DeepMTD

Moving Target Defense for Embedded Deep Visual Sensing against Adversarial Examples

针对嵌入视觉对抗样本的移动目标防御

Qun Song
宋群

Zhenyu Yan
鄢振宇

Rui Tan
谭睿

School of Computer Science & Engineering
Nanyang Technological University, Singapore

南洋理工大学, 计算机科学与工程学院
Deep Learning in Embedded Sensing

• Increasing applications
 – Automotive, healthcare, consumer electronics, etc

• Vulnerable to adversarial examples
 – Crafted inputs to mislead deep models, unnoticeable to human eyes

• Attacks in real world
 – Road sign classifiers, lane detectors

Adversarial Examples

$$\min_{x^{adv}} \|x - x^{adv}\| \quad s.t. \quad \text{NN}(x^{adv}) \neq \text{NN}(x)$$

- **Adversary’s goal**
 - **Targeted**: input misclassified to a specific class
 - **Non-targeted**: input misclassified to any class

- **Adversary’s knowledge**
 - **Black box**: no/limited knowledge of model internals
 - **White box**: complete/lots of knowledge of model internals
Related Work

Defenses

Model hardening

• **Adversarial training** [ICLR ’14, ICLR ’18]
 – Train on adversarial examples
 – Effective to considered adversarial examples only [NeurIPS ’18]

• **Gradient masking** [S&P ’16, ICLR ’18]
 – Make gradients nonexistent or incorrect, randomized, or vanishing/exploding
 – Incomplete defense [ICLR ’18]
 – Can be defeated by stronger attack [ICML ’18]

Modified input

• **Data compression** [ICLR ’18]
 Foveation [ICLR ’16]
 Randomization [ICCV ’17]
 – Result in loss of classification accuracy on clean examples [arXiv:1705.10686]
 – Does not affect adaptive attacker [ICML ’18]

Static defense
Moving Target Defense (MTD)

• Static defenses grant the advantage of time to attackers

• MTD revokes the advantage
Preview: MTD against Adversarial Examples

Factory model

Manufacture

In situ training

Run time

Consistency based attack detection

Majority vote to thwart attack

“speed limit”

“stop”

“stop”

“drive slowly”

“stop”
Outline

• Background & Motivation
• Approach Design & Evaluation
• Implementation
• Conclusion
Used Datasets

- **MNIST**: 10 handwritten digits

- **CIFAR10**: 10 classes of objects

- **German Traffic Sign Recognition Benchmark (GTSRB)**: 43 classes
Deep Model & Adversarial Examples

- Training and validation accuracy of 99.93% and 96.64% on GTSRB

- White-box adversarial attack: C&W attack [S&P ’17]
Challenge 1: Transferability of Adversarial Examples

- Attack misleads new models with some probability
- A single new model may not thwart the attack

Distribution of new models’ outputs (true label = 1 and target label = 0)

Distribution of the number of distinct outputs

51%
Challenge 2: Overhead of In Situ Retraining

- Retraining new models incurs computation overhead
- Add perturbations to base model and retrain

The number of epochs for new model retraining

- Scratch
- High
- Medium
- Low

Data for MNIST, CIFAR-10, and GTSRB datasets.
DeepMTD Work Flow

- **Autonomous**

![Diagram](attachment:image.png)

- **Attack detection**
 - % of majority outputs ≥ Ts?
 - Yes: Clean example
 - No: Adv example

- **Attack thwarting**
 - Majority vote → Final classification

- **Base model**
 - Perturb & retrain

- **Input**
 - 30

- **New models**
DeepMTD Work Flow

- **Human-in-the-loop**

Diagram:*
- **Base model**
 - Perturb & retrain

Input:
- 30

New models
- Attack detection
- % of majority outputs ≥ Ts?

Attack detection
- Majority vote
- Manual classification

Attack thwarting
Accuracy When No Attack (Auto)

- Trade-off btw accuracy & compute overhead
- Improved accuracy on clean examples
Successful Defense Rate (Auto)

- Trade-off btw compute overhead & security
Human in the Loop

• True positives
 – Human is not affected by adversarial examples
 – Security improved

• False positives
 – Unnecessary overhead to human

Trade-off btw security improvement & overhead to human
Outline

• Background & Motivation
• Approach Design & Evaluation
• Implementation
• Conclusion
Implementation

- **Parallel vs. serial DeepMTD**
 - Parallel DeepMTD brings ~20% improvement in inference time

<table>
<thead>
<tr>
<th>Keras Parallel mode</th>
<th>Keras Serial mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% 0% 0%</td>
<td>100% 100% 100%</td>
</tr>
</tbody>
</table>

NVIDIA Jetson Nano
4-core CPU, 128 tensor cores, 4GB mem

NVIDIA Jetson AGX
8-core CPU, 512 tensor cores, 16GB mem
Serial DeepMTD with Early Stopping

Consistency $< T_s$

Attack detection

Adversarial example
Performance of Serial DeepMTD

No attack

With attack
Conclusion

• **DeepMTD** design to counteract adversarial examples

• **DeepMTD** performance evaluation against
 – Clean examples
 – Adversarial examples

• **DeepMTD** serial mode with early stopping
 – Reduces inference time while maintaining sensing performance