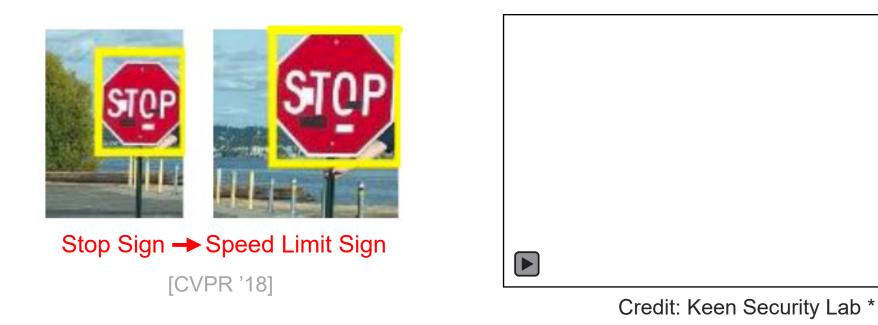


Moving Target Defense for Embedded Deep Visual Sensing against Adversarial Examples 针对嵌入视觉对抗样本的移动目标防御

School of Computer Science & Engineering Nanyang Technological University, Singapore 南洋理工大学, 计算机科学与工程学院

Deep Learning in Embedded Sensing

- Increasing applications
 - Automotive, healthcare, consumer electronics, etc
- Vulnerable to adversarial examples
 - Crafted inputs to mislead deep models, unnoticeable to human eyes
- Attacks in real world
 - Road sign classifiers, lane detectors



NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

* Source: https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/

Adversarial Examples

$$\min_{x^{adv}} \|x - x^{adv}\| \text{ s.t. } NN(x^{adv}) \neq NN(x)$$

- Adversary's goal
 - Targeted: input misclassified to a specific class
 - Non-targeted: input misclassified to any class
- Adversary's knowledge
 - Black box: no/limited knowledge of model internals
 - White box: complete/lots of knowledge of model internals

Related Work

Defenses

Model hardening

- Adversarial training [ICLR '14, ICLR '18]
 - Train on adversarial examples
 - Effective to considered adversarial examples only [NeurIPS '18]
- Gradient masking [S&P '16, ICLR '18
 - Make gradients nonexistent or incorrect, randomized, or vanishing/exploding
 - Incomplete defense [ICLR '18]
 - Can be defeated by stronger attack [ICML '18]

- Data compression [ICLR '18] Foveation [ICLR '16]
- arial examples only Randomization [ICCV '17]
 - Does not affect adaptive attacker [ICML '18]

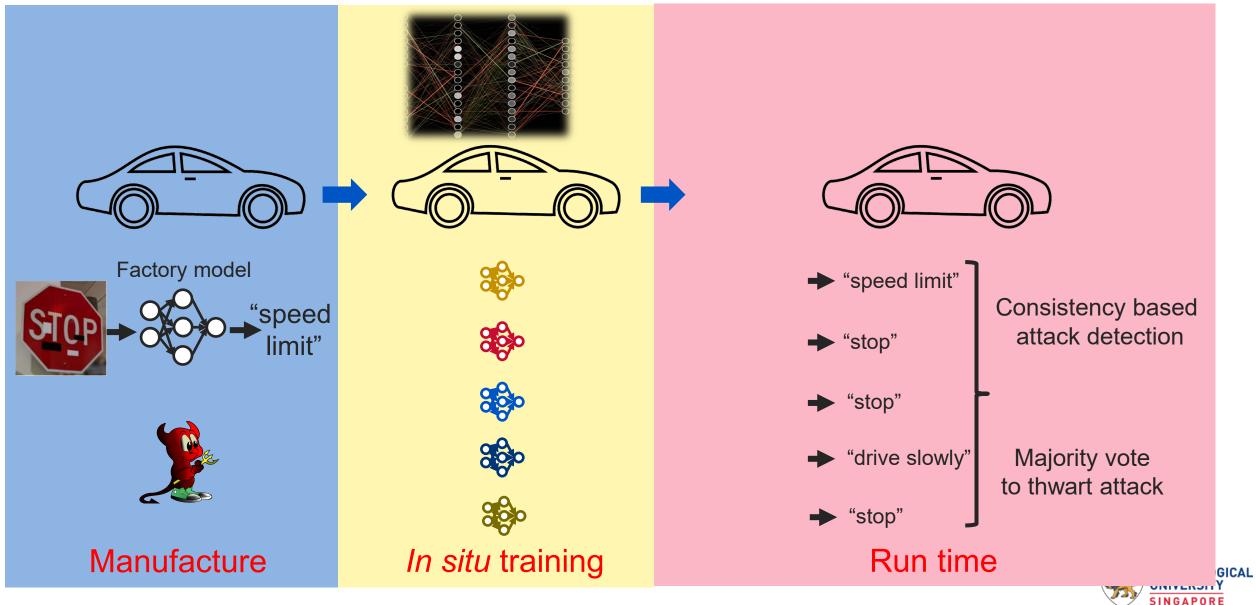
clean examples [arXiv:1705.10686]

Modified input

Moving Target Defense (MTD)

- Static defenses grant the advantage of time to attackers
- MTD revokes the advantage

Preview: MTD against Adversarial Examples



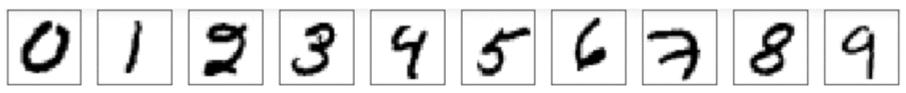
Outline

- Background & Motivation
- Approach Design & Evaluation
- Implementation
- Conclusion

7/22

Used Datasets

• **MNIST**: 10 handwritten digits

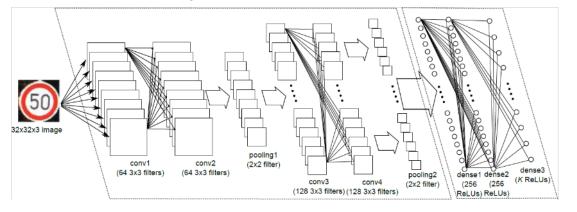


• CIFAR10: 10 classes of objects

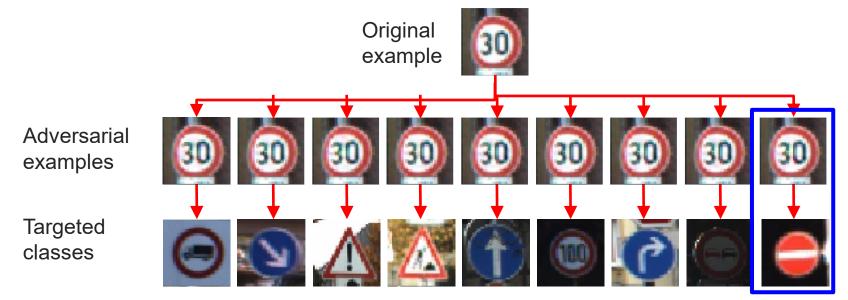
• German Traffic Sign Recognition Benchmark (GTSRB): 43 classes

Deep Model & Adversarial Examples

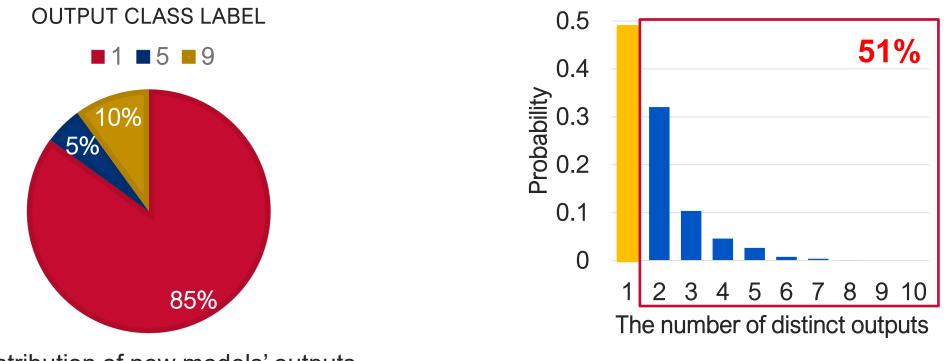
• Training and validation accuracy of **99.93%** and **96.64%** on GTSRB



• White-box adversarial attack: C&W attack [S&P '17]



Challenge 1: Transferability of Adversarial Examples



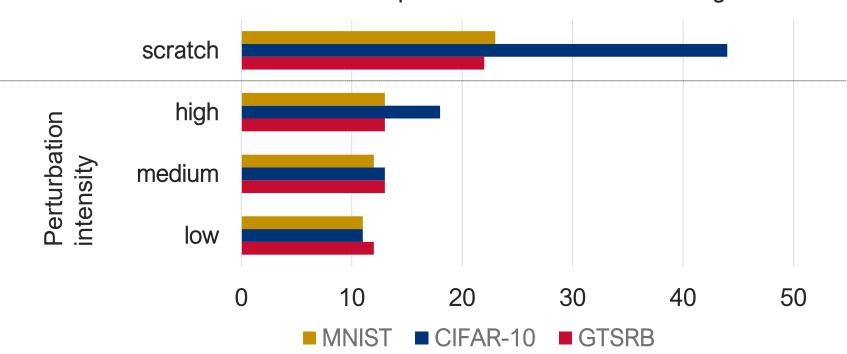
Distribution of new models' outputs (true label = 1 and target label = 0)

Distribution of the number of distinct outputs

- Attack misleads new models with some probability
- A single new model may not thwart the attack

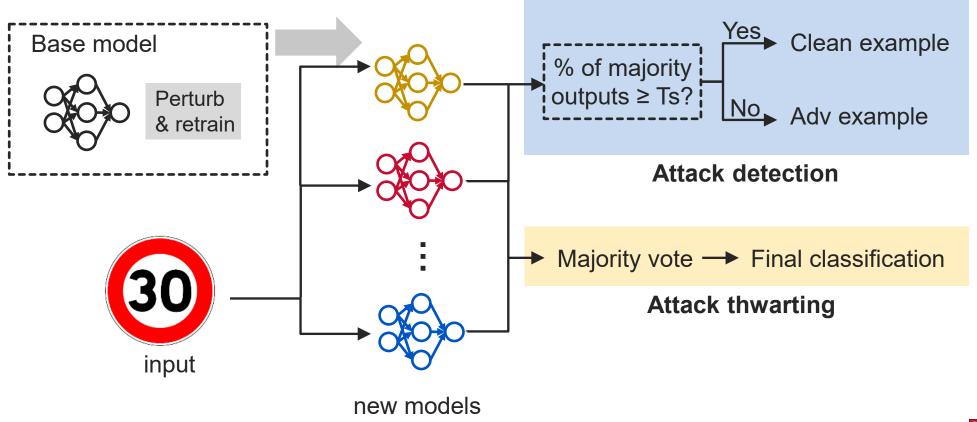
Challenge 2: Overhead of In Situ Retraining

- Retraining new models incurs computation overhead
- Add perturbations to base model and retrain



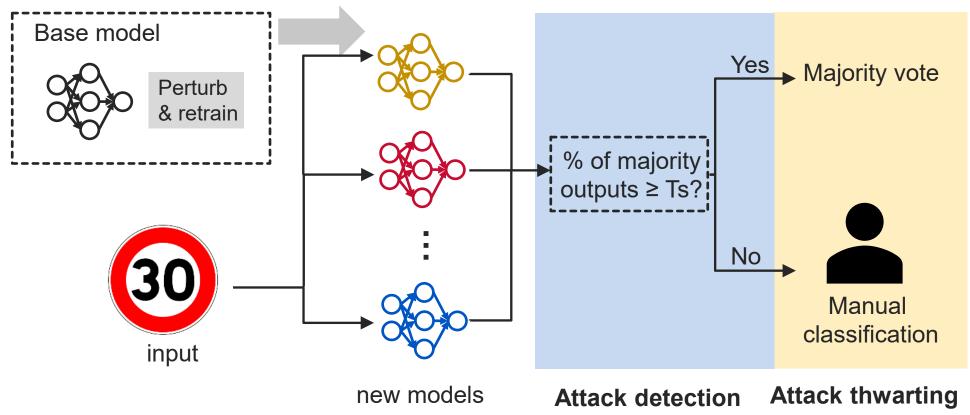
DeepMTD Work Flow

Autonomous

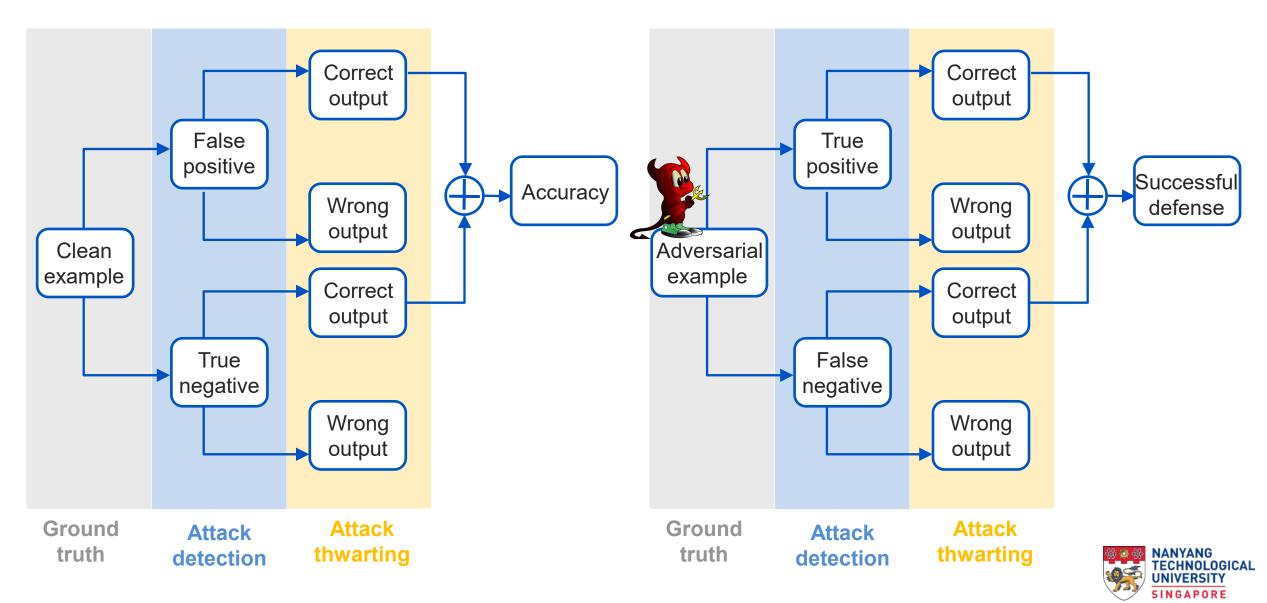


DeepMTD Work Flow

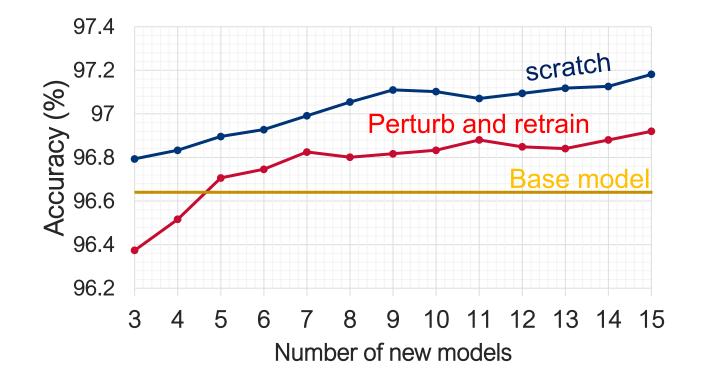
Human-in-the-loop



Evaluation Metric

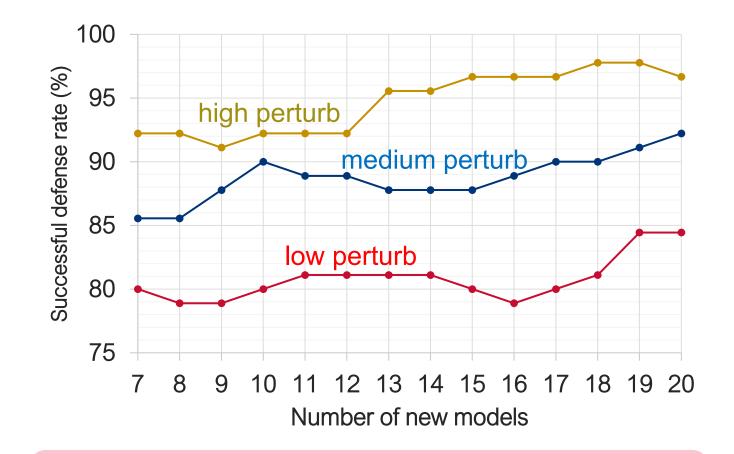


Accuracy When No Attack (Auto)



- Trade-off btw accuracy & compute overhead
- Improved accuracy on clean examples

Successful Defense Rate (Auto)



Trade-off btw compute overhead & security

Human in the Loop

- True positives
 - Human is not affected by adversarial examples
 - Security improved
- False positives
 - Unnecessary overhead to human

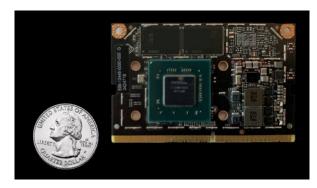
Trade-off btw security improvement & overhead to human

Outline

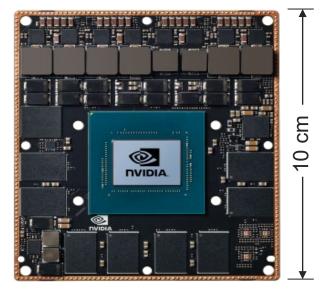
- Background & Motivation
- Approach Design & Evaluation
- Implementation
- Conclusion

18/22

Implementation



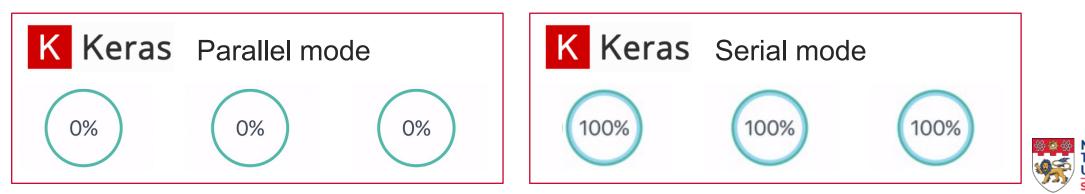
NVIDIA Jetson Nano 4-core CPU, 128 tensor cores, 4GB mem



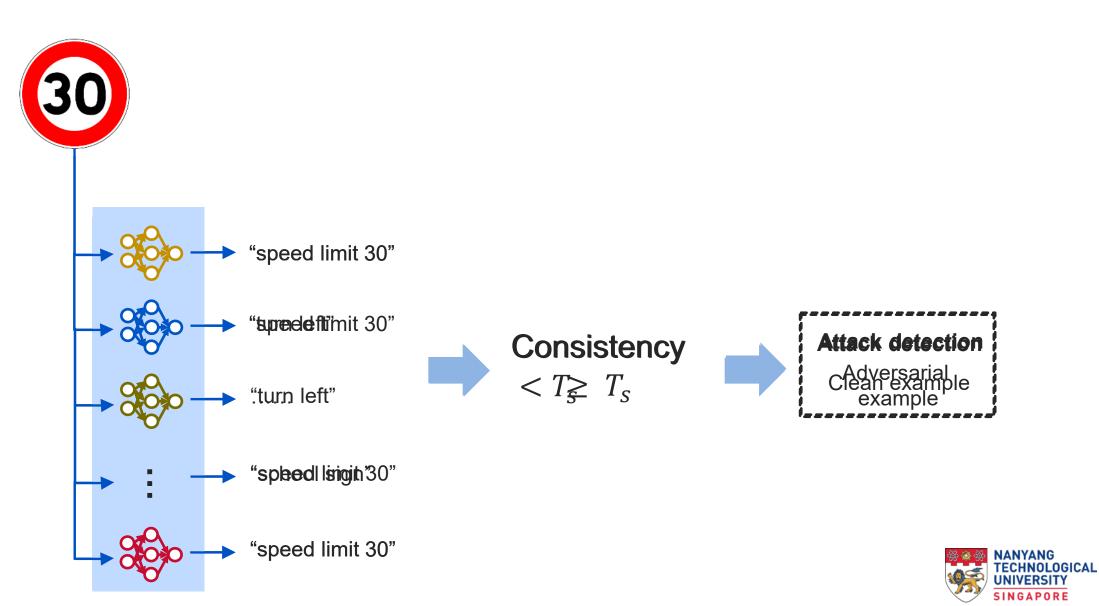
NVIDIA Jetson AGX 8-core CPU, 512 tensor cores, 16GB mem

Parallel vs. serial DeepMTD

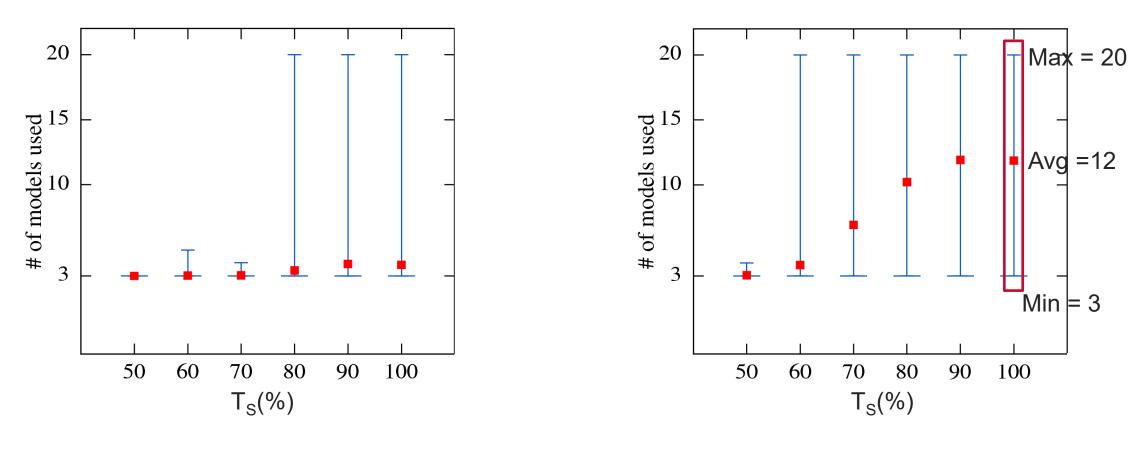
Parallel DeepMTD brings ~20% improvement in inference time



Serial DeepMTD with Early Stopping



Performance of Serial DeepMTD



No attack

With attack

21/22

Conclusion

- **DeepMTD** design to counteract adversarial examples
- **DeepMTD** performance evaluation against
 - Clean examples
 - Adversarial examples
- **DeepMTD** serial mode with early stopping
 - Reduces inference time while maintaining sensing performance

More details: Q. Song, Z. Yan, R. Tan, Moving Target Defense for Embedded Deep Visual Sensing against Adversarial Examples, ACM SenSys 2019, New York, USA.

