
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, AUGUST 2024 1

Task Allocation with
Geography-Context-Capacity Awareness in

Distributed Burstable Billing Edge-Cloud Systems
Shihao Shen, Graduate Student Member, IEEE, Chenfei Gu, Yuanze Li, Chao Qiu, Member, IEEE,

Xiaofei Wang, Senior Member, IEEE, Rui Tan, Senior Member, IEEE, Cheng Zhang, and Wenyu Wang

Abstract—The new real-time interactive services, such as virtual
and augmented reality, demand significantly higher network band-
width and quality, which the traditional centralized cloud strug-
gles to meet. In addition, centralized optimization management
becomes inefficient as the scale of the scene continues to expand.
In response, edge cloud systems have emerged, but distributed
geographic locations, burstable billing business models, and large
numbers of servers in large-scale scenarios pose new challenges for
resource management. In this paper, we propose GeoCC, a novel
strategy to save bandwidth overhead in burstable billing edge cloud
systems. GeoCC addresses challenges through a dual approach.
First, a geography-aware graph construction and partitioning
algorithm is used to organize server resources, and a large number
of servers are reasonably divided into multiple server pools for
parallel processing. Second, it introduces an enhanced burstable
billing optimization mechanism that considers contextual factors
and adaptive bandwidth capacity. Experiments based on real data
from an edge cloud operator demonstrate the effectiveness of
GeoCC. Compared with the baseline, GeoCC can effectively reduce
bandwidth peaks, decreasing bandwidth costs by an average of
28.30% and up to 81.83% at the 95th percentile billing.

Index Terms—Edge-cloud architecture, bandwidth optimization,
burstable billing, server pools partition.

I. INTRODUCTION

In this section, we introduce the research background and
95th percentile billing, then discuss the research motivation and
summarize the main contributions.

A. Background

In the ever-evolving landscape of digital connectivity, real-
time interactive content services have emerged as the transfor-
mative force shaping the next generation of the Internet [2]–[4].
These trends highlight the pivotal role of real-time interactive
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content services in influencing the future of the Internet, per-
meating various industries and sectors. However, the evolution
of real-time interactive content services is hindered by the
limitations of the current centralized cloud computing paradigm.
Traditional centralized cloud architectures face challenges in
providing Quality of Service (QoS) for real-time interactive
content services due to bandwidth constraints and the significant
average network latency and jitter resulting from the separation
of users and computing devices [5], [6]. While cloud computing
has achieved great success, it is no longer a one-size-fits-all
solution in today’s environment.

In this context, the paradigm of edge cloud architecture
emerges as a promising alternative. By bringing computation
closer to the data sources, edge cloud architecture mitigates
the challenges posed by centralized cloud architectures. The
deployment of next-generation network infrastructures further
supports the vision of edge cloud computing, offering a more
responsive and efficient framework for real-time interactive
content services [7], [8].

In the context of real-time interactive content services, the
demand for substantial bandwidth from the edge cloud archi-
tecture is particularly pronounced during the transmission of
live streams in both uplink and downlink directions. Currently,
burstable billing has emerged as the primary method for cal-
culating bandwidth expenses in edge cloud systems [5], [9].
This flexible billing approach has gained widespread adoption
due to its adaptability to varying bandwidth usage patterns and
its ability to prevent unexpected usage spikes and the resulted
exorbitant costs for users.

When employing burstable billing, the 95th percentile billing
emerges as the prevalent mechanism for measuring and charging
bandwidth usage [10], [11]. It involves periodic billing cycles,
commonly categorized as daily or monthly billing. In the case
of monthly 95th percentile billing, the process consists of:

• Data Sampling: The system samples the amount of trans-
mitted data at regular intervals, typically every five min-
utes. These samples are stored, with each representing the
amount of transmitted data during that interval.

• Sorting and Discarding: At the end of the billing period,
all sampled data points collected are sorted based on the
average transmission rate. The top 5% of data points are
then discarded, mitigating the impact of short-lived peaks
in bandwidth usage.
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Fig. 1. Bandwidth demand allocation in edge-cloud system.

• Billing Calculation: After discarding the top 5% of data
points, the highest remaining bandwidth transmission rate
determines the billed bandwidth usage for the billing pe-
riod. The flexibility and adaptability of the 95th percentile
billing makes it well-suited for the dynamic and varied
nature of bandwidth usage.

B. Motivation

In commercial edge-cloud environments, the primary objec-
tive is to meet user demands with the lowest possible cost. This
presents a critical challenge under the burstable billing model,
where task allocation must be optimized to strike a balance
between economic efficiency and operational performance. Con-
sequently, designing an optimal allocation mechanism in such
dynamic and cost-sensitive contexts remains an important and
challenging problem. Based on a series of motivational exper-
iments conducted with an edge-cloud operator1, we observed
a pronounced spatial and temporal heterogeneity in the supply
and demand of computational resources [6]. These complexities
necessitate the development of efficient task allocation strategies
that can better align the supply of computational resources with
user demand.

In the intricate landscape of edge cloud architectures, band-
width billing usually also follows the above-mentioned burstable
approach. This billing model, while offering flexibility, intro-
duces new challenges that necessitate innovative scheduling ap-
proaches to optimize bandwidth expenditures [12]. Distinguish-
ing itself from traditional Content Delivery Network (CDN),
an edge cloud architecture encompasses both expansive server
rooms and smaller, non-standardized server providers dispersed
across diverse locations. This unique characteristic demands
scheduling algorithms to factor in geographical considerations
extensively, ensuring superior service quality. However, the
proliferation of distributed nodes brings forth the challenge
of proposing a unified scheduling mechanism that effectively
addresses the intricacies of edge cloud architectures [13], [14].
The unique characteristics inherent to edge cloud architectures
present potential challenges for scheduling, especially when
considering economic efficiency, with three key aspects:

• Geography Heterogeneity: The varied distribution of
servers across different geographic locations results in di-

1PPIO Edge Cloud, PPIO Cloud Computing (Shanghai) Co., Ltd.,
https://www.ppio.cn

verse bandwidth capabilities and pricing strategies. Failing
to account for these geographical nuances in scheduling
may lead to increased bandwidth expenses and diminished
service quality [15], [16].

• Context Directability: The complex billing strategies,
such as the 95th percentile billing, demand that current
scheduling decisions rely on historical bandwidth usage
data, introducing additional contextual information into
each scheduling decision [17].

• Capacity Exploitation: The burstable billing nature of
each server implies the existence of free bandwidth capac-
ity. Maximizing the utilization of this capacity becomes
imperative to reduce the costs associated with bandwidth
expenses and fully exploit the available resources [18].

C. Main Contributions

In this paper, we present an innovative approach for opti-
mizing bandwidth costs in edge cloud architectures, termed
“GeoCC” - an abbreviation for our Geography-Context-
Capacity aware task allocation strategy. GeoCC is devised to
tackle the intricate challenge of reducing costs, as illustrated
by the problem outlined in Fig. 1. GeoCC strategically inte-
grates geographical location, context, and capacity awareness
to achieve optimal cost efficiency. This paper represents a
pioneering effort as proposing an allocation strategy that op-
timizes costs in edge-cloud systems featuring burstable billing,
all without the need for prior knowledge of bandwidth demands.
The distinctive contributions of this paper are detailed below.

• Bandwidth Cost Optimization Model: We design a
model to optimize bandwidth overhead in edge-cloud
scenarios, incorporating real-time allocation, server avail-
ability, user selectivity, non-linear burstable billing, and
geographic dispersion constraints, and demonstrate that
this problem is NP-Complete.

• Geography-Aware Server Cluster Partitioning: We pro-
pose a geography-aware graph construction strategy to
build balanced server subsets, which addresses the spatial
heterogeneity of server distribution and ensures equitable
resource allocation.

• Context and Capacity-Aware Burstable Billing Op-
timization: We propose an enhanced burstable billing
optimization mechanism based on balanced server subsets
that integrates context awareness and adaptive bandwidth
capacity to significantly improve cost efficiency in edge
cloud environments.

II. SYSTEM FRAMEWORK

In this section, we first present the challenges faced in
real-world scenarios. Next, we formalize the system model,
capturing its key characteristics and constraints. Finally, we
define the optimization objectives through precise mathematical
formulations and analyze the complexity of the problem.

A. Scenario Problem Statement

In this scenario, three key roles are involved: the edge-
cloud operator, the Internet Service Provider (ISP), and the
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user. The edge-cloud operator (such as PPIO2) manages an
edge cloud platform consisting of numerous geographically dis-
tributed edge servers. Similar to traditional cloud services, these
edge servers rely on ISPs to access the internet infrastructure.
ISPs employ the burstable billing model to charge the edge-
cloud operator fees based on the bandwidth usage of the edge
servers.3 Concurrently, the edge-cloud operator hosts multiple
services on these edge servers, capable of processing user
request tasks to generate revenue. Therefore, we need to con-
sider the optimization problem from the edge-cloud operator’s
perspective: how to allocate user tasks to minimize bandwidth
costs under the burstable billing model while ensuring efficient
task responses. It is also worth noting that this paper focuses
on bandwidth cost optimization based on 95th percentile billing
in bandwidth-intensive application scenarios, but resources such
as computation and storage, which also incur costs, are outside
the scope of the discussion.

Furthermore, due to the geographically distributed nature of
edge computing, the edge-cloud operator faces more complex
challenges compared with traditional centralized cloud systems.
Take the PPIO mentioned above as an example, it operates more
than 10,000 edge servers dispersed across more than 1,000 cities
or regions, with the farthest distance between two edge servers
exceeding 4,000 kilometers. Due to the excessive transmission
distances and the large platform size, it is inefficient to use
centralised optimisation for the global servers, so they need
to be partitioned into multiple zones for autonomous man-
agement. Intuitively, using cities as the basis for partitioning
edge servers seems straightforward. However, we find that the
server resources in each city do not exactly match the user
demand, i.e., there will be a large number of idle servers in
some cities and insufficient servers in others. To achieve optimal
performance, we must first partition the large-scale edge servers
before addressing task allocation. Therefore, in Sec. II-C, we
decompose this issue into two sub-problems: (i) Geography-
aware server cluster partition and (ii) context-capacity-aware
task allocation.

B. System Member Description

The proposed system, GeoCC, assumes the presence of
P users, N real-time interaction content services, and M
servers, denoted as P , N , and M respectively, and indexed
by p ∈ {1, . . . , P}, n ∈ {1, . . . , N}, and m ∈ {1, . . . ,M}.
GeoCC operates within discrete time intervals, indexed as
t ∈ {1, . . . , T}, denoted as T . In order to improve the clarity
of the model, the main parameters involved and their meanings
are shown in Table I.

1) User: A user p submits a request denoted as <
T p, Np, Bp >, where T p ∈ {1, . . . , T} signifies the time
interval when the request is generated. The content service
type of the request is indicated by Np ∈ {1, . . . , N},

2PPIO Edge Cloud, PPIO Cloud Computing (Shanghai) Co., Ltd.,
https://www.ppio.cn

3In real-world scenarios, link aggregation or clusters (multiple servers) shar-
ing a single bandwidth may occur. However, for simplicity in this discussion,
these are referred to as the server.

TABLE I
DEFINITION OF PARTLY CRITICAL PARAMETERS.

Parameters Definitions

Am The set of service availability for server m.
anm The service availability of server m for service n.
Bm The available bandwidth resources of server m.
Bp The bandwidth required by the request generated by user p.
Cj The set of servers within cluster j.

Dt,j
n

The sum of bandwidth demand for service n by all users
belonging to server cluster j in time interval t.

Dt,j
n,m The bandwidth demand of service n served by server m.

D′j
m The billed bandwidth of server m.

Dj
m A sequence of bandwidth usage records for servers m.
E The edge set of the graph.
emi The edge connecting node m to node i.
J The set of server clusters.
j Index of the server cluster.
M The number of servers.
N The number of real-time interactive content service types.
Np The content service type of the request generated by user p.
P The number of users.
t The Index of discrete time intervals.
T p The time interval for user p to generate a request.
T The set of discrete time intervals.
V The point set of the graph.

while the required bandwidth is denoted as Bp. In the
edge cloud architecture, we believe that a user can submit
multiple requests with different types in one time slot.

2) Server: The resource information for server m, rep-
resented as < Bm, Am >, encompasses the available
bandwidth resources, Bm, and the service availability of
server m, Am. Specifically, Am is denoted as Am =
a1m, a2m, . . . , aNm, where anm ∈ {0, 1}. When server m
is capable of providing service for content service n,
anm = 1; otherwise, anm = 0.

3) Cluster: In a real edge-cloud system, which may consist
of thousands of servers, partitioning them into server
clusters proved to be effective [19]. This enables the
assignment of bandwidth requests to the nearest server
cluster, enhancing the quality of time-sensitive services
and reducing the scale of the allocation problem. Here,
we assume the existence of J server clusters, indexed by
j ∈ {1, . . . , J}, denoted as J . Additionally, we define
Dt,j

n as the cumulative bandwidth demand for service n
requested by all users p ∈ Uj with T p = t. The expression
is given by Dt,j

n =
∑

∀p∈Uj ,Tp=t,Np=n B
p, where Uj

represents the set of users assigned to server cluster j.

C. System Description

GeoCC introduces a bandwidth cost economizing strategy, as
illustrated in Fig. 2, comprising two main components:

1) Geography-Aware Server Cluster Partition: Upon com-
pletion of the partitioning, real-time interactive content requests
from users will be redirected to the nearest bandwidth cluster.
This partitioning, instead of considering the entire system as
a whole, brings about two key advantages. Firstly, dividing
the system into server clusters ensures that user traffic is only
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Fig. 2. The framework of GeoCC.

scheduled within nearby server clusters, preventing it from
being directed to servers at a considerable distance and avoiding
excessive latency, which could impact the quality of real-time
interactive content services. Secondly, the division significantly
reduces the complexity of subsequent request scheduling prob-
lems. Treating the whole edge cloud system as a cohesive entity
comprising thousands of servers would greatly increase problem
complexity, thereby diminishing the feasibility of designing
online algorithms.

2) Context-Capacity-Aware Task Allocation: Following the
aforementioned partitioning, we propose a context-capacity-
aware task allocation algorithm that assigns servers within
server cluster j to fulfill all requests allocated to the cluster.

Taking a request stream as an example, we assign the
bandwidth demands Dt,j

n to servers belonging to server cluster
j and capable of providing service n. The bandwidth demand of
a request flow may be satisfied by several different servers to-
gether, and the decision variable of the problem is to determine
for each request flow the bandwidth resource of the service
n provided by the server m, i.e., as Dt,j

n,m. Post-allocation,
we have Dt,j

n =
∑

m∈Cj
Dt,j

n,m, where Cj represents the set
of servers within cluster j. Meanwhile, the sum of bandwidth
demands undertaken by servers m must not exceed its available
bandwidth resources. Moreover, our system promptly schedules
requests within each server cluster to the corresponding servers,
leveraging context and capacity awareness to capitalize on the
burstable billing characteristic and reduce bandwidth costs.

This two-tier strategy, encompassing geography-aware server
cluster partitioning and context-capacity-aware task allocation,
forms the core of GeoCC, offering an efficient solution for
optimizing bandwidth costs in real-time interactive services
within edge-cloud systems.

D. Problem Formulation

We present our partition solution, denoted as P̂ . Our goal is
how to partition server clusters from J such that each cluster
is geographically centralized and relatively resource balanced,

which is formally defined as:

Minimize max
j∈J

max
m1,m2∈Cj

dist(m1,m2),∀j ∈ J . (1)

s.t.
⋃
j∈J

Cj = M,
⋂
j∈J

Cj = ∅, (2)

|
∑

m∈Cj

Bm −
∑

m∈M Bm

J
| ≤ ε ·

∑
m∈M Bm

J
,∀j ∈ J . (3)

Here, the variable dist(m1,m2) calculates the
distance between two servers m1 and m2. The term
maxm1,m2∈Cj

dist(m1,m2) in Equation (1) represents
the server cluster diameter, which is defined as the maximum
distance between servers within a server cluster j. In Equation
(3), the hyper-parameter ε tunes the partition imbalance. The
objective (1) ensures that the server cluster comprises adjacent
servers, while constraint (2) ensures that server clusters do
not overlap. Additionally, constraint (3) guarantees balanced
resource distribution among server clusters.

We define our requests allocation solution as a set of solu-
tions, where each solution is the request allocation strategy for
each server pool, i.e., the problem of each server pool can be
solved separately, and then the solutions of all server pools are
combined to form the global bandwidth demand allocation solu-
tion. Specifically, each server pool’s request allocation strategy
includes a set of decision variables Dt,j

n,m that determine the
bandwidth demand of service type n on server m at time t in
server pool j. In addition, the cost fm of a server m depends
on its billable bandwidth D′j

m and the bandwidth unit price w,
which is denoted by the following relationship [20]–[22]:

fm = w ∗D′j
m (4)

where the bandwidth unit price w is a fixed constant. Hence,
the formulation of the requests allocation problem can be stated
as follows.

Minimize
∑

m∈Cj

D′j
m,∀j ∈ J . (5)

s.t.
∑

m∈Cj

Dt,j
n,m = Dt,j

n ,∀t ∈ T , n ∈ N , (6)

N∑
n=1

Dt,j
n,m ≤ Bm,∀t ∈ T ,m ∈ M, (7)

Dt,j
n,m = 0,∀t ∈ T ,m ∈ M, n ∈ N , An

m = 0. (8)

Here, D′j
m represents the billed bandwidth of server m under

burstable billing. The calculation method is defined as follows.

D′j
m = sort(Dj

m)[α× T ],

Dj
m = {Dt,j

m }Tt=1,

Dt,j
m =

∑
n∈N

Dt,j
n,m, t ∈ T ,

(9)
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Here, Dj
m is a sequence of bandwidth usage records for

servers m, and the function sort(·) sorts the sequence in as-
cending order. The term [α× T ] denotes the α× T -th value of
the sequence, where α is a parameter for burstable billing (e.g.,
if using the 95th percentile billing, α = 0.95).

Equation (6) ensures that requests are allocated during each
time interval, Equation (7) prevents a server from accepting
requests that exceed its available bandwidth resources, and
Equation (8) ensures that requests for specific services are only
allocated to servers available to provide them.

E. Complexity Analysis: Proof of NP-Completeness

To prove the NP-completeness of our edge cloud resource
allocation problem, we reduce it to the set partitioning problem,
which is known to be NP-complete.

Consider an instance with a single service, M servers, 95th
percentile billing, and T = 20 time slots. Define the request
sequence D as:

D =

{
0, 0, . . . , 0,

1

2

M∑
m=1

Bm,
1

2

M∑
m=1

Bm

}
(10)

where Bm denotes the bandwidth of server m. The bandwidth
demands for the last two time slots are half of the total
bandwidth across all servers. Due to the 95th percentile billing
and 20 total time slots, each server has one free time slot. In the
optimal case, each server is used only once, resulting in a total
bandwidth cost of 0. To achieve this, we need to partition the
servers into two groups with equal total bandwidth, to handle
the traffic for the last two time slots.

Since the set partitioning problem is a partition of a set of
numbers into two subsets such that the sum of each of these
two subsets is the same, the problem can be mapped to the set
partitioning problem: Given a set Sof bandwidth requirements,
partition Sinto two subsets aand Bsuch that:∑

s∈A

s =
∑
s∈B

s (11)

Since the set partitioning problem is NP-complete [23], and
our problem can be reduced to it, our problem is also NP-
complete. [24] Hence, finding an optimal solution for our
problem is computationally infeasible in polynomial time.

III. GEOGRAPHY-AWARE SERVER CLUSTER PARTITIONING

In this section, we analyze the necessity of cluster partition-
ing, highlighting its importance in optimizing resource alloca-
tion and management. Furthermore, we propose a geography-
aware server cluster partitioning algorithm specifically designed
for large-scale edge-cloud systems, which effectively addresses
the challenges posed by geographic dispersion and spatial
heterogeneity.

A. Necessity Analysis of Cluster Partitioning

In the realm of edge cloud systems, where server nodes
proliferate, the unique challenge lies in the sheer abundance
of servers. Reports indicate that these systems often boast
thousands of server nodes [25]. With the emergence of fog

computing, the inclusion of numerous embedded devices as
computing nodes is a plausible scenario, potentially further
amplifying the node count.

The surplus of edge cloud nodes poses a formidable challenge
for real-time scheduling algorithms. Each node serves as the
linchpin for handling requests, and the escalating node count
inevitably expands the solution space, complicating the efficient
resolution of scheduling problems. Therefore, we need a strat-
egy to overcome this complexity, namely cluster partitioning.
We posit that the computational load of a scheduling algorithm,
denoted as U(M), is intrinsically linked to the node count
M . If the servers are partitioned into Q subsets for solving
the problem, we define Q = {1, 2, 3, . . . , Q}, where q ∈ Q
represents one of the subsets in the set of all subsets Q.
Since the computational load for a subset with M

Q servers is

represented as U
(

M
Q

)
, the overall workload can be expressed

as
∑Q

q=1 U
(

M
Q

)
.

The premise is that as long as the time complexity of our
algorithm is greater than or equal to O(M), the following
relationship holds:

Q∑
q=1

U

(
M

Q

)
≤ U(M). (12)

Essentially, the higher the algorithmic complexity, the more
pronounced the reduction in computational load. Importantly,
we contend that expecting a scheduling algorithm with a time
complexity lower than O(M) is improbable, as scheduling in-
herently demands comprehensive information on the bandwidth
resources of all servers.

Post-cluster partitioning, executing traffic scheduling opti-
mization may appear counter-intuitive as optimal solutions
obtained within each cluster may not seamlessly combine into
a globally optimal solution. The bandwidth optimization prob-
lem lacks the optimal substructure property [26]. Nevertheless,
post-partitioning request scheduling aligns with the nature of
proximity computing in edge clouds. To maintain quality of ser-
vice, requests are strategically confined to servers within close
geographical proximity, avoiding dispatch across excessively
distant regions. In subsequent sections, we delve into empirical
demonstrations of the impact of bandwidth cluster partitioning
on cost optimization—focusing on the delicate balance between
service quality and cost efficiency.

B. Cluster Partitioning Method

In this part, we delve into the nuances of our cluster
partitioning method, meticulously designed to accomplish two
paramount objectives:

• Ensuring High Availability: Our partitioning method is
crafted to maintain equilibrium among server clusters
concerning bandwidth resources. This equilibrium fortifies
system robustness and minimizes the probability of user
requests failing to locate available servers. Additionally, it
sets the stage for bandwidth cost optimization algorithms,
particularly crucial under resource constraints.
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Fig. 3. The graph construction and partition.

• Guaranteeing Quality of Service: The core ambition of
edge cloud clusters is to diminish service latency. To
achieve this, we strive to ensure that servers within a cluster
are in close proximity. This strategic proximity minimizes
the occurrence of requests being scheduled to servers at
considerable distances within the same cluster, thereby
enhancing overall user experience.

To realize these goals, we frame server cluster partitioning
as a balanced graph partitioning problem. As shown in Fig. 3,
we solve the server clusters partition problem by two steps,
including graph construction and graph partitioning. Graph
construction and graph partitioning are sequential processes,
with the output of the former serving as the input for the latter.
Since the dataset collected from servers is not directly parti-
tionable, we first construct a graph that includes node sets, node
attributes, edge sets, and edge attributes. This constructed graph
is then processed through graph partitioning. The approach
involves partitioning the node set V into subsets while severing
inter-subset edges. Simultaneously, we maintain balance within
each subset, ensuring that the sum of weights, which represents
bandwidth resources, is similar, i.e., adhering to the constraints
defined in (3). Furthermore, we aim to minimize the sum of
weights associated with all cut edges:

Minimize
∑
i<j

Wi,j i ∈ Vq, j ∈ Vp, p ̸= q. (13)

Prior to engaging in graph partitioning, the essential step of
graph construction is undertaken to facilitate the subsequent
graph partitioning algorithm. Its primary purpose is to ensure
an equitable distribution of bandwidth resources within each
server cluster while minimizing the diameter of each cluster.
The following sections detail the graph construction and parti-
tioning algorithms, highlighting their key roles in achieving the
objectives.

Algorithm 1: Graph Construction Algorithm
1: Initialize an empty edge set E.
2: for m = 1 to M do
3: Initialize the set S[m] of nodes closest to distance m.
4: Search for the k nearest nodes to distance m.
5: Store the k nearest nodes in S[m].
6: end for
7: for m = 1 to M do
8: for i in S[m] do
9: if emi not in E then

10: Embed emi to E.
11: end if
12: end for
13: end for

1) Graph Construction Algorithm

As illustrated in Algorithm 1, the process begins with the
initialization of the edge set E and the node set V . The
edge connecting node m to node i is denoted by emi , where
each node represents a server with associated two-dimensional
coordinates that reflect its geographical location in the real
world. Specifically, for each server m, the algorithm identifies k
closest servers that have not yet been connected. By calculating
the geographical proximity, the algorithm strategically selects
these k nearest servers (k = 10 is used in this paper) and
establishes edges between server m and the chosen nodes.
This approach ensures a more balanced and efficient graph
construction by leveraging spatial information to guide the
connection process.

2) Graph Partitioning Algorithm

Our choice of parallel graph partitioning algorithm for com-
plex networks brings an intelligent and scalable approach to
solving the partitioning problem. This algorithm employs a
multi-level graph partitioning approach, optimizing the coars-
ening and refinement stages through mechanisms such as size
constraints and label propagation. This strategy leverages the
hierarchical structure inherent in complex networks and utilizes
the highly parallelizable evolutionary algorithm KaFFPaE [27]
for high-quality graph partitioning.

The primary steps of the algorithm include:

• Label Propagation: Initially, each node resides in its own
block, and its block identification is set to its node identifi-
cation. The algorithm operates in rounds, traversing nodes
in a random order during each round. Upon visiting a node,
it moves to the block with the strongest connection until
convergence is attained.

• Cluster Contraction: The graph obtained after label prop-
agation undergoes further clustering to create a coarser
granularity. This involves merging blocks, where each
block in a cluster is merged into a single node. The weight
of the node is set to the sum of weights of all nodes in
the original block. This process ensures that the coarse
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graph’s partition corresponds to a partition of the fine-
grained graph with the same cut and balance.

• Evolutionary Algorithm Partitioning: Leveraging the
KaFFPaE algorithm, we conduct coarse-grained evolution-
ary partitioning. Each processor has its own partition and
a copy of the graph. After creating local partitions, each
processor performs combination and mutation operations
on its local partition. The algorithm guarantees that edges
cut in the input partition are not contracted, preserving the
superior quality of the better input individual. Moreover,
KaFFPaE incorporates a scalable communication protocol
akin to random rumor spreading for population mixing.

This graph partitioning algorithm not only demonstrates
robust engineering implementation but also emphasizes the
thoughtful consideration of parallelization schemes, making
it well-suited for the challenges of large-scale networks—an
attribute particularly beneficial for the myriad of server nodes
in edge cloud clusters.

IV. CONTEXT-CAPACITY-AWARE TASK ALLOCATION

In this section, we transform the task allocation problem
into a maximum flow problem to simplify resource distribution.
Additionally, we propose a context-capacity-aware task alloca-
tion algorithm that considers node capacities and contextual
information to better match task demands with resources in
dynamic environments.

A. Problem Transformation

After completing the server cluster partitioning, our attention
turns to the request allocation algorithm, a critical phase in
optimizing costs within a specific server cluster, denoted as j.

In this phase, we embark on constructing a topology network
within the server cluster. Each server m is represented as node
xm, and each service n as node yn. The establishment of links
lmn between node yn and node xm occurs for each anm = 1.
Additionally, we introduce an ending node ve and a starting
node vs to the network. Links lem from each xm to ve and links
lns from vs to each yn are incorporated into the network. The
construction process is visually depicted in Fig. 4.

Next, we define the capacity of each link l as c(l):

c(lmn ) = +∞, ∀1 ≤ m ≤ M, 1 ≤ n ≤ N,Am
n = 1.

c(lmn ) = 0, ∀1 ≤ m ≤ M, 1 ≤ n ≤ N,Am
n = 0.

c(lem) = Bm, ∀1 ≤ m ≤ M.

c(lns ) = Dt,j
n , ∀1 ≤ n ≤ N, 1 ≤ t ≤ T.

(14)

Algorithm 2: Bandwidth Demand Allocation Algorithm
1: Initialize topology network shown in Fig. 4
2: for t = 1 to T do
3: Reset the topology network
4: for i = 1 to N do
5: c(lis) = Dt,j

i

6: end for
7: for i = 1 to M do
8: Set c(lei ) by capacity-aware adaption mechanism
9: end for

10: Perform maximum flow algorithm
11: for i = 1 to M do
12: Set weight of lei by context-aware index mechanism
13: end for
14: Perform minimum cost maximum flow algorithm
15: for i = 1 to M do
16: Store the flow of lei
17: end for
18: end for
19: Obtain Dj

m based on Arm
20: Calculate D′j

m based on Equation (9)

This construction results in a topology network featuring a
single-source vs and a single-sink ve, as illustrated in Fig. 4.
To obtain a solution that adheres to the constraints specified in
(6), (7), and (8), we transform the bandwidth demand allocation
problem into a max flow problem. Seeking the max flow from
the source to the sink provides a bandwidth demand allocation
solution in line with all defined constraints.

Within this network, the flow from node xm to node ve

symbolizes the total bandwidth demand handled by server
m. The flow is confined by the capacity of link lem, thereby
restricting the load on server m.

Additionally, the flow from node yn to node xm represents
the bandwidth demand of service n allocated to bandwidth m.
This allocation is permissible when the server is available and
forbidden otherwise.

Moreover, the flow from node vs to yn denotes the bandwidth
demand of service n that has been allocated. This flow is
subject to the constraint of link capacity c(lns ) under normal
circumstances. Thus, we can effectively transform the band-
width demand allocation problem into a max flow problem by
this transformation.

B. Algorithm Design

Subsequently, we fully leverage the characteristics of
burstable billing. As introduced in Sec. I-A, 95th percentile
billing determines the bandwidth cost based on the 95th per-
centile of bandwidth usage. Therefore, the highest 5% of the
sampled bandwidth values, whatever their value, do not affect
the bandwidth cost and should be utilised as much as possible.
Conversely, the lowest 95% of sampled bandwidth values cannot
reduce the bandwidth cost, no matter how low they are, hence
they need to be kept below and as close to the 95th percentile
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usage as possible. Based on this principle, we introduce an
enhanced burstable billing optimization method employing two
mechanisms: context-aware index and capacity-aware adapta-
tion. The detailed procedure is outlined in Algorithm 2.

1) Context-Aware Index Mechanism

In this mechanism, we introduce an approach to adjust the
weights assigned to individual servers based on their historical
bandwidth usage. The objective is to intelligently guide the flow
of bandwidth demands, optimizing the allocation process using
the minimum cost flows algorithm.

The bandwidth usage of server m is characterized by
sort(Dj

m)[α × T ] when employing burstable billing. Conse-
quently, this measurement remains unaffected by the extreme
bandwidth consumed in the initial α × T − 1 time intervals,
referred to as “free time intervals”. Leveraging these free time
intervals is pivotal for cost minimization.

To evaluate the optimal utilization of these free time intervals
for server m, we introduce the context-aware index Im. This
index is dynamically determined by maintaining a sorted array
Arm for each server, recording bandwidth usage in each time in-
terval. The length of Arm is T , with each element representing
bandwidth usage in a time interval. Continuous updates to Arm
require constant sorting, and Im is defined as Arm[α× T − 1],
varying with the context message Arm.

Fig. 5 illustrates this dynamic adjustment, where the weight
of link lem adapts based on Imax − Im, with Imax as a hyper-
parameter exceeding Im for all 1 ≤ m ≤ M . This context-aware
tuning ensures adaptive link weights that are consistent with the
dynamics of bandwidth and optimizes the flow distribution.

The mechanism utilizes temporal patterns of bandwidth usage
to improve resource allocation efficiency. Its adaptability to
different server conditions makes it a valuable tool to promote
cost-effective and intelligent task allocation strategies.

2) Capacity-Aware Adaption Mechanism

This mechanism capitalizes on the untapped capacity of
servers, orchestrating a strategic bandwidth allocation approach
that optimizes efficiency and cost-effectiveness. Its core strategy
involves the dynamic adjustment of link capacities based on paid
capacity information, followed by a thoughtful distribution of
flows to maximize the utilization of available free capacity.
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In Fig. 6, the temporal dynamics behind the burstable billing
measure point unveil intervals of untapped bandwidth capacity.
Referred to as “free capacities”, these intervals present an
opportunity for further cost reduction.

The mechanism employs a two-step process to harness this
potential. Initially, it adjusts the capacity of link lem using the
bandwidth usage array Arm. Setting the capacity to Arm[α×T ],
the max flow algorithm is applied for the initial allocation.
Subsequently, the capacity of lem is readjusted to Bm, and
the max flow algorithm is reapplied to obtain the final flow
allocation. The cumulative effect of these allocations results in
the ultimate allocation, as depicted in Fig. 7.

By restricting the link capacity in the initial allocation, the
bandwidth consumption of server m is strategically capped be-
low the measure point Ar[α×T ]. This deliberate approach in the
first allocation aims to maximize the utilization of available free
capacity. The subsequent application of context-aware mech-
anisms during the second allocation process is greatly eased
by the judicious use of free capacity in the initial step. This
capacity-aware adaptation can effectively utilize the capabilities
of the server while minimizing the cost. It demonstrates the
potential of the adaptation mechanism to improve the efficiency
of bandwidth allocation in dynamic computing environments.

V. PERFORMANCE EVALUATION

In this section, we first describe the experimental setup,
including the trace, baseline algorithms, and hyper-parameter
settings. We then perform a comprehensive performance anal-
ysis and validation of cluster partitioning and task allocation,
evaluating the effectiveness of methods.
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A. Evaluation Setup

To ensure experiment credibility, we first introduce the eval-
uation setup. The following describes in detail the settings
used during the evaluation process, providing a comprehensive
understanding of the conditions for performance evaluation.

1) Real-world Request Traces

To assess the effectiveness of our framework, we employ
real-world request traces from an edge-cloud operator4. These
traces, spanning over 10 million user requests from October 1,
2021, to October 29, 2021, provide a comprehensive dataset
of approximately 418 GB. Fig. 8 illustrates the distribution of
request data for two services over a single day, offering insights
into temporal dynamics and service demands. Additionally,
data on the geographical location and bandwidth capacity of
around 1,500 servers complement the evaluation. Since only the
latitude and longitude of the server can be obtained in the data
set, we use the geographical location in the process of graph
partitioning, but the proposed algorithm is a general scheme, and
it is also feasible for network hops or communication delays,
etc., as a measure of distance.

2) Baseline Algorithms

The baseline algorithms utilized in our experiments are cate-
gorized into two key aspects. First, to validate the performance
of cluster partitioning, we employed the following methods:

• Average-random: Divide the servers into multiple server
clusters as uniformly random as possible;

• K-Means [28]: The servers are partitioned iteratively based
on the center distance.

• Graph Partition based on Backtracking (GPB) [29]:
Construct a spanning tree based on the adjacency list,
traverse all root-to-leaf paths to identify independent sets
for graph partitioning.

Second, to evaluate the performance of task allocation, we
utilized the following baseline methods:

• Cascara [18]: It optimizes bandwidth allocations with non-
linear pricing by using latency-equivalent peer links on the
cloud edge;

4PPIO Edge Cloud, PPIO Cloud Computing (Shanghai) Co., Ltd.,
https://www.ppio.cn
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• GeoCo: It only uses the context-aware index mechanism
to optimize bandwidth allocation;

• GeoCa: It only uses the capacity-aware adaption mecha-
nism to optimize bandwidth allocation;

• Greedy [30]: It prioritizes servers with more available
bandwidth when making task allocations;

• SM-CTP [31]: Iteratively select task sets that maximize the
submodular function to derive the optimal task allocations.

3) Hyper-parameter Settings

For the proposed algorithms, we configure the hyper-
parameters with ϵ = 0.1 and β = 1 for the server cluster
partitioning, while setting α = 0.95 for bandwidth demand
allocation. These parameters are chosen to balance precision and
efficiency, ensuring robust performance across various network
environments and system constraints. They allow the algorithms
to effectively manage trade-offs between accuracy and speed for
diverse real-world applications. Additionally, the system cost is
calculated based on Equation (4), with w set to 1.5.

B. Evaluation Results

1) Performance of Cluster Partitioning

We first validate the cluster partitioning algorithm to ensure
that multiple homogeneous server clusters can be partitioned
based on heterogeneous servers. In this way, on the one hand,
the impact of heterogeneity on subsequent task allocation can
be reduced, and on the other hand, the negative impact of the
large number of servers on the algorithm can be reduced.

First, as shown in Fig. 9 (a), Geo effectively divides the
geographically dispersed servers into 10 subsets and the servers
in each subset are geographically centralized. In terms of server
resources, Geo can keep the available bandwidth resources and
the total bandwidth of each server cluster relatively balanced
despite the strong resource heterogeneity of these servers (as
shown in Fig. 9 (b) (c)).
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As shown in Fig. 10 (a), Geo has the smallest standard
deviation, which can maximally guarantee that different server
clusters have the same resource scale. On this basis, as shown
in Fig. 10 (b), the servers in the server cluster divided by Geo
are the most concentrated, and less transmission distance is
beneficial to further reduce the transmission delay during task
allocation.

2) Performance of Task Allocation

As shown in Figure 11, we conducted further comparisons of
the system cost (defined as fm in Equation (4) with w = 1.5),
thereby verifying the performance under different application
scenarios.

Figure 11 (a) illustrates the system cost concerning the
average number of services across 130 servers. The proposed
GeoCo and GeoCC algorithms outperform the greedy anytime
algorithm. However, the degree of performance improvement
is less pronounced with a smaller average number of services
compared to a larger one. This variation is attributed to the
increased constraints on the allocation process when the average
service number is small, leading to a reduction in flexibility.

Figure 11 (b) depicts the system cost in relation to the number
of servers. An expansion in the number of servers results in
more available free time intervals, contributing to a noteworthy
reduction in the overall system cost, as illustrated in the figure.
This observation confirms the efficacy of the context-aware and
capacity-aware mechanisms in capitalizing on the free time
intervals facilitated by burstable billing. Conversely, insufficient
servers impede bandwidth demand allocation, emphasizing the
importance of a well-balanced server cluster partition.

Figure 11 (c) illustrates the system cost concerning user
bandwidth demands. We simulate variations in demands by
scaling bandwidth requests with different factors. As the de-
mands escalate, a corresponding rise in the cost is observed.
This outcome is associated with the burstable billing feature,
which accommodates a specific threshold of burst bandwidth
demands. Uncontrolled increases in demand inevitably lead to
escalated costs for the system.

Figure 11 (d) depicts the influence of the server cluster
partition number on server cluster diameter and its impact on
bandwidth demand allocation. We conduct experiments with
various partition numbers using a real-world server set, keeping
the services or demand sum unchanged. On one hand, we note
that the cost rises with an increasing partition number due

to heightened constraints on allocation. On the other hand,
a smaller partition number leads to a larger server cluster
diameter, reducing the locality of bandwidth demand allocation
and prolonging the execution time of the allocation algorithm.

Examining all subfigures in Fig. 11, it is evident that the
greedy algorithm exhibits the poorest performance. This can be
attributed to the intricate nature of burstable billing, where some
servers are prone to being overused. In most cases, Cascara
and SM-CTP perform worse than GeoCC. Cascara neglects the
intricate matching relationship between services and demands
in the edge-cloud system, resulting in suboptimal performance
despite the utilization of prior information. SM-CTP lacks fine-
grained awareness of network connectivity and cannot fully
utilize bandwidth resources. Compared to Cascara, which has
the closest performance, GeoCC can reduce bandwidth costs by
an average of 28.30%, with a maximum reduction of 81.83%.

VI. RELATED WORK

In this section, we review the research progress in the relevant
field and highlight the innovations and differences of our study
compared to existing work.

A. Task Allocation in the Edge Cloud

In previous research work, there are two main goals of task
allocation in edge cloud or even traditional cloud cluster. The
first is to improve the user service experience, such as reducing
the packet loss rate of transmission and reducing the delay of
real-time streaming service. The second is to reduce the cost
of services, such as reducing bandwidth overhead, improving
machine utilization, reducing energy consumption, etc.

Oo et al. [32] proposed a perceptual allocation algorithm
that takes into account the varying tolerance to latency for
different types of tasks. The decision on whether to forward
a task to the central cloud or to perform computations at the
edge is based on the task’s specific latency requirements. They
demonstrated that this allocation strategy is more effective in
meeting the computational task demands compared with the
allocation algorithms that do not consider the diverse latency
requirements of computational tasks. Li et al. [33] introduced
an energy-aware edge service placement algorithm with the aim
of reducing the overall energy consumption costs of servers
while maintaining acceptable user access latency. This work
models the problem as a multi-objective optimization problem
and employs a particle swarm optimization-based energy-aware
edge service placement algorithm to solve it. He et al. [34]
proposed an allocation method to enhance offloading efficiency
and reduce application latency in resource-constrained edge
devices. The algorithm, using a genetic algorithm, encodes
tasks generated by edge devices into binary code to optimize
task allocation and reduce task latency. The allocation strategy
considers the dependency between computational tasks. This
work models the allocation problem as a joint task assignment
and flow scheduling problem, utilizing a data flow programming
model to analyze the correlations between tasks and thereby
improve task throughput.

The above research works optimize task allocation in edge
cloud with different objectives, and their optimization objec-
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tives are delay, energy consumption, task throughput, etc. This
reflects that there are often multiple objectives to be considered
in the optimization of task allocation in edge cloud. However,
none of the above works consider the burstable billing mode
and cannot maximize the resource cost reduction.

B. Task Allocation to Optimize Costs

Task allocation can reduce the bandwidth cost as much as
possible under the condition of satisfying service constraints,
which has application potentials and has attracted research atten-
tions. There are generally two main ideas for cost optimization
schemes. The first is to dynamically select low-cost links for
data transmission to save costs. The second is to reduce the
amount of data transmission through caching and other means
to reduce the cost.

Garcı́a-Dorado et al. [35] proposed a cloud application system
architecture that comprehensively considers the transmission
cost and data redundancy. By constructing a batch data transfer
overlay distribution tree, they optimize the distribution cost
while ensuring that end-to-end data transmission remains un-
affected. This work monitors the throughput between TCP
data centers and suggests alternative tree structures that respect
the original transmission time, thereby saving infrastructure
costs in cloud computing centers. Ahmed et al. [36] maintain
multiple transmission paths from content distribution servers
to users. Due to the dynamic nature of performance and
pricing along transportation routes, a routing selection strategy
is implemented to optimize the trade-off between performance
and cost. This work formalizes the routing problem in a multi-
attribute manner while simultaneously optimizing performance
and cost. Le et al. [13] use an auction framework to simulate
interactions between network providers and tenants in the band-
width market. They propose a solution based on a stochastic
auction mechanism that determines the bandwidth quantity and
corresponding payment based on bids submitted by tenants,
aiming to maximize social welfare.

While the aforementioned studies optimized server band-
width costs, they did not specifically target the optimization
of burstable billing mechanisms. Burstable billing mechanisms
are widely adopted by network service providers, introducing
unprecedented complexity to optimization problems. Therefore,
there is a need for targeted optimization solutions to address
the challenges posed by burstable billing.

C. Task Allocation for Burstable Billing

The burstable billing mechanism is a widely adopted billing
method by internet service providers [37]. Its main characteristic
is the tolerance of brief periods of high bandwidth usage,
resulting in relatively higher charges for applications with
significant demand fluctuations. Typically, operators employ the
95th percentile billing to calculate bandwidth costs [10]. This
method allows for 5% of the highest bandwidth usage moments
within a billing period, with the billing bandwidth determined
by the 95th highest usage level during the entire billing cycle.

Lin et al. [38] proposed a cost-optimized video streaming
scheduling system that delays the delivery of video streams
to prevent an increase in current burstable billing costs. Li et
al. [39] introduced a mechanism based on cumulative traffic,
utilizing Lyapunov optimization techniques to design a pricing-
aware control framework. This framework schedules more
traffic peaks during free slots while maintaining lower traffic
differentials in the remaining slots. However, both of these
approaches are not suitable for tasks with high demand and
strong real-time constraints. Postponing the delivery of tasks
is unacceptable for many tasks in the new generation of the
internet, limiting the applicability of these methods.

Singh et al. [40] computed cost values under burstable billing
in advance using historical prior information. Subsequently,
available costs were allocated based on the size of server
bandwidth resources, and a greedy approach was employed to
minimize costs while utilizing the allocated resources as much
as possible without significantly affecting latency. However,
this work heavily relies on prior information from historical
data center data, making the resulting algorithm generalize.
Additionally, the centralized setting of data centers in this work
is relatively straightforward and does not consider the diversity
of services and the availability of servers tailored to specific
services.

VII. CONCLUSION

In this paper, we propose a geography-context-capacity aware
bandwidth cost economizing strategy in the edge-cloud system,
i.e., GeoCC. GeoCC adopts server cluster partition and the
optimal burstable billing mechanisms. Here, a geography-aware
graph construction and partition algorithm is designed. Mean-
while, an improved burstable billing optimization mechanism is
also proposed. Finally, the evaluation using real-world tracking
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from an edge cloud company verified that GeoCC can effec-
tively reduce bandwidth peaks according to the billing model,
resulting in a significant reduction in the cost of bandwidth in
burstable billing.
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