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Abstract—Control and communication technologies are key
building blocks of cyber-physical systems (CPSes) that can
improve the efficiency of the physical processes. However, they
also make a CPS vulnerable to cyberattacks that can cause
disruptions or even severe damage. This paper focuses on one
particular type of CPS cyberattack, namely the time delay
attack (TDA), which exploits vulnerabilities in the communication
channels to cause potentially serious harm to the system. Much
work proposed for TDA detection is tested offline only and under
strong assumptions. In order to construct a practical solution to
deal with real-world scenarios, we propose a deep learning based
method to detect and characterize TDA. Specifically, we design
a hierarchical long short-term memory model to process raw
data streams from relevant CPS sensors online and continually
monitor embedded signals in the data to detect and characterize
the attack. Moreover, various strategies of interpreting the
outputs of the model are proposed, which allow the user to
tune the performance based on different objectives. We evaluate
our model on two representative types of CPS, namely power
plant control system (PPCS) and automatic generation control
(AGC)1. For TDA detection, our solution achieves an accuracy
of 92% in PPCS, compared with 81% by random forests (RFs)
and 72% by k-nearest neighbours (kNNs). For AGC, our solution
achieves 98% accuracy, compared with 74% by RFs and 71% by
kNNs. It also reduces the mean absolute error in the delay value
characterization from about six to two seconds in the PPCS, and
from about three seconds to half a second in the AGC, with about
3x to 4x shorter reaction latency in both systems.

Index Terms—Smart grid; cyber-physical system; time delay
attack; attack detection; attack characterization; deep learning

I. INTRODUCTION

A cyber-physical system (CPS) exploits information and
communication technologies (ICT) to manage the dynamics
of complex physical systems and improve operation efficiency
and agility [1]. However, the very introduction of ICT makes
them vulnerable to various cyberattacks [2]. A common de-
fense strategy relies on air gaps or firewalls to keep intrusions
at bay. However, the need for more resilient solutions than
perimeter defense is clearly evidenced by various recent intru-
sions such as stepping stone attacks [3] and insider attacks [4].
In general, strategic attackers can breach the defense parameter
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to disrupt, sabotage, or harm mission-critical systems such as
industrial control [5]–[7].

Well studied examples of effective CPS cyberattacks include
false data injection (FDI) and denial of service (DoS) [8],
[9]. FDI attacks corrupt key data in transmission. Generally,
they require the attacker to breach sophisticated cryptographic
protection of relevant data packets [8]. On the other hand, DoS
attacks may flood relevant transmission channels with bogus
traffic to prevent legitimate data packets from going through.
They can be achieved without breaking any cryptographic
protection to effect nevertheless powerful impacts such as
system shutdown [9]. It can be relatively easy to detect and
mitigate – e.g., using a rate-limiting firewall – a DoS attack
that operates by brute force [10].

Compared with the above attacks, the time delay attack
(TDA) [11] is arguably more challenging to deal with. The
TDA simply delays (maliciously) data packets in transmission.
Unlike the FDI attack, it does not require any parsing or
modification of the packet content. Also unlike a flooding
DoS attack, a carefully launched TDA may not obviously
affect the pattern of traffic in transmission, which makes it
difficult to detect. However, TDAs can cause great harm in
a CPS; e.g., closed-loop control in mission-critical systems
(e.g., power grids) depends critically on timely feedback to
adapt its operations accurately in real time. TDAs are capable
of affecting both the safety and the stability of the system
and can cause considerable damage if left undefended [12],
[13]. The effects of TDAs have been studied extensively
in the literature [12]–[16]. In principle, high-precision clock
synchronization can help secure against the TDA. However,
secure clock synchronization is highly non-trivial; it is itself
prone to various known cyberattacks even if performed over
encrypted channels [17]. Thus, it is imperative to devise a
defense-in-depth solution to address the TDA resiliently, in an
orthogonal manner to any secure clock synchronization that
might be available.

In this paper, we solve the TDA detection and characteriza-
tion problems without assuming secure clock synchronization.
In the case of positive detection, the characterization further
estimates the malicious delay. Existing solutions for detecting
and characterizing the TDA have the following major draw-
backs. (i) As a real-world CPS can be highly complex, it
in general precludes accurate system modeling and requires
approximation or modeling under controlled environment set-
tings [18], [19]; this issue causes difficulties for solutions that
require such modeling to expose the effects of any TDAs [20]–
[26]. (ii) Long streams of continuously generated time-series
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data in typical systems cannot be handled by commonly used
sequential data analysis methods like simple RNNs [27], which
make it hard for existing methods to analyze required features
of the attack for good performance [28], [29]. (iii) The need
for timely online detection and characterization to mitigate
an attack’s impact in real-time precludes offline (postmortem)
analysis of collected data sequences that last until the attack
is long gone [12], [13], [20]–[23], [28], [30]–[32].

To overcome the aforementioned challenges, in this paper
we propose a deep learning (DL) based approach, which
directly uses data traces from relevant sensors to learn requisite
key features of the system to expose any ongoing TDAs.
Being data driven, it removes the need to model a priori the
(likely complex) CPS accurately and comprehensively. It has
the following key desirable features:
Robustness: The proposed feature extraction and delay es-
timation are robust, in that they allow accurate predictions
from sensor data streams even in the presence of realistic
measurement noises.
Continuous online monitoring: The DL refines information
available incrementally in progressive data streams to catch a
TDA as early as possible and thereby enable timely responses
and mitigation, as opposed to the postmortem analysis of
signals commonly found in existing work.
Integrated detection-characterization learning model: The
proposed hierarchical long short-term memory model admits
simultaneous detection and characterization synergistically,
i.e., sharing the same backbone learning features between the
two tasks, which has higher computational efficiency than
independent solutions for the two respective problems.
User-centric tunable interpretation: The proposed method
admits a spectrum of interpretations for the model’s outputs,
among which the user can make specific choices to prioritize
different performance aspects such as reaction latency (i.e.,
delay from the attack’s start to the detection and character-
ization results) and overall accuracy. This tunability of our
solution is independent of the DL model training; it thus does
not require any form of retraining for the same.

We apply the proposed solution to TDAs against a power
plant control system (PPCS) and a power grid automatic gener-
ation control system (AGC) to evaluate its performance. These
systems are representative examples of real-world mission-
critical CPSes under closed-loop control. Diverse evaluation
results show that our solution can efficiently and accurately
detect an ongoing TDA and characterize the delay value
using online data streams from relevant sensors. Comparison
results with conventional learning-based solutions including
k-nearest neighbor (kNN), random forest (RF), and vanilla
LSTM substantiate the advantages of our solution within the
state of the art.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces our system and
attack models. Section IV presents the proposed learning-
based solution to the TDA detection and characterization
problems. Section V presents extensive evaluation results to
illustrate our solution and compare its performance with other
machine learning based solutions. Section VI concludes.

II. RELATED WORK

CPS anomaly detection is an active area of research [33],
[34]. Much previous work addresses the monitoring of control
centers, without emphasizing related communication channels,
which can be comparatively easier to exploit [11]. Machine
learning-based methods have been recently applied for the
anomaly detection with promising results. Advances in this
approach have been reviewed [35]; typical examples employ
conventional machine learning algorithms like support vector
machine (SVM) [31] and DL models like LSTMs [30], [32]
and generative adverserial networks (GANs) [28]. In [31], the
authors compare two models, a one-class SVM and a one-layer
LSTM, both working on anomaly detection in the context of a
water treatment testbed. Under the same test setup, prior work
[32] has used LSTM in conjunction with cumulative sum to
detect anomalies. A GAN method has also been proposed [28],
in which the GAN discriminator is trained using actual data
samples and generator resconstructed data is used to detect
possible anomalies. This aforementioned prior work does not
consider TDA in the anomaly detection.

For the detection and characterization of TDA specifically
in CPSes, existing work can be divided into two basic ap-
proaches: model-driven and data-driven.

Model-driven approaches focus on system modeling using
complex mathematical models [20]–[26], [36]. For example, a
modified controller with a built-in time-delay estimator has
been proposed [23] for a continuous linear time-invariant
system [36]. Also, multi-model internal controls have been
decoupled [24] in order to create an approximation of the
subject system. Their work assumes that there are no inter-
actions between various partial systems present in the CPS. In
[25], systems in which the signals being transmitted satisfy
monotonicity and derivability properties are considered. In
[26], recurrent least square methods are used to perform
delay attack detection. However, their work assumes that the
delay attack is introduced gradually into the system, and it
can only detect TDAs of specific delay values, namely the
pre-defined ones in the model settings. These model-driven
methods require to create models for the target CPSes, a
challenging if not impossible task for often highly complex
and heterogeneous systems in practice.

Data-driven approaches, on the other hand, do not rely
on any modeling assumptions and are often designed to be
robust to noisy inputs. They thus show promise for being gen-
eralizable to diverse real-world situations. A limited number of
studies exist that use a data-driven approach for TDA detection
and characterization. In [30], a method of anomaly detection
is proposed that analyzes the content of relevant data packets.
They first create a feature representation, or “signature,” for
the baseline behavior of normal network packets. They then
provide this signature to a Bloom filter for flagging anomalous
network packets. Because it depends on a thorough history
of the network behavior of every packet, it is a postmortem
analysis that is only applicable to systems that have been
traced extensively under comprehensive operational scenarios.
In [37], a neural network model of system state variables
is used to estimate TDA, in a hybrid attempt that combines
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both the model-driven and data-driven approaches. The model-
driven component of the solution [37] still needs a good
enough approximation of the system to define the system state.

Another data-driven method has used a simple LSTM
network [29] to characterize the TDA. However, they make
several assumptions that may not be generally true of real-
world scenarios. For example, the presence of an TDA is
assumed known a priori, so that the detection problem is left
unaddressed. In this paper, we build on the prior work [29] to
achieve a DL-based solution with improved practicality and
completeness.

III. TDA IN CYBER-PHYSICAL SYSTEMS

In this paper, we address TDAs against PPCS and AGC
in power grids. These systems are representative of mission-
critical closed-loop CPS control that is widely deployed in the
real world. Before detailing our solution, in the following, we
first define the system and attack models.

A. System Model

We model a discrete-time closed-loop CPS control system.
It consists of sensors, actuators, and controllers (e.g., PLCs).
The sensors measure the system state, which is used as
input for the controllers to determine their control decisions.
The controllers transmit the corresponding commands to the
actuators, which execute the commands and change the system
state accordingly, thus completing the closed loop. The system
state is subject to various disturbances, such as measurement
noises, control setpoint changes, etc.

A typical PPCS structure is shown in Fig. 1, which is
from ThermoPower [38], an open-source library based on
OpenModelica [39]. As shown in Fig. 1, the power plant
has three inputs: the power control (PC) signal, the gas flow
rate (GR) control signal, and the void fraction (V F ) control
signal. Both PC and V F are maintained by a proportional-
integral-derivative (PID) control algorithm, whereas GR is
given directly as a user input setpoint. A typical PID controller
compares the difference between the user input setpoint and
the measured value to find an accurate and responsive correc-
tion to the control. The PPCS monitors its power generation,
but the measurements are subject to additive random noises
existing in the PPCS.

In power grids, AGC maintains the system frequency at
a nominal value (e.g., 60Hz) by adjusting setpoints of gen-
erators. It also maintains the net power interchanges among
neighboring areas at scheduled values [40], where the in-grid
area is usually operated by a utility and different areas are
connected by tie-lines. A typical AGC structure is shown
in Fig. 2, which we have modeled using the Powerworld
simulator [41] and contains generators participating in the
AGC. The AGC controller receives, over a communication net-
work, tie-line flow measurements of each area’s power export
from their respective setpoints, as well as the power system’s
frequency, and computes the area control error (ACE). For the
ith area, ACEi =αi ·∆PEi

+βi ·∆fi, where αi and βi are
constants, ∆PEi

and ∆fi are the ith area’s power export from
their respective setpoints and deviations of the grid frequency
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Fig. 1: Overview of PPCS system model with TDA.
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Fig. 2: Overview of AGC system model with TDA. The delay
module attacks the ACE in one of the generators in the grid.

from the standard frequency, respectively. The control center
sends the ACE back to the power grid generators to adjust
the setpoints of the generators’ primary control loop. In the
system, the tie-line flow measurements are subject to additive
random noises existing in the power grid.

The above process is repeated every AGC cycle, which is
often two to four seconds. For both the PPCS and AGC, when
there is no malicious delay in the system, the control command
Y k received at the power plant at time slot t can be defined
as:

Y k[t] =Ck[t], (1)

where Ck respectively specifies one of the three control signal
types, for k∈ (PC,GR, V F ), in the PPCS. For the AGC, the
ACE is sent by the controller to generators in the relevant
control areas, i.e., k∈ (ACE1, ACE2, ..ACEm) where m is
the number of areas in the system.

B. Attack Model

Similar to prior work [12], [13], [29], the adversary com-
promises the communication path (e.g., through a malware-
infected router) between the controller and the actuator to
delay the transmission of control commands to the actuator,
i.e., Y k[t] (refer to the delay module in Figs. 1 and 2). An
example of the same is given in [26], where a traffic shaping
virtual machine (VM) is used to create dummy bridges that
forces the signal to loop through such bridges and cause
signal delays. More generally, even in the absence of malicious
attacks, anomalous delays might enter the system due to
natural faults or failures, although we will focus on the (more
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challenging) attack context in this paper. Note that malicious
delays can cause instability in the system even when the
number of compromised channels is limited. Assuming that
a TDA happens at time slot t= t̄ and the attacker delays the
controller commands by τ seconds (τ = 0 is no attack), the
input command signal Y k[t] received at the power plant under
attack becomes

Y k[t] =

{
Ck[t] t< t̄

Ck[t− τ ] t≥ t̄.
(2)

Note that, as shown in (2), the adversary does not need to
modify the content of the control command in the TDA. Since
the TDA occurs in a closed-loop feedback system, it can
destabilize or otherwise corrupt the running state of the system
and cause damage nevertheless.

In this paper, we do not assume trustworthy clock syn-
chronization between the controller and the power plant. It
is because traditional clock synchronization protocols based
on round trip time (RTT) measurements (e.g., NTP) are
susceptible to attacks [17] and later novel solutions (e.g., [4])
may not be available in a particular deployment. Hence, we
adopt a defense-in-depth paradigm to detect and characterize
a TDA, independent of any orthogonal efforts to synchronize
clocks securely in the CPS.

IV. PROPOSED SOLUTION

We propose a novel solution to detect and characterize a
TDA in a CPS, focusing particularly on its practical implica-
tions. We first give a mathematical formulation of the problem.
We then propose a DL model to provide continual periodic
assessments of the status of any ongoing TDA. Importantly,
the DL uses a specialised training protocol targeted to our
application domain.

A. Problem Formulation

In general, the TDA causes actuators to execute outdated
commands (Eq. (2)), which affects the state of the system
adversely and these effects are reflected in the run-time col-
lected sensor data, which are provided as input to the proposed
learning model. The run-time inputs to the learning are given
as a continuous stream of online (vector) data, analyzed as
they become available, rather than postmortem “whole” data
traces analyzed offline for, say, after-the-fact forensics. Since
we are working with a discrete-time system, the output of
the proposed model is an integer estimate of the TDA value,
which is the amount of the malicious delay in seconds. By
processing inputs as soon as they are available incrementally
in ongoing data streams, we allow real-time responses (e.g.,
mitigation) to any detected attacks. The functionality of the
model is specified as

τe =M(Zx[t]), t= t1, t2, . . . , te, (3)

where τe is the estimated malicious delay introduced by the
TDA, M(·) is the learning model, Zx[t] is the data of sensor x
at time t, T denotes the length of a trace of the readings, and
te<T is the last time slot used by the model to estimate the
delay τe. In the problem formulation (3), as a plugin solution,

Input data 
stream

HLSTM 
backbone

Classification 
head

Regression 
head

Delay 
value (𝛕e)

Alert Classification 
strategy

Data 
preprocessing

DL model

Regression 
strategy

Multi-tasking 
head

Complete model

Fig. 3: Structural overview of the proposed solution.

the input to our DL model is the sensor (vector) data stream
Zx[t]. The DL model M(·) keeps processing the received input
trace to extract features that are useful for the delay detection
and characterization.

In this work, we consider three types of sensor readings
in the PPCS, namely the temperature TM , the pressure PR,
and the generated electricity GE. We consider a different set
of sensor readings in the AGC, namely the tie-line sensor
values Tieline1 to Tielinen, where n is the number of
tie-lines in the system. We denote the sensor readings as
Zx[t], t= {1, 2, . . . , T}, x∈{TM,PR,GE} for PPCS and
x∈{Tieline1, .., T ielinen} for AGC.

Assume that the system is under a TDA of value τ intro-
duced at t= t̄. Then the accuracy of the DL model is measured
by the difference between the estimated delay τe and the
ground truth delay τ . The reaction latency is measured by
the length of the trace required to obtain the model’s output
after the TDA starts, i.e., te− t̄. In the following, we introduce
the details of our proposed model M(·).

B. Model Design

We illustrate the structure of our solution in Fig. 3. Whereas
the input trace provided to our model consists of measure-
ments from various sensors created during simulations, in our
solution, we first preprocess and clean the input data. The
preprocessed data trace is then passed through a hierarchical
LSTM (HLSTM) network, which provides temporal features
periodically for further processing by a multi-tasking head.
The multi-tasking head is designed as two separate modules,
namely the classification module and the regression module,
which perform respectively the delay attack detection and
characterization. Once the TDA is confirmed by the classifica-
tion module, an alert is sent to further characterize the TDA by
activating the regression module to apply regression analysis
on the sensor data. The details are given in the following.

Data pre-processing: The sensor measurements exhibit a
high variance in magnitude over time. Since we want to train
a continually running time-invariant model which can provide
delay attack detection and characterization irrespective of the
position of attack, the input data trace needs to be normalized
over time to fit the model’s input. Because of a TDA’s negative
impacts on the control system, the sensor measurements can
sometimes deviate heavily from their expected behaviour.
We use robust scaling, a numerical scaling technique whose
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scaling statistics are based on percentiles and can thus deal
with the existence of a few very large marginal outliers.

HLSTM backbone: For timely TDA detection and charac-
terization, our model needs to satisfy the following practical
requirements: (i) Able to handle long discrete-time data se-
quences from sensors; (ii) Suitable for continuous monitoring
to give actionable information as soon as it is available.

Among DL learning models, recurrent neural networks
(RNNs) have a distinguishing feature of internal state that
remembers information from the past; they are thus preferred
for sequence processing [42]. An LSTM network [43] is
a particular RNN with “gates” to decide what information
from the past states should be used to achieve the learning
objectives. For dynamical systems, LSTM often outperforms
conventional RNNs due to its capability to learn long-term
dependencies among data [27]. We therefore adopt LSTM as
a basis for the proposed solution.

However, LSTMs face the challenge of vanishing and ex-
ploding gradients [44], when working on long data sequences
that may keep on growing, such as the sensor data streams in
our problem. To solve the challenge, we propose a hierarchical
LSTM model as illustrated in Fig. 4(a). Our model contains
two LSTM levels with hierarchical connections to allow them
to divide the input data sequence into shorter sub-sequences;
the two levels together sharpen understanding about the com-
plete sequence. The lower LSTM works strictly as a local
feature extractor and provides input to the upper LSTM.
The upper LSTM works on the sequence of local features
provided by the lower LSTM to extract temporal features for
the complete sequence. Essentially, the lower LSTM works
on a fixed sub-sequence length and is reset by removing the
links periodically, whenever the output is provided to the upper
LSTM. The upper LSTM runs in a sequence-to-sequence
fashion, to supply periodic features to dense layers. We do
not use back connections (e.g., as in BiLSTM) to keep the
LSTM compatible with online processing.

For the lower LSTM cell, denote the input, output, input
cell state, and output cell state respectively for the ith timestep
as {WL

i , V
L
i , C

L
ini
, CL

outi}; for the upper LSTM cell, denote
the input, output, input cell state, and output cell state for
the jth timestep as {WU

j , V
U
j , C

U
inj
, CU

outj}. Based on the
functioning of a conventional LSTM cell, generally we have
{V,Cout}=σ(W,Cin), where σ is the LSTM network. Let
the initial LSTM cell state be CL

0 for the lower LSTM and
the frequency of passing outputs to the upper LSTM be 1/ω,
where ω is an integer (in time units). The layer functions are
specified as:

{V L
i , C

L
outi}=

{
σL(WL

i , C
L
0 ), (i− 1)%ω= 0

σL(WL
i , C

L
outi−1

), otherwise,
(4)

{V U
j , C

U
outj}=σU (WU

j , C
U
outj−1

),WU
j =V L

ω∗j , (5)

where σL(·) and σU (·) are respectively the lower and upper
LSTM layers. The lower LSTM is reset every ω time slots
and the upper LSTM obtains outputs from the lower LSTM
to generate the required features every ω time slots, as shown
in Eq. (4) and (5). Moreover, for an input sequence of
length l, the lower LSTM and the upper LSTM work on

sub-sequences of length ω and l/ω respectively. To prevent
vanishing gradients during training, we need to reduce the
input sequence length of the upper LSTM; this requirement
necessitates a lower bound for the value of ω. On the other
hand, the frequency of outputs, 1/ω, determines the bottleneck
reaction latency of our model and provides an upper bound for
ω. In general, there exists a trade-off between higher and lower
values of ω, and a suitable value for a given setting can be
found by a search procedure. The impact of the choice of ω
will be discussed in the experiments in Section V-C1.

Multi-Tasking head: To achieve both accurate TDA detec-
tion and characterization, we introduce a multi-tasking head
with separate classification and regression modules, as shown
in Fig. 4(b). The classification module first decides whether
there is an attack or not. If the answer is affirmative, the
regression module will output its result as an estimate of the
malicious delay (i.e., the TDA value). This design is in contrast
to the use of a regression module only, which estimates the
malicious delay unconditionally – in the case of no attack,
τe = 0. Using a separate classification module can improve
accuracy, since a continuous regression process will produce
outputs that are be prone to continuous small errors.

We hypothesize that both modules on an abstract level focus
on recognising a TDA from the input signal and only differ
in the level of granularity that they offer. Thus a common set
of temporal features provided by the HLSTM backbone can
be used by both the modules to save computation. Detailed
evaluations are presented in Section V-C3. Specifically, the
multi-tasking head is defined as

VC =φC(DC(V U )), VR =φR(DR(V U )),

where VC and VR are respectively outputs of the classi-
fication and regression modules; DC(·) and DR(·) denote
fully connected layers in the classification and regression,
respectively; φC(·) and φR(·) are the activation functions
in the classification and regression, respectively. Due to the
discrete-time nature of the attack model, we round off the
output VR to the nearest integer. The outputs VC and VR
respectively denote final answers for the TDA detection and
characterization. In the following, we will first introduce the
training process in the DL model. Then, we will give the
details of interpreting the model outputs for final decisions.

C. Training Process

There are two main challenges in training our multi-tasking
HLSTM: (i) The DL model must output as early as possible,
instead of doing so only after analyzing a long forensic
data trace; (ii) The dataset compositions required by the
classification and regression conflict due to different training
targets. In the following, we present our training process that
overcomes these challenges.

1) Sliding window based input data processing: To allow
the DL model to process an input sensor data stream incre-
mentally, as soon as the current prefix becomes available,
thus giving results as early as possible, under variable TDA
launch time in the training dataset, we propose creating small
sliding windows of a fixed trace length λ(λ<T ) for training,
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Fig. 5: Illustration of the sliding window approach of extract-
ing training sequences from a simulation system run.

as shown in Fig. 5. This method also increases the speed of
dataset generation, since we can create multiple such traces
from a single run of the system (in our case, a simulation of
the PPCS). In the sliding window approach, the window can
move in either direction with a stride of δ(δ > 0) to extract
traces from a log of the system run. In generating the training
data, we ensure that the window covers the TDA launch time
point and contains a substantial amount of data both before
and after this point, so that appropriate features, spanning both
cases of pre- and post-attack, can be learned in the DL model.

2) Asynchronous model training: The regression head in
our model needs to give a fine-grained characterization of the
TDA value and should be trained on a dataset with a balanced
number of examples for a wide distribution of the TDA values
(including τ = 0). On the other hand, the classification head
differentiates between the presence or absence of TDA; it
should be trained on a dataset that has a balanced number
of examples for both cases. Thus, the dataset compositions re-
quired by the two heads are different, which raises a challenge
for training an overall model for them together.

To solve the challenge, we propose an asynchronous training
protocol as shown in Fig. 4(b). We first create the model with
only the regression head and train it end-to-end using a dataset
with a uniform distribution of malicious delay values. Next,
we include the classification head and freeze the weights of
both the regression head and the shared HLSTM backbone.
Then, we train the classification head, for which the input is
the features created by the HLSTM (since the error will not
backpropagate beyond them) using a dataset with a balanced
mix of attack and no-attack samples. Finally, all the trained

weights are put together to give the overall model.

D. Strategies on Interpreting Model Output

Our model provides periodic outputs every few times slots.
Each output tells whether a TDA is indicated or not and, if
so, a characterization of the TDA. To control between false
positives and false negatives, as well as the accuracy of the
estimated delay, we devise different strategies for interpreting
multiple outputs from different time slots to arrive at the
final learning result. This interpretability of our solution is
independent of the original model training and does not require
any form of retraining for the same. This final result, denoted
as τe, is defined as

τe =

{
SR(VR), SC(VC) = True,
0, otherwise,

(6)

where SR(·) and SC(·) denote respectively the regression and
classification functions. Note that if the classification result is
negative (i.e., no attack), the final result τe is zero. Since no
standard form of interpretation strategies exist in the literature
that fuse multiple outputs from different time slots, in the
following, we present key details of our strategies.

1) Classification strategies SC(·): In the TDA detection,
the classification module gives a binary result (i.e., presence
or absence of attack) every ω time slots (e.g., ω= 15).
Rather than alerting the system operator immediately on any
positive classification, a more prudent approach is to wait
until n consecutive positive results before raising the alert.
This strategy increases the confidence threshold required for
action; i.e., it increases the model’s specificity. The increased
specificity comes at a price of a higher chance of missing a real
TDA, i.e., a reduced model sensitivity. Additionally, since our
model produces an output every ω time slots, waiting for n> 1
consecutive alerts necessarily increases the reaction latency. It
is interesting to investigate the trade-off among these three
performance aspects based on specific system requirements.

2) Regression strategies SR(·): The regression head is
responsible for characterizing the TDA value after the classifi-
cation head declares an attack. As the length of the input data
trace prefix received increases, more data becomes available
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for the regression and therefore, intuitively, the regression’s
accuracy is expected to increase, i.e., consecutive regression
module outputs will converge close to the ground truth value.
Moreover, since a TDA’s impacts likely intensify over time,
fusing multiple outputs of the regression module to obtain
an overall characterization result can provide better accuracy
than using any single output. Based on these observations, we
propose two strategies for interpreting multiple consecutive
regression module outputs.

Waiting-time based strategy: A straightforward way to
increase accuracy is to wait for some predefined number of
time slots before giving the final result. The longer we wait,
likely the more accurate the prediction will be. The drawback
of a longer wait is, however, a longer reaction time, i.e.,
potential efforts to counteract a TDA will be delayed.

Convergence-based strategy: As mentioned, the regression
outputs will likely converge to some value near the ground
truth. Hence, instead of fixing the waiting time, we can moni-
tor the convergence process and give the final characterization
result when a convergence threshold is reached.

An example of regression outputs using the two proposed
strategies is shown in Fig. 6. We can observe that consecutive
regression module outputs converge towards the ground truth
value. In general, waiting for more time slots leads to more
accurate final results. A detailed performance comparison
between the two strategies will be discussed in Section V-C2.

V. EVALUATION

We now evaluate the performance of the proposed DL model
for the PPCS and AGC in power grids. We first describe the
experiment settings, model settings, and evaluation metrics.
We will then present experimental results to illustrate the
performance of our approach under the diverse settings and
compare the performance of our approach with that of several
major traditional ML techniques.

A. Experiment and Model Settings

We generate the dataset in the PPCS as shown in Fig. 1 us-
ing Thermopower [38]. The sensor measurements are subject
to random additive zero-mean Gaussian noises. The simulation
starts at t= 200s and terminates at t= 1500s or earlier if the
system crashes due to the attack. The data collection frequency
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Fig. 7: A three-area 37-bus system with AGC controller [45].

is 0.5 (i.e. 1 time slot is equivalent to 2 seconds). The dataset
contains 20,000 traces of three sensor measurements, TM ,
PR and GE, where 10,000 traces consist of a roughly even
balance between the cases of attacks and no attacks for the
classification training and the remaining 10,000 traces contain
TDA of different delay values for the regression training. For
each attack, the delay τ and the TDA launch time t̄ are integers
generated uniformly at random between 0s and 50s as well
as 800s and 1200s, respectively. For each dataset, we use a
split of 60% for training, 10% for validation, and 30% for
testing. For data augmentation during training, we use the
sliding window method as detailed in Section IV-C1. We use
the sliding window of size λ= 600 and stride δ=ω (ω is a
searchable hyperparameter) for creating shifted copies from
the training dataset. The final results are performed on the
combined testing dataset for both classification and regression.

The evaluations of AGC are conducted in a three-area 37-
bus power system.2 The experiments use PowerWorld [41], an
industry strength power grid simulator. As shown in Fig. 7,
the complete system is divided into three areas, which are
connected with each other through eight different tie-lines (the
dashed lines in the figure). The eight tie-line flow measure-
ments are representative of each area’s power export, and they
are used as our model input.

The simulation for AGC starts at t= 20s and terminates
at t= 320s, with a data collection frequency of 0.25 (i.e.,
1 time slot is equivalent to 4 seconds). The AGC dataset
contains a smaller trace length compared with the PPCS
dataset, as it is more sensitive to the delay attack and gets
unstable very quickly when subject to these attacks. The
dataset contains 6,000 traces of eight sensor measurements,
Tieline1 to Tieline8, divided into 3,000 traces each for
classification and regression training respectively, similar to
the PPCS case. For each attack, the delay τ and the TDA
launch time t̄ are integers generated uniformly at random

2We use the 37-bus system as a representative AGC throughout this paper.
It is a test system [46]. Its scale corresponds to a small to mid-scale grid
in real life. According to our rough count based on a grid topology database
(http://bit.ly/2vRH5Nd), a major fraction of 130 national grids consist of fewer
than 37 buses.

http://bit.ly/2vRH5Nd


8

between 0s and 10s and between 100s and 220s in two separate
settings. Again, a smaller range of delay attack values is used
for the AGC dataset, for the same reason as before. This also
dictates the total size of the dataset used, as a smaller range of
possible delay values reduces the size of the dataset required.
We use a sliding window of size λ= 100 and stride δ=ω
(ω is a searchable hyperparameter) for creating shifted copies
from the training dataset. The dataset split as well as sensor
measurement noises are the same as those for PPCS.

The DL model contains two LSTM cells stacked together
at the lower level, each with 256 hidden units. The upper
level is relatively complex since it focuses on extracting
temporal features from the complete sequence and contains
two LSTM cells stacked together, each with 512 hidden units.
The output of the upper LSTM is passed through two different
dense fully connected layers (for regression and classification,
respectively), each containing 512 hidden units. All the layers
have a ReLU activation function at the output, except for
the classification branch output, which has a Sigmoid acti-
vation function. The classification and regression module are
respectively trained using binary cross-entropy loss and mean
squared error loss. We use an Adam optimizer for the training
with a learning rate of 0.001. We also add a dropout of 0.1
between the hidden layers to prevent over-fitting.

B. Evaluation Metrics
We evaluate the model performance for both TDA detection

and characterization. The performance of the classification
module can be analyzed using an error matrix in which true
positives (TP ) and true negatives (TN ) represent correct
detection of the TDA, false negatives (FN ) are TDAs that
are missed by the learning, false positives (FP ) are wrongly
detected TDAs that are in fact not present. The model’s sensi-
tivity and specificity respectively correspond to the avoidance
of FNs and FP s. We define the classification accuracy ACC
as:

ACC =
TP +TN

TP +TN +FP +FN
.

For the regression module’s performance, its error is quan-
tified in terms of mean absolute error (MAE) and root mean
square error (RMSE), which are defined respectively as:

MAE=
1

m

m∑
i=1

|τ i− τ ie|, RMSE=

√√√√ 1

m

m∑
i=1

(τ i− τ ie),

where τ i and τ ie represent respectively the groundtruth and
estimated malicious delay values for the ith test dataset trace
and m is the size of the test dataset. The average time required
by the model to characterize the TDA is given as the reaction
latency; it is the average time (in seconds) from the launch of
the attack to the availability of the learning result, defined as:

Tavg =
1

f
· 1

m

m∑
i=1

(tie− t̄i),

where t̄i denotes the attack launch time and tie denotes the
time slot of the result for the ith test case, and f denotes
the data collection frequency (i.e., 0.5 for PPCS and 0.25 for
AGC).

C. Performance Evaluations

1) Model parameter settings: There are two major hyper-
parameters involved in our architecture design: the depth of
the model and the frequency of inputs to the upper LSTM
(i.e., 1/ω). For the model depth, we can increase the layers of
either the lower or upper LSTM. We illustrate the results in
Table I and II to show the impact of different depth values. As
expected, the performance of the model first increases with an
increase in depth; however, it can saturate and start decreasing
after an optimal value of depth. This can be explained by the
commonly observed phenomenon of vanishing gradient and
overfitting. For PPCS, we can notice from Table I that the
depth of two in the lower LSTM achieves a good balance
between performance and the number of parameters, whereas
for the upper LSTM, the depth of three achieves better
performance at the cost of a much larger number of model
parameters (i.e., more than 7 million). Moreover, the upper
LSTM’s computational time complexity is much higher than
that of the lower LSTM due to the feature input length and
the number of hidden units. Similarly, for the AGC, note from
Table II that the depth of two in both the lower LSTM and
the upper LSTM achieves the best performance.

TABLE I: Performance comparison across varying model
depth values for PPCS.

Depth Regression (s) Classification (%) No. of
Lower Upper MAE RMSE ACC FP FN Param.(m)

1 2 2.11 5.83 90.56 7.4 2.1 4.47
2 1 2.44 5.09 88.31 9.8 1.9 2.89
2 2 2.03 5.48 92.39 4.7 2.9 4.99
2 3 1.81 4.27 92.63 4.8 2.6 7.09
3 2 2.65 5.97 88.59 8.8 2.6 5.52

TABLE II: Performance comparison across varying model
depth values for AGC.

Depth Regression (s) Classification (%) No. of
Lower Upper MAE RMSE ACC FN Param.(m)

1 2 0.59 1.21 97.88 2.12 4.47
2 1 0.84 2.69 98.89 1.11 2.89
2 2 0.49 0.98 98.49 1.51 4.99
2 3 2.37 3.66 63.01 36.69 7.09
3 2 0.71 1.65 93.03 6.97 5.52

An interesting trend that can be noticed for the AGC, which
is not present in the PPCS results, is the lack of False Positive
(FP) examples. After experimenting with various variations of
our model, we found that our learning is free of any FP (i.e.,
false alarms) in the AGC dataset. This can be explained by
the self-correcting nature of the AGC. For some smaller TDA
values, the divergence caused by the attack is mitigated inter-
nally by standard frequency control in power grids and thus
simulations with smaller TDA values can behave similarly to
simulations without any TDA. Since our model learns to rely
on signal divergence for detecting the TDA, our classification
never causes false alarms because no divergence is noticed
in those cases. Instead, all the detection error manifests as
False Negatives (or missed attacks), where the divergence is
sometimes automatically corrected by the system before it ever
gets detected by our model. Since the PPCS does not have a



9

40 60 80 100
Average Time taken (s)

0

1

2

3

4

5

6

7

8

9
Er

ro
r P

er
ce

nt
ag

e 
(%

)

n=1

n=2
n=3 n=4

Classification Strategies
FP
FN
Total error

(a)

120 140 160 180 200 220
Average Time Taken (s)

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

M
AE

 (s
)

=2%

=5%
=10%

=20%

=60s
=90s

=120s

=150s

Regression Strategies
Convergence based
Waiting time based

(b)

Fig. 8: Performance of different output interpretation strategies: (a) Classification performance under different n. (b) Regression
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similar internal method of correction to smaller delay values,
this result sets the two systems apart.

For the frequency of providing inputs to the upper LSTM
in the PPCS, we increase ω from 10 to 25, in steps of 5,
to observe its impact. The results are shown in Table III.
Similarly, for the AGC, the value of ω is increased from 3
to 6, in steps of 1, and the final results are provided in Table
IV. From Tables III and IV, note that a higher frequency of
passing outputs to the upper LSTM (i.e., a smaller ω) gives
faster final results. For the accuracy comparison, notice the
trade-off discussed in Section IV-B due to which ω values
at both extremes experience performance degradation. We see
that ω= 15 for the PPCS and ω= 4 for the AGC achieves the
best accuracy, in a reasonable amount of time. We use these
ω values for further evaluations.

TABLE III: Performance across different values of ω for
PPCS.

Value of ω
Regression (s) Classification only (%)

MAE RMSE Tavg ACC FP FN
10 2.61 6.07 117 90.54 6.1 3.3
15 2.03 5.48 128 92.39 4.7 2.9
20 2.14 6.21 145 91.12 5.4 3.5
25 3.14 6.91 178 86.45 7.4 5.3

TABLE IV: Performance across different values of ω for AGC.

Value of ω
Regression (s) Classification only (%)

MAE RMSE Tavg ACC FN
3 0.82 1.52 47 97.41 2.51
4 0.49 0.98 49 98.49 1.51
5 0.70 1.50 61 98.20 1.80
6 1.13 1.98 67 88.20 11.80

2) Output interpretation analysis: We now compare the
performance between various strategies of interpreting the
model output. While we only use the PPCS results here for
analysis, our solution shows a similar trend for the case of
AGC too. We first consider different strategies of interpreting

outputs of the classification module. We draw Fig. 8(a) for
different values of n, where positive detection is concluded
finally from n consecutive positive classification module re-
sults. From Fig. 8(a), we see that a larger n uses more
time to conclude detection, but the accuracy is improved
as more information is available in longer traces. Moreover,
the specificity of the model increases whereas its sensitivity
decreases when n is increased. The reason is that with a larger
n, we are more conservative in confirming an attack, which
helps to avoid false positives. In this set of experiments, n= 2
or n= 3 can achieve a good balance between the error rate
and the reaction latency.

Next, we evaluate the performance of different regression
strategies under different parameter settings. The results are
shown in Fig. 8(b). To focus on the regression strategy, we
fix the classification strategy to n= 3 for all the results in
Fig. 8(b). In the waiting-time based strategy, α corresponds
to a fixed waiting time for the regression after the TDA is
detected. In the convergence-based strategy, β corresponds to
a percentage convergence criterion i.e. the difference in the
results of the two consecutive regression outputs is within the
percentage specified. From Fig. 8(b), we see that when we
have a longer waiting time α, we achieve a smaller error but
require a longer time for obtaining the result. For the conver-
gence criterion, a larger β can cause a higher error rate but a
shorter characterization time. It is because a looser criterion
is easier to satisfy (i.e., takes less time) but the converged
result may be farther from the optimal. The performance of
the convergence-based strategy further emphasizes that outputs
provided by our DL model converge towards the ground truth
over time. Moreover, the convergence-based strategy achieves
a good balance between the error rate and reaction latency,
and it also allows variable reaction latency for each individual
test case.

3) Comparison with traditional approaches: We now com-
pare the performance of different learning-based approaches.
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We start with kNN and RF as conventional ML-based solu-
tions. Since these algorithms do not give continuous outputs
as required by our settings, their evaluations are based on their
final outputs obtained after processing each entire input trace.
For both kNN and RF, we use separately trained models for
regression and classification. We also compare the proposed
HLSTM backbone by replacing it with a vanilla LSTM and
another traditional LSTM model, which we call accumulate
LSTM (as used in [29]). Accumulate LSTM simply concate-
nates input traces, one for every ω time slot, and then feeds
the result as a single input feature vector to the LSTM cell.
In other words, accumulate LSTM replaces the lower LSTM
in our model with a simple concatenation of the input signal
values. Both the vanilla LSTM and the accumulate LSTM have
the same configuration as our upper LSTM and are trained till
convergence. Moreover, we also analyse the performance of
the multi-tasking head. The results are shown in Tables V and
VI for the PPCS and AGC respectively, where metrics for both
the TDA detection and characterization are shown.

TABLE V: Performance comparison with traditional ap-
proaches for PPCS.

Approach Regression (s) Classification (%)
MAE RMSE Tavg ACC FP FN

kNN 6.23 9.48 300 72.6 11.8 15.6
RF 6.44 10.32 300 80.82 5.2 13.9

Lou et al. [29] 3.73 6.84 300 – – –
Van. LSTM+Multi-Task 4.17 8.76 136 85.21 9.7 5.1
Acc. LSTM+Multi-Task 2.76 6.03 168 89.76 7.1 3.3
1 HLSTM+Regression 3.51 7.46 148 – – –
2 HLSTMs+Multi-Task 2.02 5.53 124 93.03 3.7 3.2
1 HLSTM+Multi-Task 2.03 5.48 128 92.39 4.7 2.9

TABLE VI: Performance comparison with traditional ap-
proaches for AGC.

Approach Regression (s) Classification (%)
MAE RMSE Tavg ACC FN

kNN 3.27 5.02 200 71.29 28.71
RF 3.41 4.10 200 74.57 25.43

Lou et al. [29] 1.34 2.17 200 – –
Van. LSTM+Multi-Task 1.74 3.84 63 81.07 18.93
Acc. LSTM+Multi-Task 0.77 1.42 65 97.71 2.29
1 HLSTM+Regression 1.07 1.84 81 – –
2 HLSTMs+Multi-Task 0.47 0.91 57 99.09 0.91
1 HLSTM+Multi-Task 0.49 0.98 49 98.49 1.51

We can see that our model works much better than kNN, RF,
and the DL model in [29], in the regression and classification
performance as well as the reaction latency. Moreover, as
presented in [12], [13], it takes around 200s in the PPCS
and around 100s after an attack launches in the AGC for the
TDA to become harmful to the system. Hence, the average
time needed to obtain the result, Tavg = 128s in the PPCS or
Tavg = 49s in the AGC, is beneficial for the subject systems.
This result is obtained when n= 1 and β= 2%. We can
decrease Tavg further by increasing the regression error a bit
as shown in Fig. 8(b) (e.g., for the PPCS with β= 20%, we ob-
tain Tavg = 65s and MAE= 2.56). Additionally, comparison
with different traditional backbones show the superiority of
our HLSTM architecture and comparison with the regression
only model shows the importance of our multi-tasking head.
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Notice also that we can achieve similar performance with
less computational resources by using only one common
HLSTM backbone instead of two separate ones. This supports
our initial hypothesis that the temporal features provided by
a common backbone can be used for both detection and
characterization of the attack.

4) Sensitivity analysis: Our classification head achieves
over 92% accuracy in PPCS. The error is divided into 4.7%
FN and 2.9% FP. To better understand how well our model
can perform in TDA detection, we further analyze the FN
distribution for different delay values of τ . Fig. 9 shows the
classification distribution under different delay values from 1s
to 50s. We see from Fig. 9 that our model can detect all the
TDAs when τ > 6s, which is expected as higher delay values
can cause visible divergence in the signal. When τ is between
4s to 6s, around 20% to 5% TDAs are missed. When τ < 4s,
the missed detection rate increases sharply, reaching as high
as 80% for τ = 1.

The sharp increase in FN for lower values of τ can be
attributed to the fact that these small delay values cause no
significant effects on the system. Consequently, the signal
remains unaffected, and since we use a data-driven solution,
our model has no means of identifying the existence of an
attack. However, missing weak attacks that have no significant
impacts is acceptable. By the conclusion drawn in [12], [13],
the PPCS can tolerate up to τ = 12s of malicious delay with no
harm to the normal operation of the system. Also the impact
of FP is limited regarding system safety or stability, since the
triggered mitigation in those cases will be of small strengths,
as detailed in prior work [12], [13]. A sensitivity analysis of
the AGC problem also renders similar results, as shown in
Fig. 10. However, due to the lower tolerance of AGC against
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delay attacks [12], [13], the distribution of FN is also across
smaller values of τ . More than 80% of FN is shared between
τ = 1 and τ = 2, and all delays for τ > 3 are detected by our
solution for the AGC.

VI. CONCLUSION

In this paper, we proposed a learning based solution that
analyzes relevant sensor outputs in a closed-loop CPS to
simultaneously detect and characterize time delay attacks.
Our solution focuses on practicality for real systems and is
configurable to different objectives based on users’ specific
requirements. Our model outperforms conventional ML algo-
rithms like kNNs, RF, and other DL models. It achieves 92%
and 98% accuracy in detecting TDAs in the cases of PPCS
and AGC, respectively. It also achieves an MAE of almost two
seconds and half a second in the PPCS and AGC, respectively,
in terms of delay value characterization.

Since we have designed our model to continuously monitor
the subject system in real-time settings, it is interesting for
future research to investigate deployment issues on embedded
devices and create a hardware plugin for protecting a CPS
against the TDA. For this purpose, one will likely need to
reduce the model size and perform optimizations specific to the
hardware platform in question. Also, while our work applies to
TDAs against a single control signal, in real systems multiple
control signals might be subject to the TDA at the same time.
The problem becomes more complicated as malicious delays
in multiple control signals can have a compounding effect. It
will be interesting to study how our proposed method can be
adapted to these further scenarios.
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