense agent
interactions that present a valuable opportunity for attackers to induce significant disruption.

3.2 Modular Driving Agent
We use CARLA Autopilot as our modular driving agent. It employs a hierarchical pipeline that
generates feasible waypoints and tracks them in real time through low-level actuator control
for longitudinal (throttle/brake) and lateral (steering) movements. At each time step 𝑡 , for each
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control dimension 𝑥 ∈ {longitudinal, lateral}, the actuator command 𝑎𝑥𝑡 is refined by the corre-
sponding feedback controller, which output actuator adjustment Δ𝑎𝑥𝑡 for each control dimension
𝑥 ∈ {longitudinal, lateral}, as follows:

𝑎𝑥𝑡 = (1 − 𝜂𝑥 ) · Δ𝑎𝑥𝑡 + 𝜂𝑥 · 𝑎𝑥𝑡−1, Δ𝑎𝑥𝑡 ∈ [−1, 1], 𝜂𝑥 ∈ [0, 1], (1)

where 𝜂𝑥 is a retention factor that smooths control transitions between two time steps. In this paper,
we set this retention factor to be 0.7 for longitudinal and 0.9 for lateral control. Control semantics
follow the convention: a positive adjustment increases throttle or turns right, while a negative
adjustment applies braking or turns left. The lateral actuator command 𝑎lateral is normalized to the
range [-1, 1], which represents the system’s maximum steering capacity in radians.

A modular driving agent can be configured for different driving behaviors. For example, a highly
cautious agent may minimize collision risk by moving at low speed, maintaining a large safety
distance from nearby vehicles, and prohibiting lane changes or overtaking maneuvers. However,
such behavior can impede traffic flow. To better capture the norm of freeway driving with overtaking
behavior, we configure the driving agent to have the following settings: the reference speed is set to
16m/s; a following distance of 2 meters is set; and thus lane-changing decisions are triggered when
the distance to the vehicle ahead falls within 2 meters. The feedback controller parameters are
tuned to maintain responsiveness under these conditions. This configuration allows the agent to
execute decisive overtaking maneuvers while maintaining path-tracking stability.

3.3 DRL-based End-to-end Driving Agent
We implement an end-to-end AD agent using the soft actor-critic (SAC) algorithm [21, 29], an
advanced DRL method for continuous control. The driving policy is parameterized by a neural
network that maps camera inputs directly to actuator commands and is trained to optimize both
driving and safety objectives. Below, we detail its state space, action space, and reward function.

• State space: The input to the driving policy consists of front-view semantic segmentation
images fromCARLA’s camera sensor. To capture temporal dynamics, each input is constructed
by stacking three consecutive 300-degree panorama views (each of resolution 84 × 420) per
time step, similar to the setup in [16].

• Action space: Aligned with the modular agent, the driving policy outputs actuator ad-
justments Δ𝑎𝑥𝑡 ∈ [−1, 1] at each time step 𝑡 , where 𝑥 ∈ {longitudinal, lateral}. These are
combined with the previous actuator signal using the same weighted update rule as in Eq. (1)
to ensure smooth control transitions.

• Reward function: The driving policy is trained with a reward function that integrates path
tracking, speed regulation, and safety. To construct a reliable driving agent, we leverage the
global and local path-planning modules used by the modular driving agent (Section 3.2) to
generate a reference path and incorporate it into our reward scheme. This transition from
a coarse objective (e.g., staying on the road) to a fine-grained instruction (e.g., following
a legal waypoint trajectory) improves learning efficiency and encourages safer behaviors.
Specifically, the reward at time 𝑡 is defined as:

𝑅𝑣 = 𝛽𝑑𝑟𝑑 + 𝛽𝑠𝑟𝑠 + 𝛽𝑐𝑝𝑐 , (2)

where 𝑟𝑑 is the normalized dot product between the ego vehicle’s speed vector and the gen-
erated reference path, 𝑟𝑠 rewards maintaining the target speed, and 𝑝𝑐 penalizes for collision
and shoulder violations. Each term’s weight parameter 𝛽 defines its relative importance. This
reward function captures multiple driving goals simultaneously.
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3.4 DRL-based Feature-Fused Agent
We implement a feature-fused agent that combines the strengths of modular and end-to-end designs.
While it shares the same training paradigm as the end-to-end agent, it differs in its state space:
instead of raw images, it uses an 8-dimensional vector of driving features extracted from upstream
modules. These include: 1) the direction vector to the next driving waypoint, 2) the proportional,
integral, and derivative components of the angular deviation between the vehicle’s orientation
and the reference path, 3) the vehicle speed magnitude, and 4) the actuator signal (longitudinal
and lateral controls) from the last time step. This compact representation enables reduced network
structure and efficient training. Specifically, the training of this feature-fused agent converges in
100,000 steps, which is only one third of that required by the end-to-end agent.

3.5 Nominal Driving Performance
We evaluate driving performance over 30 testing epochs. All three agents (i.e., the modular, the
end-to-end, and the feature-fused agents) consistently complete the task without collisions and
follow the intended trajectory in the absence of attacks. Note that these driving agents may exhibit
degraded performance on different road types, as they have been narrowly trained or fine-tuned
for optimal performance for the freeway driving scenario. In this paper, we focus on the freeway
driving scenario and study their adversarial robustness in the presence of action space attacks.

4 Threat Model
This section presents the threat model used in our study, which includes the attacker’s objectives,
requirements, key challenges, and algorithm design. A broader discussion on real-world feasibility,
sim-to-real transferability, and applicability to other tasks is provided in Section 9.

4.1 Attacker’s Objectives, Capabilities, and Constraints
The attacker’s goal is to induce a side collision between the ego vehicle and a nearby NPC vehicle
(See Fig. 1(b)). We model a strategic attack that is triggered only during safety-critical moments,
specifically when the ego vehicle initiates lane changes or overtaking maneuvers. These moments
are formally defined in Section 4.3.4. We denote the control policy of the ego vehicle, i.e., the victim
of the attack, as 𝜋victim, which can represent any of the AD agents introduced in Section 3. We
denote the attacker’s policy as 𝜋attack, which perturbs the vehicle’s lateral control by injecting
bounded additive perturbations. The attacker operates under the following practical constraints:

• Bounded interference on lateral control: The attacker injects bounded, additive perturba-
tions 𝛿𝑡 into the lateral adjustments Δ𝑎lateral𝑡 computed by 𝜋victim, which results in a modified
lateral actuator command:

𝑎lateral𝑡

′
= (1 − 𝜂 lateral) · (Δ𝑎lateral𝑡 + 𝛿𝑡 ) + 𝜂 lateral · 𝑎lateral𝑡−1 , |𝛿𝑡 | ≤ 𝜀, (3)

where 𝜀 is the attack budget defined in Section 4.3.3. The attack can only bias, but not override,
the 𝜋victim’s raw output. The 𝑎lateral

𝑡−1 is the adversarially interfered actuator command if the
attacker performed injection in the previous time step 𝑡−1.

• Black-box access to the driving agent: The attacker has no access to 𝜋victim’s model
internals, such as architecture or parameters. However, the attacker can account for driving
behavior through interactions with a high-fidelity simulator (e.g., CARLA). We assume 𝜋victim
remains fixed after deployment, which allows the attacker to train its policy 𝜋attack offline
using 𝜋victim in the black-box setting.

• Sensing modality and deployability trade-off: The attacker acts based on sensor-derived
observations of the vehicle’s environment and dynamics. We consider two sensing modalities.
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The first uses a forward-facing camera to obtain a full semantic context of the driving scene,
which enables more accurate detection of traffic scenarios and safety-critical moments. The
second relies solely on IMU data to infer vehicle motion. While the camera-based attacker
benefits from richer observations, it is more likely to be noticed or constrained by mounting
and field-of-view requirements. In contrast, the IMU can be discreetly embedded within the
vehicle and is less likely to be noticed, which offers a more covert but less informed attack
pathway.

4.2 Attacker’s Challenges
In this section, we outline the challenges faced by the attacker given the constraints described in
Section 4.1. The attacker must simultaneously address two conflicting objectives: the attack must
remain stealthy, or subtle to avoid triggering anomaly detection, while being effective to overcome
the inherent resilience of the driving agent. We elaborate on each of the two challenges below.

4.2.1 Risk of attack detection. Physics-based attack detection approaches aim to identify anomalies
by monitoring deviations from physical invariants of vehicle dynamics [11, 17, 35]. These methods
construct offline reference models, using either analytical physics [11] or learned correlations
[35], to track consistency among various quantities measured from the vehicle. However, as
shown in [35], most physics-based attack detection approaches are vulnerable to stealthy attacks
with low magnitude. For instance, the detection strategy in [11] tracks squared prediction error
𝑠err = |𝑦 − 𝑦𝑝 |2, where 𝑦 and 𝑦𝑝 represent the observed and predicted signals. The accumulated
error err_sum(𝑡 + 1) = err_sum(𝑡) + 𝑠err (𝑡) is averaged over a sliding window of length 𝑡𝑤 , and
an anomaly is flagged when err_avg =

err_sum
𝑡𝑤

exceeds a threshold 𝜏 . The detector resets once 𝑡𝑤
exceeds the monitoring window, which is usually set based on the longest primitive operation (e.g.,
overtaking, turns), and 𝜏 is based on maximum prediction-induced errors. In state-space attacks,
the adversary injects additive perturbations into sensor outputs, such as GPS readings, following
𝑦′ = 𝑦 + 𝛿 . Stealth is preserved provided that the perturbation magnitude remains within the bound
|𝛿 | ≤

√︁
𝜏𝑡𝑤 − err_sum(𝑡).

To remain stealthy, the magnitude of the action space attack needs to meet a certain bound,
similar to the above analysis for state space attacks. However, the attacker typically lacks access to
detector internals (e.g., 𝑡𝑤 , 𝑇 ) or model structures. As such, it may not be able to compute stealth-
preserving bounds explicitly. Instead, in this paper, we evaluate attack performance under different
levels of perturbation budget 𝜀. This attack performance profiling provides a basic understanding
on the relationship between attack effect and perturbation budget. It is worth making two notes.
First, only under a subset of the considered perturbation budget settings, the attack can bypass the
physics-based attack detection. Second, even if the attack bypasses the attack detection, its effect
may still be suppressed by the control system’s feedback mechanisms, which we detail next.

4.2.2 Inherent resilience from vehicle’s control. The ego vehicle’s control policy 𝜋victim exhibits
inherent resilience to attacker 𝜋attack described in Section 4.1, which arises from three aspects:

• Active lateral control correction: Whether derived from classical feedback control or
learned policy, 𝜋victim adjusts vehicle’s lateral control based on real-time observations. These
ongoing corrections help suppress the impact of bounded adversarial perturbations.

• Preserved longitudinal control: Since the attacker only perturbs the lateral control, the
agent retains full authority over throttle and braking. This enables it to regulate speed and
avoid potential collisions, offering an orthogonal channel of compensation.

• Smoothed actuator control update: As defined in Eq. (3), the lateral actuator command is
a weighted blend of the current actuator adjustment and the previous actuator command.
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Fig. 2. Overview of the DRL-based action space attack.

This smoothing acts as a low-pass filter, damping sudden steering changes and suppressing
the effect of transient disturbances.

Together, they constitute a natural layer of defense that mitigates the impact of naive or untar-
geted interference. As shown in Section 5.2, our proposed context-aware attacker significantly
outperforms intuitive baselines by precisely exploiting timing and directional vulnerabilities.

4.3 Adversary Design
To address the challenges and constraints described in the previous sections, we formulate the
attack as a DRL problem. As shown in Fig. 2, the ego vehicle (green) operates under the victim
policy 𝜋victim, which governs the nominal driving process (blue loop) and is treated as a black box
by the attacker. The attacker observes the environment through its own sensing stream, either a
semantic camera or an IMU, and learns a policy 𝜋attack that injects bounded additive perturbations
into the ego vehicle’s lateral control. This process is illustrated by the red loop in Fig. 2. Since 𝜋victim
is fixed after deployment, the closed-loop system dynamics are stationary and can be modeled as
a Markov decision process. This enables the attacker to train 𝜋attack offline using standard DRL
algorithms. However, to achieve a stealthy yet effective adversarial policy, careful design of the
state space, action space, and reward function is needed, each of which is detailed next.

4.3.1 Adversarial state space. We consider two attacker variants distinguished by their sensor
modalities: one based on camera input and the other on IMU data.

• Camera-based attack uses a front-facing semantic segmentation camera mounted on the
roof of the ego vehicle for a wide field of view. The input state 𝑠 img consists of time-stacked
semantic maps that capture object locations and drivable areas. These inputs offer rich spatial
context for understanding surrounding traffic.

• IMU-based attack uses a triaxial IMU mounted in the center of the victim vehicle, where
the x-y-z axis readings record the speed changes of the vehicle as it advances, rolls, and yaws.
A trace of the IMU readings sampled at 20Hz over the last 3.2 seconds in the x-axis and the
z-axis is used as the state input and is denoted by 𝑠 imu. Y-axis readings are not used since
they provide limited information about steering characteristics. In cases where the IMU is
installed elsewhere, the triaxial sensor readings and orientation alignment may be required.
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Compared with camera-based input, IMU data provides limited spatial awareness and lacks envi-
ronmental context. This makes it harder for the attacker to identify safety-critical moments and
start the malicious perturbation process accordingly. This design represents a more constrained
and realism-oriented threat model.

4.3.2 Adversarial action space. The attacker perturbs the ego vehicle’s lateral control by injecting
bounded additive noise 𝛿𝑡 into the steering adjustment Δ𝑎lat𝑡 computed by the driving agent, as
specified in Eq. (3). These perturbations are constrained by a predefined attack budget 𝜀 and are
applied selectively during safety-critical moments where small control deviations are more likely
to induce collisions.

4.3.3 Attack budget. The attack budget 𝜀 defines the maximum allowable magnitude of each
perturbation applied to the ego vehicle’s lateral control, i.e., |𝛿 | < 𝜀. A larger 𝜀 allows the attacker
to impose greater influence on the vehicle’s trajectory, but increases the risk of detection. In the
worst-case scenario, we set 𝜀 = 1, which allows the attacker to apply perturbations up to the
same magnitude as the victim agent’s own lateral adjustment Δ𝑎lateral𝑡 . According to Eq. (1) and
the setting of 𝜂 lateral=0.9, the setting of 𝜖 = 1 allows the attacker to alter up to 10% of the lateral
actuator command 𝑎lateral𝑡 per time step. In more realistic cases, the attacker operates under tighter
budget constraints to avoid triggering the physics-based attack detectors. To systematically evaluate
the susceptibility of different AD designs, we vary 𝜀 across a range of settings, with the goal of
developing resilient autonomous driving policies that remain robust under levels of action space
attack.

4.3.4 Safety-critical moments and side collisions. During driving, lane changes and overtaking
maneuvers inherently increase collision risk due to the close spatial proximity and dynamic
interaction between the ego vehicle and nearby NPC vehicles. We refer to these short intervals as
safety-critical moments, during which even small steering deviations may lead to collisions. In what
follows, we quantitatively define the safety-critical moments. Let v𝑒𝑔𝑜 and v𝑛𝑝𝑐 denote the velocity
vectors of the ego and NPC vehicles, respectively, and v𝑒2𝑛 the relative position vector from the
ego vehicle to the NPC vehicle. We denote the unit vector of any non-zero vector x as x̂ = x/| |x| |.
Empirically, nominal (attack-free) lane changes and overtaking maneuvers occur within a 120°

cone centered on the NPC vehicle’s lateral axis. We represent this spatial relationship using the dot
product between the unit vectors v̂𝑒2𝑛 and v̂𝑛𝑝𝑐 , denoted by 𝜔 = v̂𝑒2𝑛 · v̂𝑛𝑝𝑐 . To aid interpretation,
we describe spatial relations using a clock-face convention centered on the NPC vehicle, where
the NPC’s heading direction defines the 12 o’clock axis, and its right-lateral direction defines the 3
o’clock axis. Under this convention:

• when the ego vehicle is positioned at the 5 o’clock or 7 o’clock direction relative to the NPC
vehicle after the overtaking process is initiated, 𝜔 = cos(𝜋/6);

• when the ego vehicle is aligned laterally with the NPC vehicle (3 o’clock or 9 o’clock), the
vectors are orthogonal and 𝜔 = 0;

• when the ego vehicle completes overtaking and moves to the 1 o’clock or 11 o’clock positions,
𝜔 = − cos(𝜋/6).

Therefore, the ego vehicle’s lane-change and overtaking maneuvers with respect to the NPC vehicle
can be characterized by

|𝜔 | = |v̂𝑒2𝑛 ·v̂𝑛𝑝𝑐 | ≤ cos(𝜋/6), (4)

during which a potential side collision is geometrically feasible. We identify the time duration
meeting Eq. (4) as safety-critical moments. A collision is labeled as a side collision if the contact
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Fig. 3. Schematic plot illustrating the evolution of an action-space attack. The timeline consists of a pre-attack
phase (non-critical), an attacking phase (safety-critical), and a post-attack phase (outcome). A successful
attack results in a side collision with another vehicle.

occurs during the safety-critical moment. In CARLA, collisions are detected using the built-in
CollisionSensor, which records the impact time, impulse, and identities of the colliding vehicles.

4.3.5 Adversarial reward shaping. The safety-critical moments defined above guide our adversarial
reward shaping. We introduce a binary indicator

𝐼 (𝜔) =
{
1, if |𝜔 | ≤ cos(𝜋/6),
0, otherwise,

(5)

which separates attack phases. As illustrated in Fig. 3, the attacker remains inactive during the
pre-attack phase, when the ego vehicle (green) begins overtaking and the safety-critical condition
is not met. Once the spatial alignment satisfies 𝐼 (𝜔) = 1, indicating lateral proximity to the target
NPC (yellow), the attacker enters the safety-critical phase and injects steering perturbations to
induce a side collision.
Accordingly, we design the adversarial reward 𝑅𝑎𝑑𝑣 to encourage the adversary to trigger a

side collision during safety-critical moments, and penalize unnecessary or excessive perturbations
elsewhere. It consists of three components:

• Collision reward𝐶 (𝜆): a reward assigned based on the final outcome of each driving episode.
A successful side collision yields a positive reward 𝑟col, an unexpected collision (e.g., rear-end
or road-edge collision) incurs a penalty −𝑟col, and no collision gives zero reward. Here, 𝜆 = 1,
𝜆 = -1 or 𝜆 = 0 represent the three cases, respectively.

• Directional reward 𝑟𝑒2𝑛: a continuous reward promoting geometric alignment between
the ego and target NPC during critical moments, defined as 𝑟𝑒2𝑛 = 𝑣𝑒2𝑛 · 𝑣𝑒𝑔𝑜 , where the unit
normalization operations isolate directionality from speed to stabilize learning.

• Attack maneuver penalty 𝑝𝑚 : a per-step cost discouraging excessive perturbation injection
during non-safety-critical moments, computed as 𝑝𝑚 (𝑡) = −|𝛿𝑡 |, where 𝛿𝑡 is the injected
additive steering perturbation at time 𝑡 .

Combining these terms with the binary indicator in Eq. (5), the adversarial reward for camera-
based attack is:

𝑅cam
𝑎𝑑𝑣

= 𝐶 (𝜆) + 𝐼 (𝜔)𝑟𝑒2𝑛 + (1 − 𝐼 (𝜔))𝑝𝑚 . (6)
For IMU-based attack, as spatial observability is limited, we adopt a teacher–student (imitation)

training paradigm. Let 𝛿 imu
𝑡 and 𝛿cam𝑡 denote the perturbations injected by the IMU-based and
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camera-based attacks at time step 𝑡 , respectively. During IMU-based attack training, we add an
imitation penalty, 𝑝imit (𝑡) = −(𝛿 imu

𝑡 −𝛿cam𝑡 )2, which encourages the IMU-based attacker (i.e., student)
to match the camera-based attacker’s (i.e., teacher) perturbation patterns. The reward for IMU-based
attack becomes:

𝑅imu
𝑎𝑑𝑣

= 𝐶 (𝜆) + 𝐼 (𝜔)𝑟𝑒2𝑛 + (1 − 𝐼 (𝜔))𝑝𝑚 + 𝑝imit . (7)

After training, the IMU-based attack can operate using only onboard motion signals. Section 5.1.2
evaluates this paradigm and reports the relative effectiveness of the camera and IMU variants.

4.3.6 Training parameters. We train the attack policy using SAC [21], which maximizes expected
reward while encouraging exploration via entropy regularization. The model architecture consists
of three components: a CNN-based encoder that processes raw sensor inputs (4 layers of Conv2D
for camera input and 3 layers of Conv1D for IMU), each followed by a ReLU activation, a policy
network that selects bounded steering perturbations, and a Twin Q-network [44] that evaluates
state-action pairs and guides the policy to take the best action maximizing long-term reward.
Training proceeds in an alternating loop of data collection and network updates. During data

collection, the attacker, embedded in the ego agent, perturbs its lateral control within the specified
attack budget, which influences overtaking or lane-changing behavior in the driving scenario
defined in Section 3.1. Resulting transitions, including state-action pairs, rewards, and post-action
states, are stored in a replay buffer of size 100,000. The networks are updated every 2,048 steps using
the Adam optimizer with a learning rate of 2 × 10−4 and with a reward discount factor of 0.96 that
emphasizes long-term rewards. Empirically, the camera-based attack converges after approximately
60,000 steps, while the IMU-based attacker, trained via imitation from the camera-based policy,
converges after around 110,000 steps.

5 Attack Impact Evaluation
This section evaluates the impact of attacks across sensor modalities and attack budgets, and
compares how different AD agents perform under attacks. Due to the absence of attacks targeting
this specific driving scenario, we use a set of intuitive attack strategies as comparison baselines.
We begin the evaluation using the end-to-end AD agent unless stated otherwise.

5.1 Effect of Sensor Modality and Attack Budget on Attack Effectiveness
5.1.1 Evaluation metrics. We report two metrics: 1) the Cumulative Nominal Reward (CNR), which
reflects the AD agent’s driving performance, and 2) the Cumulative Adversarial Reward (CAR),
computed as the average sum of 𝑅𝑎𝑑𝑣 over evaluation episodes, which reflects the success of the
attack. CNR measures how well the AD agent achieves its intended goals (e.g., path tracking,
collision avoidance), with lower values indicating greater disruption. CAR captures the attacker’s
objective: inducing a targeted side collision. A higher CAR corresponds to a more effective attack.
CAR is positive when an episode produces the targeted side collision and thus denotes a successful
attack; failure cases (collision-free episodes or unintended collisions) produce a negative CAR. To
simplify exposition, a nominal driving scenario is referred to as an attack case with zero budget
(𝜀 = 0).

5.1.2 Comparison of camera-based and IMU-based attacks. Fig. 4 shows that, under the maximum
attack budget (𝜀 = 1.00), the camera-based attack significantly degrades the AD agent’s performance,
which reduces the CNR by approximately 84% (from 345.76 to 55.28). It also consistently achieves
CAR exceeding 100 with low variance, indicating that side collisions reliably occur upon encounter-
ing the first NPC vehicle. In comparison, the IMU-based attack achieves a slightly lower CAR with
greater variance but still effectively launches the targeted attack. This confirms that the IMU-based
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(a) Nominal performance (b) Adversarial performance

Fig. 4. Box plots of average cumulative rewards over 30 testing episodes under varying attack budgets. (a)
The victim agent’s driving performance is measured by cumulative nominal reward (CNR). (b) The attack
performance is measured by cumulative adversarial reward (CAR).

attacker effectively learns from the camera-based policy and demonstrates the feasibility of using
low-dimensional IMU signals for action space attacks.

5.1.3 Impact of attack budget. Fig. 4 also illustrates how attack effectiveness varies with the attack
budget. As expected, both camera-based and IMU-based attacks exhibit increasing effectiveness
as the attack budget increases. Across all budget levels, the camera-based attack consistently
outperforms the IMU-based attackwith a higher average CAR and a lower variance. This highlights a
strong correlation between attack effectiveness and the informativeness of the attacker’s observation
modality. The visual modality provides rich spatial context, allowing the camera-based attack
to more easily identify safety-critical moments and induce the vehicle toward side collisions.
In contrast, the IMU-based attack, relying on indirect motion cues, faces greater difficulties in
estimating relative position and achieving the intended attack effect. Notably, both CNR and CAR
exhibit a sharp shift as the attack budget decreases from 𝜀 = 0.75 to 𝜀 = 0.25. This suggests the
presence of a tolerance threshold in the driving agent’s action space: once the injected perturbation
exceeds this threshold (e.g., 𝜀 = 0.5), the vehicle’s driving behavior is significantly disrupted.

5.2 Comparative Evaluation with Baseline Attackers
5.2.1 Baseline attack strategies and their rationale. To assess the effectiveness of our learned
adversarial policy, we conduct a controlled comparison against several intuitive baseline attack
strategies [47], outlined in Table 1. Each baseline isolates specific aspects of attacker design, such
as timing, magnitude, and directional awareness:

• Rand-RandStep: This baseline represents an untargeted, opportunistic attacker that lacks
both contextual awareness and directional consistency. It injects random-magnitude per-
turbations within a 2.5-second window randomly selected from each episode, independent
of the vehicle’s state. At every step during the window, perturbations are sampled from a
uniform distributionU[−𝜀, 𝜀]. The 2.5-second duration reflects the average human driver
reaction time [38, 48].

• Crit-RandStep: It represents a plausible but naive attacker that knows when to intervene
(e.g., during safety-critical moments) but lacks knowledge of optimal direction or magnitude.
It simulates untargeted disturbances, such as actuator noise, where perturbations are sampled
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Table 1. Overview of attack strategies.

Strategy Timing Magnitude Directionality
Rand-RandStep Random window1 Random2 Random (left/right)
Crit-RandStep Critical moment Random3 Random (left/right)
Crit-UniRand Critical moment Uni-Random4 Unidirectional (based on targeted vehicle side)
Crit-UniFix Critical moment Uni-Fixed4 Unidirectional (based on targeted vehicle side)
Ours (camera-based) Critical moment Adaptive Strategic

1 Random window: a 2.5-second interval randomly selected within each episode. 2 Random: per-step sampling from U[−𝜀, 𝜀 ].
3 Uni-Random: per-step sampling from U[0, 𝜀 ] or U[−𝜀, 0]. 4 Uni-Fixed: fixed value per window from U[0, 𝜀 ] or U[−𝜀, 0].

independently at each step from a uniform distribution 𝛿𝑡 ∼ U[−𝜀, 𝜀]. This baseline serves
as a lower bound for timing-sensitive vulnerability.

• Crit-UniRand: It simulates a partially informed attacker that persistently steers toward
the NPC vehicle during safety-critical moments. If the NPC is on the left, perturbations are
sampled from U[−𝜀, 0]. If on the right, from U[0, 𝜀]. It reflects directional intent without
precise control over magnitude.

• Crit-UniFix: It models a persistent attacker that injects a fixed, one-sided perturbation based
on NPC position. It uses the same sampling logic from UniRand for a constant perturbation
throughout the attack period. This reflects coarse directional interference without adaptive
control.

5.2.2 Evaluation metrics. We use the following metrics in this section. 1) Attack Success Rate (ASR).
We define an attack attempt as the time interval of safety-critical moments during which the attack
is active. The ASR is computed as the percentage of attack attempts that result in a targeted side
collision. 2) Time to Collision (TTC). This metric measures the duration between the activation of
the attack and the occurrence of the resulting collision. And 3) Deviation from Trajectory (DFT). It
quantifies the attack impact by the vehicle’s deviation from the reference path, which is computed
as the root mean square of one minus the normalized dot product between the vehicle’s velocity
vector and the planned path vector, where a dot product of one indicates perfect alignment. In
this evaluation, we report DFT for each successful attack attempt to capture the degree of control
disruption imposed by the attack. For each attack strategy, we collect 120 independent attack
attempts.

5.2.3 Observations. Based on the results for the modular driving agent in Table 2, we have the
following observations:

• Efficiency of learned attacker. Our method achieves a 100% ASR, while also inducing the
shortest TTC and lowest DFT. The shorter TTC limits the human driver’s ability to react,
while the small trajectory deviation indicates the attacker can induce collisions with minimal
observable path change. Together, these results suggest that the attacker can achieve its
objective more effectively through subtle interventions.

• Impact of temporal and directional awareness. Attack effectiveness improves with
increased contextual awareness. Regarding temporal awareness, targeting perturbations to
align with safety-critical moments (i.e., Crit-RandStep) significantly outperforms untargeted
attacks launched at random times (i.e., Rand-RandStep). Regarding directional awareness,
steering perturbations toward the side of the targeted vehicle (i.e., Crit-UniRand) rather
than in random directions further enhances attack success, highlighting the importance of
exploiting situational context.
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Table 2. Attack performance with the same attack budget (𝜀 = 1).

Attack Strategy Attack Success Rate
Time to Collision (s)

Avg. ± Std.
Deviation from Trajectory

Avg. ± Std.
No Attack 0 % N/A N/A
Rand-RandStep 3.70 % 1.84 ± 0.47 0.04 ± 0.013
Crit-RandStep 6.03 % 1.28 ± 0.27 0.26 ± 0.388
Crit-UniRand 13.44 % 0.98 ± 0.20 0.12 ± 0.203
Crit-UniFix 28.74 % 0.93 ± 0.19 0.09 ± 0.185
Ours (camera-based) 100 % 0.78 ± 0.07 0.05 ± 0.024

• Benefit of perturbation consistency. Fixed-magnitude, unidirectional perturbations (i.e.,
Crit-UniFix) yield substantially higher success rates than their randomly sampled counterparts
(i.e., Crit-UniRand). This indicates that maintaining temporal and directional consistency,
even without adaptivity, can more effectively destabilize the vehicle’s control policy.

These findings collectively demonstrate the effectiveness of our context-aware attack. Notably,
we observe similar trends across other agent architectures, including the end-to-end and feature-
fused DRL agents, where contextually timed and directionally consistent attacks also outperform
naive baselines. Additionally, TTC varies between the agents. The average TTC is 0.78 seconds
(minimum 0.7 seconds) for the modular driving agent, 0.87 seconds (minimum 0.3 seconds) for
the end-to-end driving agent, and 1.09 seconds (minimum 0.5 seconds) for the feature-fused DRL
agent. These times represent a reduction of 36.8%, 30.4%, and 12.8%, respectively, compared with
the best human driver reaction time (minimum 1.25 seconds) under complex real-world conditions
[48]. In the following section, we further analyze the attack impact across different AD designs and
highlight the distinct behavioral characteristics that inform the design of our proposed defense.

5.3 Attack Performance Across Different AD Designs
To investigate how control-level disruptions vary across different AD system designs, we measure
their adversarial impact on path tracking, a core function essential to maintaining stable and safe
driving behavior. For each attack budget, ranging from 𝜀 = 0 to 1.2 in increments of 0.1, we run 10
driving episodes per AD agent.

5.3.1 Evaluation metrics. We use the following two metrics. 1) The attack effort, which defines
the time-average magnitude of perturbation applied by the attacker during each attack attempt.
Although higher attack budgets allow larger perturbations, the attacker may not always exploit the
full budget during an attack attempt. The Attack Effort thus reflects the actual control exerted by
the attacker during each attempt. And 2) Deviation from Trajectory (DFT), which has been defined in
Section 5.2.2. We report the DFT for every attack attempt, regardless of whether the attack succeeds
in this evaluation.

5.3.2 Resilience comparison. Fig. 5 illustrates how different AD agents respond to increasing attack
effort, showing DFT (y-axis) as a function of attack effort (x-axis). Each point represents one attack
attempt, with red triangles denoting successful attacks and black dots indicating unsuccessful
attempts. As expected, an attack tolerance threshold is evident across all agents, where successful
attacks begin to dominate once the attack effort exceeds a certain level. In Fig. 5(a), the modular
agent demonstrates superior performance in maintaining small deviations when attack effort is
below 0.4 but becomes increasingly vulnerable beyond that. In Fig. 5(b), the end-to-end agent shows
higher derivation even under zero or low-effort attacks, though higher average effort is still required
to induce consistent deviations. Finally, the feature-fused DRL agent in Fig. 5(c) demonstrates the
strongest resilience with minimal derivations, with most successful attacks appearing only when
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(a) Modular agent (b) End-to-end DRL agent (c) Feature-fused DRL agent

Fig. 5. Trajectory deviation as a function of attack effort across different AD architectures. Each point
represents an evaluation episode, with red triangles indicating successful attacks (i.e., those achieving the
adversarial goal) and black dots denoting unsuccessful ones. In (a), the modular agent exhibits growing
deviation and vulnerability as attack effort increases, with most successful attacks occurring beyond an
effort level of 0.5. In (b), the end-to-end DRL agent shows high susceptibility even under low-effort attacks,
with successful attacks becoming dominant once the effort exceeds 0.5. In (c), the feature-fused DRL agent
demonstrates stronger resilience at low effort levels. Most successful attacks appear after an effort level of 0.6,
though a few low-effort failures still occur.

effort exceeds 0.7. However, there is still room for improvement, as some crashes are observed even
under low-effort attacks.

5.3.3 Traits of AD agents against action space attack. Building on the above results, we summarize
and justify key behavioral traits of the three AD agents against action space attacks:

• Modular agent:We attribute the superior resilience of the modular driving agent against low-
effort attacks to its feedback controller designed for precise path tracking, which adjusts the
actuator values to minimize observed errors in run time. However, its performance degrades
under high-effort attacks that overwhelm the controller’s corrective capacity, leading to
either collisions or unstable steering oscillations.

• End-to-end DRL agent: The end-to-end agent shows degraded tracking performance when
the attack effort is zero/low, likely due to the absence of explicit state inputs for driving
reference (e.g., waypoints). However, since this agent is trained through DRL via trial and
error, it has likely encountered and been penalized for anomalous behaviors, such as unsafe
proximity to other vehicles that result in collisions. Such exposure may improve its resilience
against moderate attacks, as the agent learns to avoid such behaviors. Yet, under substantial
attack efforts, the agent ultimately fails to recover, resulting in collisions.

• Feature-fused DRL agent: The feature-fused agent, which uses the same reward function
as the end-to-end driving agent but incorporates precise error information in its state input,
demonstrates exceptional path-tracking abilities under low attack effort, as shown in Fig. 5(c).
Compared with the modular agent, the feature-fused agent can process multiple layers of ab-
stract information that traditional controllers cannot handle. This enriched state information
leads to better driving performance under high attack efforts, although its performance still
declines once the attack budget exceeds a certain threshold.

These findings highlight the distinct characteristics of various AD agents when subjected to
action space attacks and the need for effective defense mechanisms. Enhancing a modular agent’s
performance typically relies on control strategies such as parameter fine-tuning or advanced tech-
niques like Model Predictive Control [22]. However, these approaches are less effective against
actuator attacks. Increasing the driving agent’s sampling rate has also been proposed as a counter-
measure [31]. However, this strategy becomes ineffective if the attacker can match the increased
rate. Therefore, we next explore enhancing the resilience of AD agents through a learning-based
approach, thereby extending their capability to handle extreme attack scenarios.
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Fig. 6. Box plot of the nominal driving rewards for the original and enhanced end-to-end driving agents,
showing the distribution of rewards for each agent. The original agent (𝜋ori) shows a significant drop in
rewards as the attack budget increases, while enhanced agents (𝜋adv and 𝜋pnn) demonstrate varying degrees
of resilience, with 𝜋pnn, 𝜎 = 0.4 maintaining higher rewards in both no-attack and strong-attack scenarios.

6 Preliminary Defense Strategies by Adversarial Training
This section explores potential defense strategies for end-to-end AD agents. Unlike modular designs,
end-to-end models employ a policy network that can be retrained under adversarial conditions
through adversarial training, a technique shown to improve robustness against action-space attacks
in prior work [26, 41]. In the following, we first implement adversarial training through fine-tuning
and evaluate its advantages and limitations. We then investigate PNN-based adversarial training as
a potential advanced solution for overcoming the observed limitations in the fine-tuning approach.

6.1 Adversarial Training via Fine-Tuning
Due to the superior effectiveness of the camera-based attack, we adopt it as the adversary for
adversarial training. To improve the generalizability of the adversarially trained driving agent, we
randomly initiate the training episode with different attack budgets ranging from 0 to 1 with a
granularity of 0.1. Moreover, we control the ratio of selecting zero attack budget (i.e., no attack)
to prevent overfitting for adversarial cases. We denote the original end-to-end driving agent as
𝜋ori, and the adversarially trained agent as 𝜋adv,𝜌 , where 𝜌 represents the ratio of nominal driving
cases included during training on a scale of one. In our experiments, 𝜌 is set to 1/11 and 1/2,
corresponding to two variants: 1) each of the 11 attack budgets has an equal probability of being
selected during training, and 2) the nominal case constitutes half of all the training cases. The
Cumulative Nominal Reward (CNR) is used to evaluate nominal driving performance.
Fig. 6 shows that adversarially trained agents (𝜋adv,𝜌 ) improve resilience across attack budgets,

as reflected by higher CNR under camera-based attacks. However, this gain comes with a trade-off:
both variants show degraded nominal performance at low or zero attack budgets (e.g., 𝜀 = 0.25 or
0), revealing a loss in baseline driving quality due to adversarial overfitting. This trade-off is further
illustrated in Fig. 5(b) and Fig. 7(a), where 𝜋adv,𝜌=1/11 shows improved robustness, evidenced by a
rightward shift in the attack effort threshold for consistent success, but exhibits large trajectory
deviations under small or no attack. This is likely due to catastrophic forgetting, where nominal
performance deteriorates during adversarial training. In contrast, Fig. 7(b) shows that 𝜋adv,𝜌=1/2
better maintains nominal behavior, with fewer outliers and lower average deviation, though at the
cost of reduced robustness to stronger attacks.
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(a) 𝜋adv,𝜌=1/11 (b) 𝜋adv,𝜌=1/2 (c) 𝜋pnn,𝜎=0.4 (d) 𝜋pnn,𝜎=0.2

Fig. 7. Evaluation of robustness of enhanced driving agents in terms of deviation from trajectory. The gray
dashed line indicates the average trajectory deviation across all evaluation episodes. Adversarially fine-agents
(𝜋adv) in (a) and (b) show increasing deviations as attack effort rises, with 𝜌 = 1/2 being more vulnerable
in cases with low and no attacks. In contrast, PNN-enhanced agents (𝜋pnn) in (c) and (d) display better
robustness, with 𝜎 = 0.4maintaining minimal deviations even at higher attack efforts. Overall, PNN-enhanced
agents demonstrate greater resilience than fine-tuned agents across the range of attack efforts.

Fig. 8. Comparison of attack success rates between the nominal driving agent and four enhanced agents
across different attack effort windows. Compared with adversarial training via fine-tuning, PNN-enhanced
agents maintain a zero attack success rate under low-effort windows (0.0–0.4) and generally exhibit greater
robustness. This indicates their effectiveness in mitigating the overfitting issues in the fine-tuning approach.

6.2 Adversarial training with Progressive Neural Networks
As discussed, adversarial training by fine-tuning improves robustness against action space attacks
but often degrades nominal driving performance. Balancing the proportion of attack cases during
training is nontrivial and lacks principled guidance. To address this, we adopt Progressive Neural
Networks (PNN) [37], which transfers previously learned features of the original policy network (i.e.,
a column) through lateral connections to a new column, without changing the original weights. This
setup allows the new column to learn under attack conditions without forgetting prior capabilities.
A runtime switch selects between the original driving policy and the adversarially trained column.
We denote the resulting agent as 𝜋pnn,𝜎 , where 𝜎 is the threshold of the attack budget that is used by
the switch. Specifically, the switch activates the original driving policy if 𝜀 ≤ 𝜎 , and the adversarially
trained column otherwise. This design is inspired by the Simplex architecture [40], which assumes
access to a reliable runtime indicator for determining which policy to trust. While we use known
attack budgets for analysis (with 𝜎 set to 0.2 and 0.4), in practice, the switch could instead rely on
proxy signals such as attack detection confidence, perturbation magnitude, or inferred attack type.

Fig. 6 presents the performance of PNN-enhanced agents. Compared with the agents enhanced
by adversarial training via fine-tuning, the PNN method successfully addresses the forgetting
problem when the attack budget is small. At higher attack budgets, the two PNN-enhanced agents
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perform similarly, as they share the same model structure and weights. Fig. 7(c) and Fig. 7(d) show
the deviation from trajectory versus attack effort for the two PNN-enhanced driving agents. For
the 𝜋pnn,𝜎=0.4, it achieves an average trajectory deviation of 0.02 for all attack efforts. No attacks
are successful when the attack effort is smaller than 0.4. For the 𝜋pnn,𝜎=0.2, it achieves an average
trajectory deviation of 0.017 for all attack efforts. No attacks are successful until the attack effort
exceeds 0.6. These results show that the PNN method enhances the resistance of the driving policy
to action space attacks without degrading its nominal performance.

6.3 Fine-Tuning vs. PNN
We compare the two enhancement methods under varying conditions. The evaluation metric used
is the ASR. Fig. 8 presents the trend of ASR across different levels of attack effort windows. The
two fine-tuned agents exhibit high ASR even under minimal attack effort, whereas PNN-enhanced
agents consistently achieve lower ASR across all scenarios. These results highlight the superior
robustness of the PNN approach in resisting action space attacks while preserving normal driving
performance. However, its reliance on a switch mechanism that requires precise knowledge of the
attack presents a major limitation for real-world deployment. This underscores the need for a more
practical and adaptive defense strategy.

7 Resilient Modular Driving Agent with Learning-based Path Correction System
Based on our findings and the unique vulnerabilities of various AD designs, we propose a solution
that combines a modular driving agent with a learning-based Path Correction System (PCS). It
leverages the strengths of both the modular and feature-fused agent paradigms to advance the
resilience of path tracking. Below, we first distill key insights from our earlier findings and then
introduce the design and evaluation of PCS.

7.1 Key Insights from Observations
Section 5.3.3 demonstrates that the modular agent’s feedback controllers provide strong resilience
to low-effort attacks, yet lack the adaptability needed to cope with high-intensity perturbations. In
contrast, the end-to-end agent, trained via DRL, exhibits greater robustness to high-effort attacks due
to its exposure to diverse scenarios during training, yet suffers from poor path-tracking precision
in benign conditions. The feature-fused agent achieves high accuracy under normal conditions
by leveraging structured features, but may still face vulnerabilities under attack. Section 6 further
reveals that adversarial training improves robustness for the end-to-end agent, but often degrades
nominal driving performance due to overfitting to adversarial conditions, a limitation likely shared
by the feature-fused agent.
These findings highlight the need for a resilient AD agent that addresses the trade-offs of

existing designs. Motivated by this, we develop a new architecture that integrates the strengths of
modular and feature-fused paradigms, while adopting a Simplex-inspired control scheme from the
PNN framework to enhance nominal driving performance. Our design objectives are threefold: 1)
maintain optimal performance in nominal scenarios, 2) exhibit adaptability via additional training
under extreme conditions, and 3) support scalable attack detection for practical deployment.

7.2 Design of PCS
Fig. 9 illustrates the enhanced AD architecture with PCS. It preserves the modular agent’s ability
to maintain nominal performance and handle low-level disturbances. Meanwhile, it runs as a
supplementary loop in parallel at all times or only when an attack is detected, to maintain the
tracking performance in the presence of attacks. In this section, we present the evaluation where
the supplementary loop runs at all times.
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Fig. 9. Illustration of learning-based PCS. The supplementary loop is continuously active and mitigates
tracking errors under the setting described in Section 7. In Section 8, a kinematic-model-based attack detector
(labeled ‘D’) is added to improve nominal driving performance. It outputs one if the detector identifies an
adversarial situation and zero otherwise. The multiplication between the supplementary loop’s output and
the attack detector’s output represents the switching mechanism that selects whether to deactivate PCS.

The supplementary loop of PCS is designed to mitigate path tracking errors/attack impacts
by bolstering the valid control signal to prevail in the contention for steering control. We use
adversarial training with DRL to train the supplementary loop. The adversarial training incorporates
a camera-based attack with a fixed attack budget of one, representing the strongest attack scenario
where the attacker has control power equal to that of the driving system. There are numerous
choices for state input and reward design of this supplementary loop, which affect the control
performance, algorithm convergence speed, and computational cost/delay at run time. To improve
the PCS’s generalizability and reduce its complexity, we utilize distilled key features obtained
from preceding modules as input. Compared with image input used in the end-to-end solutions,
this method uses a lighter deep model to process precise vehicle state information. Moreover, it
facilitates better adaptability across various tasks and does not need to consider common domain
generalization in high-dimensional image inputs.
Specifically, the state transition of the supplementary loop at time step 𝑡 is denoted by <

𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 >, where 𝑠𝑡 ∈ R7 and 𝑠𝑡+1 ∈ R7 are two consecutive states, 𝑎𝑡 ∈ R1 is the sup-
plementary steering signal produced, and 𝑟𝑡 is the immediate reward associated with the state
transition. As illustrated in Fig. 9, the final lateral actuator command is the sum of 𝑎𝑡 and the signal
from the modular driving agent. The state 𝑠𝑡 is defined as:

𝑠𝑡 = [𝑒𝑃𝑡−1, 𝑒𝐼𝑡−1, 𝑒𝐷𝑡−1, 𝑣𝑡−1, Δ𝑎lateral𝑡−1 , 𝑎
longitudinal
𝑡−1 , 𝑎lateral𝑡−1 ], (8)

where the first three terms are the proportional, integral, and differential components of tracking
error, i.e., the degree of deviation (in radians) of the vehicle velocity vector from the planned path.
The remaining terms are the vehicle’s speed, feedback controller output, and the actuator output
(longitudinal and lateral control) at the last time step, respectively. This one-step delay formulation
reflects the inherent sensing and actuation latency of real-world AD systems.

To minimize the path tracking error, we design the following reward function:

𝑟𝑡 =

{
𝑏 − 𝑎 · 𝑒𝑡 2, if 𝑒𝑡 2 < 𝑏

𝑎
,

0, otherwise,
(9)
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(a) Modular agent without PCS (b) Modular agent with PCS

Fig. 10. Comparison of attack resilience betweenmodular agents with andwithout PCS. The average trajectory
deviation decreases significantly from 0.032 to 0.007 when combined with PCS, demonstrating a performance
improvement of approximately 78%.

where 𝑒𝑡 2 is the squared driving error collected from the post-action driving state, determined
by the angle difference between the ego vehicle’s speed vector and the generated reference path.
The positive constants 𝑎 and 𝑏 are used to define the upper limit for squared driving errors as 𝑏

𝑎
.

This reward function penalizes large errors and provides a positive reward for minimizing errors.
Thus, it encourages the driving model to strive for accurate trajectory following. Moreover, the
model’s weight updates are only allowed when the squared error falls within the boundary defined
in Eq. (9), i.e., 𝑒2𝑡 < 𝑏

𝑎
. We experimentally set 𝑏 = 0.5 and 𝑎 = 1.5 in training.

7.3 Evaluating PCS-Enhanced Modular Driving Agents
7.3.1 Resilience to action space attacks. Fig. 10(a) and Fig. 10(b) provide a visual comparison of the
attack resilience betweenmodular driving agents with andwithout the PCS. As depicted in Fig. 10(b),
the modular agent equipped with PCS exhibits significantly enhanced resilience, evidenced by a
substantially lower RMS tracking error across all levels of attack effort. Additionally, it exhibits
comparable tracking performance to modular agents under low attack effort. Furthermore, when
compared with the results shown in Fig. 7, the PCS-equipped agent outperforms adversarially
trained end-to-end agents: it achieves significantly fewer instances of successful attack and it
does not suffer the overfitting problem. Generally, the modular driving agent with PCS upholds
satisfactory driving performance across various attack effort settings. It demonstrates robustness
against adversarial scenarios while retaining nominal driving behaviors.

In this evaluation, even though the supplementary loop remains active, its effect on path tracking
is negligible in the absence of attacks (i.e., when the attack effort is zero). This behavior can
be understood from the perspective of DRL training. In nominal driving scenarios, the modular
agent generates correct control signals that satisfy the reward function. As the training objectives
are already met, the supplementary loop does not produce unnecessary control signals, thereby
preserving the PCS’s nominal performance. In contrast, during adversarial driving scenarios where
the traditional controller is insufficiently robust against action space attacks, the supplementary
loop adapts to minimize path-tracking errors by working alongside the feedback controller. This
enables the system to develop resilience under attack conditions. The above results show that PCS
is an effective defense strategy against action space attacks for modular driving agents. Moreover,
findings suggest that PCS does not rely on an accurate attack detection mechanism, which could
potentially simplify its implementation.
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Table 3. PCS performance under simulated hardware imperfections (HIP) against a camera-based action
space attacker (𝜀 = 1). In this table, each Deviation from Trajectory is calculated over the entire episode.

HIP Type Severity/Param
Deviation from Trajectory

Avg. ± Std. Attack Success Rate (%)

Ideal PCS – 0.0121 ± 0.0113 0.0
Sensor Noise 𝛼 = 0.1 0.0123 ± 0.0108 0.0
Sensor Noise 𝛼 = 0.2 0.0153 ± 0.0139 1.8
Sensor Noise 𝛼 = 0.3 0.0185 ± 0.0161 7.8
State Dropout 𝑝drop = 0.05 0.0170 ± 0.0178 8.8
State Dropout 𝑝drop = 0.1 0.0218 ± 0.0214 17.4
Action Delay 𝑝delay = 0.05 0.0134 ± 0.0120 3.6
Action Delay 𝑝delay = 0.1 0.0320 ± 0.0998 4.1

7.3.2 Runtime efficiency of PCS. The PCS module adopts a lightweight actor-critic architecture for
fast inference and minimal resource consumption. It consists of a two-layer fully connected encoder
that maps a 7-dimensional observation vector (Eq. (8)) to latent features, followed by a compact
MLP-based decoder that outputs a bounded lateral control command. Both components use ReLU
activations and maintain minimal parameter count. To quantify inference efficiency, we measure
the computational cost of PCS in terms of floating point operations (FLOPs), a hardware-agnostic
metric of complexity. For PCS, each forward pass requires only 2,552 FLOPs, 368 for the encoder and
2,184 for the decoder. Taking the Jetson AGX Orin as a representative edge platform for autonomous
vehicles, with a peak throughput of 275 Tera Operations per Second (TOPS), this translates to
microsecond-level overhead. Such minimal cost confirms that PCS meets the real-time requirements
of safety-critical autonomous driving systems.

7.3.3 Robustness to simulated hardware imperfections. Simulators like CARLA typically assume
idealized hardware conditions. In contrast, real-world AD systems must remain reliable despite
hardware imperfections. To assess the robustness of PCS under more realistic conditions, we
simulate three classes of hardware-induced disturbances in the control loop: 1) Sensor noise:
Gaussian noise is added to each state variable 𝑠𝑖 in Eq. (8) with standard deviation 𝜎𝑖 = 𝛼 |𝑠𝑖 |, where
𝑠𝑖 denotes the 𝑖-th element of the state vector and 𝛼 is a tunable parameter that controls the relative
noise level, 2) State Dropout: With a probability 𝑝drop, individual state dimensions are masked
to zero, emulating temporary sensor or communication failures, and 3) Actuator Delay: At each
control step, with probability 𝑝delay, the PCS output is delayed by one step, using the previous
output instead to simulate actuation lag.
Table 3 shows that PCS maintains robustness under mild to moderate sensor noise (𝛼 ≤ 0.2),

with minimal trajectory deviation and near-zero attack success. However, larger noise (𝛼 = 0.3)
reduces both control accuracy and robustness. State dropout has a more pronounced effect: small
dropout probabilities already increase both tracking error and attack success. This sensitivity stems
from the compact and information-dense nature of the state representation, where each variable
carries critical control information, unlike image inputs that offer spatial redundancy. For actuator
delay, it is notable that increasing 𝑝delay from 0.05 to 0.1 leads to higher tracking error, yet the attack
success rate remains relatively stable (from 3.6% to 4.1%). This suggests that PCS can continuously
compensate for delayed actuation and recover over time, thereby maintaining resilience against the
attacker. These results indicate that while PCS can tolerate perturbed or delayed inputs, reliable
deployment in real-world settings requires complete access to critical state variables.
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(a) Impact of PCS on actuator (b) Kinematic model

Fig. 11. (a) Actuator vibrations are higher with PCS activated (orange bars) than when it is off (blue bars). (b)
The kinematic model of a rear-wheel-drive vehicle.

8 Attack Detector in PCS
While PCS achieves minimal tracking error in the absence of attacks, continuous activation of
its supplementary loop can introduce unnecessary oscillations, potentially degrading passenger
comfort (see Fig. 11(a)). To address this, we incorporate an attack detector for PCS’s activation.

8.1 Design of the Attack Detector
We propose a kinematic-model-based detector that triggers an alarm when the estimated vehicle
posture deviates significantly from sensor measurements. Since moving vehicles exhibit highly
nonlinear and time-varying dynamics, accurate posture estimation requires models that can capture
such complexity, typically formulated in discrete time for computational tractability. For a rear-
wheel-drive vehicle, the state representation illustrated in Fig. 11(b) captures lateral and longitudinal
motion along with yaw dynamics. The vehicle state is represented by its location and orientation
(𝑥 , 𝑦, 𝜃 ). The vehicle’s control variables include longitudinal velocity and steering angle (𝑣 , 𝜙). The
kinematic model without noises and attacks is described as [19]:

𝑥𝑡+1 = 𝑥𝑡 +𝑇 (𝑣𝑡 ) cos𝜃𝑡 , (10)
𝑦𝑡+1 = 𝑦𝑡 +𝑇 (𝑣𝑡 ) sin𝜃𝑡 , (11)

𝜃𝑡+1 = 𝜃𝑡 +𝑇 (
𝑣𝑡

𝐿
) tan𝜙𝑡 , (12)

Δ𝜃𝑡+1 = 𝜃𝑡+1 − 𝜃𝑡 , (13)

where 𝐿 represents the wheelbase and 𝑇 represents the control iteration interval. We set 𝐿 = 3m
and 𝑇 = 0.1 s for our simulation. This provides a real-time estimate of vehicle state when the
measurement variables are not corrupted.

We use the Cumulative Sum Error (CSE) as the attack detection metric. CSE at a given timestamp 𝑡
is calculated as follows: CSE(𝑡) = ∑𝑡

𝑖=𝑡−𝑘 |Δ𝜃𝑖 − Δ𝜃𝑖 |. It is the accumulation of absolute discrepancy
between the predicted heading difference Δ𝜃 by Eq. (13), and the measured angle deviation Δ𝜃
by IMU over a time window 𝑘 . If the CSE exceeds a pre-defined threshold 𝐻 , an alarm triggers
the supplementary PCS loop, as illustrated by Fig. 9. Fig. 12 shows the tracking performance and
illustrates CSE by the call-out figure with 𝑘 = 3. Experimental results show that the kinematic model
closely follows the vehicle’s heading in real time. However, during rapid maneuvers, prediction
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Fig. 12. The blue solid line corresponds to the ground truth, and the yellow dashed line represents the
predicted orientation difference. In the call-out window, the orange bar displays the Cumulative Sum Error
(CSE) with 𝑘 = 3, while the red dashed line represents the mean of the CSE over the entire drive.

Table 4. Performance of the CSE detector under various 𝑐 parameter settings.

Detector Oracle c=0.3 c=1.0 c=2.0 c=3.0

True Positive Rate 1.00 0.96 0.94 0.86 0.84
False Alarm Rate 0.00 0.77 0.42 0.25 0.20
Mean Detect Delay 1 2 3.33 5.2 5.5
Max Detect Delay 1 2 5 8 8
Mean Absolute Jerk 5.96 8.77 7.27 8.04 -

errors can increase, making it difficult to distinguish natural prediction inaccuracies from attack-
induced deviations. Therefore, setting the detection threshold 𝐻 is critical to balancing false alarms
and true positives, as further discussed in the next section.

8.2 Detection Threshold and Comfort Trade-off
We define the detection threshold as 𝐻 = 𝑐 × mean(CSE). Lower values of 𝑐 increase detection
sensitivity but may lead to more false alarms, while higher values reduce false positives at the cost
of delayed or missed detections. Since false alarms have limited safety consequences, we prioritize
sensitivity by lowering 𝑐 to avoid missing detection of potential attacks. To quantify the passenger
discomfort, we use the vehicle jerk metric 𝐽 [14]: 𝐽 = 𝑑2𝑣𝑦

𝑑𝑡2
=

𝑑𝑎𝑦

𝑑𝑡
, where 𝑣𝑦 is the vehicle lateral

speed, 𝑎𝑦 is the lateral acceleration resulting from steering adjustments, and 𝐽 corresponds to the
lateral jerk experienced throughout the driving.

Table 4 presents the performance of PCS with attack detectors under adversarial driving scenarios.
During the evaluation steps, the records of the detection results and the ground truth information
regarding the presence or absence of an attack are collected. An oracle detector with one-step delay
provides the upper-bound baseline, which the CSE detector aims to approach through fine-tuning
the parameter 𝑐 . As depicted in Table 4, a lower threshold (𝑐) increases sensitivity but may trigger
more false alarms, resulting in fluctuating control and reduced comfort, as reflected by higher mean
absolute jerk when 𝑐 = 0.3. Conversely, a high threshold delays detection and can allow attacks to
cause collisions, as shown by the red-highlighted column when 𝑐 = 3. We find 𝑐 = 1.0 achieves a
favorable balance, providing robust attack detection with minimal impact on passenger comfort.
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9 Discussion
This section outlines the assumptions of our threat model, evaluates the generalizability of both
attack and defense, and discusses the performance and practicality of PCS.

9.1 Summary and Justification of Assumptions
Our study is based on several assumptions regarding system modeling, the attack capabilities, and
the defense requirements. Below, we review and justify these assumptions.

• System model assumptions: Experiments are conducted in the CARLA simulator, which
offers a high-fidelity yet simplified approximation of real-world vehicle dynamics. CARLA is
widely used in AD research, enabling controlled, repeatable, and safe evaluation of attack and
defense strategies that are otherwise impractical or unsafe on real vehicles. While simulators
abstract away some real-world uncertainties (e.g., hardware aging, sensor drift), this setup
aligns with standard practices in AD and cybersecurity research, where sim-to-real transfer
remains a known challenge but simulation provides a critical foundation.

• Attack model assumptions: As outlined in Section 4.1, we assume the attacker has black-
box access, can inject bounded perturbations, and can obtain either rich (camera-based) or
partial (IMU-based) observations of vehicle state via on-board sensors. The black-box setting
reflects common real-world constraints, where attackers lack internal knowledge but can
train strategies using simulators or digital twins. Bounded perturbations reflect practical
limits on stealth and actuator authority. The assumed sensing modalities represent plausible
attacker capabilities and are further discussed in Section 9.2.

• Defense model assumptions: The proposed PCS defense requires access to modular agent
state features, such as path deviation, actuator history, and vehicle speed, as inputs to its
correction mechanism. These signals are standard outputs of modular AD controllers and
commonly logged for safety monitoring. PCS does not rely on knowledge of the attacker’s
internal state or perfect anomaly detection. Instead, it is designed to tolerate imperfect
detection, supporting robust deployment in real-world, safety-critical systems.

9.2 Feasibility of Action Space Attacks and Sim-to-Real Generalization
We assess the feasibility of launching action space attacks in real-world settings and the extent to
which our DRL-based attack generalizes beyond simulation. To execute an action space attack, the
adversary must gain control over the vehicle’s actuator commands. In modern vehicles, actuator
commands are delivered by electronic control units (ECUs) through two primary channels: 1) digital
communication over message-based protocols such as the Controller Area Network (CAN) bus,
and 2) analog signaling via Pulse Width Modulation (PWM), which modulates signal duty cycles to
adjust actuator speed or position. Together, these expose two critical attack surfaces: the CAN bus
for digital signals and the wiring for PWM analog signals.

• CAN bus interference: As noted in prior work [7], the CAN protocol lacks built-in source
authentication, allowing compromised ECUs to inject spoofed packets. Attackersmay leverage
remote access or physical compromise to execute such injections [30, 47]. That said, modern
vehicles are increasingly equipped with intrusion detection systems, which may limit the
effectiveness of such attacks.

• Intentional electromagnetic interference (IEMI): Alternatively, attackers may exploit
physical-layer vulnerabilities by emitting electromagnetic signals near wiring to induce
errors in PWM signals [13, 39]. Although theoretically possible, IEMI presents practical
challenges. Executing it would require precise setup, including access to the vehicle wiring
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and the installation of devices. Potential situations may involve collusion with routine vehicle
maintenance providers to install all required devices, including the camera and IMU sensors.

Another key challenge is the well-known generalization issue for DRL research, including ours.
Although CARLA provides high-fidelity vehicle modeling, simulators cannot fully capture real-
world complexity. Factors such as sensor noise, hardware wear, and environmental variability can
introduce discrepancies that hinder transfer from simulation to real-world deployment. While
small-scale robotic platforms have been used in prior work [35], this approach is impractical in our
case due to the need for high-speed driving scenarios and the risk of frequent crashes during testing.
To narrow the sim-to-real gap, future implementations of action space attacks should consider:

• Match vehicle models and control policies to real-world targets (e.g., Tesla Model 3 in CARLA).
• Include realistic conditions in training, such as weather, lighting, friction, etc. [5, 16].
• If feasible, conduct controlled physical testing in a closed environment.

While full transferability remains a significant challenge, our goal is not to claim immediate deploy-
ability. Rather, this work emphasizes the feasibility of action space attacks, reveals architecture-
specific vulnerabilities, and motivates the development of practical and lightweight defenses.

9.3 Broader Applicability to Other Scenarios
Although our experiments focus on lane changes and overtaking within a freeway driving scenario,
we clarify that the proposed action space attack and PCS frameworks are not limited to this context.
Many AD tasks, such as intersection negotiation, obstacle avoidance, or merging, are fundamentally
trajectory tracking problems, which lie at the core of autonomous vehicle control.

For the action space attacker, extension to new driving scenarios is conceptually straightforward
but requires adaptation to maximize effectiveness. Specifically, the attack model must be retrained
within the new context to learn how to exploit scenario-specific vulnerabilities. This typically
involves modifying the reward function to reflect the critical events or failure modes relevant to
the new task. For instance, the reward design may prioritize collisions at intersections or unsafe
merges. While the overall attack methodology remains unchanged, the reward formulation and
training environment should be tailored for each scenario.

By contrast, the PCS framework is designed to use modular state features, such as path deviation,
actuator commands, and vehicle speed, as input. Since trajectory tracking is central to most driving
tasks, these features remain broadly applicable across scenarios. As a result, PCS can be directly
applied to new driving taskswithout requiring any changes to its architecture or input representation.
The only exception occurs when new elements, such as traffic light phases, significantly affect
trajectory tracking. In such cases, it may be beneficial to augment the input with additional
features that represent these elements. This extension ensures that PCS maintains robust tracking
performance and safety in the face of scenario-specific complexities. In the absence of such factors,
PCS remains task-agnostic and applicable without modification.

10 Conclusion
This paper examined the resilience of different autonomous driving (AD) systems to action space
attacks. We demonstrated that DRL-based black-box adversaries can induce side collisions across
modular, end-to-end, and feature-fused agents, with varying degrees of vulnerability. However,
existing defenses by adversarial training suffer from overfitting or rely on attack patterns and
have shown limited effectiveness. To address these gaps, we proposed a lightweight learning-based
Path Correction System (PCS) integrated with a modular agent, achieving a 78% reduction in
path-tracking deviation under attack. We further introduced a kinematic-based attack detector to
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improve nominal driving performance. Our results highlight the effectiveness and practicality of
the proposed defense in enhancing the robustness of AD systems against actuator-level threats.
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