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Deep Learning in Embedded Sensing
• Increasing applications

– Automotive, healthcare, consumer electronics, etc
• Vulnerable to adversarial examples

– Crafted inputs to mislead deep models, unnoticeable to human eyes
• Attacks in real world

– Road sign classifiers, lane detectors

[CVPR ’18]
Credit: Keen Security Lab *

* Source: https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
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Adversarial Examples

• min
𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥 − 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠. 𝑡𝑡. NN 𝑥𝑥𝑎𝑎𝑎𝑎𝑎𝑎 ≠ NN 𝑥𝑥

• Adversary’s goal
– Targeted: input misclassified to a specific class
– Non-targeted: input misclassified to any class

• Adversary’s knowledge
– Black box: no/limited knowledge of model internals
– White box: complete/lots of knowledge of model internals
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Related Work
Defenses

Model hardening Modified input

• Data compression [ICLR ’18]
Foveation [ICLR ’16]
Randomization [ICCV ’17]
– Result in loss of classification accuracy on 

clean examples [arXiv:1705.10686]
– Does not affect adaptive attacker [ICML ’18]

• Adversarial training [ICLR ’14, ICLR ’18] 
– Train on adversarial examples
– Effective to considered adversarial examples only 

[NeurIPS ‘18]
• Gradient masking [S&P ’16, ICLR ’18]

– Make gradients nonexistent or incorrect, 
randomized, or vanishing/exploding

– Incomplete defense [ICLR ’18]
– Can be defeated by stronger attack [ICML ’18]

4/22

Static defense



Moving Target Defense (MTD)

• Static defenses grant the 
advantage of time to attackers

• MTD revokes the advantage
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Run timeIn situ trainingManufacture

Preview: MTD against Adversarial Examples
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Outline

• Background & Motivation
• Approach Design & Evaluation
• Implementation
• Conclusion
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Used Datasets
• MNIST: 10 handwritten digits

• CIFAR10: 10 classes of objects

• German Traffic Sign Recognition Benchmark (GTSRB): 43 classes
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• Training and validation accuracy of 99.93% and 96.64% on GTSRB

• White-box adversarial attack: C&W attack [S&P ’17]

Deep Model & Adversarial Examples

Original
example
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Challenge 1: Transferability of Adversarial Examples

• Attack misleads new models with some probability
• A single new model may not thwart the attack
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10/22

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

P
ro

ba
bi

lit
y

The number of distinct outputs

Distribution of the number of distinct outputs

51%



Challenge 2: Overhead of In Situ Retraining
• Retraining new models incurs computation overhead
• Add perturbations to base model and retrain
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Attack detection

% of majority
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DeepMTD Work Flow
• Autonomous
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DeepMTD Work Flow
• Human-in-the-loop
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Accuracy When No Attack (Auto)
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• Trade-off btw accuracy & compute overhead
• Improved accuracy on clean examples
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Successful Defense Rate (Auto)

• Trade-off btw compute overhead & security
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Human in the Loop

• True positives
– Human is not affected by adversarial examples
– Security improved

• False positives
– Unnecessary overhead to human

Trade-off btw security improvement
& overhead to human
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Outline

• Background & Motivation
• Approach Design & Evaluation
• Implementation
• Conclusion

18/22



Implementation

• Parallel vs. serial DeepMTD
– Parallel DeepMTD brings ~20% improvement in inference time
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Parallel mode Serial mode

NVIDIA Jetson Nano
4-core CPU, 128 tensor cores, 4GB mem

NVIDIA Jetson AGX
8-core CPU, 512 tensor cores, 16GB mem
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Performance of Serial DeepMTD

No attack
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Conclusion

• DeepMTD design to counteract adversarial examples

• DeepMTD performance evaluation against
– Clean examples
– Adversarial examples

• DeepMTD serial mode with early stopping
– Reduces inference time while maintaining sensing performance
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More details: Q. Song, Z. Yan, R. Tan, Moving Target Defense for Embedded Deep 
Visual Sensing against Adversarial Examples, ACM SenSys 2019, New York, USA.





