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Deep Learning in Embedded Sensing

* Increasing applications
— Automotive, healthcare, consumer electronics, etc

* Vulnerable to adversarial examples
— Crafted inputs to mislead deep models, unnoticeable to human eyes

« Attacks in real world
— Road sign classifiers, lane detectors
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* Source: https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
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Adversarial Examples

min [lx — x247|| s.t. NN(x%4") = NN(x)

xadv

* Adversary’s goal
— Targeted: input misclassified to a specific class
— Non-targeted: input misclassified to any class

* Adversary’s knowledge

— Black box: no/limited knowledge of model internals
— White box: complete/lots of knowledge of model internals
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Defenses

Static defense
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Moving Target Defense (MTD)

« Static defenses grant the
advantage of time to attackers

« MTD revokes the advantage
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Preview: MTD against Adversarial Examples
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Used Datasets
 MNIST: 10 handwritten digits

0123 956384

 CIFAR10: 10 classes of objects

plane car bird cat deer frog horse ship truck
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« German Traffic Sign Recognition Benchmark (GTSRB): 43 classes

OLBEHVE00=AA

fage e NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE




Deep Model & Adversarial Examples

d 96.64% on GTSRB
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Challenge 1: Transferability of Adversarial Examples
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(true label = 1 and target label = 0)

« Attack misleads new models with some probability

* A single new model may not thwart the attack
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Challenge 2: Overhead of In Situ Retraining

« Retraining new models incurs computation overhead
« Add perturbations to base model and retrain

The number of epochs for new model retraining
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DeepMTD Work Flow
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DeepMTD Work Flow

 Human-in-the-loop
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Accuracy When No Attack (Auto)

97.4
cratch

S
w

/

3 4 5 6 7 8 9 10 11 12 13 14 15
Number of new models

©
o X
NN

© O
> O
o 0o

Accuracy (%)

© ©
o O
ST N

» Trade-off btw accuracy & compute overhead
* Improved accuracy on clean examples
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Successful Defense Rate (Auto)
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* Trade-off btw compute overhead & security
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Human in the Loop

* True positives
— Human is not affected by adversarial examples
— Security improved

« False positives
— Unnecessary overhead to human

Trade-off btw security improvement
& overhead to human
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Implementation

NVIDIA Jetson Nano
4-core CPU, 128 tensor cores, 4GB mem

] 8-core CPU, 512 tensor cores, 16GB mem
- Parallel vs. serial DeepMTD

— Parallel DeepMTD brings ~20% improvement in inference time

Keras Parallel mode Keras Serial mode
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Serial DeepMTD with Early Stopping

“speed limit 30”
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Performance of Serial DeepMTD
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Conclusion

« DeepMTD design to counteract adversarial examples

« DeepMTD performance evaluation against

— Clean examples
— Adversarial examples

« DeepMTD serial mode with early stopping
— Reduces inference time while maintaining sensing performance

More details: Q. Song, Z. Yan, R. Tan, Moving Target Defense for Embedded Deep
Visual Sensing against Adversarial Examples, ACM SenSys 2019, New York, USA.
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