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Indoor Smartphone SLAM with Acoustic Echoes
Wenjie Luo, Qun Song, Zhenyu Yan, Rui Tan, Guosheng Lin

Abstract—Indoor self-localization has become a highly desirable system function for smartphones. The existing systems based on
imaging, radio frequency, and geomagnetic sensing may have sub-optimal performance when their limiting factors prevail. In this paper,
we present a new indoor simultaneous localization and mapping (SLAM) system that is based on the smartphone’s built-in audio
hardware and inertial measurement unit (IMU). Our system uses a smartphone’s loudspeaker to emit near-inaudible chirps and then
the microphone to record the acoustic echoes from the indoor environment. The echoes contain the smartphone’s location information
with sub-meter granularity. To enable SLAM, we apply contrastive learning to train an echoic location feature (ELF) extractor, such that
the loop closures on the smartphone’s trajectory can be accurately detected from the associated ELF trace. The detection results
effectively regulate the IMU-based trajectory reconstruction. The reconstructed trajectories are used for trajectory map superimposition
and room geometry reconstruction. Extensive experiments show that our SLAM achieves median localization errors of 0.1m, 0.53m,
and 0.4m in a living room, an office, and a shopping mall, and outperforms both the Wi-Fi and geomagnetic SLAM systems. The room
geometry reconstruction achieves up to 4� lower errors compared with the latest echo-based approaches.

Index Terms—Simultaneous localization and mapping, contrastive learning, acoustic sensing.

✦

1 INTRODUCTION

Location awareness is a fundamental requirement for mo-
bile operating systems. As of 2023, more than 70% of the
top 100 Android apps require location information. Various
smartphone’s built-in sensing modalities, including Wi-Fi
[1], BLE [2], GSM [3], FM radio [4], visible light [5], imaging
[6], acoustic background [7], and geomagnetism [8] have
been exploited for indoor location sensing. However, these
sensing modalities have their own limiting factors. For
instance, radio frequency (RF) signals are susceptible to
electromagnetic noises. Visible light sensing suffers block-
age. Visual imaging may incur privacy concerns in certain
spaces and times. The acoustic background only provides
room-level granularity. Therefore, exploiting new modalities
based on smartphones’ built-in hardware to enrich location-
sensing services has been an interest of research.

Using a smartphone’s audio system for active indoor lo-
cation sensing receives increasing research interest [9]–[14].
The active sensing uses smartphone’s loudspeaker to emit
excitation signals in the target indoor space and microphone
to capture the acoustic echoes that carry location informa-
tion. The existing approaches for location sensing can be
divided into two categories. The analytic approach [12]–[14]
analyzes the sound reflection processes from nearby sur-
faces (e.g., walls) for location estimation. However, when the
indoor spaces are complicated (e.g., with irregular surfaces,
many nearby objects with complex structures, etc), accurate
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object association becomes intractable. Thus, the existing an-
alytic approaches often make simplifying assumptions that
the major reflectors are at most two nearby walls [12]–[14].
The fingerprint approach [9]–[11] uses the echoes captured by
the smartphone as the fingerprints of the locations and then
applies supervised machine learning to build localization
models. However, fingerprint data collection at spatially
fine-grained locations incurs a high overhead. Thus, the
existing studies focus on room-level location sensing [9],
[11] or recognize a limited number of locations (11 closed
locations in [10]).

Nevertheless, the fingerprint approach exhibits the po-
tential to offer good generalizability as it does not make
specific assumptions about the surroundings. To investigate
whether satisfactory resolutions can be maintained when
the number of fingerprinted locations increases, we con-
duct a measurement study of fingerprinting 128 locations
using active sensing in a 16 � 28m2 office. We train a
recognition model using labeled data. Results show that the
fingerprint approach achieves sub-meter location sensing
accuracy. Thus, acoustic echo is a promising modality for
building indoor localization services on smartphones.

To unleash the fingerprint approach from the laborious
training data collection process, in this paper, we aim to
design a simultaneous localization and mapping (SLAM)
system using the smartphone’s inertial measurement unit
(IMU) data and the acoustic echoes collected by the micro-
phone. Specifically, when a user carrying the smartphone
moves in the indoor space, if he/she returns to a previously
visited location, the user trajectory forms a loop closure. If the
loop closures can be correctly detected using the acoustic
echo, the IMU-based dead reckoning result, which is prone
to sensor errors, can be regulated to obtain an accurate
trajectory. As a result, the reconstructed trajectory and the
associated echo data form a trajectory map.

As a key step of SLAM, loop closure detection requires
an effective feature embedding to determine if two echo
samples are collected at the same/different locations. How-
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TABLE 1: Summary of infrastructure-free acoustic indoor localization and mapping.

Approach Study Objective Presumption Labeled Resolution Sensing technique
on reflectors training data Mode Sensing signal Duration

Analytic

VoLoc [15] Localization
Yes No Decimeters

Passive Human voice 15 cmds
EchoSpot [14]

Active
18-23kHz FMCW1 0.2 s

BatMapper [13] Mapping 8-16kHz chirps 0.04 s
SAMS [12] 11-21kHz FMCW 0.03 s

Fingerprint

SurroundSense [16]

Localization

No
Yes

Semantic lo-
cations Passive Acoustic 60 s

Batphone [7] background 10 s
RoomSense [9] (Sub-)

Active

0-24kHz MLS2 0.68 s
DeepRoom [11] room-level 20kHz tone 0.1 s
EchoTag [10] Location

tagging
Centimeter 11-22kHz chirp 0.42 s

ELF-SLAM Localization No Sub-meter 15-20kHz chirp 0.1 s& mapping
1Frequency-Modulated Continuous-Wave, 2Maximum Length Sequence

ever, it is challenging to find such an effective embed-
ding for acoustic echoes. Our experiments show that the
generic acoustic features, e.g., power spectral density (PSD),
spectrogram, and principal component analysis (PCA), are
ineffective for location discrimination. Thus, we resort to
finding an effective embedding using deep neural networks
(DNNs). The embeddings learned via supervised learning
become ineffective on the data out of the training dataset.
Differently, contrastive learning (CL) is a self-supervised
learning technique that constructs effective embeddings
from unlabeled data. Applied to our SLAM problem, CL
can be used to learn an acoustic representation from the
unlabeled echo data and only requires the information of
whether two echoes are collected at close locations. Thus,
we apply CL to train a feature extractor that outputs a new
representation called echoic location feature (ELF). Then, we
compute ELFs’ similarity to detect loop closures.

We make the following four designs to realize the ELF-
based SLAM. First, we design a trajectory-level CL proce-
dure to learn the trajectory-specific ELFs for loop closure
detection. It consists of pre-training a basic ELF extractor
based on the incremental learning scheme, and fine-tuning
the extractor for target room adaptation using limited un-
labeled echoes. Second, we design a loop closure curation
approach to remove the false positives by exploiting prior
knowledge of the user’s movement. Third, we design a
floor-level CL procedure to superimpose the crowdsourced
trajectory maps to form a single floor map. The procedure
can effectively reconcile the differences among the ELFs
from multiple trajectory maps at the same spot caused by
the smartphone orientation. Lastly, we use the echoes to
estimate the wall distances and then leverage the estimated
distances and the rectified user trajectory for room geometry
reconstruction.

The main contributions of the paper are:

Y We conduct extensive measurement studies to inves-
tigate the spatial property of the acoustic echo. The
acoustic echo exhibits a sub-meter spatial resolution
limit and is promising for designing an accurate
indoor location sensing system.

Y We design CL and learn ELFs for loop closures detec-
tion. We further design ELF-SLAM using IMU data
and learned ELFs on a smartphone. We also apply CL
to superimpose the crowdsourced trajectory maps.

Y We leverage the reconstructed trajectory and estimate
the wall distance for room reconstruction. Evalua-
tions show that our system outperforms the existing
echo-based room reconstruction systems.

Y We conduct extensive experiments in various in-
door environments. ELF-SLAM achieves sub-meter
mapping and localization accuracy and outperforms
SLAM systems based on Wi-Fi and geomagnetism.
We also study the allowable intensities and/or
needed mitigation for various practical affecting fac-
tors, including nearby people, audible noises, and
space layout changes.

Paper organization: §2 reviews related work. §3 presents
the measurement study. §4 presents the ELF-SLAM design.
§5 presents room geometry reconstruction. §6 presents eval-
uation results. §7 discusses several potential approaches to
improve the system. §8 concludes the paper.

2 RELATED WORK

Ì Acoustics-based indoor location sensing: The ubiquity
of speakers and microphones on consumer electronics has
promoted acoustics-based indoor location sensing in the
last few decades [17]. In [18]–[20], a device’s indoor po-
sition can be estimated by receiving and analyzing the
sound emitted from the deployed acoustic beacons. How-
ever, the infrastructure-based approaches may incur the
undesirable overhead of deploying dedicated sound bea-
cons or receivers. Thus, we mainly review infrastructure-
free approaches as summarized in Table 1. The analytic
approach analyzes the sound propagation processes for lo-
cation sensing. It either senses the sounds from the exter-
nal source or generates probing signals and analyzes the
echoes. VoLoc [15] uses a speaker to detect the angle of
arrival of the user’s voice for localization. EchoSpot [14]
uses a device to emit near-inaudible signals and analyze
the signals’ times of flight reflected off the human body.
However, Voloc and EchoSpot require prior knowledge of
the sound reflectors for triangulation. Another application
of the analytic approach is indoor mapping, which estimates
the wall distances to the smartphone. To build the room
contour, studies [12], [13] require a user to walk along the
walls for data collection. Then, the IMU data is used to
construct the user trajectory and the echo data is used to
estimate the wall distances. These two studies presume an
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Fig. 1: (a) Probing signal: a logarithmic chirp sweeping
the 15–20kHz band within 10ms; (b) Recorded time-series
echoes; (c) Correlated result using the received echo and
probing signal template.

accurate IMU-based trajectory. However, IMU-based dead
reckoning is prone to sensor errors and subject to error
accumulation problems. In this work, we reconstruct the
room based on the accurate trajectory reconstructed by the
proposed ELF-based SLAM.

The fingerprint approach collects acoustic echoes from
different spots of a room and trains recognition models
for location inference [7], [9]–[11], [16]. Early studies [7],
[9], [16] apply conventional feature engineering and require
either long data collection time that may incur privacy
concerns or full-spectrum recording that is susceptible to
interference like ambient noise [11]. DeepRoom [11] applies
deep learning to reduce the requirements on recording time
and spectrum usage. The studies [7], [9], [11], [16] address
semantic or room-level location sensing. EchoTag [10] uses
echoic fingerprints to tag up to 11 spots at centimeter spatial
resolution. When the fingerprint approach is extended to a
large indoor space, the blanket process of collecting labeled
training data at dense locations incurs high overhead.

Besides location sensing, acoustic echo has been used for
other applications. A detailed review can be found in [21].

Ì SLAM: A SLAM system can construct the indoor
map and localize the user device simultaneously based on
a certain signal. Here, we review existing SLAM systems
according to the used sensing modalities. Radar SLAM [22],
mmWave SLAM [23], and Lidar SLAM [24] are based on
point clouds generated by radar, mmWave and high-profile
lidar, which are unavailable on most smartphones. Visual
SLAM [25] uses imaging for landmark detection and map
construction. The imaging may introduce privacy concerns.
Wi-Fi SLAM [26] detects the received signal strength indica-
tors (RSSIs) from nearby Wi-Fi access points. However, Wi-
Fi RSSI is time-varying. Geomagnetic SLAM [27] exploits
the spatially varying magnetic field. Electromagnetic radia-
tion (EMR) SLAM [28] uses the smartphone’s earphone as a
side-channel sensor to sense the EMR from the powerlines.
However, side-channel sensing may experience weak signal
strength if the earphone is far from the powerlines. This
paper employs geomagnetic, EMR, and Wi-Fi SLAMs as the
main baselines for evaluation.

Compared with the previous work [21], several major
extensions are made in this paper. First, a new model pre-
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Fig. 2: Spectrograms of echoes received at three spots. The
spots of (a) and (b) are 10 cm apart from each other; the spot
of (c) is 2m apart from those of (a) and (b).

training scheme based on incremental learning is proposed.
The new training scheme addresses the lack of training data
and allows the model to be updated incrementally with
small datasets. Second, the impact of model pre-training and
fine-tuning on ELF-SLAM is comprehensively evaluated.
The results show that both steps are essential to learn
effective ELFs. Third, an in-depth analysis of the spatial res-
olution of WiFi RSSI, geomagnetism, and ELFs is provided.
Lastly, a new case study of room geometry reconstruction
based on the rectified trajectory and the echoes is presented.
The room geometry reconstruction performance is shown
to outperform the existing echo-based room reconstruction
systems.

3 MEASUREMENT STUDY

3.1 Signal Design and Processing
Ì Probing signal: In this paper, we use a smartphone to
emit a near-inaudible logarithmic chirp sweeping the 15–
20kHz band within 10ms as the probing signal for location
sensing, as shown in Fig. 1a. The 15–20kHz frequency range
causes little annoyance to humans. A wide bandwidth (i.e.,
5kHz) also benefits pulse compression [29], which helps
capture finer-grained spatial features. In addition, we apply
a Hanning window on the chirp to reduce the damped
oscillation of the speaker and increase the signal-to-noise
ratio (SNR) that benefits distance measurement.

Ì Echo extraction: We develop an application that uses
the smartphone’s loudspeaker to emit the probing signal
and microphone to record the 100ms echo at 44.1ksps. We
assume the smartphone is held around 30 to 40 cm in front
of the chest. Ideally, the speaker and the microphone should
be unobtrusive. In the received data, we discard the first
10ms due to the direct propagation from the loudspeaker to
the microphone. We also discard the subsequent 1ms data,
which usually contains the echoes reflected by the human
body that is around 30 � 40 cm apart from the smartphone.
The subsequent 50ms data, which are collectively referred
to as echo trace and illustrated in Fig. 1b, are used for lo-
cation recognition. Fig. 1c shows the cross-correlated result
between the received signal shown in Fig. 1b and the chirp
template. The peaks in Fig. 1c represent echoes generated
from the nearby sound reflectors.

Ì Acoustic spectrogram extraction. We apply short-
time Fourier transform (STFT) on echo data to extract the
acoustic spectrogram feature. Specifically, a 96-point Hann
window with a step length of 48 points is slid on echo data,
resulting in a 49 � 48 spectrogram. The frequency bins that
are below 15kHz are discarded, yielding a 12 � 48 image as
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Fig. 3: Acoustic echoes’ spatial distinctness.

the final result. Fig. 2 shows the generated spectrograms, the
spectrograms at far-part locations exhibit significant differ-
ences. The horizontal axis represents the echo length, which
is 50ms. The vertical axis represents the chirp frequency,
which ranges from 15 to 20kHz. The noticeable differences
among the spectrograms suggest that collected echoes vary
at different spots.

3.2 Spatial Distinctness of Echoes

To gain insights into acoustic echoes, we conduct a set of
measurement studies in a 16 � 28m2 lab space. We use a
Google Pixel 4 smartphone to excite the space at 128 spots
and collect 1,700 data samples at each spot. To understand
echo’s distinctness limit, we use a supervised learning ap-
proach to investigate the achievable spatial resolution and
scalability with respect to the number of spots. The analysis
results are presented as follows.

Ì Spatial resolution. For each location, 1,700 spectro-
grams are collected and split into training and testing data at
an 8:2 ratio. The spot’s spatial locations are used as ground
truth labels. To understand how the inter-spot distance
affects location recognition accuracy, we divide the 128 spots
into multiple groups with different densities. As a result,
the average inter-spot distances of the groups range from
0.25m to 3m. For each group, we use spectrograms to train
a recognition model. We opt to use the ResNet model [30],
which is a popular DNN architecture used for image recog-
nition. Specifically, we select ResNet-18, a ResNet variant
that achieves high recognition accuracy while maintaining
a relatively low model complexity for echo data. The spot
recognition accuracy and the mean localization error are
both measured. Fig. 3a shows the measured results with
respect to the average inter-spot distance. The evaluation is
repeated multiple times to get the error bars. The recogni-
tion accuracies stay around 90% and the localization errors
remain less than 1m. The results suggest that the acoustic
echoes can achieve sub-meter spatial resolution with in-
creased inter-spot distance.

Ì Scalability. To gain an understanding on acoustic
echo’s scalability, we gradually increase the number of spots
handled by a single DNN model (denoted by k). For each k
setting, we randomly draw k spots from the 128 spots, train
and test a DNN model. The process is repeated 20 times
for each k setting. Fig. 3b shows the results. The recognition
accuracy gradually decreases with k and becomes flat when
k exceeds 100. This result complies with the understanding
that the complexity of deep learning increases with the class
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Fig. 4: PSDs of the echoes when several factors vary.

numbers. The mean localization error also remains within
1m. The results suggest that a DNN model does not present
a bottleneck when the number of spots increases.

3.3 Robustness of Acoustic Echoes

This section studies the robustness of acoustic echoes
against several potential affecting factors.

Ì Altitude. We ask a user to hold the phone at different
altitudes to simulate the users with different heights. As
typical adult heights are within 150–194 cm [31] and we
assume the phone is held at two-thirds of user height. The
phone’s altitude to the ground is around 100 cm to 130 cm.
Fig. 4a shows the PSDs of the acoustic echoes. We can see
that the altitude variations of less than 30 cm introduce little
impact on echo PSDs. Hence, the acoustic echoes are robust
to the user height and hand altitude variations.

Ì Phone orientation. As a smartphone’s loudspeaker
and microphone are not omnidirectional, the received signal
at the same spot could be affected by the phone’s orienta-
tion. Fig. 4b shows the echo PSDs when the phone has
orientation deviations from �20X to 20X. The results show
that the orientation deviations within 40X do not introduce
many changes on the collected echoes. However, the echoes
exhibit larger differences when the orientation deviation
increases. Thus, the impact of phone orientation must be
taken into consideration when multiple echo traces collected
at the same spot are in different orientations. We address the
phone orientation issue in §4.5.

Ì Temporal stability. We evaluate acoustic echoes’ tem-
poral stability at a fixed location over one month. The layout
of the room has no significant changes in this period. From
Fig. 4c, the echo PSDs remain consistent over time. In prac-
tice, the constructed floor map can be updated whenever a
user contributes a trajectory map. In Appendix B, we further
evaluate the impact of significant layout changes on our
system and a mitigation approach beyond map update.

4 DESIGN OF ELF-SLAM

The spatial distinctness of acoustic echoes shown in the
measurement study is the basis of the fingerprint approach.
To unleash the fingerprint approach from laborious training
data collection, we design ELF-SLAM based on acoustic
echoes and IMU data captured by a smartphone.
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Fig. 5: Overview of ELF-SLAM. It consists of three parts, namely, trajectory map construction, trajectory map superimpo-
sition, and room geometry construction.

4.1 Approach Overview

Fig. 5 illustrates the overview of ELF-SLAM. The mapping
phase of ELF-SLAM consists of trajectory map construction
and trajectory map superimposition. The former focuses on
a single trajectory and the latter combines available trajec-
tories such that the combined map can cover the mostly
visited spots in the target space.

Ì Trajectory map construction: The acoustic echoes and
IMU data are collected simultaneously using the developed
program on the phone. The IMU-based dead reckoning [32]
is used to reconstruct the user’s trajectory and loop closures
are detected using the collected acoustic echoes. The dead
reckoning relies on the regulation provided by the loop
closure to combat its long-run drifting problem. Due to
the ineffectiveness of generic acoustic features, ELF-SLAM
extracts a custom ELF using CL for loop closure detection.
This trajectory-level CL consists of model pre-training that is
based on incremental learning and fine-tuning using genuine
data collected in the target space. ELF-SLAM detects loop
closures based on a proposed similarity metric called echo
sequence similarity (ESS) between two sequences of ELF
traces. Then, a clustering-based approach is developed to
remove the false positive loop closures. Lastly, a graph-
based optimization constructs an accurate trajectory map of
ELFs for the user.

Ì Trajectory map superimposition: A unified floor map
will be obtained after superimposing multiple trajectory
maps through crowdsensing. The superimposition recon-
ciles different trajectory maps’ ELFs that are collected at the
same spot but in different phone orientations. To achieve
this, different users’ trajectory maps are first aligned into a
common coordinate system. The alignment can be achieved
based on the initial positions of the users (e.g., the room
entrance) and/or prior knowledge about the accessible pas-
sages of the target indoor space [33]. Then, we apply the
floor-level CL to train a floor-wide ELF extractor using the
acoustic data from all trajectory maps. Thus, the floor map
covers all spots on the available trajectory maps, where each
spot is associated with a unique floor-level ELF.

4.2 Graph-based SLAM Formulation

Graph-based SLAM [34] constructs a graph with nodes
representing the agent’s poses and edges representing the
kinetic constraints relating two poses. In this paper, by
letting xk denote the node (i.e., location) corresponding
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to the kth detected footstep based on the IMU data, the
acoustic echo trace captured between the kth and �k � 1�th

footsteps is the measurement associated with the node xk

and used to detect whether xk is at the same location
as any previous node (i.e., loop closure detection). The
edge connecting two nodes is associated with the IMU-
based odometry. The user trajectory is estimated via graph-
based optimization after the loop closures are identified. The
estimation method is as follows. For a total of N detected
footsteps, let X � �x1, . . . ,xN� denote the sequence of
nodes describing the user trajectory and ui,j denote the
edge constraint between nodes xi and xj . Let C denote the
set of footstep index pairs of the detected loop closures. The
essence of the trajectory reconstruction can be described by:

X�
� argminQ

¦i>�1,...,N�1�

Yf �xi,ui,i�1� � xi�1Y
2
�Q
¦`i,je>C

Yf �xi,ui,j� � xjY
2 ,

where Yx�yY denotes the Euclidean distance between x and
y, f�xi,ui,j� represents the prediction of xj based on xi

and ui,j . In this paper, the SLAM algorithm is implemented
using a general graph optimization framework [35], which
also addresses the uncertainty of the prediction f�xi,ui,j�.

4.3 ELF For Loop Closure Detection
Constructing an effective feature embedding for loop clo-
sure detection is critical to SLAM. In this section, we first
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demonstrate the ineffectiveness of the generic features and
then propose using CL to construct a learning-based feature.

4.3.1 Ineffectiveness of generic features.

We conduct a controlled experiment to evaluate several
generic acoustic features’ performance on loop closure de-
tection. A user is asked to walk 4 rounds to collect the echo
data in a lab space. Each round consists of the same 58
footsteps. We extract the following features of the echo data:
PSD, spectrogram, t-SNE, and PCA. Then, we compute the
similarity between the features collected at footstep i in the
first round with those at all footsteps in all rounds. The echo
sequence similarity (ESS) is used as the metric to compute
the similarity of the echo data obtained at two footsteps,
which is defined as follows. For two footsteps i and j at
which Ki and Kj numbers of echoes are collected, the ESS
between them is obtained by averaging the Ki �Kj pair-
wise cosine similarity among the two sets of echoes. Fig. 6
shows the resulting ESS traces with footstep i (where i � 4)
in the first round and j being all footsteps of all rounds
sequentially. In this experiment, for footstep i, loop closures
are formed at the footsteps i�58, i�58�2, and i�58�3. If the
used feature is effective, ESS peaks should be observed at
these footsteps. However, from the plots in the first five rows
of Fig. 6, no salient peaks are observed. This suggests that
the raw data and the used generic features are ineffective
for loop closure detection. Note that although t-distributed
stochastic neighbor embedding (t-SNE) [36] is effective for
finding feature embeddings of clustered data, it is ineffective
on the echo samples collected in the spatial continuum that
do not exhibit clustered patterns.

The ineffectiveness of generic features for loop closure
detection motivates us to apply CL to construct a cus-
tom feature, i.e., ELF. CL [37] is a popular unsupervised
learning technique that aims to learn useful representations
from unlabeled data. CL maximizes the agreement between
similar samples while minimizing the agreement between
dissimilar samples during the model training. The quality
of feature learning relies on the effectiveness of data pairing,
which constructs similar samples and dissimilar samples
from unlabeled data.

In what follows, we present our CL design to learn the
ELF for loop closure detection. Fig. 7 depicts the workflow,
which consists of three steps, i.e., data pairing, model pre-
training, and model fine-tuning.

4.3.2 Learning-based ELF.

Data pairing forms similar samples and dissimilar samples
needed by CL. The spatial perturbations for similar sample
construction, such as resizing, cropping, and blurring in
image recognition tasks may destruct the subtle location-
related information embedded in the echo signal. Our data
pairing design is based on the empirical observation that the
echoes are similar if collected at close locations and different
if collected at locations apart. This is illustrated in Fig. 2, the
spectrograms of the acoustic echoes received at two nearby
spots exhibit similar patterns, whereas the spectrogram of
the echo received at a faraway spot is different. Thus, we
construct similar data samples using echoes collected at
close locations and dissimilar data samples using echoes at
locations apart. Specifically, echoes collected consecutively
are treated as similar samples. For each training step, we
randomly select 256 pairs of similar samples as a training
batch from the entire dataset. According to our design in
§3, the time difference between two consecutive echoes is
0.1 s, the spatial distance between these two echoes is about
0.14m. This average separation is smaller than the achiev-
able spatial resolution of the echo modality as evaluated in
§3. Thus, using two consecutive echoes during the user’s
movement as similar samples is a good heuristic. The data
from different pairs are treated as dissimilar samples.

Model pre-training exploits CL to build a basic ELF
extractor, which will be specialized by the model fine-
tuning step. CL often requires abundant unlabeled training
data to learn useful feature representation. However, there
is a lack of publicly available echo data for model pre-
training. To address this issue, we propose an incremental
learning-based model pre-training scheme. It consists of
two steps. First, we utilize a room acoustics simulator,
pyroomacoustic [38], to generate a substantial amount
of simulated training data. The pyroomacoustic package
offers an intuitive application programming interface (API)
for simulating sound reverberation within indoor environ-
ments. Specifically, a SoundSource, a MicrophoneArray,
and a Room are constructed for data collection. The
SoundSource emits the designed inaudible chirp, while the
MicrophoneArray records the sound in the constructed
room. The pyroomacoustic employs the image source
modeling method to simulate sound propagation in indoor
spaces. The SoundSource and the MicrophoneArray are
placed 15 cm apart to mimic their relative positions on a
smartphone. Multiple rooms with varying configurations
are generated to enhance location-related data diversity.
Within each of these rooms, extensive echo data is collected
at fine-grained points to cover a wide range of locations.
We adhere to the procedures outlined in §3.1 to extract
the spectrogram feature and train a base feature extractor
using CL. This enables us to obtain a base model capable of
discerning locations effectively. Second, we adapt the pre-
trained model to real indoor environments by incrementally
updating the feature extractor when new training data are
contributed by new users. Though using simulated data
for model pre-training allows us to obtain a location-aware
feature extractor, the simulated and the real captured data
still exhibit differences as the simulator cannot fully model
room conditions (e.g., the wall reflection/absorption coeffi-
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cients, small reflectors like chairs, tables, etc) and the audio
hardware characteristics of a smartphone. By incrementally
updating the pre-trained model using collected echo data,
it can gradually learn environmental and hardware-related
features. Therefore, the pre-trained model can be fine-tuned
to a new environment more quickly and accurately. The
beneficial performance of the proposed model pre-training
scheme is presented in §6.4.

The architecture of the feature extractor is adapted from
[39], which consists of a ResNet-18 encoder and a 3-layer
projection head, the model architecture is shown in the
right part of Fig. 7. The input of the model is the echo’s
spectrogram and the output is a 128-dimensional ELF. We
minimize the following contrastive loss for model training:

ℓi,j � � log
exp �sim �zi,zj� ~τ�

P2M
k�1 1�kxi� exp �sim �zi,zk� ~τ�

,

where 1�kxi� > �0,1� is evaluated to 1 if and only if k x i,
sim��, �� denotes cosine similarity, z is the feature vector, i
and j indicate a similar data pair, M is batch size, and τ is
the temperature parameter. With the above contrastive loss,
the pre-training increases the feature similarity for echoes at
close locations and decreases the feature similarity for those
at locations apart. As a result, the loop closure detection
can be implemented by comparing the ELFs in terms of the
cosine similarity.

Model fine-tuning uses limited unlabeled data collected
by users in the target space to adapt the pre-trained model
such that the environment-specific characteristics can be
captured. We follow the same CL procedure described
above and construct the data pairs using genuine data
for model fine-tuning. The resulting model can generate
trajectory-specific ELFs in the target space.

The last row of Fig. 6 shows the ESS trace computed
using ELF. Peaks at footstep i � 58, i � 58 � 2, and i � 58 � 3
marked by the green arrows are effectively detected loop
closures. A visualization of ELF is shown in Appendix A.1.
However, an unexpected peak close to the footstep i�58�2
marked by a red arrow is also observed. It represents a
false positive loop closure based on ELF. Unfortunately, the
SLAM is often sensitive to false positive loop closures –
a small number of false positives can degrade the SLAM
performance [28]. Thus, a loop closure curation algorithm is
needed to remove the false positives.

4.4 Loop Closure Curation
We propose a clustering-based algorithm which is based on
the ESS matrix defined as follows to curate the loop closures.

Footstep

F
o

o
ts

te
p

(a) (b) (c)

0  216  432  648

0
  
2
1
6
  
4
3
2
  
6
4
8

......

Fig. 10: Loop closure curation: (a) Slicing, (b) clustering in
each slice, and (c) concatenated line regression results.

ESS matrix. Consider a user’s trajectory that consists of
N footsteps. The pair-wise ESSs between any two footsteps
form a �N � 1� � �N � 1� ESS matrix (0 indexed), where the
�i, j�th element is the ELF-based ESS between the footsteps
i and j. Thus, the ESS matrix is symmetric. Two ELFs have
a high similarity if a large ESS is observed, signaling a
potential loop closure. We apply a threshold value of 0.4
to identify most true positives while capturing acceptably
low false positives to be removed shortly. The ESS matrix is
binarized by the threshold, where the positive elements rep-
resent loop closure candidates. Fig. 9 shows the constructed
ESS matrix using the ELFs collected in a shopping mall. Both
horizontal and vertical axes are footstep numbers. The black
dots in the ESS matrix represent the positive elements.

Clustering-based approach for loop closure curation.
The goal of loop closure curation is to remove the false
positives from the ESS matrix. The true positives form trend
lines in the binarized ESS matrix due to the user movement.
For example, consider an ideal case in which the user walks
at a constant speed, the true loop closures of footsteps 0,
1, ... , and 10 are footsteps 0 � L, 1 � L, ... , and 10 � L,
where L is the loop length. As a result, the �0,0 �L�th,
�1,1 �L�th, ... , and �10,10 �L�th elements of the ESS matrix
should be positives and form a trend line. In contrast,
the false positives tend to appear at random positions, as
shown in Fig. 9. This observation inspires us to propose a
clustering-based approach to isolate the true positives from
the scattered false positives, which is described as follows.

First, we slice the ESS matrix at a length of 16 footsteps
as illustrated in Fig. 10a. With the slicing, it is easier to
identify the true positive clusters in each slice. Then, we
apply the DBSCAN clustering algorithm [40] to identify the
clusters. This is illustrated by Fig. 10b, where the clusters
are differentiated by colors. Although some false positives
are classified by DBSCAN as outliers, the remaining false
positives close to the trend curves are still in the clusters.
To remove these false positives, we apply the RANSAC [41]
linear regression algorithm to detect a line approximating
the trend curve in each cluster. RANSAC is a preferred
regression algorithm when there are many outliers. Con-
catenation of the regressed lines across all slices form the
clean trend curves as shown in Fig. 10c. The trend curves
formed by the positives are effectively isolated from the
scattered noises. Since the negative impact of a false positive
on SLAM outweighs that of a false negative, we further
curate the loop closures by only retaining the positives
that conform to the symmetric property. Specifically, if the
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positive at the �i, j�th of the ESS matrix has no counterpart
positive at the �j, i�th, the positive is excluded.

Fig. 8 shows the necessity of loop closure curation. First,
we use all positives in Fig. 9 as the loop closure information
to construct the trajectory. The plot labeled "w/o curation"
in Fig. 8 shows the constructed trajectory. We can see that
the false positives devastate the trajectory optimization. The
plot labeled "w/ curation" in Fig. 8 shows the trajectory us-
ing the curated loop closures. Its shape is close to the ground
truth as marked by the blue line. The result demonstrates
the effectiveness of the proposed loop closure curation.

4.5 Trajectory Map Superimposition

A single user’s trajectory maps have limited coverage in
a room. For real applications, it is desirable to combine
trajectory maps from many users to form a floor map to
cover most/all accessible locations of an indoor space. We
assume that the absolute starting position of each trajectory
map can be known. In practice, location tagging [10] can
be used to recognize the actual entrance. With the known
absolute position, the trajectory maps can be collated into a
common coordinate system. However, the trajectory maps
crossing the same spot from different directions have dif-
ferent echoes, due to the echoes’ dependency on phone
orientation. Thus, we need to reconcile such differences.

We propose a floor-level CL approach to train a unified
feature extractor for map superimposition. It shares the
same model pre-training workflow as the trajectory-level
CL except the data pairing approach for model fine-tuning.
Specifically, the echo data collected at the same location
regardless of the phone orientation are treated as similar
pairs, whereas those collected from different locations are
treated as dissimilar pairs. The model trained via the floor-
level CL outputs the floor-level ELFs covering spots from
all trajectory maps. As the quality of the floor map is related
to its spatial coverage, this floor-level CL approach needs to
scale well with the number of locations. In §6, we evaluate
this approach in handling 4,000 fine-grained spots with four
phone orientations at each location.

When falling back to the scheme of learning a location
recognition model using supervised learning, a possible
approach to mitigate the echo data’s sensitivity on phone
orientation is to construct a training dataset with echo
data and location labels (regardless of orientation) from
all the trajectory maps. In §6, we evaluate the localization
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Fig. 12: Peaks detection on the cross-correlated signal.

performance of this supervised learning approach with our
approach in terms of the quality of the floor map.

4.6 Localization

When a trajectory map or floor map is available, a smart-
phone’s location can be determined by capturing the echoes
in response to the chirps. We consider two localization
approaches, i.e., one-shot localization and trajectory localiza-
tion, depending on whether the user is standing still or
walking. In the former, an ELF sequence containing multiple
consecutive echoes collected at a spot is matched against
the map in terms of the ESS to determine the location. In
the latter, both the ELF sequence and the IMU data during
the user’s movement over a short time period are used
for localization. Specifically, we apply dead reckoning to
the IMU data to estimate the user’s trajectory, and then
apply a curve matching algorithm [42] to find the candidate
segments in the map that resemble the user’s trajectory.
Among the candidate segments, the one with the largest
average ESS from the captured ELF sequence is the output
of the trajectory localization.

5 ROOM GEOMETRY RECONSTRUCTION

Accurate smartphone-based room geometry sensing is de-
sirable for indoor navigation systems, virtual/augmented
reality applications and network condition prediction, etc.
In this section, we use the reconstructed user trajectory and
the collected acoustic echoes to construct the contour of a
polyhedron room with a fixed height. Specifically, the user
is required to walk along the sidewalls and form a complete
loop. After the IMU trajectory is rectified using the trajectory
map construction, the wall distances are estimated using the
acoustic echoes. Next, the room geometry is determined
by the trajectory and the estimated wall distances. In what
follows, we present our room reconstruction procedures.

5.1 Wall Distance Measurement

We conducted a measurement study to verify if the recorded
echoes are effective for measuring the phone-wall distances.
A user is asked to hold a smartphone and walk along a
sidewall in a living room for a few meters. A total of 95 echo
traces are collected in the experiment. Fig. 13a shows the
layout of the tested environment, where sofas, a table and
a TV occupy the room. Fig. 11a shows the user’s distances
to the walls: the phone-floor, phone-sidewall, and phone-ceiling
are 0.9m, 1.2m, and 1.6m, respectively. The room height is
2.8m.
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Peaks selection: We cross-correlate the received signal
with the chirp template to find the peaks generated by
main reflectors in a room (e.g., walls, floor and ceiling).
Fig. 12 shows an example, where the peaks represent the
main reflectors. To determine the peaks’ index, we apply
the envelope detector on the correlated signals and search
for the local maximas. The conversion of peaks’ index to
distance is calculated by nc

2f , where n is a peak’s index, c is
the speed of sound in air, f is the microphone’s sampling
rate (i.e., 44,100Hz). The result represents the estimated
distance between the reflector and the smartphone.

The cross-correlated signals contain many peaks gener-
ated by nearby objects. It is difficult to associate each peak
with its corresponding reflector. However, for room recon-
struction, we only need to identify peaks from the main
reflectors, e.g., side walls, the ceiling, and the floor. Our peak
selection procedure is as follows. First, we normalize the
cross-correlated signal to between 0 and 1. Next, we discard
peaks with an amplitude less than 0.15, as they are gen-
erated from smaller objects and can be safely disregarded.
In Fig. 12, the peaks marked by stars are retained and red
crosses are discarded. We further discard peaks beyond 4m
from the smartphone. This is based on the assumption that
when a user walks along the sidewalls for data collection,
the smartphone’s distance to the sidewalls, ceiling, and
floor can be maintained within 4m. In addition, the peak
candidates with a distance larger than 4m are generally
caused by the multi-path reflections, which are difficult for
object association.

Peak distance profile: In each echo trace, we apply
the extraction and selection procedures described above to
generate the candidate peaks. Then, we stack peaks selected
from all echo traces to form a peak distance profile (PDP) as
shown in Fig. 11b. The horizontal axis represents the peaks’
distance to the smartphone and the vertical axis represents
the echo’s index. The grayscale intensity represents the
peaks’ amplitude, which ranges from 0.15 to 1. A darker
dot represents a higher amplitude. In Fig. 11b, four vertical
lines are formed by the peaks. Lines 1, 2, and 3 are located
at the distances of 0.9m, 1.2m, and 1.6m, respectively.
These lines correspond to the distances of phone-floor, phone-
sidewall, and phone-ceiling. Note that line 4 located at 2.8m
is also observed, whose distance is equal to the room height.
This line is generated by the echoes that travel a full round
in the vertical direction of a room (i.e., via smartphone �
floor � ceiling � smartphone, or smartphone � ceiling �
floor � smartphone). The red line in Fig. 11b represents the
summation of the peaks’ amplitude along the vertical axis.
We can see that the peaks corresponding to the distances of
the phone-floor, phone-sidewall, phone-ceiling, and room height
stand out in the PDP. The reason is that the walls’ distance
to the phone remains constant while a user is walking along
a sidewall, while other objects’ distance changes (e.g., TV,
sofas, etc). As shown in Fig. 11b, although it is difficult
to associate the peaks to the objects in a single echo trace,
aggregation of echoes collected along a specific wall renders
peaks from main reflectors more salient than those of the
furniture inside the room. Thus, the PDP is effective to find
the phone-wall distances along a sidewall.

5.2 Room Geometry Reconstruction Procedure

We describe the room geometry reconstruction procedure
in this section. As shown in Fig. 5, the room reconstruction
consists of PDPs construction and Peaks association.

PDPs construction: We construct PDP for each sidewall
to obtain wall distances. The wall numbers are determined
based on the shape of constructed user trajectory. Note
that we use the rectified user trajectory to get a more
accurate approximation. We track the heading directions of
the IMU data and record the sheer direction changes as the
corners between walls. The sidewall numbers are equal to
the detected corners. Then, we split the echoes into clusters
based on the timestamps of the detected corners. Since the
IMU data and the echoes are collected simultaneously, each
cluster contains the echo traces collected while the user
walks along a specific sidewall. We use the echo traces in
each cluster to construct PDPs. If the echoes are correctly
associated with the phone-floor, phone-sidewall, phone-ceiling,
and the room height distances in PDPs, the room’s geometry
is also determined.

Peaks association: To correctly associate the phone-floor,
phone-sidewall, phone-ceiling, and the room height distances to
the peaks in the constructed PDPs, we leverage the knowl-
edge that the room height equals to the summation of the
phone-floor and phone-ceiling distances. These three distances
generally remain constant while a user holds the phone and
moves within the room. Thus, we can determine these three
distances in each PDP and then identify the subsequent
largest peak as the phone-sidewall distance. The procedure
is as follows. First, we combine PDPs from all sidewalls to
form a unified PDP (u-PDP). Since the phone-floor, phone-
ceiling, and the room height distances remain consistent in
each PDP, their appearance will be more salient in the aggre-
gated u-PDP. In u-PDP, we identify the echo with the largest
peak as phone-floor distance. This is because the used bottom
microphone for recording is closer to the floor when held
by a user. Thus, the peak amplitude at phone-floor distance
generally has the largest value. We then associate the phone-
ceiling distance and room height by looking for peaks that
have the summation relationship with the identified phone-
floor distance in the u-PDP. To reduce ambiguity, we assume
the phone-ceiling distance is larger than phone-floor distance.
Then, we visit each PDP and exclude the echoes that are
closest to the identified phone-floor, phone-ceiling and room
height distances. The subsequent echo with the largest peak
is identified as the phone-sidewall distance. Finally, we use
the rectified trajectory and the estimated wall distances to
determine the vertexes of the polyhedron.

6 SYSTEM EVALUATION

6.1 Experiment Setup

Evaluation environments: We evaluate ELF-SLAM in three
indoor environments, i.e., a living room (60m2) shown in
Fig. 13a, an office (360m2�, and a shopping mall (2,000m2).
The floorplans of the latter two can be found in Appendix C.
To conduct comparative evaluation side by side, we employ
the SLAM systems using two smartphone’s built-in sens-
ing modalities, i.e., Wi-Fi RSSI and geomagnetism, as the
baselines. This is the same as the evaluation methodology
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Fig. 13: Floor plans and trajectory reconstruction results in the living room.

adopted in [28] that studies powerline EMR SLAM. Note
that we also compare the results of ELF-SLAM and EMR
SLAM. To implement Wi-Fi SLAM, we deploy Wi-Fi access
points (APs) in the living room and office, as illustrated by
the stars in the floorplans. The shopping mall has dense
APs deployed by the tenants. The number of Wi-Fi APs
observable is around 5 to 10 when conducting experiments
in the mall. Note that random people hung around in the
shopping mall during the data collection.

Data collection: We develop an Android app on a
Google Pixel 4 smartphone to collect acoustic echoes, Wi-
Fi RSSI, geomagnetic field signals, and IMU data. The app
uses the available WifiManager Android API to scan the
Wi-Fi APs and collect RSSI data at a sampling rate of
0.8 sps. We do not use Wi-Fi channel state information (CSI),
because CSI sampling requires rooting the smartphone [43].
The app uses the phone’s built-in magnetometer to sample
the geomagnetic field at 50 sps. During data collection, the
smartphone is held around 30 to 40 cm in front of the
user’s chest. The data is collected by walking on a marked
trajectory for multiple rounds in each of the evaluated
environments. Note that the purpose of trajectory marking
is to obtain the location ground truth.

Loop closure detection for baseline modalities: For Wi-
Fi SLAM, we use the Euclidean distance between two Wi-Fi
RSSI vectors for loop closure detection [28]. For geomagnetic
SLAM, we first normalize the triaxial magnetic data and
then apply dynamic time warping for loop closure detection
[27]. We apply the same loop closure curation and graph-
based optimization algorithms on all modalities.

Model training details. The model training is imple-
mented using PyTorch [44]. The model is trained for 200
epochs with a batch size of 256. The learning rate is set to
0.0001. The temperature parameter τ is set to 0.1. The model
is trained on a workstation equipped with two NVIDIA
GeForce RTX 2080 Ti GPUs. The model pre-training and
fine-tuning are implemented using the same hyperparame-
ters. The model training time depends on the used data vol-
ume. On our workstation, the model training time is around
15 minutes when the model is trained on 120 minutes of
data.

6.2 Trajectory Map Construction Performance
Fig. 13 shows the map construction results of three modal-
ities in the living room. The results of the office and the
shopping mall can be found in Appendix C. The trajec-
tories reconstructed by ELF-SLAM are the closest to the
ground truth among the three modalities in all evaluated
environments. Table 2 lists the detailed mapping error statis-
tics. ELF-SLAM achieves sub-meter mapping accuracy in

TABLE 2: Mapping error statistics (unit: meter).

Modality Living room Office Mall
x̃1 x̄2 Q33 x̃ x̄ Q3 x̃ x̄ Q3

ELF 0.10 0.10 0.14 0.63 0.63 0.80 0.45 0.53 0.69
ELF w/o 0.73 0.82 1.25 1.69 1.68 1.94 1.16 1.14 1.42pre-train
ELF w/o 1.26 1.32 1.82 2.45 2.56 3.07 2.28 2.34 3.44fine-tune

Wi-Fi 0.44 0.45 0.55 1.52 1.54 2.06 1.24 1.26 1.54
Geomag 0.56 0.55 0.64 1.14 1.24 1.82 0.79 0.81 1.05
1Median error, 2Mean error, 3Third quartile of the error

TABLE 3: Localization error statistics (unit: meter).

Modality Living room Office Mall
x̃1 x̄2 Q33 x̃ x̄ Q3 x̃ x̄ Q3

One-shot localization
ELF 0.10 0.29 0.14 0.54 0.60 0.80 0.42 0.79 0.67

Wi-Fi 1.67 2.17 3.30 3.44 4.27 6.16 3.04 3.86 5.22
Geomag 1.06 2.31 3.93 2.19 3.95 5.38 12.5 13.4 19.3

Trajectory localization
ELF 0.10 0.22 0.64 0.41 0.54 0.97 0.47 0.53 0.86
WiFi 0.54 0.73 1.13 1.74 1.86 3.09 1.46 1.90 3.73

Geomag 0.56 0.56 0.78 1.75 1.81 2.39 8.70 8.29 14.6
1Median error, 2Mean error, 3Third quartile of the error

all environments, whereas Wi-Fi SLAM and geomagnetic
SLAM’s mapping errors increase in the large indoor space,
i.e., office and mall. In [28], EMR SLAM using the smart-
phone earphone as the side-channel sensor yields about
1m to 2m median mapping errors in the evaluated office
and lab spaces. Thus, ELF-SLAM outperforms Wi-Fi SLAM,
geomagnetic SLAM, and EMR SLAM in map construction.

6.3 Localization Performance

We evaluate both the one-shot localization and trajectory
localization of the three sensing modalities. Table 3 lists
the localization error statistics. For one-shot localization,
ELF-SLAM achieves sub-meter median error in the three
environments and outperforms both Wi-Fi SLAM and ge-
omagnetic SLAM. For trajectory localization, each short
trajectory consists of 8 consecutive footsteps. For Wi-Fi and
geomagnetic SLAMs, the trajectory localization errors are
less than the one-shot localization errors. For ELF-SLAM,
trajectory localization does not bring much accuracy im-
provement over one-shot localization, because the latter has
already achieved a high localization accuracy.

We also conduct experiments in the living room to
study the impact of various affecting factors on ELF-SLAM,
including nearby people, audible noises, and space layout
changes. The results can be found in Appendix B.
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Fig. 14: t-SNE visualization of finetuned feature from differ-
ent pre-trained models: (a) pre-trained using cross-entropy
loss (CEL), (b) pre-trained via CL, using synthetic data
(SYN) only, (c) pre-trained via CL, using proposed incre-
mental learning scheme (INC).

6.4 In-depth Analysis
6.4.1 Impact of model pre-training
We investigate the necessity of the CL pre-training by
comparing the trajectory map reconstruction performance
using the ELF extractors learned with and without the
model pre-training step. The row “ELF w/o pre-train” in
Table 2 is for the case without model pre-training. Com-
pared with the result with model pre-training (row “ELF”),
the median mapping errors increase to 0.73m, 1.16m, and
1.69m in the three environments, respectively. This result
shows that model pre-training is essential to learn effective
ELFs. We further evaluate the effectiveness of the proposed
incremental learning-based scheme. We visualize the fine-
tuned feature embeddings by applying different pre-trained
schemes. The first scheme adopts cross-entropy loss (CEL)
and applies supervised learning for model pre-training. The
second scheme applies CL with synthetic data (SYN) only
for model pre-training, and the third scheme applies CL
with the proposed incremental learning (INC), i.e., incre-
mentally updating the pre-trained model with real data.
Fig. 14 shows the t-SNE [36] visualization of fine-tuned
features, where (a), (b), and (c) corresponds to three pre-
training schemes, respectively. The ELFs are extracted from
the data collected in the office and colors represent different
locations. We can see that the feature embeddings learned
using the proposed incremental learning scheme are more
compact and distinct than those learned using the other two
schemes. The pre-training scheme based on the CEL yields
the worst result. We further investigate the finetuning loss
using different pre-trained models, the results are shown in
Fig. 15. It is observed that finetuning using the model pre-
trained from the proposed incremental learning converges
fastest and yields the smallest loss, whereas the finetuning
from the model pre-trained by CEL yields the largest loss.
This observation shows that the proposed incremental con-
trastive learning is effective to learn location-dependent fea-
tures and the pre-trained model can be finetuned with fewer
epochs. The model trained via CEL does not generalize well
if the labeling information is missing.

We also investigate how much data is needed by the
proposed incremental learning scheme to achieve optimal
performance. We first train the model using the synthetic
data only. Then, we update the model by incrementally
adding the real data. Fig. 16 shows the fine-tuning time
and localization errors versus the model pre-training data
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Fig. 17: ESS matrixes of different modalities in the mall.

volume. The data used for fine-tuning is collected in the
living room and the total length is around 10minutes. The
results show that the localization error decreases as the
model is pre-trained using more data. The localization error
saturates when pre-training data reaches 120minuntes. In
addition, the required model fine-tuning time also decreases
as it requires fewer training epochs to converge.

6.4.2 Impact of model fine-tuning
We investigate the impact of model finetuning on trajectory
map construction performance. The row “ELF w/o fine-
tune” in Table 2 is for the case without model fine-tuning.
The ELFs extracted without model fine-tuning cannot pro-
vide any loop closure information to be used by the SLAM
optimization algorithm. The results are reported using the
un-rectified IMU trajectory. Thus, model fine-tuning is es-
sential to learn effective ELFs.

6.4.3 Spatial distinctness of different modalities
We analyze the spatial distinctness of ELF, WiFi RSSI and
geomagnetic field. We construct the ESS matrixes of three
modalities using the data collected in the shopping mall.
Fig. 17 shows the results. In each ESS matrix, the true
positive loop closures form the trend curves and the false
positive loop closures appear as random noises. We compare
the true positives and the false positives among different
modalities: the number of true positives detected using
geomagnetic field and WiFi RSSI is around 75% and 40%
of that of the ELF. Meanwhile, the number of false positives
detected using the geomagnetic field and the WiFi RSSI are
around 10 and 4 times higher than that of the ELF. ELF
generates more true positive loop closures and fewer false
positives compared with the other two modalities. Thus,
ELF is more spatial distinct than the geomagnetic field and
the WiFi RSSI and achieves the best SLAM performance.

6.5 Trajectory Map Superimposition
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We use one-shot localization to evaluate the performance of
map superimposition as described in §4.5.

Evaluation on a small-scale dataset. The experiments
are conducted in the living room. We follow the marked
trajectory in Fig. 13a and walk in two opposite directions
to generate two different trajectory maps. Then, we apply
the proposed map superimposition to obtain a unified map
and evaluate the localization performance. Fig. 18 shows
the results. The plot labeled “same direction” is obtained
when the smartphone’s orientation at the localization phase
is the same as the used map. The median localization error
is 0.1m. The plot labeled “oppo direction” is for the case
when the smartphone’s orientation at the localization phase
is different from the trajectory map. The median localization
error increases up to 3.8m. The increased error is caused by
the phone orientation deviations. The plot labeled “super-
imposed” shows the localization results using the proposed
map superimposition via the CL. The median localization
error is 0.1m, which is the same as the “same direction”
result. This small-scale experiment in the living room shows
that the CL-based map superimposition can improve the
ELF-based localization performance when trajectory maps
are constructed using echoes from opposite directions.

Evaluation on a large-scale synthetic dataset. We also
evaluate whether the proposed map superimposition is
scalable to handle massive echo data when many trajectory
maps are available. We omit the trajectory map construction
step and only focus on evaluating the superimposition per-
formance. Similarly, we evaluate the one-shot localization
performance on the constructed floor map. To allow a large-
scale evaluation, we use the pyroomacoustic simulator to
generate the synthetic echoes in an indoor space that has a
polyhedron shape as shown in Fig. 20a. The data is collected
from 4,000 spots in the grey area. The distance between two
neighbor spots is 10 cm. At each spot, we simulate the sce-
nario where the echoes are collected by a phone in different
orientations. In Fig. 20a, the red arrows at spot A represent
the simulated orientations. We collect 100 echo samples for
each orientation. We apply random perturbations to the
echo data such that they are slightly different. As a result, we
generate 16 million echo samples in the simulated room. The
first four rows of Fig. 20b show the synthetic echoes’ PSDs
for four directions at spot A. They are slightly different from
each other. The last row of Fig. 20b shows the echo’s PSD
at spot B. It is different from all PSDs obtained at spot A.
This shows that the simulator can generate both orientation-
and location-dependent echoes that can be used to evaluate
map superimposition performance. Note that it is infeasible
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Fig. 20: (a) Simulated space. (b) Spot A’s echo PSDs on
directions 1 to 4 and Spot B’s echo PSD at direction 1.

to collect such a large-scale dataset in a real environment.
Based on our estimation, collecting the same amount of data
in the real world requires about 400 hours of manual labor.

ELF visualization after map superimposition is shown
in Appendix A.2. The result shows that map superimposi-
tion is effective in reconciling the ELFs’ differences due to
phone orientations. Fig. 19 shows the localization results on
the synthetic data. The plot labeled “diff direction” shows
the CDF when the CL-based map superimposition is not
applied and the evaluated samples are in a different phone
orientation from that in the trajectory map. The mean local-
ization error is 3.2m. This poor result shows the necessity of
differences reconciliation. The plot labeled “superimposed”
shows the results obtained using the floor map constructed
by the floor-level CL. The mean localization error decreases
to 0.24m. We also employ the supervised fingerprint ap-
proach as a baseline, which forms the training dataset by
labeling the echoes synthesized at the same spot with the
same location label and trains a DNN to classify the 4,000
spots. The CDF curve labeled “supervised” shows the re-
sults. The mean localization error is 0.56m. The supervised
fingerprint approach is inferior to the proposed solution that
performs localization using the floor map.

6.6 Room Geometry Reconstruction

Evaluation environments: We conduct experiments in two
polyhedron-shape rooms. The first one is a 4 � 6.5 � 2.8m3

living room filled with furniture like TV and sofas. The
second one is an 18�20�3.2m3 relatively empty exhibition
hall. In each room, a user holds the smartphone and walks
along the sidewalls to collect the IMU and the echo data.

Evaluation results: Fig. 21 shows the room reconstruc-
tions of both rooms. The polyhedron labeled "Un-rectified"
is the estimated room shape using the un-rectified IMU
trajectory and the estimated wall distances. This plot rep-
resents the essence of [12], [13], where the performance
of the mapping relies on the accuracy of the estimated
IMU trajectory. The polyhedron labeled "Rectified" is con-
structed using the rectified IMU trajectory via the ELF-
SLAM and the estimated wall distances. The results show
that the room geometry constructed upon the rectified user
trajectories is closer to the ground truth compared to those
constructed using the un-rectified trajectories. We calculate
the distances between the constructed and the ground-truth
walls to obtain the CDF of the room reconstruction errors.
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Fig. 21: Room construction results.
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Fig. 22: Room construction performance.

Fig. 22 shows the results. The median construction errors
for the "Un-rectified" approach are about 0.32m, and 1.2m
in the living room and the exhibition hall, respectively. The
errors decrease to about 0.15m and 0.35m for "Rectified"
approach, representing a 2� and 4� error reduction. Thus,
our room geometry reconstruction outperforms [12], [13]
that rely on the un-rectified IMU results.

Application consideration. Our system requires the user
to walk a full loop along the walls of a room. The amount of
data needed depends on the size of the room. Considering
the average human walking speed of 1.2m/s, the time
needed for data collection is about 18 s and 64 s in the living
room and the exhibition hall, respectively. Thus, the data
collection for room geometry reconstruction incurs little
overhead.

6.7 System Overhead
We evaluate the computation overheads of the ELF-based
SLAM on a Google Pixel 4 smartphone. Specifically, we
perform real-time one-shot localization on the floor map
constructed by the floor-level CL. To customize the ELF
extractor for the phone, we use Pytorch-Mobile [45] to
optimize and compress the model to about 96MB. The
real-time localization module performs one-shot localization
using the 2D map.

6.7.1 App’s response time and processor utilization.
At the localization stage, the smartphone processor uti-
lization remains at around 20% when we vary the ELF
sequence length from 0.2 s to 1.6 s, as shown in Fig. 23.
The storage of ELFs requires moderate memory. The disk
usage of storing 4,000 spots’ ELFs is less than 4MB. We
also measure the app’s response time, which includes the
ELF’s extraction time and feature matching time against the
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Fig. 23: Model execution overhead.

floor map. The App’s response time increases from 0.18 s to
1.2 s, when the ELF sequence length varies from 0.2 s to 1.6 s.
The increased response time is from the localization phase,
because the computation overhead of the feature matching
increases with the ELF sequence length. From Appendix
B.1, by setting the ELF sequence length to be 0.6 s, our
system achieves 0.1m median localization error, while the
corresponding measured response time is about 0.5 s. Thus,
the user can get the localization result in about 1.1 s.

6.7.2 App’s network bandwidth and battery usage.

The app’s bandwidth usage is around 90kbps while contin-
uously transmitting echo and IMU data to the cloud server
for map construction. This data rate is similar to that of
Advanced Audio Coding (AAC), a widely adopted standard
for lossy audio compression. Note that as the localization
phase of ELF-SLAM is performed locally on the phone,
it requires no data transmission. We use the battery
historian [46] to estimate the app’s energy usage. The
app’s energy usage per hour is around 270mAh when the
app performs localization continuously. This energy usage
is similar to that of the Google Map app in continuous
navigation, i.e., around 280mAh and much lower than a
visual SLAM [47], whose measured energy consumption is
around 450mAh. Thus, our ELF-based localization system
introduces acceptable overhead.

7 DISCUSSION

ELF-SLAM is an acoustic-based indoor location sensing
system and its performance can be affected by various
factors as evaluated in this paper. We discuss several po-
tential approaches that can be considered to improve the
localization system’s performance in future work. First,
the soft information (SI)-based approach [48]–[50] can be
employed to enhance the robustness of the system. ELF-
SLAM uses hard information (i.e., the estimated distance)
for map construction. However, the estimated distance is
not always accurate. To address this issue, the SI-based
approach considers the uncertainty of the measurement and
generates Gaussian distribution to improve the accuracy of
the map. Second, different sources of information (e.g., map
information, smartphone inertial measurements, geomag-
netic field, WiFi RSSI, etc) can be incorporated for coopera-
tive localization [51], [52]. Such a cooperative approach can
be more robust to environmental changes and can reduce
the uncertainty of the localization as compared with the
system developed upon the single modality.
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8 CONCLUSION

This paper presents ELF-SLAM, an indoor smartphone
SLAM system using acoustic echoes. ELF-SLAM uses a
smartphone’s audio hardware to emit near-inaudible chirps
and record acoustic echoes in an indoor space, then uses
the echoes to detect loop closures that regulate the IMU-
based dead reckoning. To effectively capture loop closures,
we design a trajectory-level contrastive learning procedure
and apply it to the echoes to learn ELFs. Then, we design
a clustering-based approach to remove the false detection
results and curate the loop closures. Third, we apply the
rectified trajectory map to reconstruct the room’s geometry.
Lastly, we design floor-level contrastive learning to superim-
pose the trajectory maps. Our extensive experiments show
that ELF-SLAM achieves sub-meter accuracy in both map-
ping and localization, and outperforms both Wi-Fi RSSI and
geomagnetic SLAMs. The room geometry reconstruction
also outperforms the latest echo-based systems.
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