
TimelyNet: Adaptive Neural Architecture for Autonomous
Driving with Dynamic Deadline

JIALE CHEN, Nanyang Technological University, Singapore
DUC VAN LE∗, Nanyang Technological University, Singapore
YUANCHUN LI, Tsinghua University, China
YUNXIN LIU, Tsinghua University, China
RUI TAN, Nanyang Technological University, Singapore

To maintain driving safety, the execution of neural network-based autonomous driving pipelines must meet
the dynamic deadlines in response to the changing environment and vehicle’s velocity. To this end, this paper
proposes a real-time neural architecture adaptation approach, called TimelyNet, which uses a supernet to replace
the most compute-intensive neural network module in an existing end-to-end autonomous driving pipeline.
From the supernet, TimelyNet samples subnets with varying inference latency levels to meet the dynamic
deadlines during run-time driving without fine-tuning. Specifically, TimelyNet employs a one-shot prediction
method that jointly uses a lookup table and an invertible neural network to periodically determine the optimal
hyperparameters of a subnet to meet its execution deadline while achieving the highest possible accuracy. The
lookup table stores multiple subnet architectures with different latencies, while the invertible neural network
models the distribution of the optimal subnet architecture given the latency. Extensive evaluation based on
hardware-in-the-loop CARLA simulations shows that TimelyNet-integrated driving pipelines achieve the best
driving safety, characterized by the lowest wrong-lane driving rate and zero collisions, compared with several
baselines, including the state-of-the-art driving pipelines.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Real-
time systems.

Additional Key Words and Phrases: Autonomous driving, supernet, dynamic deadline, invertible neural
network, neural architecture adaptation

ACM Reference Format:
Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan. 2025. TimelyNet: Adaptive Neural Architecture
for Autonomous Driving with Dynamic Deadline. ACM Trans. Embedd. Comput. Syst. xx, xx, Article 67
(September 2025), 23 pages. https://doi.org/XXXXXXX.XXXXXXX

∗ Duc Van Le is now with University of New South Wales, Australia.

This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme
(AISG Award No: AISG4-GC-2023-006-1B).
This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Embedded Software (EMSOFT), 2025.
Authors’ Contact Information: Jiale Chen, Nanyang Technological University, Singapore, jiale004@e.ntu.edu.sg; Duc
Van Le, Nanyang Technological University, Singapore, duc.le1@unsw.edu.au; Yuanchun Li, Tsinghua University, China,
liyuanchun@air.tsinghua.edu.cn; Yunxin Liu, Tsinghua University, China, liuyunxin@air.tsinghua.edu.cn; Rui Tan, Nanyang
Technological University, Singapore, tanrui@ntu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1558-3465/2025/9-ART67
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

67:2 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

1 Introduction
Deep neural networks (DNNs) are widely used for perception, prediction, and planning in au-
tonomous driving [13, 14, 20, 23]. To ensure driving safety, DNN model inference should be
completed before a certain deadline in each driving control period [17]. Ideally, the required dead-
line can vary with the vehicle’s driving speed and acceleration across control periods [28]. For
instance, when the vehicle runs at a higher speed, more frequent control actions should be made to
adapt to the fast-changing environment. As a result, a shorter latency of the DNN inference for
deciding the control action is needed. Current autonomous driving systems tend to conservatively
select lightweight DNN models that can always meet dynamic deadlines under all possible driving
conditions. However, the lightweight models may lead to low inference accuracy. Thus, identifying
and using the best DNN model under each possible driving condition is desirable for maintaining
the driving performance and safety of autonomous vehicles [8, 24, 31]. This paper aims to design
an approach that can be integrated into existing autonomous driving pipelines to perform online
generation of DNN model variants with the highest accuracy levels and the corresponding latencies
matching the dynamic driving conditions.

ExistingDNN architecture adaptation approaches can be divided into the following two categories.
The first category maintains a pool of various model candidates, among which a suitable model
is selected at runtime. For example, the study in [8] stores multiple DNN-based object detection
models with distinct accuracy and latency levels and switches among them at runtime based on
the specified deadline. However, this approach is not memory-efficient and thus not suitable for
the memory-constrained compute hardware platforms found on autonomous vehicles. The second
category aims to search for a suitable subnet from an architecture-changeable DNN [3, 11, 25]. This
approach is more memory-efficient because it does not need to store many DNN models. However,
the search process is time-consuming. For example, in [11], evaluating 200 architecture candidates
with a server-class hardware accelerator takes about one minute. Although trained latency and
accuracy predictors can speed up evaluation [3], the search process remains slow when confronting
the millisecond-level latency requirements of autonomous driving systems, as analyzed for the
experiments conducted in this paper. If the search is performed for each inference, the remaining
time available for running the selected model is greatly restricted or even diminishes.

This paper presents TimelyNet, a real-time neural architecture adaptation approach that can be
integrated into existing autonomous driving pipelines to meet dynamic latency requirements. The
main idea is to use a dynamic DNN model called supernet [10] to replace the most time-consuming
module in existing autonomous driving pipelines. Specifically, the supernet is an over-parameterized
DNN, from which we can sample a subnet consisting of a subset of the supernet’s parameters
to perform the same function, with possibly reduced accuracy and latency. This approach has
two major advantages. First, it has the ability to generate numerous distinct subnets with diverse
accuracy and latency levels which are correlated with the subnet architecture. Thus, the accuracy
and latency resolutions achieved by the cohort of all possible subnets can be high. Second, TimelyNet
is memory-efficient compared with the model switching approach, as we only need to store the
supernet. To ensure that the supernet can generate subnets with diverse accuracy and latency
levels, we train the supernet and the autonomous driving pipeline jointly in the offline training
stage, so that the subnet can be sampled from the supernet at runtime without fine-tuning. To use
the supernet in real-time applications like autonomous driving, it is essential to develop an efficient
method to determine the subnet architecture. The success of TimelyNet depends on the ability to
quickly identify the subnet that achieves the highest accuracy while meeting the dynamic latency
requirement for each inference. However, this is challenging due to the vast search space.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:3

To ensure efficient search over the vast search space, we employ a one-shot learning-based optimal
architecture prediction approach instead of using iterative heuristic search methods. Specifically,
we construct a lookup table that stores the optimal subnet architectures for a number of latencies
with a regular interval and train a generative machine learning model to predict the optimal subnet
architecture given an arbitrary latency requirement. The lookup table is constructed by profiling
a set of subsets randomly sampled from the supernet, where the profiling includes measuring
the latency and control quality of a sampled subnet. However, due to the limited sample size
with respect to the large search space, predictions from the lookup table may be inaccurate. To
address this, we jointly use the lookup table and an invertible neural network (INN), a generative
model that learns the relationship between latency and subnet architecture. The INN can learn the
distribution of subnet architecture given the latency through two tasks: (1) predicting latency from
the subnet architecture and (2) generating the subnet architecture based on the latency requirement.
At runtime, the subnet with fewer parameters, among the two generated by the INN and the lookup
table, is selected to increase the likelihood of meeting the latency requirement. Due to the simple
structure of the INN and the lookup table, the search process can be completed within milliseconds.
In this paper, we implement TimelyNet on top of an existing end-to-end autonomous driving

pipeline, which is Trajectory-guided Control Prediction (TCP) [26]. To evaluate the TimelyNet-
integrated TCP pipeline, we conduct hardware-in-the-loop experiments in the CARLA simulator.
Specifically, we evaluate the driving performance and safety of TimelyNet by controlling the vehicle
to follow the predefined route in the CARLA simulator. Results show that TimelyNet follows
the predefined trajectory with the lowest mean absolute error (MAE) under all driving speeds
among all the considered methods. Moreover, it only introduces a small execution time overhead
of 2.5 ms in searching for the optimal subnet in each control period, which is short compared
with the autonomous driving pipeline’s inference latency of over 41.1 ms. More importantly,
TimelyNet can achieve the lowest wrong-lane driving rate of 4% and zero collisions during the
entire simulation, delivering the highest level of safety among all evaluatedmethods. To demonstrate
the generalizability of TimelyNet, we also integrate it with Interfuser [19], which is a multi-modal
autonomous driving pipeline, and run the system on Jetson AGX Orin embedded GPU platform.

Our main contributions can be summarized as follows:

• We design TimelyNet, a real-time neural architecture adaptation framework that jointly uses
a latency lookup table and an INN to efficiently determine the optimal subnet architectures.
TimelyNet generates subnets that meet the dynamic latency requirements within 2.5 ms,
which is short compared with the autonomous driving pipeline’s inference latency of over
41.1 ms.

• TimelyNet is integrated into both uni-modal and multi-modal end-to-end autonomous driving
pipelines. By replacing their image encoders with a supernet and jointly training the supernet
and the autonomous driving pipelines, TimelyNet enables the pipelines to adapt to dynamic
latency requirements at runtime without fine-tuning.

• We conduct hardware-in-the-loop experiments in CARLA to evaluate the performance of
TimelyNet. The evaluation results demonstrate that TimelyNet can improve the driving
performance and safety of the TCP and Interfuser pipelines, achieving the lowest trajectory
MAE and zero collisions.

The rest of the paper is organized as follows. In §2, we review the related work on autonomous
driving pipelines and the online DNN architecture adaptation approach. In §3, we present the
preliminaries of this work. In §4, we present the motivation and problem statement of TimelyNet.
In §5, we present the design of TimelyNet. In §6, we evaluate the driving performance of the TCP

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:4 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

and Intefuser pipelines equipped with TimelyNet. In §7, we discuss the limitations of TimelyNet
and future work. In §8, we conclude the paper.

2 Related Work
2.1 Autonomous Driving Pipelines
Conventional autonomous driving pipelines can be divided into two categories: modular and end-
to-end. A modular pipeline consists of multiple models, each of which is individually developed as
a stand-alone model for perception, planning, and control [9, 22]. However, modular pipelines are
susceptible to error propagation and often require significant overhead for training and managing
their models [5]. To address these drawbacks, end-to-end autonomous driving pipelines have
emerged to combine perception, planning, and control into a single model that can be jointly
trained. The end-to-end pipelines directly take raw sensor data as inputs to generate driving
control outputs [6, 15, 19, 26]. State-of-the-art end-to-end autonomous driving pipelines utilize
various neural networks (NNs) as encoders to extract features and generate inputs for subsequent
modules to predict waypoints or control commands. For example, TCP [26] employs a CNN-based
encoder to extract features from a single RGB image. The extracted features are then fed into
two modules to predict the waypoints and control actions. Moreover, Interfuser [19] utilizes two
encoders based on ResNet to extract features from RGB images and LiDAR point cloud data.
These features are then fused using a transformer decoder to accurately predict future waypoints.
Differently, UniAD [15] utilizes a single transformer-based encoder to extract the features from
multi-view images. However, the neural networks in both modular and end-to-end autonomous
driving pipelines are designed for fixed latency and lack adaptability to dynamic environments
in real-time autonomous driving systems. To address this limitation, we propose TimelyNet, an
approach that can be incorporated into existing autonomous driving pipelines to produce subnets
with varying latency and accuracy levels at runtime, to respond to changing driving conditions. In
this paper, we focus on the integration of TimelyNet into end-to-end autonomous driving pipelines.

2.2 DNN Architecture Adaptation
Existing studies of DNN architecture adaptation mainly focus on selecting the optimal model from
a set of pre-trained models at runtime or searching for the optimal model architecture from an
architecture-changeable DNN. For example, in [8], the authors prepare multiple object detection
models with different accuracy and latency levels and switch among them at runtime based on
the latency requirements. However, this approach can only switch among a limited number of
models due to the high memory usage required to store multiple models. Differently, the authors
in [3, 11, 25] train a dynamic DNN with a changeable architecture and formulate the search for
a suitable architecture instance as an optimization problem. In [25], a heuristic on-device search
algorithm is proposed to search for the optimal model architecture given the latency budget. It
requires at least 117.6 seconds to find the optimal architecture because of the large overhead of
evaluating the model performance during the search process. Moreover, the authors in [3] use
latency and accuracy predictors to accelerate the search process by avoiding the evaluation of the
model performance. However, the search time is still more than 200 ms. Current autonomous driving
pipelines require a latency of less than 100 ms to ensure real-time performance [16], rendering this
approach unsuitable for per-inference adaptation in the autonomous driving context. To address
this issue, TimelyNet employs a one-shot optimal architecture prediction approach that jointly
uses a lookup table and an INN to generate the subnet hyperparameters, instead of solving the
optimization problem using heuristic algorithms. As a result, it can adapt in real time to a wide
range of dynamic latency requirements in autonomous driving systems.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:5

Image Encoder

Measurement Encoder

Trajectory Branch

Control Branch

Action

FusionVehicle

Information

Steer

Brake

Throttle

Sensor data End-to-end model Control action

Fig. 1. End-to-end TCP Autonomous Driving Pipeline.

3 Preliminaries
In this section, we present the background about the end-to-end TCP autonomous driving pipeline,
supernet, and INN model.

3.1 End-to-end TCP Autonomous Driving Pipeline
In this paper, we focus on the end-to-end driving pipelines available in closed-loop simulations,
which can provide real-time dynamic driving information required by TimelyNet. We present the
design and implementation of TimelyNet for the TCP pipeline [26], which ranks the third in the
CARLA leaderboard 1.0 [4]. It achieves a 1.0% lower driving score but has fewer collisions compared
with the second-place pipeline, named Interfuser [19]. The first-place pipeline is not open-source.
The main objective of TCP is to safely and efficiently control an autonomous vehicle to reach a
target destination by following a predefined path provided by the global planner. As shown in
Fig. 1, TCP consists of a CNN-based image encoder, which takes a driving scene image as input to
generate the image feature map. Meanwhile, a multilayer perceptron (MLP)-based measurement
encoder takes the current movement speed and navigation information as inputs to produce the
measurement feature. Then, the image and measurement features are concatenated and fed into
the trajectory and control branches for generating a driving control action, denoted by 𝑎 = (𝑡, 𝑏, 𝑠),
where 𝑡 ∈ [0, 1], 𝑏 ∈ [0, 1] and 𝑠 ∈ [−1, 1] are the control signals for throttle, brake, and steering,
respectively. The detailed design of the TCP pipeline can be found in [26]. In this paper, TimelyNet
is applied to adapt the run-time neural architecture of the CNN-based image encoder, because it is
the most compute-intensive component in the TCP pipeline. Such an adaptation ability allows the
inference of the autonomous driving pipelines to meet the dynamic deadlines while maximizing
the control quality.

3.2 Supernet
Supernet [3] is an over-parameterized and dynamic NN from which subnets with distinct structures
can be sampled to provide a wide range of inference latency and accuracy levels. The sampled
subnets can complete the same task as the supernet, but with different inference latency and
accuracy. This offers great flexibility to meet dynamic latency and accuracy requirements in real
autonomous driving scenarios. Compared with other dynamic models, a key advantage of the
supernet is its high memory efficiency. Specifically, a supernet can generate numerous subnets with
a small memory footprint because the subnets can inherit weight parameters from the supernet.
For example, in [3], the supernet can generate more than 1019 subnets with latency levels ranging
from 150ms to 350ms, while requiring only 7.7M parameters to store all of them. In TimelyNet, we
utilize a supernet to replace the CNN-based image encoder, which is the most compute-intensive
NN in the TCP pipeline. At runtime, subnets are sampled from the supernet to provide suitable

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:6 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

x

𝒇

Forward

y

u1

u2

v1

v2

Invertible

Block

Shuffle Shuffle

𝒈 −𝒇

Backward
u2

v1

v2

𝒈

u1

Invertible

Block

Invertible

Block

𝒆𝒙𝒑 𝒆𝒙𝒑

Fig. 2. Illustration of an INN structure.

image encoders, ensuring that the execution of the end-to-end TCP pipeline can meet the dynamic
latency requirements.

3.3 Invertible Neural Network
INN [2, 27] is a type of flow-based generative model that can be used to map its data input, denoted
by 𝑥 , to a latent variable following a known prior distribution, denoted by 𝑦. The output 𝑦 can
then be used to generate samples of 𝑥 . Fig. 2 presents a typical architecture of the INN model that
consists of multiple invertible blocks, each of which includes the forward and backward processes.
Specifically, the forward process can be expressed as:

𝑣1 = 𝑢1, 𝑣2 = 𝑢2 ⊙ exp(𝑓 (𝑢1)) + 𝑔(𝑢1), (1)

where 𝑢1 and 𝑢2 are the first and second halves of the input 𝑥 , respectively; 𝑣1 and 𝑣2 are the first
and second halves of the output 𝑦, respectively; 𝑓 and 𝑔 are the scale and translation functions
which are often implemented by NNs, respectively; and exp denotes the exponential function.
Meanwhile, the backward process can be expressed as:

𝑢1 = 𝑣1, 𝑢2 = (𝑣2 − 𝑔(𝑣1)) ⊙ exp(−𝑓 (𝑣1)) . (2)

The functions 𝑓 and 𝑔 are shared by both the forward and backward processes, which is the key to
enabling the invertibility of the INN. The output 𝑦 of an invertible block is shuffled and split into
two parts, which are used as 𝑢1 and 𝑢2 inputs of the next blocks. The training process of INN aims
to train the forward process to maximize the likelihood of the data in the dataset, which can be
calculated using the value of the latent variable 𝑦 and the known prior distribution. After training,
an instance of 𝑦 can be sampled from its prior distribution and used as inputs of the backward
process to generate a corresponding instance of 𝑥 . One advantage of using INN in TimelyNet is
that it can model the distribution of the subnet hyperparameters given the latency requirements,
which can be extended to generate subnet hyperparameters given the latency requirements that
are not in the training set.

4 Motivation and Problem Statement
In this section, we present the motivation for the dynamic desired latency and then formulate an
optimization problem with the objective of finding a suitable NN architecture given the desired
latency. Then, we discuss the challenges in solving the formulated problem in real time and overview
our proposed approach.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:7

4.1 Motivation
The control process of end-to-end autonomous driving is divided into multiple control periods. The
duration of the control period 𝑖 is denoted by 𝐿𝑖 . The beginning time instant of a control period 𝑖 is
called a time step, denoted by 𝑡𝑖 . Starting from 𝑡𝑖 , the end-to-end autonomous driving pipeline is
executed within the control period 𝑖 to generate a new control action to be applied for the next
control period. The execution is supposed to be finished before the deadline of 𝑡𝑖 + 𝐿𝑖 . In other
words, the model execution time should be less than 𝐿𝑖 . Our motivational experiments presented
below show the intricate interplays among the setting of 𝐿𝑖 , vehicle speed, model size, and the
driving performance. The results suggest that adapting the setting of 𝐿𝑖 according to vehicle speed
and the corresponding adaptation of the model offer new opportunities for improving driving
performance.

The experiments are conducted based on the TCP pipeline, which use ResNet [12] as the image
encoder to extract features from the input image. We choose ResNet-34 and ResNet-152 as the
image encoders for the TCP pipeline, denoted by TCP-Res34 and TCP-Res152, to achieve different
trade-offs between accuracy and latency. TCP-Res152 has more convolutional layers and can
provide more accurate control actions than TCP-Res34, but it has a longer inference latency. We
use trajectory mean absolute error (MAE) as a metric to measure the driving performance, which is
the average distance between the vehicle’s actual position and the nearest position in the reference
path. The average is taken over all control periods. Lower trajectory MAE indicates better driving
performance, as the vehicle follows the predefined pathmore precisely. Note that, in the experiments,
the vehicle accelerates from 0 m/s to a specified maximum speed 𝑣max, and then maintains at the
maximum speed for the rest of the journey.

In the first experiment, we measure the trajectory MAE of TCP-Res152 under different settings
of the maximum speed 𝑣max and different settings of the control period 𝐿𝑖 . In order to set different
settings for 𝐿𝑖 , we conduct the experiments in the synchronous mode, where the duration of each
control period can be set manually, even when the same model is used in all control periods. With
this capability, we can investigate the sole impact of the control period setting on the driving
performance. The duration 𝐿𝑖 is selected from three options of 50ms, 100ms, and 150ms. The speed
𝑣max is chosen from three options of 5m/s, 10m/s, and 15m/s. Fig. 3 (a) shows the average and
standard deviation of the trajectory MAE values over 10 runs under each setting of 𝐿𝑖 and 𝑣max.
The trajectory MAE generally increases with the 𝐿𝑖 and 𝑣max. When a small 𝐿𝑖 setting is adopted,
the model is executed more frequently and each execution needs to be faster, representing higher
computational overhead. From the results shown in Fig. 3, to balance the computational overhead
and the path tracking performance, a good strategy is to adopt a larger setting for 𝐿𝑖 when the
speed is low and a smaller setting for 𝐿𝑖 when the speed is high.

In the second experiment, we compare the trajectory MAE of TCP-Res34 and TCP-Res152 under
different speeds. We use the asynchronous mode to conduct this experiment, where the duration
of each control period 𝐿𝑖 is determined by the inference latency of TCP-Res34 and TCP-Res152,
which are 45.4 ms and 104.1 ms, respectively. The speed 𝑣max is chosen from two options of 5m/s
and 15m/s. Fig. 3 (b) shows the mean and standard deviation of trajectory MAE of TCP-Res34 and
TCP-Res152 over 10 runs. The trajectory MAE of TCP-Res152 is lower and higher than that of
TCP-Res34 when the speed setting is 5 m/s and 15 m/s, respectively. The results indicate that faster,
but less accurate, models are more suitable for high-speed driving scenarios, while slower, but
more accurate, models are more suitable for low-speed driving scenarios. These two experiments
motivate us to adapt the model latency and accuracy in response to the vehicle’s movement speed
to achieve better driving performance. To this end, we propose to incorporate the supernet into

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:8 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

50ms 100ms 150ms0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Tr
aj

ec
to

ry
 M

AE
 (m

) 5m/s 10m/s 15m/s

(a)
5m/s 15m/s0.0

0.5

1.0

1.5

2.0

Tr
aj

ec
to

ry
 M

AE
 (m

) TCP-Res34
TCP-Res152

(b)

0 25 50 75 100
Time Step

40

60

80

100

120

De
sir

ed
 L

at
en

cy
 (m

s)

5

10

15

Sp
ee

d
(m

/s
)

Desired Latency Speed

(c)
Fig. 3. (a) Trajectory MAE of TCP-Res152 under different control periods and maximum speeds. (b)Trajectory
MAE of TCP-Res152 and TCP-Res34 under different maximum speeds. (c) Desired latency vs. movement
speed.

existing autonomous driving pipelines to generate subnets with different latency and accuracy
levels at runtime.

4.2 Dynamic Desired Latency
Based on the motivational experiment results, we propose to adapt the deadline of the 𝑖𝑡ℎ control
period and the corresponding desired latency 𝐿𝑖 based on the autonomous vehicle’s movement
speed and acceleration. In particular, we adopt a model, in which the vehicle issues a new control
action for every distance 𝑑𝑐 traveled. As a result, the desired latency 𝐿𝑖 is dynamically adjusted
based on the real-time movement speeds and accelerations of the autonomous vehicle. Specifically,
the desired latency 𝐿𝑖 is determined such that the autonomous driving pipeline is executed for
every movement distance 𝑑𝑐 . Formally, we define 𝐿𝑖 = min(𝐿𝑑 , 𝐿𝑢), where 𝐿𝑑 is the autonomous
vehicle’s movement time to travel a distance of 𝑑𝑐 and 𝐿𝑢 is a predefined upper limit of 𝐿𝑖 . Let
𝑣𝑖 and 𝜆𝑖 denote the autonomous vehicle’s movement speed and acceleration at the time step 𝑡𝑖 ,

respectively. Therefore, the solution for 𝐿𝑑 is given by 𝐿𝑑 =
−𝑣𝑖+

√
𝑣2
𝑖
+2𝜆𝑖𝑑𝑐

𝜆𝑖
if 𝜆𝑖 ≠ 0; and 𝐿𝑑 =

𝑑𝑐

𝑣𝑖
if

𝜆𝑖 = 0. Fig. 3 (c) shows the trace of 𝐿𝑖 over 100 control periods for an acceleration process from 0m/s
to 15m/s, for the settings of distance 𝑑𝑐 = 1m and 𝐿𝑢 = 100ms. From Fig. 3 (c), the 𝐿𝑖 decreases
as the movement speed 𝑣𝑖 increases. It shows that shorter execution latency is required when the
autonomous vehicle moves at a higher speed, which is consistent with our observation in the
second motivational experiment presented in §4.1.

4.3 Problem Formulation
The neural architecture adaptation problem, denoted by Opt, is solved at every time step 𝑡𝑖 to adapt
the execution latency of the TCP pipeline to the dynamic desired latency 𝐿𝑖 . Specifically, Opt aims to
find an optimal subnet of the supernet, with the objective of maximizing the autonomous vehicle’s
movement control quality subject to the latency constraints. Let 𝑆 = {𝑠1, . . . , 𝑠 |𝑆 |} denote the set of
possible subnets that can be sampled from the original supernet. In particular, the supernet is the
largest subnet that can be sampled, denoted by 𝑠𝑠𝑢𝑝 ∈ 𝑆 . Then, Opt is formulated as follows:

Maximize
𝑠𝑘 ∈𝑆

𝑄 (𝑠𝑘), s.t. 𝐿(𝑠𝑘) ≤ 𝐿𝑖 , (3)

where 𝑄 (𝑠𝑘) and 𝐿(𝑠𝑘) are the control quality and execution latency of the TCP pipeline with
the subnet 𝑠𝑘 . We assume the movement control action generated by the TCP pipeline with the
supernet 𝑠𝑠𝑢𝑝 is the best action that leads to the least discrepancy between the autonomous vehicle’s
actual positions and reference positions. Let 𝑎𝑠𝑢𝑝 and 𝑎𝑘 denote the control actions generated by
the TCP pipeline with the supernet 𝑠𝑠𝑢𝑝 and subnet 𝑠𝑘 , respectively. Recall that 𝑎 = (𝑡, 𝑏, 𝑠) is a tuple
of the control actions, including the throttle, brake, and steering. Then, the control quality 𝑄 (𝑠𝑘) is

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:9

Fig. 4. Design overview of TimelyNet.

calculated as: 𝑄 (𝑠𝑘) =
∑2

𝑖=0 (1 −
|𝑎𝑘 [𝑖]−𝑎𝑠𝑢𝑝 [𝑖] |

Δ𝑎 [𝑖])/3, where Δ𝑎 is the maximum action difference for
each element in 𝑎.

4.4 Challenges and Approach
Solving Opt faces the following practical challenge. The search process to solve Opt may use an
excessive amount of time, although the control quality 𝑄 (𝑠𝑘) and latency 𝐿(𝑠𝑘) for any candidate
subnet 𝑠𝑘 can be measured with a validation dataset. For instance, with a supernet that is capable
of generating subnets with execution latencies in [41ms, 83ms], the search space is 9 × 1010. The
solving latency of Opt using a genetic algorithm (GA)-based optimization solver is about 199.3 ms.
However, in autonomous driving, the latency of the driving pipeline should be less than 100 ms to
ensure real-time performance [16]. As a result, the time required to solve Opt is unacceptable.
A potential approach to solve Opt in real time is to build a lookup table consisting of multiple

entries, each of which stores an optimal subnet that can maximize the control quality while
satisfying a certain desired latency. At runtime, the lookup table is queried to find the optimal
subnet corresponding to the desired latency 𝐿𝑖 . However, the lookup table has the following
limitations. First, a lookup table can only store a limited number of subnets with discrete latency
levels. Thus, it may not provide the solution for all possible desired latencies, especially in dynamic
driving scenarios. Second, it is impractical to profile all possible subnets to identify the globally
optimal subnet for each latency level. For instance, our experiments show that the process of
measuring the control quality and latency of a subnet takes about 8 seconds. As such, the profiling
process for all 9 × 1010 subnets of a supernet can take about 22,831 years. In this paper, we can
build a lookup table based on a dataset consisting of the profiling results for some subnets, which
can be obtained in a reasonable amount of time. As a result, the built lookup table may not always
provide a subnet to generate the best control action for the dynamic desired latency. To further
improve the control quality, we additionally train an INN to learn the relationship between the
subnet hyperparameters and the execution latency of the subnets. Then, the learned INN is used
to generate a subnet for a certain latency requirement level with better control quality that is not
included in the dataset used to build the lookup table. Unlike the lookup table, the INN can provide
the subnet solutions for the continuous latency requirement. At runtime, given a specific desired
latency 𝐿𝑖 , either the lookup table output or the INN output is used as the final subnet solution.
TimelyNet chooses the smaller one between the two options, because our evaluation shows that
this policy leads to better driving performance.

5 Design of TimelyNet
In this section, we present the design overview of TimelyNet, the training process of the TCP
pipeline with the supernet, and the subnet generation process.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:10 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

5.1 Design Overview
Given an existing end-to-end autonomous driving pipeline, our objective is to replace the most
time-consuming module with a supernet module, thereby generating subnets with varying latency.
To achieve the neural network architecture adaptation, we collect a dataset of the architecture
hyperparameters, latency, and control quality of different subnets sampled from the supernet. Using
this dataset, we can construct a lookup table and train an INN to predict the optimal architecture
hyperparameters of the subnet based on the dynamic latency requirements. Between the outputs
of the INN and the lookup table, TimelyNet chooses the one with fewer parameters to perform
inference, so that the used subnet can have a higher chance to meet the desired latency.
In this paper, we implement TimelyNet on top of the end-to-end TCP pipeline [26]. TimelyNet

replaces the CNN-based image encoder in the TCP pipeline with a supernet. Then, the TCP pipeline
with the supernet is trained using an imitation learning approach. The training process will be
presented in §5.2. At runtime, given a desired latency 𝐿𝑖 at each time step 𝑡𝑖 , TimelyNet runs the
following three steps to yield a movement control action for autonomous driving, as illustrated in
Fig. 4. First, the lookup table and INN model are executed to generate two sets of hyperparameters
of the subnet, denoted by 𝐻𝐿 and 𝐻𝐼 , respectively. The design of the lookup table and INN model
will be detailed in §5.3. Then, between 𝐻𝐿 and 𝐻𝐼 , the one with fewer weights is selected as the
final choice, denoted by 𝐻 . Second, the subnet with the hyperparameter set 𝐻 is sampled from
the supernet. Finally, the obtained subnet is integrated into the TCP pipeline as an image encoder
to extract the features of the autonomous vehicle’s current input image. The TCP pipeline with
the subnet is executed to generate an action for controlling the throttle, brake, and steering of the
autonomous vehicle.

5.2 Offline Training of TCP with Supernet
Table 1 shows the latency of TCP-Res152 and TCP-Res34 models, respectively. The inference latency
of the image encoder accounts for 91.7% and 78.6% of the total latency of TCP-Res152 and TCP-
Res34, respectively. The results indicate that the image encoder is the most time-consuming module
in the TCP pipeline. Thus, we replace the original image encoder with a supernet-based image
encoder to generate subnets with varying latency. Fig. 5 presents the structure of the supernet. The
supernet includes multiple CNN units, each of which consists of a number of convolutional blocks,
denoted by 𝑑sup,𝑖 . Each convolutional block in the unit 𝑖 has a specific number of input channels,
denoted by𝑤sup,𝑖 . A subnet with hyperparameter 𝐻 sampled from the supernet is characterized by
its elastic depth and width parameters, denoted by 𝑑sub,𝑖 and𝑤sub,𝑖 , respectively. In other words,
𝐻 = {𝑑sub,𝑖 ,𝑤sub,𝑖 |𝑖 = 1, ..., 𝑁sup}, where 𝑁sup is the number of CNN units in the supernet. By
selecting 𝑑sub,𝑖 ∈ [0, 𝑑sup,𝑖] and𝑤sub,𝑖 ∈ [1,𝑤sup,𝑖], we can generate multiple subnets with various
latency and control quality levels. If the 𝑑sub,𝑖 = 0, the unit 𝑖 is not included in the subnet.
Given the required execution latency range, a supernet with certain values of 𝑁sup, 𝑑sup,𝑖 , and

𝑤sup,𝑖 is integrated into the TCP pipeline. Then, we adopt an imitation learning-based approach to
train the TCP pipeline with the supernet as an end-to-end autonomous driving pipeline. We utilize
a driving expert to generate a training dataset and train the TCP pipeline with the supernet using
the dataset to emulate the expert’s driving behaviors. Specifically, the expert driver uses a deep
reinforcement learning (DRL) agent to learn a movement policy through predefined routes from
extra information such as the bird-eye-view segmentation images provided by the simulator. In
real-world autonomous vehicles, the expert driver could also be a human. Then, the trained expert
driver is used to create a ground-truth dataset, denoted by 𝐷 = {𝑠, 𝑎∗}, where 𝑎∗ is the movement
control action generated by the expert driver at the system state 𝑠 . The state 𝑠 encompasses the
sensor data, including the captured RGB image, movement speed, navigation command, and target

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:11

Table 1. Latency of TCP pipeline with ResNet-
152 and ResNet-34 as image encoders.

TCP-Res152 TCP-Res34

Latency (ms) Total Encoder Total Encoder
104.1 95.4 45.4 35.7

Number of Conv blocks

Unit i

𝑑𝑠𝑢𝑝,𝑖 = 4 3

Number of channels

𝑤𝑠𝑢𝑝,𝑖 = 1024
Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Conv

Unit i

Unit i+1

512
sample sample

...

Conv

Conv

...

Fig. 5. Structure of supernet-based image encoder.

destination of the autonomous vehicle. Finally, the dataset 𝐷 = {𝑠, 𝑎∗} is used to train the TCP
pipeline, in which the 𝑎∗ is considered as the ground-truth action for the state 𝑠 . The detailed
training process of the TCP pipeline can be found in [26].
The above training process drives the TCP pipeline with the supernet to learn to generate

optimal control actions under dynamic driving scenarios. Note that, the TCP pipeline mainly uses
the subnets of the trained supernet to generate actions at runtime. Thus, it is desirable to retrain
the TCP pipeline with the subnet to recover the accuracy loss due to the subnet sampling. However,
compute-intensive retraining is infeasible at runtime since it violates the timeliness requirement.
To address this issue, we retrain the TCP pipeline with a certain set of subnets in the offline training
phase. First, we randomly select the values of 𝑑sub,𝑖 and𝑤sub,𝑖 to create a subnet. Then, we retrain the
TCP pipeline with the subnet using the training dataset 𝐷 = {𝑠, 𝑎∗}. These two steps are repeated
for a certain number of randomly selected subnets, denoted by 𝐾 .

5.3 Subnet Generation
In what follows, we first present our approach to collect a training dataset used to construct the
lookup table as well as to train the INN model. Then, we show the min selection method that yields
either the lookup table result or the INN result as the final subnet, with which the execution of the
TCP pipeline can be completed within the latency constraint while maximizing the autonomous
vehicle’s movement control quality.

5.3.1 Collection of Training Dataset. Let 𝐿min and 𝐿max denote the minimum and maximum latency
requirement levels, respectively. The range of [𝐿min, 𝐿max] is divided into multiple levels, by an
interval of Δ𝐿. As discussed in §4.3, it is impractical to profile all possible subnets of the supernet and
use the profiling results to find an optimal subnet for each latency level 𝐿𝑘 ∈ [𝐿min, 𝐿max]. Thus, we
begin with randomly sampling a certain number of subnets, denoted by 𝑆𝑡𝑟 = {𝑠1, . . . , 𝑠 |𝑆𝑡𝑟 |}. Each
subnet 𝑠𝑖 is characterized by a set of hyperparameters, denoted by 𝐻𝑖 . We measure the execution
latency 𝐿(𝑠𝑖) and control quality 𝑄 (𝑠𝑖) of every subnet 𝑠𝑖 ∈ 𝑆𝑡𝑟 . As a result, we obtain a dataset,
denoted by 𝐷𝑡𝑟 = {(𝐻𝑖 , 𝐿(𝑠𝑖), 𝑄 (𝑠𝑖)) |𝑖 = 1, . . . , |𝑆𝑡𝑟 |}. Then, we check if the dataset 𝐷𝑡𝑟 includes at
least 20 samples with the latency 𝐿(𝑠𝑖) ∈ [𝐿𝑘 , 𝐿𝑘 + 1𝑚𝑠] for all 𝐿𝑘 ∈ [𝐿min, 𝐿max]. Finally, we profile
the latency and quality control of additional subnets and include them in the dataset 𝐷𝑡𝑟 until there
are at least 20 samples within any latency interval of 1ms. Such a process ensures that the dataset
𝐷𝑡𝑟 fully covers the latency levels in [𝐿min, 𝐿max].

5.3.2 Construction of Lookup Table. We use the above dataset 𝐷𝑡𝑟 to construct a lookup table
with multiple entries, each of which stores a subnet 𝑠𝑘 that can meet the latency requirement 𝐿𝑘 .
Specifically, 𝑠𝑘 is chosen as the subnet with the highest control quality 𝑄 (𝑠𝑘) among the subnets
in the 𝐷𝑡𝑟 whose latency is less than or equal to 𝐿𝑘 . As a result, the lookup table is constructed
as 𝑇 = {(𝐿𝑘 , 𝐻𝑘) |𝑘 = 1, . . . , |𝑇 |}, where 𝐻𝑘 is the hyperparameter of subnet 𝑠𝑘 . Due to the size

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:12 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

limit of the dataset 𝐷𝑡𝑟 and the discrete nature of the lookup table, the 𝐻𝑘 may not be the optimal
hyperparameter for the desired latency 𝐿𝑖 calculated at runtime.

5.3.3 Training of INN. To overcome the limitations of the lookup table, we also train an INN to
model the relationship between latency and hyperparameters. We use the dataset 𝐷𝑡𝑟 to train the
INN. We only keep the subnets with control quality 𝑄 (𝑠𝑖) ≥ 𝑄𝑚𝑖𝑛 , where 𝑄𝑚𝑖𝑛 is a predefined
threshold, to ensure that the INN can generate subnets with acceptable control quality. Let 𝑓𝐼 denote
the forward process of the INN, which can be formulated as: [𝐿(𝑠𝑘), 𝑦] = 𝑓𝐼 (𝐻𝑘), where 𝑦 is the
hidden variable that follows a Gaussian distribution with zero mean and unit variance, denoted
by 𝑝 (𝑦). The value of 𝑦 can be used to calculate the likelihood of the hyperparameters 𝐻𝑘 given
the latency 𝐿(𝑠𝑘). Accordingly, the backward process can be formulated as: 𝐻𝑘 = 𝑓 −1

𝐼
([𝐿(𝑠𝑘), 𝑦]).

During the training of the INN, we train the forward process which takes the 𝐻𝑘 as input to predict
the latency 𝐿(𝑠𝑘) and maximize the likelihood of the hyperparameters 𝐻𝑘 . The hyperparameters
𝐻𝑘 are encoded as one-hot vectors. The [𝐿(𝑠𝑘), 𝑦] has the same dimension as the one-hot vectors.
The loss function consists of two parts as follows.

LPred = ∥𝐿𝑝𝑟𝑒𝑑−𝐿(𝑠𝑘)∥2, LMLE = argmax
𝜃

log𝑝 (𝐻𝑘 |𝐿(𝑠𝑘)),

L = LPred + LMLE,
(4)

where the prediction loss of LPred is used to minimize the difference between the predicted latency
of 𝐿𝑝𝑟𝑒𝑑 and the measured latency of 𝐿(𝑠𝑘). Meanwhile, the maximum-likelihood estimation loss
of LMLE is used to learn the mapping between the distribution 𝑝 (𝑦) of the hidden variable 𝑦
and the distribution 𝑝 (𝐻𝑘 |𝐿(𝑠𝑘)). As we know the distribution of 𝑝 (𝑦), we can calculate the log-
likelihood log𝑝 (𝐻𝑘 |𝐿(𝑠𝑘)) according to the change of variables theorem, which can be calculated
as

∑
𝐻 log𝑝 (𝑦) + log∥det

(
𝜕𝑓𝐼 (𝐻)
𝜕𝐻

)
∥, where det is the determinant of the Jacobian matrix 𝜕𝑓𝐼 (𝐻)

𝜕𝐻
of

the INN model. Using the dataset 𝐷𝑡𝑟 , we train the INN model to minimize the loss function L.

5.3.4 Subnet Generation with Min Selection. At runtime, the built lookup table and trained INN
are used to generate the subnets that can meet the desired latency 𝐿𝑖 at each time step 𝑡𝑖 . Then, we
select from the outputs of the INN and the lookup table to generate the hyperparameters of the
subnet. The detailed procedure is as follows. First, we calculate the desired latency 𝐿𝑖 of the current
control period 𝑖 given the information of 𝑣𝑖 and 𝜆𝑖 . Let Δ𝑡 denote the time required to query the
INN and lookup table. The inference latency of the TCP pipeline is 𝐿𝑖

𝑇
= 𝐿𝑖 −Δ𝑡 . Next, we query the

lookup table to find a subnet with the hyperparameter 𝐻𝐿 that can meet the latency requirement of
𝐿𝑖
𝑇
. In the case that 𝐿𝑖

𝑇
does not fall within the latency levels stored in the lookup table, we take

a subnet within the lookup table with a latency closest to 𝐿𝑖
𝑇
as the subnet solution. Then, we

use the concatenation of 𝐿𝑖
𝑇
and 𝑦𝑖 as inputs of the backward process of the INN to generate an

additional subnet with the hyperparameters 𝐻𝐼 . Note the 𝑦𝑖 is set to zero, i.e., the mean value of
the Gaussian distribution 𝑝 (𝑦). With the two sets of hyperparameters 𝐻𝐿 and 𝐻𝐼 , we can obtain
the total numbers of convolutional blocks and channels of the corresponding subnets. Therefore,
we can estimate the numbers of weights of the generated subnets and select the one with fewer
weights as the final hyperparameters 𝐻 of the subnet, such that the selected subnet has a higher
probability of meeting the latency requirement.

6 Evaluation
In this section, we present the hardware information, implementation details, and the evaluation of
TimelyNet.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:13

6.1 Evaluation Settings
6.1.1 Hardware Platform. We use two computers to implement and evaluate the performance of
TimelyNet. They run TimelyNet and CARLA simulator, respectively, and are connected through an
Ethernet network to transmit the sensor data and control actions of the autonomous vehicles. The
CARLA simulator runs on a computer with an Intel Xeon Silver 2.2GHz CPU and one NVIDIA
Quadro RTX 4000 GPU with 8 GB memory. TimelyNet runs on a computer with an Intel Xeon CPU
with 3.3GHz CPU and one NVIDIA Quadro RTX 8000 GPU with 48 GB memory. The computation
capability of the NVIDIA Quadro RTX 8000 GPU is 16.3 tera floating-point operations per second
(TFLOPS), which is equivalent to commercial autonomous vehicles computing platforms, such as
Tesla FSD with 18.45 TFLOPS [21]. We also implement TimelyNet on Jetson AGX Orin embedded
GPU with 64 GB memory and 5.3 TFLOPS computation capability.

6.1.2 Implementation and Settings of TimelyNet. We implement TimelyNet using PyTorch 1.8. We
replace the image encoder of the TCP pipeline with a supernet encoder consisting of 5 convolutional
units. The 𝑑sup,𝑖 is set to 2, meaning that we have three choices for the number of convolutional
blocks in each unit. The 𝑤sup,𝑖 of 5 units are set to 64, 256, 512, 1024, and 2048, respectively,
which follows the design of ResNet50. We adopt imitation learning to train the TCP pipeline
with a supernet by emulating the driving behavior from another driving expert, called Roach [30].
Specifically, Roach is trained with bird’s-eye view (BEV) images and meta-information from the
CARLA simulator using deep reinforcement learning. We use Roach as the driving expert to collect
the dataset using the predefined routes in Town 04 and Town 06 of the CARLA simulator [26].
The total number of routes is 242, which includes 182 and 60 routes in Town 04 and Town 06,
respectively. As a result, the training dataset has 96,369 steps and 6,138 validation steps. Each step
consists of the sensor data, the control action, and the navigation information of the autonomous
vehicle controlled by Roach. The TCP pipeline with the supernet is trained over 120 epochs with
a batch size of 16 and the Adam optimizer with a learning rate of 0.0001. Then, we use 𝐾 = 50
additional epochs to train the TCP pipeline with the randomly selected subnets. To evaluate the
driving performance of TimelyNet, we define a test route in Town 05 of the CARLA simulator,
which does not appear in the training dataset. The total length of the routes is 500 meters. The
maximum speed and acceleration of the autonomous vehicle are set to 15m/s and 7m/s2, as the
driving scenarios of the test routes are urban driving. We compare the performance of TimelyNet
under different 𝑑𝑐 settings of 0.5, 1.0, 1.5, 2.0, and 2.5 meters. The default setting for 𝑑𝑐 is set to
1.0 meters, as it has the best performance among all the settings. The upper bound of the desired
latency is set to 100 ms, which is the fastest reaction time of the human driver [16]. The lower
bound of the desired latency is 47 ms, calculated based on the maximum speed and acceleration
of the autonomous vehicle. The autonomous vehicle is controlled by TimelyNet to follow the
predefined trajectory from the global path planner. The test route is repeated 10 times to evaluate
the driving performance of TimelyNet.

The INN model is implemented using the FrEIA library [1]. It consists of 4 invertible units, each
of which consists of one input layer, one hidden layer with 512 units, and one output layer. To
build the profiling dataset, we randomly sample 10,000 different subnets and measure their latency
and control quality using 100 image samples. We ensure the number of subnets within a latency
interval is higher than 20 to ensure that the INN model can learn the distribution of the latency and
architecture of the subnets. The hyperparameters 𝐻 are converted to a one-hot vector with a length
of 72. The hidden variable 𝑦 is a vector with a length of 70. Each value of 𝑦 follows a Gaussian
distribution with a mean of zero and a variance of one. 90% of the samples are used for training
and validation, while the remaining samples are used for testing. The INN model is trained for 200
epochs with a batch size of 16 and the Adam optimizer with a learning rate of 0.0001.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:14 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

Table 2. Execution Latency Breakdown.

Supernet Smallest Subnet

Latency (ms) Total Encoder Total Encoder
84.3 75.2 41.1 33.9

Table 3. Solution Searching Latency.

DNN INN Lookup Min&Max selection
Latency (ms) 3.2 2.2 0.3 2.5

6.2 Evaluation of TimelyNet and Subnet Searching Baselines
6.2.1 Baselines. We evaluate the subnet searching performance of the following five methods:

(1) Min selection, denoted as Min, is our proposed method described in §5.3.4.
(2) Max selection, denoted as Max, is a variant of the min selection but selects the subnet with

more parameters to maximize the control quality.
(3) DNN is the method that uses a DNN to predict the subnet hyperparameters given the latency

requirement at runtime.
(4) INN is the method only uses an INN to predict the subnet hyperparameters at runtime.
(5) Lookup table is the method only uses the subnet solution obtained from the lookup table.

6.2.2 Evaluation Metrics. We evaluate the latency of TimelyNet and use the following four metrics
to evaluate the performance of the subnet searching methods.

(1) Searching latency is the time to search the optimal subnet.
(2) Miss rate is calculated as 𝑁𝑜/𝑁𝑡𝑜𝑡𝑎𝑙 , where 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of control periods and

𝑁𝑜 is the number of control periods in which the execution of the driving models exceeds the
desired latency.
(3) Average control quality is calculated as 𝑄 =

∑𝑁𝑡𝑜𝑡𝑎𝑙

𝑛=1 𝑄𝑛
𝑐 /𝑁𝑡𝑜𝑡𝑎𝑙 , where 𝑄𝑛

𝑐 is the control
quality of each generated subnet. The control quality of the subnet that exceeds the desired latency
is set to zero.

(4) Trajectory MAE is the average distance between the vehicle’s actual position and the nearest
position in the predefined path, where the average is taken over all control periods. Specifically,
it is calculated as 1

𝑁𝑡𝑜𝑡𝑎𝑙

∑𝑁𝑡𝑜𝑡𝑎𝑙

𝑛=1 |𝑥𝑡𝑖 − 𝑥
′
𝑡𝑖
| + |𝑦𝑡𝑖 − 𝑦

′
𝑡𝑖
|, where (𝑥𝑡𝑖 , 𝑦𝑡𝑖) is the actual position of the

vehicle and (𝑥 ′
𝑡𝑖
, 𝑦

′
𝑡𝑖
) is the nearest position in the predefined path at time step 𝑡𝑖 . Lower trajectory

MAE indicates better driving performance, because the vehicle can follow the predefined path
more accurately.

6.2.3 Evaluation Results. In this subsection, we present the latency results and the evaluation
results of the subnet searching performance of TimelyNet and other baseline methods.

Execution Latency of TimelyNet:Table 2 shows the execution latency results of the TimelyNet
using the supernet image encoder and the smallest subnet image encoder. The total latency range
of TimelyNet is from 41.1 ms to 84.3 ms. The latency of the supernet image encoder is from 33.9 ms
to 75.2 ms, which accounts for 89% and 82% of the total latency, respectively. The latency range
of TimelyNet can cover the possible model latency in all driving scenarios. As stated in §6.1.2,
the latency ranges from 47 ms to 100 ms. Thus, the execution latency of TimelyNet can meet the
dynamic desired latency in our driving scenarios. In addition, when the supernet’s latency is smaller
than the desired latency, TimelyNet can use the supernet to generate the action, for the best control
quality.

Searching Latency: Table 3 shows the mean latency of searching a subnet using TimelyNet
and other searching baseline methods. We execute each method 100 times and calculate the mean
latency. The searching latency of all the methods is negligible compared with the inference latency
of TimelyNet. Specifically, the lookup table achieves the smallest mean latency of 0.3 ms. The INN
and DNN methods achieve a mean latency of 2.2 ms and 3.2 ms, respectively. Min selection and
max selection, which switches between the INN and lookup table, achieve the same latency of 2.5

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:15

0 10 20 30 40 50
Miss Rate (%)

DNN
Lookup

INN
Max

Min (ours)

Fig. 6. Miss rate.

0 10 20 30 40
Avg Control Quality (%)

DNN
Lookup

INN
Max

Min (ours)

Fig. 7. Average Control Quality.

0.0 0.5 1.0 1.5
Trajectory MAE (m)

DNN
Lookup

INN
Max

Min (ours)

Fig. 8. Trajectory MAE.

ms. The latency of the selection methods is less than 6% of the latency of TimelyNet, ensuring
that the searching process only uses a small amount of available inference time. We also test the
latency of solving the optimization problem using the Genetic Algorithm (GA) in [3], which is
54.08 ms. Compared with solving the optimization problem, the INN and lookup table methods
achieve around 80 times speedup.

Subnet Searching Performance: Fig. 6 and Fig. 7 illustrate the miss rate and average control
quality of different subnet searching methods. The desired latency is calculated based on the speed
and acceleration of the ego vehicle at each time step. The inference latency of TimelyNet and the
control quality of the generated subnet are recorded at each time step. By comparing the recorded
inference time with the desired latency, we can calculate the miss rate. In Fig. 6, min selection
achieves the lowest miss rate of 4%, while INN and lookup table achieve a higher miss rate of 30%
and 18%, respectively. The INN and lookup table cannot consistently find the suitable subnet across
all desired latency ranges, primarily due to the limited number of subnets in the training dataset. By
taking the subnet with fewer parameters from INN and the lookup table, min selection can select
the subnet with lower latency and have a higher chance of meeting the desired latency. Different
from min selection, max selection selects the subnet with more parameters and higher latency,
resulting in a higher miss rate than min selection. The DNN method has a high miss rate because
it cannot learn the mapping between the architecture and latency well. In Fig. 7, min selection
achieves the highest average control quality of 45%, which improves the average control quality by
7% and 5%, compared with INN and lookup table, respectively. Although max selection attempts to
achieve higher control quality by selecting the larger subnet, the high miss rate leads to a lower
average control quality of 30%, however. Lastly, the DNN method achieves the lowest average
control quality of 22%. The high miss rate and low control quality of DNN indicate that it cannot
learn the mapping between the architecture and latency well.

Driving Performance: Fig. 8 shows the trajectory MAE of different subnet searching meth-
ods. Similarly, min selection achieves the lowest trajectory MAE of 0.41 meters, meaning that
autonomous vehicles can follow the predefined path with the lowest error. It improves the trajec-
tory MAE by 0.2 meters and 0.12 meters compared with INN and the lookup table, respectively.
The improvement over the lookup table indicates that the lookup table cannot select the optimal
subnet under all desired latencies. Jointly using INN can help mitigate the limitation of the lookup
table, because INN can find better subnets under some desired latencies. The max selection method
has a higher trajectory MAE of 1.04 meters because it attempts to select the subnet with higher
latency, which exceeds the desired latency and leads to a higher trajectory MAE. The DNN method
has the highest trajectory MAE of 0.9 meters. In summary, the min selection method can better
adapt to the desired latency and achieve better control quality in terms of trajectory MAE than the
other methods.

6.3 Performance of TimelyNet on TCP Pipeline
In this section, we present the details of the comparison between TimelyNet on TCP pipeline with
other driving baselines.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:16 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

(b) Collision with wall(a) Wrong-lane driving

Fig. 9. Examples of wrong-lane driving and collision with walls. Black dots in (a) represent the predefined
path.

6.3.1 Baselines: The main target of TimelyNet is to improve existing autonomous driving pipelines
under dynamic deadlines, and it is implemented on top of the TCP pipeline. We compare TimelyNet
with several variants of the original TCP pipeline and the model switch method. The compared
methods are described as follows:
(1) TimelyNet-Max is the TCP pipeline that uses the supernet as the image encoder. Thus, it

uses the maximum number of parameters.
(2) TimelyNet-Min is the TCP pipeline that uses the subnet with the minimum number of

parameters as the image encoder.
(3) TCP-Res152 is the TCP pipeline that uses ResNet152 as the image encoder.
(4) TCP-Res101 is the TCP pipeline that uses ResNet101 as the image encoder.
(5) TCP-Res50 is the TCP pipeline that uses ResNet50 as the image encoder.
(6) TCP-Res34 is the TCP pipeline that uses ResNet34 as the image encoder.
(7) Model switch is a method in [8] that stores multiple models with the same function but

different latency-accuracy trade-offs and switches among these models at runtime to adapt to the
end-to-end dynamic deadline. To ensure fast switching, the models are stored in memory to avoid
the lengthy processing of loading from disk. Similar to [8], we store five variants of the TCP pipeline
with different image encoders. The five image encoders are selected from the subnet dataset to
train the INN and the lookup table. Specifically, we store the model with a latency ranging from 40
ms to 80 ms with an interval of 10 ms. For each latency, we select the subnet architecture in the
lookup table and store the corresponding model in memory.
(8) Once-for-all is the method in [3] that uses an iterative evolution algorithm to search for

the subnet architecture that maximizes the model accuracy given the latency constraints. In this
method, a latency predictor and an accuracy predictor are trained to predict the latency and model
accuracy of the sampled subnet, which can avoid the measurement of the latency and accuracy
on a specific dataset. The latency predictor is a lookup table that stores the latency of each layer
in the supernet. The accuracy predictor is an MLP model that predicts the accuracy of the subnet.
The MLP model has 4 hidden layers with 400 units in each layer. The total searching time of the
once-for-all method is 54.08 ms.

6.3.2 Evaluation Metrics. To evaluate the driving performance, we use miss rate and trajectory
MAE. To evaluate the driving safety, we measure the wrong-lane driving rate and the number of
collisions, which are the common infractions in the CARLA simulator. We use driving score as the
overall metric to represent driving safety. Finally, we also measure the memory usage of all the
methods. The newly introduced metrics are defined as follows:

(1) Wrong-lane driving rate, denoted as 𝑅, is the percentage of the route that the autonomous
vehicle deviates from the predefined path over 0.8 meters to the total length of the route. The

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:17

0 20 40 60
Miss Rate (%)

TimelyNet
TCP-Res152
TCP-Res101

TCP-Res50
TCP-Res34

TimelyNet-Max
TimelyNet-Min

Switch
Once-for-all

(a) Miss rate.
5m/s 10m/s 15m/s0.0

0.5

1.0

1.5

2.0

2.5

Tr
aj

ec
to

ry
 M

AE
 (m

) TimelyNet
TCP-Res152
TCP-Res101

TCP-Res50
TCP-Res34
TimelyNet-Max

TimelyNet-Min
Switch
Once-for-all

(b) Trajectory MAE.

Fig. 10. Miss rate and trajectory MAE of TimelyNet and baselines on TCP.

autonomous vehicle is supposed to follow the predefined route in the center of the lane. If the
vehicle deviates from the predefined path over 0.8 meters, it will cross the edge of the lane and be
considered as wrong-lane driving.
(2) Number of collisions, denoted as 𝑁𝑐𝑜𝑙 , is the number of collisions that the autonomous

vehicle makes.
(3) Driving score, denoted as 𝑆 , evaluates the driving safety of the autonomous driving pipeline

in CARLA. It considers all the infractions that the autonomous vehicle makes during the simulation,

including wrong-lane driving and collisions. It is calculated as (1 − 𝑅) ×
𝑁𝑐𝑜𝑙∏
𝑘=0

𝑃𝑘 , where 𝑃𝑘 is the

penalty factor for collisions, which is set to 0.5, as defined in the CARLA Leaderboard challenges.
The driving score 𝑆 ranges from 0 to 100%. Higher scores indicate better driving safety.

(4) Memory usage is the memory that each baseline method uses to store the models.

6.3.3 Evaluation Results. In this subsection, we show the driving performance, driving safety, and
memeory usage of TimelyNet with other driving baselines in the CARLA simulator.

Driving Performance: Fig. 10 shows the miss rate and the trajectory MAE of TimelyNet and
the eight baselines under different maximum speeds: 5 m/s, 10 m/s, and 15 m/s. From Figs. 10 (a)
and (b), TimelyNet achieves a miss rate of 2% and the lowest trajectory MAE of 0.02 meters, 0.14
meters, and 0.41 meters under maximum speeds of 5 m/s, 10 m/s, and 15 m/s, respectively. The low
miss rate and trajectory MAE indicate that adapting the subnet architecture to different vehicle
speeds and accelerations helps the autonomous vehicle follow the predefined path more accurately.
The improvement of TimelyNet over the baselines is more significant at higher maximum speeds.
TimelyNet-Min achieves zero miss rate, as it always selects the subnet with the minimum number of
parameters to satisfy the desired latency. However, it has a higher trajectory MAE than TimelyNet,
because the minimum subnet cannot achieve the best driving performance. In contrast, TimelyNet-
Max has higher miss rates due to larger inference latency, leading to a higher trajectory MAE. To
show different trade-offs using different backbones, we also compare TimelyNet with the TCP
pipeline using different variants of ResNet. The miss rate decreases from TCP-Res152 to TCP-Res34,
because ResNet34 has the lowest inference latency among all the ResNet variants. However, the
trajectory MAE of TCP-Res50 is the lowest among all the ResNet variants, because it has a better
balance between inference latency and control quality. We also compare TimelyNet with the model
switch method and the once-for-all method, which are two methods that can adapt to the dynamic
deadline. The miss rate of the once-for-all method is 52.8%, which is high due to the longer searching
time of the evolution algorithm. The model switch method has a miss rate of 20%, which is lower
than the once-for-all method but higher than TimelyNet. The trajectory MAE of the model switch
method is 0.58 meters, which is higher than that of TimelyNet. The limited improvement of the

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:18 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

(a) Wrong-lane Driving Rate0

5

10

15

20

25

W
ro

ng
-la

ne
 D

riv
in

g
Ra

te
 (%

)

(b) Number of Collisions0

1

2

Nu
m

be
r o

f C
ol

lis
io

ns
0 0 0 0 0 0

(c) Driving Score0

20

40

60

80

100

Dr
iv

in
g

Sc
or

e
(%

)

TimelyNet
TCP-Res152

TCP-Res101
TCP-Res50

TCP-Res34
TimelyNet-Max

TimelyNet-Min
Switch

Once-for-all

Fig. 11. Infractions and driving scores of TimelyNet and baseline methods on TCP

Table 4. Memory usage of TimelyNet and the baselines on TCP

TimelyNet Timely-
Net-
Min

Timely-
Net-
Max

Switch Once for all TCP-Res

Memory
usage (MB)

super-
net

Lookup-
table INN super-

net
predi-
ctor 152 101 50 34

608.1 0.2 1.8 340.0 608.1 1904.4 608.1 2.8 747.9 595.3 367.0 287.0

model switch method is due to the limited number of models stored in memory, which cannot cover
all the desired latency ranges. The results demonstrate that TimelyNet can achieve better driving
performance by adapting the subnet architecture to different vehicle speeds and accelerations.
The improvement over the TCP pipeline using ResNet variants demonstrates that TimelyNet can
improve the driving performance of the TCP pipeline by incorporating a dynamic supernet image
encoder. Furthermore, the improvement over the model switch method and the once-for-all method
demonstrates that the key to achieving better driving performance is the large subnet space and
the fast searching time of TimelyNet.

Infractions and Driving Safety: In particular, we evaluate the infractions and driving safety
of TimelyNet and the baseline methods at the maximum speed of 15 m/s, because the trajectory
MAE of all methods is the highest at this speed. A large trajectory MAE may lead to two types of
infractions: wrong-lane driving and collisions with walls. Fig. 9 shows examples of wrong-lane
driving and collisions with walls. If the autonomous vehicle deviates from the predefined path
by more than 0.8 meters, it will cross the boundary of the lane and be considered as wrong-lane
driving. Moreover, if the autonomous vehicle deviates to the right, it may collide with the wall on
the right side of the road. Fig. 11 shows the infractions and driving safety results of TimelyNet and
the baseline methods. In Fig. 11 (a), TimelyNet achieves the lowest wrong-lane driving rate of 4.1%
because of the lowest trajectory MAE, while TimelyNet-Max and TCP-Res152 have the highest
wrong-lane driving rates of 21%. Moreover, in Fig. 11 (b), only TimelyNet-Max and TCP-Res152
have collisions, while TimelyNet and the other methods do not have any collisions. Specifically,
TimelyNet-Max and once-for-all have one collision, while TCP-Res152 has two collisions. This is
because they have the highest trajectory MAE at the maximum speed of 15 m/s, leading to collisions
with the wall on the right side of the road. In Fig. 11 (c), with the lowest wrong-lane driving rate
and zero collisions, TimelyNet achieves the highest driving score of 95.9%. TCP-Res152 has the
lowest driving score of 19.65% due to the high wrong-lane driving rate and two collisions. Although
model switch, TimelyNet-Min, and TCP-Res34 do not have any collisions, they have higher wrong-
lane driving rates than TimelyNet, leading to lower driving scores. The results demonstrate that
TimelyNet can achieve safer driving by adapting the subnet architecture to different vehicle speeds
and accelerations to reduce the trajectory MAE.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:19

Supernet Min subnet10

50

90

130

La
te

nc
y

(m
s) Total Latency Encoder Latency

(a) Execution Latency of Interfuser with TimelyNet.

0 10 20 30
Timestep

40
60
80

100
120

La
te

nc
y

(m
s) TimelyNet Desired Latency

(b) Response to Desired Latency.

Fig. 12. Execution Latency and Latency Response of Interfuser with TimelyNet.

Memory Usage: We also conduct a comparison of memory usage between TimelyNet and
baseline methods, as shown in Table 4. TimelyNet requires 608.1 MB, 1.8 MB, and 0.2 MB to store
the supernet, INN, and lookup table, respectively. The INN and lookup table only require a small
amount of memory, which is negligible compared with the supernet. TimelyNet-Max requires
608.1 MB to store the driving model with the supernet, while TimelyNet-Min needs only 340 MB
to store the smallest subnet. The model switch method consumes 1904.4 MB to store five models
with varying latencies, which is three times the memory usage of TimelyNet. With such significant
memory consumption, the model switch method only achieves limited improvement in driving
performance compared with TimelyNet. In addition, the once-for-all method consumes 608.1 MB
to store the supernet and 2.8 MB to store the latency and accuracy predictors, which is similar to
TimelyNet. Meanwhile, the TCP pipeline with different ResNet backbones consumes 747.9 MB,
595.3 MB, 367.0 MB, and 287.0 MB to store the ResNet152, ResNet101, ResNet50, and ResNet34
models, respectively. Compared with TCP-Res152, TimelyNet can enhance driving performance
while reducing memory usage. However, compared with TCP-Res101, TCP-Res50, and TCP-Res34,
TimelyNet consumes more memory, but it can achieve better driving performance. Although
modern autonomous driving hardware offers larger memory capacities, simultaneous execution
of multiple tasks, like driving OS, often results in memory constraints for autonomous driving
pipelines. Therefore, integrating TimelyNet into existing autonomous driving pipelines to enhance
driving performance while maintaining minimal memory overhead is essential.

6.4 Performance of TimelyNet with Interfuser
In this section, we evaluate the performance of TimelyNet with Interfuser, one of the state-of-the-art
multi-modal end-to-end autonomous driving pipelines.

Experiment Setup: Interfuser ranks the second in the CARLA Leaderboard challenges for
closed-loop evaluation, while the first-place pipeline is not open source. Interfuser combines multi-
view RGB images and LiDAR data to generate the control actions of the autonomous vehicle.
Specifically, Interfuser also uses ResNet-based encoders to extract features from the RGB images
of 4 cameras and LiDAR data. The ResNet-based encoders are shared across all cameras, while
the LiDAR data is processed by a separate encoder. To implement TimelyNet on Interfuser, we
replace the ResNet-based image encoders with the supernet, as the image encoder has a larger size
and more parameters than the LiDAR encoder in the original Interfuser. Then, we use a similar
method to train the INN and the lookup table as in the TCP pipeline. We compare the performance
of TimelyNet on Interfuser with similar baselines, including TimelyNet-Max, TimelyNet-Min, the
model switch method, and Interfuser with different ResNet-based encoders.

Execution Latency and Desired Latency Response: Fig. 12 (a) shows the execution latency
of the Interfuser pipeline with TimelyNet. The whole pipeline has a latency range of 43.3 ms to
85.1 ms, with the encoder contributing 33.9 ms to 75.2 ms latency. The results demonstrate that
TimelyNet can be integrated into other end-to-end autonomous driving pipelines to achieve a

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:20 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

0 20 40 60
Miss Rate (%)

TimelyNet
Inter-Res152
Inter-Res101

Inter-Res50
Inter-Res34

TimelyNet-Max
TimelyNet-Min

Switch
Once-for-all

(a) Miss rate.

0.0 0.5 1.0 1.5
Trajectory MAE (m)

TimelyNet
Inter-Res152
Inter-Res101

Inter-Res50
Inter-Res34

TimelyNet-Max
TimelyNet-Min

Switch
Once-for-all

(b) Trajectory MAE.
Fig. 13. Miss rate and trajectory MAE of TimelyNet and baselines on Interfuser.

diverse latency range. Moreover, Fig. 12 (b) shows the response of the Interfuser pipeline with
TimelyNet to different desired latency. We set the desired latency to 50 ms, 60 ms, 70 ms, and 80
ms, respectively. For each desired latency, we record the inference latency of the Interfuser with
the generated subnet for 10 time steps. The results show that the inference latency can be adjusted
precisely according to the desired latency. The overall results demonstrate the generalizability of
TimelyNet to existing end-to-end autonomous driving pipelines.

Driving Performance: We evaluate the miss rate and trajectory MAE of TimelyNet and the
baselines on Interfuser, as shown in Fig. 13. We measure the miss rate and trajectory MAE under
the maximum speed of 15 m/s, because the trajectory MAE of all methods is the highest at this
speed. Similar to the results on the TCP pipeline, TimelyNet achieves a low miss rate of 5.2% and
the lowest trajectory MAE of 0.51 meters. Among the baselines with variants of ResNet, Interfuser-
Res50 achieves the lowest trajectory MAE of 0.58 meters. For the model switch method, it can
achieve a lower trajectory MAE of 0.54 meters than other baselines, but higher than TimelyNet. The
once-for-all method has the highest miss rate and a trajectory MAE of 1.02 meters. The iterative
searching process makes it unsuitable for real-time applications. These results demonstrate the
generalizability of TimelyNet to multi-modal end-to-end autonomous driving pipelines.

6.5 TimelyNet on Jetson AGX Orin
We also evaluate the performance of TimelyNet on the Jetson AGX Orin, a widely used embedded
device for autonomous driving applications. We design a new supernet with a smaller number of
parameters to ensure the latency range of TimelyNet on the embedded device is within 50 ms to
100 ms. The TCP pipeline with the new supernet consumes 125.6 MB of memory. Table 5 shows the
execution latency of the TCP pipeline with the new supernet and the smallest subnet on Orin. The
new TCP pipeline achieves a latency range from 35.4 ms to 75.3 ms, with the encoder contributing
28.9 ms to 67.4 ms latency. Similarly, we collect the subnet dataset on Orin and train the INN and
the lookup table. As CARLA is not supported on Orin, we collect a data trace in CARLA using
the TCP pipeline on the computers introduced in §6.1.1 with the new supernet and replay the
data trace on Orin. Specifically, every 50 ms, we record a data frame, which includes sensor data,
vehicle speed and acceleration, and the control action generated from the new TCP pipeline with
the supernet. We replay the data trace on Orin and measure the miss rate and control quality using
the data trace. Table 6 shows the miss rate and control quality of TimelyNet on Orin. TimelyNet
achieves a miss rate of 6.3% and the highest control quality of 47.4% on Orin. TimelyNet-Max has
the highest miss rate of 78.3%, which results in a lower control quality of 11.7%. TimelyNet-Min
achieves a 0% miss rate, but it has the lowest control quality of 8.7%. The results demonstrate that

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:21

Table 5. Execution Latency Breakdown on Orin.

Supernet Smallest Subnet

Latency (ms) Total Encoder Total Encoder
75.3 67.4 35.4 28.9

Table 6. Performance of TimelyNet on Orin.

TimelyNet TimelyNet-Max TimelyNet-Min
Miss Rate (%) 6.3 78.3 0

Control Quality (%) 47.4 11.7 8.7

TimelyNet can also improve driving performance on the embedded device by adapting the subnet
architecture to different latency requirements.

7 Limitations and Discussions
While TimelyNet demonstrates promising results in adapting neural architectures for autonomous
driving, there are two limitations: the offline profiling overhead and the generalizability of Time-
lyNet. First, the offline profiling process requires significant time to train the supernet and build
the profiling dataset. Training an efficient supernet is a complex task that requires a large amount
of data and computational resources [7]. In our experiments, it takes more than a day to train
the supernet and subnets. Moreover, as mentioned in §4.4, profiling one subnet takes about 8
seconds, and building the profiling dataset of 10,000 subnets takes about 22 hours. Second, once
deployed on a specific platform, TimelyNet may not generalize well to other platforms or hardware
configurations. It requires retraining the supernet and rebuilding the latency lookup table to adapt
to the new platform. Although the adaptation process can be done offline, it still requires extra
time and resources. Considering these limitations, a natural way to adopt TimelyNet is that the
car manufacturer pre-profiles the supernet on a representative dataset before deploying it to the
autonomous driving system. If the sensor setup or hardware platform is changed, the car manufac-
turer can retrain the supernet, rebuild the latency lookup table, and update the TimelyNet on the
vehicle through an over-the-air update.

Future work can reduce the overhead of the offline profiling process and improve the generaliz-
ability of TimelyNet. For instance, the search space of the supernet can be reduced by applying
techniques such as pruning the unimportant paths in the supernet [18, 29]. Batch normalization
calibration [7] can be employed to improve the performance of the sampled subnets. Another
interesting direction is to extend TimelyNet to address modular designs and transformers. Time-
lyNet can be applied to each of the models in the modular design to generate subnets with diverse
latency and control quality at runtime. The assignment of the time budget to the modules will
need fine considerations. Transformer models have been used in autonomous driving pipelines for
perception, prediction, and planning tasks [6, 15]. Due to the complex structure, their inference
times are usually longer than those of CNN models. Designing supernets for transformers is still
an open but interesting question.

8 Conclusion
In this paper, we present TimelyNet, a real-time neural architecture adaptation approach for
autonomous driving pipelines. TimelyNet integrates a dynamic DNN model called supernet into
an existing autonomous driving pipeline named TCP to meet dynamic deadlines. By sampling
subnets from the supernet, TimelyNet aims to maximize control quality while meeting the latency
requirements. To efficiently determine the subnet architecture on a per-inference basis, we employ
a one-shot optimal architecture prediction approach. TimelyNet jointly uses a lookup table and
an INN to predict the subnet architecture based on the specified latency requirement. Hardware-
in-the-loop experiments have been conducted to evaluate TimelyNet and five driving baselines
including variants of the TCP pipeline in the CARLA simulator. The results show that TimelyNet
can follow the predefined trajectory with the lowest errors under all driving speeds among all the

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

67:22 Jiale Chen, Duc Van Le, Yuanchun Li, Yunxin Liu, and Rui Tan

baseline methods. In addition, TimelyNet can achieve the lowest wrong-lane driving rate and zero
collisions, delivering safe driving during the entire simulation. More importantly, it only introduces
a small overhead of 2.5 ms to search for the optimal subnet in each control period, around 80x faster
than solving the optimization problem using heuristic search methods. The results demonstrate
that integrating TimelyNet into the TCP pipeline can achieve better driving performance with only
a small overhead of subnet searching time. We also evaluate TimelyNet on Jetson AGX Orin and
Interfuser to show its extensibility.

References
[1] Lynton Ardizzone, Till Bungert, Felix Draxler, Ullrich Köthe, Jakob Kruse, Robert Schmier, and Peter Sorrenson.

2018-2022. Framework for Easily Invertible Architectures (FrEIA). https://github.com/vislearn/FrEIA.
[2] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and Ullrich Köthe. 2019. Guided image generation with

conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019).
[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. 2020. Once for All: Train One Network and

Specialize it for Efficient Deployment. In International Conference on Learning Representations (ICLR).
[4] CARLA. 2023. CARLA Autonomous driving Leaderboard. https://leaderboard.carla.org/.
[5] Pranav Singh Chib and Pravendra Singh. 2023. Recent advancements in end-to-end autonomous driving using deep

learning: A survey. IEEE Transactions on Intelligent Vehicles 9, 1 (2023), 103–118.
[6] Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger. 2022. Transfuser:

Imitation with transformer-based sensor fusion for autonomous driving. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 11 (2022), 12878–12895.

[7] Xiangxiang Chu, Shun Lu, Xudong Li, and Bo Zhang. 2023. Mixpath: A unified approach for one-shot neural architecture
search. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). 5972–5981.

[8] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E Gonzalez, and Ion Stoica. 2022. D3: a dynamic deadline-driven
approach for building autonomous vehicles. In Proceedings of the Seventeenth European Conference on Computer Systems
(EuroSys).

[9] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Matthew AWright, Joseph E Gonzalez, and Ion Stoica. 2021. Pylot: A modular
platform for exploring latency-accuracy tradeoffs in autonomous vehicles. In 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 8806–8813.

[10] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. 2020. Single path
one-shot neural architecture search with uniform sampling. In European conference on computer vision (ECCV). Springer,
544–560.

[11] Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, Jian Tang, and Lydia Y Chen. 2021. Legodnn: block-grained
scaling of deep neural networks for mobile vision. In Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking (MobiCom). 406–419.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). 770–778.

[13] Zhijian He, Bohuan Xue, Xiangcheng Hu, Zhaoyan Shen, Xiangyue Zeng, and Ming Liu. 2024. Robust embedded
autonomous driving positioning system fusing LiDAR and inertial sensors. ACM Transactions on Embedded Computing
Systems 23, 1 (2024), 1–26.

[14] Pengfei Hu, Yuhang Qian, Tianyue Zheng, Ang Li, Zhe Chen, Yue Gao, Xiuzhen Cheng, and Jun Luo. 2025. t-READi:
Transformer-Powered Robust and Efficient Multimodal Inference for Autonomous Driving. IEEE Transactions on
Mobile Computing 24, 1 (2025), 135–149.

[15] Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tianwei Lin, Wenhai
Wang, et al. 2023. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 17853–17862.

[16] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang, and Jason Mars. 2018. The
architectural implications of autonomous driving: Constraints and acceleration. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS). 751–766.

[17] Arnav Malawade, Mohanad Odema, Sebastien Lajeunesse-DeGroot, and Mohammad Abdullah Al Faruque. 2021. SAGE:
A split-architecture methodology for efficient end-to-end autonomous vehicle control. ACM Transactions on Embedded
Computing Systems 20, 5s (2021), 1–22.

[18] Yuiko Sakuma, Masato Ishii, and Takuya Narihira. 2023. DetOFA: Efficient Training of Once-for-All Networks for
Object Detection using Path Filter. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
1333–1342.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

TimelyNet: Adaptive Neural Architecture for Autonomous Driving with Dynamic Deadline 67:23

[19] Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. 2023. Safety-enhanced autonomous driving using
interpretable sensor fusion transformer. In Conference on Robot Learning (CORL). PMLR, 726–737.

[20] Wei Sun and Kannan Srinivasan. 2022. On the feasibility of securing vehicle-pavement interaction. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 1 (2022), 1–24.

[21] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Bannon, Bill McGee, Benjamin Floering, Ankit Jalote,
Christopher Hsiong, Sahil Arora, Atchyuth Gorti, and Gagandeep S. Sachdev. 2020. Compute Solution for Tesla’s Full
Self-Driving Computer. IEEE Micro 40, 2 (2020), 25–35.

[22] Baidu Apollo team. 2017. Apollo: Open Source Autonomous Driving. https://github.com/ApolloAuto/apollo.
[23] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. 2021. Scaled-YOLOv4: Scaling Cross Stage Partial

Network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 13029–13038.
[24] Ruiqi Wang, Hanyang Liu, Jiaming Qiu, Moran Xu, Roch Guérin, and Chenyang Lu. 2023. Progressive neural

compression for adaptive image offloading under timing constraints. In 2023 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 118–130.

[25] Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang, Yaqin Zhang, and Yunxin Liu. 2023.
AdaptiveNet: Post-deployment Neural Architecture Adaptation for Diverse Edge Environments. In Proceedings of the
29th Annual International Conference on Mobile Computing and Networking (MobiCom). 1–17.

[26] Penghao Wu, Xiaosong Jia, Li Chen, Junchi Yan, Hongyang Li, and Yu Qiao. 2022. Trajectory-guided Control Prediction
for End-to-end Autonomous Driving: A Simple yet Strong Baseline. In Neural Information Processing Systems (NeurIPS).

[27] Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang, Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, and Tie-Yan
Liu. 2020. Invertible image rescaling. In European conference on computer vision (ECCV). Springer, 126–144.

[28] Saehanseul Yi, Tae-Wook Kim, Jong-Chan Kim, and Nikil Dutt. 2023. EASYR: E nergy-Efficient A daptive Sy stem
R econfiguration for Dynamic Deadlines in Autonomous Driving on Multicore Processors. ACM Transactions on
Embedded Computing Systems 22, 3 (2023), 1–29.

[29] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen Qian, and Changshui Zhang. 2020. Greedynas: Towards
fast one-shot nas with greedy supernet. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 1999–2008.

[30] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. 2021. End-to-End Urban Driving by
Imitating a Reinforcement Learning Coach. In Proceedings of the IEEE/CVF international conference on computer vision
(ICCV).

[31] Qi Zhu, Wenchao Li, Hyoseung Kim, Yecheng Xiang, Kacper Wardega, Zhilu Wang, Yixuan Wang, Hengyi Liang, Chao
Huang, Jiameng Fan, et al. 2020. Know the unknowns: Addressing disturbances and uncertainties in autonomous
systems. In Proceedings of the 39th International Conference on Computer-Aided Design (ICCAD). 1–9.

ACM Trans. Embedd. Comput. Syst., Vol. xx, No. xx, Article 67. Publication date: September 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Autonomous Driving Pipelines
	2.2 DNN Architecture Adaptation

	3 Preliminaries
	3.1 End-to-end TCP Autonomous Driving Pipeline
	3.2 Supernet
	3.3 Invertible Neural Network

	4 Motivation and Problem Statement
	4.1 Motivation
	4.2 Dynamic Desired Latency
	4.3 Problem Formulation
	4.4 Challenges and Approach

	5 Design of TimelyNet
	5.1 Design Overview
	5.2 Offline Training of TCP with Supernet
	5.3 Subnet Generation

	6 Evaluation
	6.1 Evaluation Settings
	6.2 Evaluation of TimelyNet and Subnet Searching Baselines
	6.3 Performance of TimelyNet on TCP Pipeline
	6.4 Performance of TimelyNet with Interfuser
	6.5 TimelyNet on Jetson AGX Orin

	7 Limitations and Discussions
	8 Conclusion
	References

