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Abstract—This paper presents TouchAuth, a new touch-to-access device authentication approach using induced body electric
potentials (iBEPs) caused by the indoor ambient electric field that is mainly emitted from the building’s electrical network. The design of
TouchAuth is based on the electrostatics of iBEP generation and a resulting property, i.e., the iBEPs at two close locations on the same
human body are similar, whereas those from different human bodies are distinct. Extensive experiments verify the above property and
show that TouchAuth achieves high-profile receiver operating characteristics in implementing the touch-to-access policy. Our
experiments also show that a range of possible interfering sources including appliances’ electromagnetic emanations and noise
injections into the power network do not affect the performance of TouchAuth. A key advantage of TouchAuth is that the iBEP sensing
requires a simple analog-to-digital converter only, which is widely available on microcontrollers. Compared with the existing approaches
including intra-body communication and physiological sensing, TouchAuth is a low-cost, faster, and easy-to-use approach for
authorized users to access the smart objects found in indoor environments.
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1 INTRODUCTION

THE indoor environments are increasingly populated
with smart objects. Accesses with some of these objects

(e.g., obtaining information on them or granting them to
access certain external resources) need to be managed. How-
ever, such management becomes challenging. Typing pass-
word is tedious and infeasible for the objects without a key-
board or touchscreen. Biometrics-based user authentication
suffers various shortcomings. Fingerprint scanning requires
a well positioned finger press. Moreover, due to cost factor,
small objects will unlikely have fingerprint scanners. Face
recognition solutions require face positioning and are costly.
Voice recognition-based access can be disturbing in certain
environments, e.g., an open-plan office with colleagues, a
bedroom with sleeping buddies, etc. Moreover, defining a
separate voice passphrase for each smart object to avoid
incorrect invoking may result in too many passphrases.

In this paper, we aim to develop a low-cost and conve-
nient touch-to-access scheme that can be easily implemented
on smart objects found in indoor environments. Specifically,
a simple touch on an object allows an authorized user to
access the object. This scheme will not require explicit user
actions. Different from integrating user identification (e.g.,
fingerprint scanning) into the objects, we resort to a device
authentication approach that offloads the user’s identity to
a personal wearable token device (e.g., a smart watch or
bracelet) and uses the token to access a touched object that
has been previously paired with the token. This touch-to-
access device authentication approach can greatly improve
the user’s convenience and experience in interacting with
the smart objects. For instance, in a home with multiple
residents, when a user wearing his token turns on a TV
set using a smart remote control, the control obtains the
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user’s identity from the token and instructs the TV set to list
the user’s favorite channels. The user can also touch other
smart objects to personalize them, e.g., touch a music player
for the favorite music, switch on a light that automatically
tunes to the user’s favorite color temperature or hue, etc.
The touch-to-access scheme can also enhance the security of
various systems. For instance, a wireless reader can access a
worn medical sensor only if the reader has a physical contact
with the wearer’s skin. The contact enforces the wearer’s
awareness regarding the access and prevents remote wire-
less attacks with stolen credentials [1]. In another hospital
use case, the nurses can wear a token device and authenti-
cate themselves before operating medical apparatuses. For
instance, the pill dispensers can adopt the touch-to-access
scheme for medication safety and backtracking.

The essence of the touch-to-access scheme is the detec-
tion of whether the wearable token and the smart object
have physical contact with the same user’s body. Existing
studies tackle this same-body contact detection problem by
intra-body communication (IBC) [2], [3], [4], [5], [6], [7],
[8] and physiological sensing such as electrocardiography
(ECG) [9], [10], [11], [12], [13], photoplethysmogram (PPG)
[9], [11], [12], and electromyogram (EMG) [14]. IBC requires
either non-trivial customized transceivers [2], [3], [4], [5], [8]
or a touchscreen as the receiver [6], [7], resulting in increased
cost or reduced applicable scope. The physiological sensing
approaches are based on a body-area property, i.e., the phys-
iological signals captured from the same human body have
similar values or features, whereas those collected from
different human bodies are distinct. However, physiological
sensing approaches may have respective limitations. For
instance, EMG sensing requires certain physical distances
among a sensor’s electrodes [14], which enlarge the sensor
form factor. The approaches using ECG and PPG signals
require long sensing times of more than 10 seconds and up
to 90 seconds [9], [11], [12]. The study [15] also pointed out
that ECG sensing requires careful sensor placement and may
perform poorly in daily life settings.
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Different from IBC and physiological sensing, this paper
investigates the feasibility and effectiveness of using induced
body electric potential (iBEP) due to the body antenna effect for
touch-to-access device authentication. The body antenna ef-
fect refers to the alteration of the intensity of the mains hum
captured by an analog-to-digital converter (ADC) when the
ADC has a physical contact with a human body. The mains
hum induced by the building’s electrical network is ubiq-
uitous. In addition, ADC is a basic electronic component
that is widely available on microcontrollers. Recent studies
have exploited the body antenna effect for key stroke detec-
tion [16], touch sensing [17], motion detection [18], gesture
recognition [19], and wearables clock synchronization [20].
These studies leverage several characteristics of iBEP, such
as signal intensity alteration [16] and periodicity [20], or feed
iBEP signals to machine learning algorithms for motion and
gesture recognition [17], [18], [19]. Differently, to use iBEP
for device authentication, its body-area property needs to
be understood.

The iBEP measurement by an ADC is the difference be-
tween the electric potentials of the ADC pin and the ground1

of the sensor, respectively. From electrostatics, a human
body, which can be viewed as an uncharged conductor, will
alter its nearby electric field (EF) emitted from the electrical
network of the building due to electrostatic induction. As a
result, the iBEP measurement by a sensor will be affected by
the presence of a nearby human body. Our extensive mea-
surements2 confirm in positive the following two properties.
First, the iBEP signals measured by two sensors that are on
the same human body and in close proximity will be similar.
This is because 1) the two sensors’ ADC pins will have the
same potential due to their connections to the equipotential
human body, and 2) their grounds will most likely have
similar potentials as they are close to each other in the EF.
Second, the iBEP signals collected from different human
bodies will be different. This is because different human
bodies will most likely have different potentials and thus
affect nearby EFs differently since they build up different
surface charge distributions in the electrostatic induction.

Based on the above two properties, we design a proto-
type system called TouchAuth that performs touch-to-access
device authentication based on iBEP signals. We implement
the same-body contact detection algorithm using the abso-
lute Pearson correlation coefficient as the similarity metric.
Extensive experiments show that the TouchAuth achieves
true acceptance rates of 94.2% and 98.9% subject to a false
acceptance rate upper bound of 2% when one and five
seconds of iBEP signal is recorded, respectively. Our exper-
iments also show that various possible interfering sources
including appliances’ electromagnetic emanations and noise
injections into power networks do not affect TouchAuth.

In summary, TouchAuth is a low-cost, lightweight, and
convenient approach for the authorized users to access
smart objects in indoor environments. To implement Touch-
Auth, the smart object’s and the wearable token’s micro-
controller ADCs are to be wired to a metal area or their
conductive exteriors. This requires a simple hardware de-

1. In this paper, “ground” refers to the floating ground of a device.
2. The data collection from volunteers was approved by NTU IRB

(reference numbers: IRB-2018-09-051 and IRB-2019-05-001).

sign of the smart object. For instance, the metal area can be
placed at the back of a smart watch. Compared with the
near-field communication (NFC) approach that enforces a
proximity requirement on device authentication, the touch
requirement of TouchAuth is more intuitive and clearer.
Moreover, compared with the ADCs that are widely avail-
able on microcontrollers, the NFC chips are more costly
and need to be integrated into the smart objects to read the
wearable tags.

Paper organization: §2 presents the system and threat
models, approach overview, and research objective; §3
presents the measurement study; §4, 5, and §6 show Touch-
Auth’s design, resilience, and evaluation, respectively. §7
discusses several issues; §8 reviews related work. §9 con-
cludes the paper.

2 SYSTEM OVERVIEW & RESEARCH OBJECTIVE

2.1 System Model and Threat Model
We consider an authentication system with two devices
that have been previously paired, i.e., an authenticator and
an authenticatee. We assume that the two devices have
a wireless communication channel, e.g., Wi-Fi, Bluetooth
(Low Energy), Zigbee, etc. The pairing enables them to
communicate. The authenticator is a trustworthy device that
can sense the iBEP signal s(t), ∀t, at a location L on the
body of a user U . To be authenticated, the authenticatee
presents its sensed iBEP signal s′(t), t ∈ [t1, t2], to the
authenticator. The ` = t2 − t1 is called signal length. The
authenticatee is valid only if it has physical contact with a
location L′ on U which is close to L such that s′(t) ≈ s(t),
∀t ∈ [t1, t2]; otherwise, it is invalid. The valid authenticatee
will be granted a certain access; the invalid authenticatee
will be denied the access. We assume that the clocks of the
authenticator and the authenticatee are synchronized, such
that the authenticator can select a segment of s(t) in the
time duration [t1, t2] to check the similarity between s(t)
and the s′(t) received from the authenticatee for same-body
contact detection. Before the authentication process, Touch-
Auth applies clock synchronization approach presented in
§5 that is resilient to the attacks of delaying synchronization
messages. The synchronization approach also uses the iBEP
signals captured by the authenticator and authenticatee.

We now discuss the roles of different devices in the
scenarios discussed in §1. When the user with a wrist
wearable token touches a smart remote control, the wear-
able token is the authenticator, whereas the smart remote
control is the authenticatee. On detecting human touch (by
either button/touchscreen press or increased iBEP inten-
sity), the unlock program presents its captured iBEP signal
to the wearable token that will perform the same-body
detection. If the detection result is positive, the wearable
token transmits the user’s identity to the remote control
for personalization. In the example of worn medical sensor
access, the medical sensor is the authenticator, whereas the
wireless reader is the authenticatee. Only the reader that
has physical contact with the sensor wearer will receive a
one-time password to access the data on the sensor.

We adopt the same threat model that is used for an
ECG-based device authentication system in [13]. Specif-
ically, we consider an adversary who fully controls the
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Fig. 1. Left: A use scenario where the smart watch personalizes a
remote control and the associated media system by a touch; Right:
authentication process.
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Fig. 2. The body antenna effect.

communication channel between the authenticator and any
valid authenticatee and aims at impersonating the valid
authenticatee. The channel control includes eavesdropping,
dropping, delaying, modifying, and forging messages as
desired. The adversary can corrupt neither the authenticator
nor the valid authenticatee. Beyond the above adversary
model that can be provably addressed by TouchAuth, this
paper also evaluates the resilience of TouchAuth against
two other attacks, i.e., the mimicry attack in which the
adversary tries to approximate s′(t) and the message delay
attack in which the adversary tries to subvert the clock
synchronization between the two devices.

2.2 Approach Overview

Fig. 1 illustrates an authentication process of our approach.
The authentication process can be initiated by the authenti-
catee upon it detects a human touch based on iBEP. After a
handshake with a nearby authenticator, a Transport Layer
Security (TLS) connection is set up between the authen-
ticator and the authenticatee to ensure data confidential-
ity, integrity, and freshness of consequent communications.
Because the authenticator does not need to validate the
authenticatee’s certificate presented during the TLS setup,
our approach does not involve a cumbersome public key
infrastructure (PKI). Then, the two parties synchronize their
clocks using the approach presented in §5 and sample
their respective iBEPs s(t) and s′(t) synchronously for `
seconds. After that, following an existing protocol H2H
[13] that is designed for ECG-based device authentication,
the two parties perform a commitment-based data exchange
to ensure the security of the system against the threat
defined in §2.1. Note that, without using H2H, a naive
approach of transmitting s′(t) from the authenticatee to the
authenticator over the TLS connection for contact detection
is vulnerable to a man-in-the-middle attack based on full
channel control [13]. After obtaining s′(t), the authenticator
runs a same-body contact detection algorithm presented in
§4 that uses s(t) and s′(t) as inputs. Lastly, the authenticator
notifies the authenticatee of acceptance or rejection.

2.3 Research Objective

First, we illustrate the body antenna effect. The two curves
in Fig. 2 are the measurement traces of a mote-class sensor
placed at a fixed position, with an ADC pin floating in the
air or pinched by a person, respectively. More details of
the sensor will be presented in §3.1. Without body contact,
the sensor captures the mains hum with weak amplitude
and a frequency of about 50Hz (i.e., the nominal grid
frequency in our region). With body contact, the signal has
greater amplitude and exhibits more clearly the frequency
of 50Hz. The above result shows that the human body
affects the reception of mains hum. Our prior work [21]
explained in detail the generation mechanism of iBEP from
the powerline. First, iBEP is mainly induced by electric field
(EF) instead of magnetic field; Second, the ADC’s reading is
the potential difference between the input and ground pin,
which capture the potential of the body’s surface and the
ambient, respectively. From electrostatics, the equipotential
human body affects the gradients of its nearby EF. Third,
most ADCs can sense the iBEP because the human body
impedance is in general within the ranges of the external
impedance required by the ADCs.

Based on the above iBEP electrostatics, we have the
following inferences. Considering two sensors with their
ADC pins connected to the same human body, the potentials
of their ADC pins will be the same. If they are close to
each other, their grounds will have similar potentials. Thus,
their readings will be similar. If the two sensors are attached
to two locations on the human body which are far from
each other, their grounds will have different potentials. As a
result, though their ADC pins have the same potential due
to the human body contact, their readings will be different.
Now, we discuss the case where the two sensors are on
different human bodies. The human bodies will most likely
have different potentials. Moreover, even if we ignore the
impact of the two human bodies on the EF, because the two
sensors are at two different locations, the gradients of the
indoor EF at the two locations will be most likely different.
As a result, the two sensors’ measurements will be different.
This difference will be further intensified by the different
impacts of the two human bodies on their nearby EFs.

Our research objective is two-fold. First, we aim to verify
the above inferences via an extensive measurement study,
which is the subject of §3. If the measurement results are
supportive of the inferences, we will inquire whether iBEP
sensing can be exploited to implement the desirable touch-
to-access scheme. This will be addressed in §4, §5, and §6.

3 MEASUREMENT STUDY

3.1 Measurement Setup

Our experiments are conducted using several Zolertia Z1
motes [22] and the Kmote [23]. Both types of motes are
equipped with MSP430 microcontroller and CC2420 802.15.4
radio. The Z1 motes are used to collect iBEP data from
human bodies, whereas the Kmote is used as a base station
to synchronize the Z1 motes’ clocks and collect their iBEP
data over wireless. Each Z1 mote is powered by a lithiumion
polymer battery; the Kmote base station is connected to
a desktop computer through a USB cable. Each Z1 mote
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(a) Measurements of two sensors in two seconds.
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(b) Zoomed-in view.

Fig. 5. iBEPs measured by two sensors in the same palm when the
holder sits in a chair.

has two Phidgets sensor ports connected to several ADC
pins of its microcontroller. We use a conductive wire as an
electrode to create a physical contact between a pin in one
Phidgets sensor port and the skin of the Z1 wearer. Fig. 3
shows a Z1 worn on a wrist. The motes run TinyOS 2.1.2.
The program running on the Z1 mote samples the ADC
at a rate of 500 sps. The samples are timestamped using
the Z1’s clock. The program uses a reliable transmission
protocol called Packet Link Payer [24] to stream the samples
to a Kmote base station. It also integrates the Flooding Time
Synchronization Protocol (FTSP) [25] to synchronize the Z1’s
clock to the Kmote base station.

3.2 Measurement Results on the Same Body
We conduct experiments in a lab office. First, Person A sits in
a chair and uses his right hand palm to hold two Z1 sensors
steadily. The ADCs of both sensors have direct contact with
the palm skin. In Fig. 4, the nodes numbered ¶ and ·

illustrate the placement of the two sensors. Fig. 5a shows the
iBEPs captured by the two sensors over two seconds. Fig. 5b
shows a zoomed-in view of Fig. 5a. From the two figures,
we can see that the two iBEP signals are synchronous and
of the same amplitude level. This shows that, when the two
sensors are in proximity on the same human body, their
measurements are similar.

Second, we investigate the impact of spatial location on
iBEP. As the indoor EF has an intensity distribution over
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Fig. 6. iBEPs measured by a sensor in the same palm when the wearer
stands at different spots in the lab.
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Fig. 7. iBEPs at different locations of Person A.

space, the potential difference between the human body and
the ground of the sensor will vary with location. In this
experiment, Person A holds a sensor in his palm with skin
contact and stands at two spots in the lab. Fig. 6a and Fig. 6b
show the iBEPs at the two spots that are about one meter
apart. From the two figures, the amplitude of the iBEP at
Spot X is larger than that at Spot Y. Note that Spot X is
closer to a cubicle with a number of electrified power cables
and power extensions.

Third, we investigate the impact of the sensor placement
on the received iBEP signal. We place three sensors on
Person A, two on the right arm and the remaining one on
the left arm. The two sensors on the right arm are separated
by about 15 cm, one of which is close to the wrist and the
other is close to the elbow. In Fig. 4, the nodes numbered
¸, ¹, and º illustrate the placement of the three sensors. In
this experiment, the person stands and keeps a side lateral
raise posture. Fig. 7 shows the iBEP signals collected from
the three sensors in the same time period. Fig. 7a shows the
iBEPs measured by the two sensors on the right arm. Fig. 7b
shows the iBEPs measured by two sensors on different
arms. Fig. 7c shows the zoomed-in view for the signals
in Figs. 7a and 7b. From the results, we can see that the
signals measured by the two sensors on the right arm have
similar amplitudes, but a phase shift of about 180◦. This
can be caused by that the ADC-to-ground directions of the
two sensors in the EF are different. Ignoring the phase shift,
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Fig. 10. iBEPs measured by three sensors on two persons who sit
steadily 1m apart.

the signals measured by the two sensors 15 cm apart on the
same arm exhibit higher similarity than those measured by
the two sensors on different arms, but lower similarity than
those measured by the two sensors in the same palm as
shown in Fig. 5b.

We use the absolute Pearson correlation coefficient
(APCC) to quantify the similarity between two iBEP signals.
The two bars in the first bar group labeled (a) in Fig. 8 show
the APCCs between two iBEP signals collected from the
same and different arms on the same person, respectively.
The above results suggest that the correlation between the
iBEPs is affected by the distance between the sensors. When
the two sensors are closer, their iBEPs exhibit higher corre-
lation. This is supportive of our discussion in §2.3.

3.3 Measurement Results on Different Bodies
In the first experiment, we place two sensors in the palm
of Person A and another sensor in the palm of Person B.
The two persons sit steadily 1m apart. This 1m distance is
consistent with the typical personal distances during social
interactions, i.e., 46 cm to 122 cm [26]. In Fig. 4, the nodes
numbered ¶, ·, and » illustrate the placement of the three
sensors. Fig. 10a and Fig. 10b show the iBEPs measured by
the two sensors in Person A’s palm and the two persons’
palms, respectively. Fig. 10c shows the zoomed-in view.
From the results, we can see that the iBEP on Person B is
clearly different from that on Person A, in terms of both
signal amplitude and waveform. In contrast, the iBEPs on
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Fig. 11. iBEPs measured by three sensors on two persons who sit 1m
apart and perform random hand movements.

Person A are very similar. The two bars in the second bar
group labeled (b) in Fig. 8 show the APCCs for the cases
shown in Figs. 10a and 10b. Clearly, the iBEPs from the same
body exhibit higher correlation than those from different
bodies. This result is supportive of our discussion in §2.3.

In the second experiment, we investigate whether move-
ments will affect the distinctiveness. We ask the two persons
to perform some random hand movements when sitting
1m apart. Fig. 11 and the third bar group labeled (c) in
Fig. 8 show the results. We can see that, in the presence
of movements, the iBEPs from the same body still exhibit
higher correlation than those from different bodies.

In the above experiments, the clocks of the sensors
are tightly synchronized using FTSP that uses MAC-layer
timestamping to achieve microsecond-level synchronization
accuracy. Platforms without MAC-layer timestamping may
have milliseconds clock synchronization errors. We now
assess the impact of a clock synchronization error of up to
10ms on the APCC. As our collected iBEP signals are tightly
synchronized, we simulate the clock synchronization error
by offseting an input iBEP signal. Fig. 9 shows the APCC
under different simulated clock offsets among the signals
in Fig. 11. We can see that, in the presence of clock syn-
chronization error, the APCC for the signals from the same
person is generally higher than that for different persons.
Moreover, when the synchronization error is around −5ms
or 5ms, the APCCs are nearly zero. This is because the two
signals have a phase difference of 90°, resulting in near-
zero correlations. The attack-resilient clock synchronization
approach presented in §5 that uses iBEP can maintain the
synchronization errors below 3ms. Such errors will not
subvert the APCC as an effective similarity metric.

3.4 Summary
The above measurements show that iBEP signals measured
in proximity on the same person show higher APCC sim-
ilarity than those measured from two persons, regardless
of the body movements. Thus, the APCC similarity of two
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iBEP signals is promising for determining whether they are
collected from the same person in proximity. This key obser-
vation drives the design of a same-body contact detection
approach, which is presented in the next section.

4 SAME-BODY CONTACT DETECTION

From §3.2, iBEP is promising for touch-to-access device
authentication. In this section, we present two same-body
contact detection algorithms (§4.1 and §6.6) and discuss a
mimicry attack that aims at subverting the algorithms (§4.3).

4.1 One-Shot Same-Body Contact Detection Algorithm

Before TouchAuth detects the same-body contact, it checks
the iBEP signal strength. Specifically, if the standard devia-
tion of either s(t) or s′(t) is below a predefined threshold,
TouchAuth rejects the authentication request without per-
forming same-body contact detection. This ensures that the
detection is made based on meaningful iBEP signals. From
our offline tests, a standard deviation threshold of 0.06V
is a good setting for the Z1 platform. Similar offline tests
can be performed for other platforms. In what follows, we
present the one-shot same-body contact detection algorithm.
The detection performance will be evaluated in §6.

The detector compares a similarity score between s(t)
and s′(t), ∀t ∈ [t1, t2], with a threshold denoted by η.
If the similarity score is larger than η, TouchAuth accepts
the authenticatee; otherwise, it rejects the authenticatee.
We adopt the reciprocal of absolute Pearson correlation
coefficient (APCC) as our similarity metric. The Pearson cor-
relation coefficient measures the linear correlation between
two variables. As shown in Fig. 7, the iBEP signals collected
from the same arm have a phase shift of 180◦, resulting in a
Pearson correlation of about−1. However, the authenticatee
on the same arm as the authenticator may be accepted. This
motivates us to use the APCC as the similarity metric that
ranges from 0 to 1 that represent the lowest and the highest
similarity values, respectively.

This paper uses the false acceptance rate (FAR or simply
α) and the true acceptance rate (TAR or simply β) as
the main detection performance metrics. The α and β are
the probabilities that an invalid or valid authenticatee is
wrongly or correctly accepted, respectively. The detection
threshold η and the signal length ` are two important pa-
rameters. The receiver operating characteristic (ROC) curve
of β versus α by varying η depicts fully the performance of a
detector under a certain `. The signal length ` characterizes
the sensing time needed by the authentication process. In
this paper, we use the ROC curves to compare the detection
performance of various detectors. In practice, the settings of
η and ` can follow the Neyman-Pearson lemma to enforce
an upper bound for α. A stringent α is often required
by authentication. For instance, with α = 1%, an invalid
authenticatee needs to repeat the authentication process 100
times on average to be successful, which is frustrating if
some after-rejection freeze time is enforced. Moreover, an
authenticatee device can be banned if it is continuously
rejected for many times.

Fig. 12 shows the detection performance of TouchAuth
assessed by using the data shown in Fig. 11. Fig. 12a shows
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Fig. 12. Detection performance of TouchAuth when ` is 0.5 s, 1 s, and
2 s, respectively.

the α and the false rejection rate (FRR) versus the detection
threshold η when ` is 0.5 s, 1 s, and 2 s, respectively. Note
that FRR = 1 − β. Fig. 12b shows the ROC curves when
α is from 0 to 2%. Note that the α and β values of each
point on the ROC are measured based on 500 tests. From the
figure, we can see that when ` = 2 s, TouchAuth achieves a
β value of 100% (i.e., correctly accepts all 500 tests when the
authenticatee is valid) while keeping α = 0% (i.e., correctly
rejects all 500 tests when the authenticatee is invalid). This
suggests that TouchAuth can achieve a very high detection
accuracy. From Fig. 12b, the ROC curve under a smaller `
setting becomes lower, suggesting lower detection accuracy.
§6 will extensively evaluate the detection performance of
TouchAuth under a wider range of settings among a larger
group of users.

In addition to the ROC that characterizes detection per-
formance, we also use the signal-to-difference ratio (SDR) to
assess the quality of iBEP sensing. Specifically, let P [x(t)]
denote the average power of a signal x(t). Ideally, if the
authenticator and the valid authenticatee are very close to
each other on the same human body, their iBEP signals s(t)
and s′(t) should be very similar. Thus, we define the SDR
in decibel as SDR = 10 log10

P [s(t)]
P [s(t)−s′(t)] dB. A high SDR

suggests high-quality iBEP sensing.

4.2 Sequential Detection with Early Stopping
This detection approach performs sequential detections
based on a series of short signals and yields a positive detec-
tion result once sufficient confidence about the same-body
contact is achieved. Thus, it may reduce the sensing time
compared with the one-shot detection approach presented
in §4.1. Specifically, the authenticatee transmits iBEP data
to the authenticator in small data blocks. Once a new data
block is received by the authenticator, TouchAuth compares
the similarity of the two iBEPs from the first data block to
the latest data block. When the similarity score is larger
than η, TouchAuth accepts the authenticatee, notifies it,
and terminates the sequential detection process. Otherwise,
when the signal length ` reaches a specified maximum
signal length `max, TouchAuth rejects the authenticatee. The
sequential detector, compared with the one-shot detector
that adopts a signal length of `max, can terminate the
authentication process early and thus reduce the commu-
nication overhead. In §6.6, we evaluate the signal length
required by TouchAuth based on the sequential detection
approach and its detection performance. We note that this
sequential detection approach incurs lower computation
overhead compared with the one-shot detector if `max is
the same as the signal length used by the one-shot detector.
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4.3 Mimicry Attack

We now discuss a mimicry attack that attempts to obtain
the authenticator’s s(t). Due to the complex spatial dis-
tribution of the indoor ambient EF, it is generally difficult
for the attacker to estimate the authenticator’s s(t). In this
attack, the attacker wearing an iBEP sensor mimics the body
movements of the victim user wearing the authenticator.
To be effective, the mimicry attacker should stay as close
as possible to the victim user to sense the same/similar
ambient EF. Thus, this attack is unrealistic in practice, be-
cause the strange mimic behavior in proximity can be easily
discerned by the user. Note that this attack is beyond the
threat model defined in §2.1 that only concerns the security
of data communications between the authenticator and the
authenticatee. Thus, our approach described in §2.2, which
is based on the secure protocol H2H, does not guarantee
security against this mimicry attack. In §6, we will show the
ineffectiveness of this attack experimentally.

5 RESILIENCE AGAINST MESSAGE DELAYS

As discussed in §2.1, the threat model of TouchAuth as-
sumes that the attacker can fully control the communication
channel between the authenticator and the authenticatee.
Since TouchAuth requires that the iBEP traces from the au-
thenticator and authenticatee are time-aligned, the attacker
may seek to delay the synchronization messages used in the
clock synchronization process to introduce synchronization
errors. Due to the TLS protection, we assume that the at-
tacker can only delay the transmissions of the messages and
cannot tamper with the messages. Note that this message
delay attack is feasible in practice and its impact has been
studied in [27]. Should the attack successfully introduce
clock synchronization errors, a valid authenticatee may be
wrongly rejected, forming a denial of service (DoS) effect.
This message delay attack remains largely an open issue to
clock synchronization protocols based on message passing
[28]. In this paper, we study the resilience of a clock synchro-
nization protocol [20] designed based on iBEPs against the
message delay attack. Note that the work [20] does not con-
sider the security of the designed protocol. If the protocol
is shown resilient to the message delay attack, TouchAuth
can adopt it to prevent the DoS effect caused by the attack.
This section reviews the iBEP-based clock synchronization
protocol. Then, we conduct extensive numeric experiments
to investigate the impacts of several attack strategies on
TouchAuth. The results show that the message delay attacks
can only induce TouchAuth to use longer time for clock
synchronization.

5.1 Clock Synchronization Using iBEP Signals

Our measurements in §3 show that iBEP signals exhibit
good synchrony since they are induced by the same periodic
source. We reuse an approach presented in [20] that exploits
this synchrony to synchronize the clocks of the authenticator
and authenticatee. In the approach, both devices extract the
zero crossing points from their iBEP signals to obtain series
of periodic impulses. In a synchronization session shown in
Fig. 13, the two devices exchange a request packet and
a reply packet. The packet transmissions and arrivals are

φ1 φ4

φ2 φ3

request
τq = θq + i · T

reply

τp = θp + j · T

authenticatee clock

authenticator clockt1

t2 t3

t4

last impulse

last impulse last impulse

last impulse

Fig. 13. A clock synchronization session.

timestamped as t1, t2, t3, t4 using the devices’ local clocks.
Meanwhile, for each timestamp, each device records the
elapsed time from the last impulse (LI) of iBEP signals,
which are denoted as φ1, φ2, φ3, φ4, respectively. Then,
we compute the rounded phase differences θq and θp of the
request and reply packets:

θq=

{
φ2−φ1, if φ2≥φ1;
φ2−φ1+T, otherwise.

θp=

{
φ4−φ3, if φ4≥φ3;
φ4−φ3+T, otherwise.

Note that T is iBEP’s nominal period, i.e., 20ms. When the
transmission time is longer than T , the phase difference
can be negative and we round the phase difference by
adding T . We use two non-negative integers, i.e., i and
j, to represent the number of periods elapsed within the
fly time of request and reply. We use τq and τp to
represent the transmission time of request and reply
packet, respectively. Hence, τq = θq+i·T and τp = θp+j ·T .
By definition, the round trip time (RTT) can be measured as
RTT = (t4 − t1)− (t3 − t2). From the above analysis, RTT
can be expressed as

RTT = τq + τp = θq + θp + (i+ j) · T. (1)

If the i and j can be determined, the estimated clock offset
δ between the two devices’ clocks can be computed as
δ = t1−(t2−τq) = t1−t2+θq+i ·T. However, from Eq. (1),
we can only determine i + j. Thus, Eq. (1) gives a finite
number of possible values for δ, which forms a candidate set.
We perform multiple clock synchronization sessions until
the intersection of the resulted candidate sets contains only
one candidate value for δ, which is then used to adjust the
iBEP timestamps generated by the authenticator for syn-
chronization purpose. We call the above process of reducing
the cardinality of the candidate sets intersection as synchro-
nization convergence. Once converged, the synchronization
accuracy will be in the level of the iBEP’s synchrony, which
is in general milliseconds.

5.2 Message Delay Attacks

We consider three attack scenarios: the request packet is
delayed, the reply packet is delayed, and both packets are
delayed. We assume that the integrity of the packets is not
compromised due to cryptographic protection. The attacker
aims to prolong the synchronization convergence process or
even disable the convergence. If the attacker can precisely
control τq and τp, the attack will disable the convergence.
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However, as the authenticator and the authenticatee per-
forms timestamping in the application layer, the τq and τp
contain uncertain delays due to operating system overhead
and wireless media access control. These uncertain delays
are unmeasurable and uncontrollable to the attacker. As a
result, it is impossible for the attacker to precisely control τq
and τp. Therefore, a practical attack method is to introduce
random delays to τq and τp.

We conduct numeric experiments to evaluate how the
three attack scenarios affect the synchronization conver-
gence speed. We assume the intact τq and τp are two inde-
pendent random variables that are uniformly distributed be-
tween 0 and 200ms. The message delay also follows uniform
distribution from 0 to 200ms. For each attack scenario, we
perform 1,000 clock synchronization processes to generate
the cumulative distribution function (CDF) of the number of
synchronization sessions needed before convergence. Fig. 14
shows CDFs in the absence of attack and in the presence of
the three attack scenarios. When there is no attack, most
clock synchronization processes can converge within tens of
sessions. The average number of synchronization sessions
is 14. As each synchronization session takes about 150 ms,
the synchronization convergence needs around 2 seconds.
When either the request or the reply packet is delayed,
the average number of sessions for convergence is 200 and
191, respectively. The convergence takes about 30 seconds.
When both packets are delayed, the average number of
sessions is 291. In addition, within 600 synchronization
sessions, the synchronization process can converge with a
probability of 90%. The convergence time is in the order of
one minute. Note that once convergence is achieved, the
clock synchronization accuracy will be the same as that
in the absence of the attack. The above results show the
resilience of the iBEP-based clock synchronization approach
against the message delay attacks.

5.3 Detecting Message Delay Attacks and Other DoS
Attacks
In this subsection, we present an approach to detect the
message delay attacks and other DoS attacks based on the
observation that the attacks add extra delays to RTTs. By
setting a threshold ρ for RTT, when the measured RTT is
longer than ρ, the detector outputs a positive result indi-
cating the existence of attack. If all RTTs are smaller than ρ
throughout a synchronization process, the detector outputs
a negative result. The threshold value ρ can be set based
on the 90th percentile of RTTs in previous clock synchro-
nization sessions that are detected attack-free. To evaluate

the performance of our detection approach, we create two
sets of data traces corresponding to two attack scenarios,
i.e., delay attack on a single packet or both packets. Each
set contains 2,000 synchronization processes. For each set
of data traces, 1,000 out of 2,000 synchronization processes
are subject to delay attacks. Fig. 15 shows the ROC curves
of the attack detection, where the points on a curve are
obtained by varying the threshold ρ. The blue curve is the
ROC when the random malicious delay is added to either
request packet or reply packet. The red curve is the
ROC when both packets are subject to malicious random
delays. From Fig. 15, the detector can effectively detect the
message delay attacks. When both packets are subject to
attacks, the detector performs slightly better, because the
attacks introduce more delays. Note that when other DoS
attacks like jamming occur, the measured RTT will be al-
ways larger than ρ. Thus, TouchAuth can detect the attacks.
When a DoS attack is detected, TouchAuth can switch to an
alternative wireless communication channel. TouchAuth can
also rely on the used wireless communication technology’s
mitigation strategy. For instance, Bluetooth can mark and
avoid using bad channels that may be affected by jamming.

6 EVALUATION EXPERIMENTS

We conduct a set of experiments to evaluate TouchAuth’s
same-body contact detection under a wide range of settings
including different wearers, various indoor environments,
multiple possible interfering sources, device proximity, skin
moisture, and heterogeneous devices. By default, we use the
detection algorithm in §4.1.

6.1 Performance across Different Wearers
We collect a set of data traces involving a wearer R and
12 other wearers P1,P2, . . . ,P12. The experiments are con-
ducted in a computer science lab. In the ith experiment
(i = 1, . . . , 12), R holds an authenticator device and a
valid authenticatee device in his palm, whereas Pi holds
an invalid authenticatee device in his palm. Thus, in this
set of experiments, we evaluate the detection performance
of TouchAuth for a certain user with a valid authenticatee
against different users with invalid authenticatees. In each
experiment, R and Pi, which are about 0.5m apart, are
allowed to perform some uncoordinated and random hand
movements. The data collection of each experiment lasts
for two minutes. In addition to the APCC similarity metric
introduced in §4.1, we also compute the reciprocal of the
root mean square error (RMSE) for comparison. The RMSE
is a variant of the Euclidean distance which has been used as
a dissimilarity metric by physiological sensing approaches
[9]. In the rest of this paper, the TouchAuth based on the
RMSE and APCC is called RMSE-TouchAuth and APCC-
TouchAuth, respectively.

We measure the detection performance of APCC-
TouchAuth and RMSE-TouchAuth as follows. LetNL, orNI ,
denote the total number of tests between the authenticator
and the valid authenticatee, or between the authenticator
and the invalid authenticatee. Accordingly, let NTA and
NFA denote the total numbers of true acceptances and false
acceptances, respectively. The β and α are measured by
NTA/NL and NFA/NI , respectively.
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Fig. 16. ROCs for 12 different wearers with the invalid authenticatee de-
vice. The x-axis and y-axis of each subfigure are α and β, respectively.
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Fig. 17. ROCs for 8 different wearers with the valid authenticatee device.
The x-axis and y-axis of each subfigure are α and β, respectively.

Fig. 16 shows the APCC- and RMSE-TouchAuth’s ROC
curves for different wearers with the invalid authenticatee
device when the signal length ` is 1 s. Different data points
on an ROC represent the results under different detection
threshold η. The SDR assessed using the authenticator’s and
the valid authenticatee’s iBEP signals in each experiment
is included in the corresponding subfigure. We can see
that across different wearers with the invalid authentica-
tee, APCC-TouchAuth is comparable or superior to RMSE-
TouchAuth in terms of the detection performance. This
is because that APCC inherently captures the correlation
between the iBEP signals on the same moving hand. In
contrast, as the RMSE captures sample-wise differences be-
tween two signals, two uncorrelated signals with similarly
small amplitudes can give a small RMSE value, leading to a
false acceptance. Note that the RMSE has been adopted as a
dissimilarity metric for physiological sensing [9]. However,
it is ill-suited for iBEP sensing because the iBEP signal
amplitude has a large dynamic range depending on the
ambient EF’s gradient. This is different from physiological
signals that often have stable ranges of signal amplitude.
From Fig. 16, APCC-TouchAuth achieves a high β value
(100%) subject to an α upper bound of 1%, except for the
wearer P11. For P11, APCC-TouchAuth achieves a β value
of 100% subject to an α upper bound of 4%.

We collect another set of data, whereR wears an invalid
authenticatee and Pi holds an authenticator and a valid
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Fig. 18. ROCs with various nearby appliances.

authenticatee. Thus, this set of experiments evaluate the de-
tection performance of TouchAuth for different users wear-
ing the valid authenticatee against a certain user wearing
the invalid authenticatee. Fig. 17 shows the ROCs for eight
different wearers with the valid authenticatee. Similar to the
results in Fig. 16, APCC-TouchAuth achieves high-profile
ROCs and outperforms RMSE-TouchAuth. The results in
Figs. 16 and 17 show that the detection performance of
TouchAuth is not wearer-specific.

6.2 Various Indoor Environments
Two wearers conduct experiments in eight different indoor
environments, which include a living room, a study room,
a kitchen, two bedrooms, a corridor, a meeting room, and
an open area of a lab. Details of the indoor environments
can be found in Fig. 1 of Appendix A3. One wearer carries
the authenticator and a valid authenticatee and the other
carries the invalid authenticatee. In certain environments,
the RMSE-TouchAuth performs poorly. Investigation on the
raw iBEP signals shows that in these environments, the iBEP
signals of the authenticator and the invalid authenticatee
have similar amplitudes. In all the eight environments,
APCC-TouchAuth achieves high β values (≥ 97%) subject
to an α upper bound of 1%. If the α upper bound is
relaxed to 4%, the β value of 100% can be achieved. The
measured SDRs and ROCs in the eight environments are
shown in Fig. 2 of Appendix A. In conclusion, TouchAuth
shows satisfactory performance across eight locations in
laboratories and home rooms. Note that TouchAuth may
not work when there is no or extremely sparse powerline
installation, such as indoor sport halls and warehouses.

6.3 Various Possible Interfering Sources
As discussed in §2, the iBEP measurement is mainly caused
by ambient EF. The magnetic fields generated by the op-
erating currents of electric appliances have little impact
on the iBEP sensing. However, some appliances, especially
those based on motors and high-frequency switched-mode
power, may generate interference to the iBEP sensing. This is
because that unlike the 50Hz current-induced magnetic that
generates little/no EF, the high-frequency currents caused
by the frictions between the motor’s brush and stator as well

3. All appendics of this paper can be found in the supplementary file.
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as the switched-mode power may generate propagating
electromagnetic waves. As a result, the EFs generated by
the appliances and powerlines may weaken each other,
making the overall EF weaker. Thus, we conduct a set
of experiments with various home appliances including
toaster, electric kettle, hair dryer, ceiling fan, blender, and
induction cooker. Specifically, two wearers, one with a valid
authenticatee and the other with an invalid authenticatee,
stand close to a certain appliance to collect iBEP traces.
Fig. 18 shows the SDR and the APCC-TouchAuth’s ROCs
for various appliances when the appliance is on and off.
We can see that, for a certain appliance, the SDR may
increase or decrease when the appliance is switched on.
This is because that the interference from the appliance
may be constructive or destructive to the EF generated by
the building’s power network. The operating status of the
induction cooker causes the largest SDR change of more
than 5dB. This is due to the high-frequency switched-mode
current in the cooker’s internal inductor. As a result, the
ROC drops slightly when the induction cooker is switched
on. However, APCC-TouchAuth still achieves a high β value
(100%) subject to an α upper bound of 2.5%.

The signaling phase of a cell phone call often interferes
with audio systems because of the intermittent wireless
power pulses. Thus, we also evaluate the impact of cell
phone calls on APCC-TouchAuth. In the experiments, the
wearer holds a smartphone, a valid authenticatee, and the
authenticator in one palm. Another wearer holding an in-
valid authenticatee stands 0.5m away. Fig. 19(a) shows the
ROCs at different phases of a phone call. The phone call does
not affect the detection performance of APCC-TouchAuth.

Secondly, we use a circuit seeker (Greenlee CS-8000) that
is capable of up to 4 miles circuit tracing [29] to inject noises
into the power network serving the lab in which we conduct
experiments. The injector of CS-8000 is plugged into a power
outlet, injecting a 15 kHz signal into the power network;
the seeker can detect the 15 kHz electromagnetic emanation
from the powerlines. We conduct experiments in proximity
of a powerline close to the injector. Fig. 19(b) shows the
ROCs when the injector is in operation or not. The noise
injection does not affect TouchAuth.

Lastly, we evaluate the impact of the skin moisture
conditions on TouchAuth. We conduct two experiments, in
which the user holds the authenticator using a wet hand. He
also holds a valid authenticatee. Another user stands 0.5m
away holding an invalid authenticatee. Fig. 19(c) shows the
ROCs for dry and wet skin moisture conditions. The skin
moisture has little impact on TouchAuth.
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Fig. 21. Sensor proximity.

6.4 Impact of Signal Length `

We evaluate the impact of the signal length ` on the de-
tection performance of TouchAuth. We combine the data
collected from 12 different wearers in §6.1 into a single
dataset. Based on the combined dataset, Fig. 20 shows
the β achieved by APCC-TouchAuth and RMSE-TouchAuth
versus ` when α ≤ 1% or α ≤ 2%. APCC-TouchAuth’s
β increases sharply when ` ≤ 1 s. When ` > 1 s, its β
increases with ` slowly. This suggests that a setting of
` = 1 s well balances the detection performance and sensing
time. The β-` curves for RMSE-TouchAuth exhibit a similar
pattern. Moreover, consistent with the results in §6.1 and
§6.2, RMSE-TouchAuth is inferior to APCC-TouchAuth.

6.5 TouchAuth Devices’ Proximity

In the previous subsections, the authenticator and the valid
authenticatee are in the same palm. In this set of experi-
ments, they are placed at different locations on the user’s
body. Fig. 21 shows APCC-TouchAuth’s ROC curves. When
the two devices are on the palm and the wrist of the same
hand, respectively, a high-profile ROC is achieved. When
the two devices are on (i) the right palm and the right
elbow, respectively, or (ii) the right palm and the head,
respectively, the detection performance is degraded. This
shows that TouchAuth is applicable to the example use
scenarios discussed in §1 where the two devices are in
proximity on the same body. §7 will further discuss the
impact of proximity requirement on usability of TouchAuth.

6.6 Performance of Sequential Detection

We evaluate the sequential detection approach presented
in §4.2 in terms of ROC and the needed signal length.
In this set of experiments, the authenticatee transmits the
sensed iBEP signal every 100ms, which is the block size.
We vary the maximum signal length `max from 100ms to
5s. Fig. 22 shows the ROC curves of TouchAuth using the
one-shot detector (` = 100ms or 5 s) and the sequential
detector (`max = 5 s). The ROC curves are generated by
varying η from −1 to 1. When α ≤ 2%, TouchAuth using
the sequential detector achieves β ≥ 92.8%, which is 20%
higher than TouchAuth using the one-shot detector with
` = 100ms and 7.1% lower than the one-shot detector with
` = 5 s. The error bars in Fig. 23 show the signal lengths
used by the TouchAuth with sequential detector under
various settings of the maximum signal length `max. The
value of η is subjected to α = 2% for each `max setting. The
bars represent the average values. The whiskers represent
the 5th and 95th percentiles, respectively. The error bars
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of the sequential detector.

show that the ratio of ` to `max reduces dramatically as `max

increases. When `max = 100ms, ` is always equal to `max,
which is the length of a single data block. When `max = 5s,
the average ` is just around 500ms. The reason is that under
most cases, the sequential detector accumulates enough
confidence regarding the same-body contact within a few
data blocks. The curve in Fig. 23 shows the true acceptance
rate β of each `max. When `max = 1 s, TouchAuth with the
sequential detector achieves β larger than 90%. Meanwhile,
the sequential detector only requires less than 240ms on
average. The results show that the sequential detector sig-
nificantly reduces `with a large `max, while preserves a high
β. Specifically, when the `max of the sequential detector is
identical to ` of the one-shot detector, TouchAuth with the
sequential detector can reduce the sensing time by almost
10 times. The above results show that with the sequential
detector, TouchAuth can output an accurate result within
hundreds of milliseconds. Meanwhile, the system has the
ability to adapt to the cases that require longer signals for
accurate detection.

6.7 Heterogeneous Devices and Mimicry Attack
We deploy TouchAuth on two different hardware platforms,
i.e., TinyOS-based Z1 and Arduino-based Adafruit’s Flora.
The result shows that, with ` = 1 s, APCC-TouchAuth
achieves a β value of 100% subject to an α upper bound
of 1%. This shows TouchAuth’s applicability to heteroge-
neous devices. The setup photo and results can be found in
Appendix B.

We follow the data collection methodology described
in §6.1 to collect another dataset in the lab, except that
each wearer Pi with the invalid authenticatee mimics the
hand movements of the wearer R with the authenticator
and the valid authenticatee. The R performs simple and
repeated hand movements, such that Pi can follow easily.
The distance between R and Pi is about 0.5m. The result
shows that the mimicry attack degrades APCC-TouchAuth’s
detection performance when ` is short. However, the attack
impact can be fully mitigated by adopting a larger ` setting
(e.g., ` = 1 s). Detailed results can be found in Appendix C.

7 LIMITATIONS AND DISCUSSIONS

This section discusses limitations of TouchAuth.

Proximity requirement: From the measurement study in §3
and the evaluation results in §6.5, our approach requires
that the authenticator and the authenticatee are in proximity

on the same human body. For instance, in the example of
personalizing smart objects, the user should use the hand
with the wrist wearable to touch the objects. A wireless
reader needs to be placed close to a worn medical sensor
to be authenticated. We believe that this proximity require-
ment introduces little overhead of using TouthAuth-based
devices. Nevertheless, TouchAuth offers a low cost and
small form factor solution based on ubiquitous ADCs only.
In particular, the proximity requirement increases the barrier
for active attackers to steal the iBEP signals, since they have
to place a sensor close to the authenticator. In contrast, if the
body-area property is effective for the whole body like for
ECG/PPG, the attackers may attach a miniature sensor to
the clothing of the victim to steal the signal.

iBEP injection attack: If an attacker can generate a strong ac
EF that overrides the ambient EF, the attacker can infer the
s(t) sensed by the authenticator and spoof it to accept an
invalid authenticatee. However, the strong EF generation is
non-trivial and inevitably requires bulky equipment. Over-
riding the power grid voltage is generally impossible unless
the building’s power network is disconnected from the
mains grid and supplied by a power generator controlled by
the attacker. Another possible approach is to surround the
victim TouchAuth devices with two metal plates connected
with an ac generator. The bulky setting of the EF generation
renders the attack easily discernible by the TouchAuth user
and costly, unattractive to the attacker. Another possible
attack is to generate power surges in the power network by
frequently switching on and off high-power appliances like
space heaters. However, the surges will also generate easily
discernible disturbances to other appliances such as lights
and audio systems. Thus, we believe that the iBEP injection
attack, though possible, is unrealistic or easily discernible.

8 RELATED WORK

Device authentication and key generation: Various physi-
ological signals have been exploited for contact-based device
authentication and key generation. Key generation establishes
a secret symmetric key for a pair of nodes on the same
human body. Using ECG and PPG for the above two tasks
has received extensive research. An early work [9] encodes
the interpulse intervals (IPIs) of ECG or PPG into a bit
sequence and performs authentication by comparing the
Hamming distance of two bit sequences with a threshold.
The study [10] generates IPI-based symmetric key for an
IMD and an external device. PSKA [11] and OPFKA [12]
generate keys from certain ECG/PPG features. Rostami et
al. [13] quantify ECG’s randomness in terms of entropy
and design the H2H authentication protocol. Table 1 com-
pares the performance of APCC-TouchAuth (from Fig. 20)
and several ECG/PPG device authentication approaches.
TouchAuth achieves comparable detection accuracy within
shorter sensing times. Recent studies have also exploited
EMG [14] and gait [30] for key generation. However, the
multi-electrode EMG sensor [14] is sizable and must be
placed close to muscles. Walking to generate keys [30] may
be inconvenient.

Human body coupled capacitive sensing: The iBEP sensing
belongs to a broader area of capacitive sensing. A recent
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TABLE 1
Comparison with existing approaches.

Ref. Signal Sensing time (s) α (%) β (%)
TouchAuth 1 2.0 94.2%

5 2.0 98.9%
[9] ECG+PPG ∼60 (67 IPIs) 2.1 93.5

∼30 (34 IPIs) 4.5 90.5
[11] PPG 12.8 0.1 99.9
[12] ECG ∼90 (90 IPIs) ∼0∗ ∼100∗

∗ [12] fuzzily states that its FAR and FRR are almost zero.

survey [31] provides a taxonomy of capacitive sensing.
We review those on passively sensing the mutual impact
between the human body and ambient EF. The iBEP has
been used for touch [17] and motion sensing [18], keyboard
stroke detection [16], gesture recognition [19], wearables
clock synchronization [20]. Platypus [32] uses an EF sen-
sor array on the ceiling to localize and identify a human
walker. The EF change is due to the triboelectric effect and
changes in capacitive coupling between the walker and the
environment. Wang et al. [33] use an external sound card
as the ADC and three magneto-inductive coil sensors to
collect the electromagnetic interference (EMI) radiated from
various devices. The signatures contained in the EMI are
used for identifying the device the user is touching. Laput
et al. [34] attach a modified software-defined radio to the
human body for sampling iBEP. When the user touches an
object, the class of the object can be recognized based on
the sampled iBEP signal. Yang et al. [35] develop a follow-
up research of [34] to recognize the identity, rather than the
class, of the touched object. However, the needed training
phase of [33], [34], [35] introduces overhead.

The human body can be used as a communication chan-
nel. Early studies [2], [3], [4], [5] build customized transmit-
ter and receiver for intra-body communication (IBC). Vu et
al. [6] design a wearable transmitter to convey identification
data to a touchscreen as the receiver. Holz et al. [7] use a
wrist wearable and touchscreen to measure bioimpedance
and identify the user. Hessar et al. [36] uses fingerprint
scanner and touchpad as the transmitter and a software-
defined radio attached to skin as the receiver. Yang et al.
[37] show that the transmitters can be LEDs, buttons, I/O
lines, LCD screens, motors, and power supplies. Roeschlin
et al. [8] design an IBC approach that estimates the body
channel characteristics to pair on-body devices. Although
IBC can be used for contact-based device authentication,
it often requires non-trivial transmitter/receiver devices.
In contrast, our approach requires a ubiquitous low-speed
ADC only.

9 CONCLUSION

Based on the iBEP electrostatics, this paper designed Touch-
Auth and evaluated its same-body contact detection per-
formance under a wide range of real-world settings. Re-
sults show that TouchAuth achieves comparable detection
accuracy as existing physiological sensing approaches, but
within much shorter sensing times. Moreover, the uni-
electrode iBEP sensor can be miniaturized. TouchAuth also
integrates an iBEP-based attack-resilient clock synchroniza-
tion approach that is a prerequisite of the same-body contact

detection. TouchAuth offers a low-cost, lightweight, and
convenient approach for the authorized users to access the
smart objects found in indoor environments.
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[28] M. Ullmann and M. Vögeler, “Delay attacks—implication on ntp
and ptp time synchronization,” in ISPCS ’09.

[29] E. E. Co. (2018) Greenlee CS-8000 circuit seeker.
[Online]. Available: https://www.greenlee.com/catalog/product.
aspx?product id=19199

[30] W. Xu, G. Revadigar, C. Luo, N. Bergmann, and W. Hu, “Walkie-
talkie: Motion-assisted automatic key generation for secure on-
body device communication,” in IPSN ’16.

[31] T. Grosse-Puppendahl, C. Holz, G. Cohn, R. Wimmer, O. Bechtold,
S. Hodges, M. S. Reynolds, and J. R. Smith, “Finding common
ground: A survey of capacitive sensing in human-computer inter-
action,” in CHI ’17.

[32] T. Grosse-Puppendahl, X. Dellangnol, C. Hatzfeld, B. Fu, M. Kup-
nik, A. Kuijper, M. R. Hastall, J. Scott, and M. Gruteser, “Platypus:
Indoor localization and identification through sensing of electric
potential changes in human bodies,” in MobiSys ’16.

[33] E. J. Wang, T.-j. Lee, A. Mariakakis, M. Goel, S. Gupta, and S. N.
Patel, “MagnifiSense : Inferring Device Interaction using Wrist -
W orn Passive Magneto - Inductive Sensors,” in UbiComp ’15.

[34] G. Laput, C. Yang, R. Xiao, A. Sample, and C. Harrison, “Em-
sense: Touch recognition of uninstrumented, electrical and elec-
tromechanical objects,” in UIST ’15.

[35] C. Yang and A. P. Sample, “Em-id: Tag-less identification of
electrical devices via electromagnetic emissions,” in RFID ’16.

[36] M. Hessar, V. Iyer, and S. Gollakota, “Enabling on-body transmis-
sions with commodity devices,” in UbiComp ’16.

[37] C. J. Yang and A. P. Sample, “Em-comm: Touch-based communi-
cation via modulated electromagnetic emissions,” IWMUT, vol. 1,
no. 3, Sep. 2017.

Zhenyu Yan is a Research Fellow at Singtel
Cognitive and Artificial Intelligence Lab for Enter-
prises, Nanyang Technological University, Sin-
gapore. He received his Ph.D. degree (2020)
from Nanyang Technological University, Singa-
pore, and his B.S. degree (2016) from University
of Electronic Science and Technology of China.
His research interests include the resilience of
Artificial Intelligence of Things (AIoT) systems,
mobile computing, and sensor networks. He is
the recipient of IPSN’21 Best Artifact Award

Runner-Up.

Qun Song received B.S. (2018) in Computer
Science from Nankai University. Currently, she
is a Ph.D. candidate at the Energy Research In-
stitute and the School of Computer Science and
Engineering, Nanyang Technological University.
Her ongoing research focuses on constructing
secure and efficient machine learning systems
for edge devices and autonomous systems. She
is the recipient of IPSN’21 Best Artifact Award
Runner-Up.

Rui Tan (M’08-SM’18) is an Associate Profes-
sor at School of Computer Science and Engi-
neering, Nanyang Technological University, Sin-
gapore. Previously, he was a Research Scien-
tist (2012-2015) and a Senior Research Scien-
tist (2015) at Advanced Digital Sciences Cen-
ter, a Singapore-based research center of Uni-
versity of Illinois at Urbana-Champaign, and a
postdoctoral Research Associate (2010-2012) at
Michigan State University. He received the Ph.D.
(2010) degree in computer science from City

University of Hong Kong, the B.S. (2004) and M.S. (2007) degrees
from Shanghai Jiao Tong University. His research interests include
cyber-physical systems, sensor networks, and pervasive computing
systems. He is the recipient of IPSN’21 Best Artifact Award Runner-
Up, IPSN’17 and CPSR-SG’17 Best Paper Awards, IPSN’14 Best Paper
Award Runner-Up, PerCom’13 Mark Weiser Best Paper Award Finalist,
and CityU Outstanding Academic Performance Award. He is currently
serving as an Associate Editor of the ACM Transactions on Sensor
Networks. He also serves frequently on the technical program commit-
tees (TPCs) of various international conferences related to his research
areas, such as SenSys, IPSN, and IoTDI. He received the Distinguished
TPC Member recognition twice from INFOCOM in 2017 and 2020.



1

Supplementary File
Zhenyu Yan, Qun Song, and Rui Tan, Senior Member, IEEE

F

This document includes the supplemental materials for
the paper titled “Touch-to-Access Device Authentication For
Indoor Smart Objects.”

APPENDIX A
EXPERIMENTS IN INDOOR ENVIRONMENTS

Fig. 1 shows the experiment photos of some tested in-
door environments. Fig. 2 shows the ROCs and SDRs of
TouchAuth at eight different indoor locations.
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Fig. 1. Experiments in indoor environments.
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APPENDIX B
TOUCHAUTH ON HETEROGENEOUS DEVICES

In this set of experiments, the authenticator and the invalid
authenticatee are based on Z1 motes (denoted by Z1-1 and
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Z1-2); the valid authenticatee is based on an Adafruit’s Flora
[1], an Arduino-based wearable platform. The top part of
Fig. 4 shows a Flora-based TouchAuth prototype device
with a 3D-printed insulating wristband and a conductive
thread creating the body contact. We use a laptop computer
to relay the communications between the Bluetooth-based
Flora and the Zigbee-based Z1. The bottom part of Fig. 4
shows the zoomed-in view of the signals captured by the
three devices. We can see that although the Z1 and Flora
have different direct current lines, the Z1-1 authenticator
and the Flora authenticatee are highly correlated. Based on
this setup, with ` = 1 s, APCC-TouchAuth achieves a β
value of 100% subject to an α upper bound of 1%. This
shows TouchAuth’s applicability to heterogeneous devices.
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Fig. 3. β vs. ` under mimicry.
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APPENDIX C
MIMICRY ATTACK

Fig. 3 shows the APCC-TouchAuth’s β versus ` subject to
various α upper bounds. The error bars show the minimum,
maximum, and mean of the β values among different R-
Pi pairs in the dataset. Compared with Fig. 20, when `
is small (e.g., 0.1 s), the mimicry attack degrades APCC-
TouchAuth’s detection performance. However, the attack
impact can be fully mitigated by adopting a larger ` setting
(e.g., ` = 1 s).
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