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Deep reinforcement learning (DRL) has shown good performance in tackling Markov decision process (MDP)
problems. As DRL optimizes a long-term reward, it is a promising approach to improving the energy efficiency
of data center cooling. However, enforcement of thermal safety constraints during DRL’s state exploration is a
main challenge. The widely adopted reward shaping approach adds negative reward when the exploratory
action results in unsafety. Thus, it needs to experience sufficient unsafe states before it learns how to prevent
unsafety. In this paper, we propose a safety-aware DRL framework for data center cooling control. It applies
offline imitation learning and online post-hoc rectification to holistically prevent thermal unsafety during
online DRL. In particular, the post-hoc rectification searches for the minimum modification to the DRL-
recommended action such that the rectified action will not result in unsafety. The rectification is designed
based on a thermal state transition model that is fitted using historical safe operation traces and able to
extrapolate the transitions to unsafe states explored by DRL. Extensive evaluation for chilled water and direct
expansion-cooled data centers in two climate conditions show that our approach saves 18% to 26.6% of total
data center power compared with conventional control and reduces safety violations by 94.5% to 99% compared
with reward shaping. We also extend the proposed framework to address data centers with non-uniform
temperature distributions for detailed safety considerations. The evaluation shows that our approach saves
14% power usage compared with the PID control while addressing safety compliance during the training.

CCS Concepts: • Hardware→ Enterprise level and data centers power issues; • Computing method-
ologies → Reinforcement learning.
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1 INTRODUCTION
Data centers (DCs) form the backbone of the Internet ecosystem. The DC market has ever been
growing to meet the demands of cloud computing and storage services. In the ongoing COVID-19
pandemic, the DC industry needs to expand to support the surging online activities. As such, the
global DC market value is forecast to reach 143.4 billion U.S. dollars by 2027 according to the
current compound annual growth rate of 13.4% [4]. However, DCs are energy-intensive. According
to a survey in 2022, the sector of the DC industry uses about 1.8% of the electricity in the U.S. and
contributes 0.3% global carbon emissions [10]. Given the fast DC market growth, it is important to
improve DC energy efficiency in the pursuit of carbon neutrality. A DC is a cyber-physical system
consisting of information technology (IT) equipment and cooling systems. The IT equipment uses
electricity for computing and generates heat that needs to be moved and dissipated to the ambient.
This moving process, i.e., cooling, uses more than 40% of DC’s electricity supply [40]. Therefore,
perpendicular to the design and adoption of new energy-efficient IT equipment, proper control of
the cooling system based on distributed sensing and cyber intelligence is critical to improving DC
energy efficiency.

This paper considers the problem of DC cooling control that aims at reducing the DC energy
usage subject to the IT equipment’s thermal safety constraints. Any IT device specifies the highest
temperature that it can tolerate (e.g., 32°C for ASHRAE Class A1 servers [8]). Crossing the temper-
ature upper limit may cause device shutdown and service disruption. Many DC operators adopt
an operation scheme of maintaining the temperature in the hot zone of the data hall (referred
to as zone temperature) at a certain setpoint that is sufficiently lower than the IT equipment’s
temperature upper limits. In the presence of dynamic IT workloads, the operating point, i.e., the
temperature and mass flow rate, of the computer room air conditioning (CRAC) units need to be
periodically adjusted to maintain the zone temperature. This can be achieved by conventional
feedback controls [45].

The DC cooling control can be also viewed as a Markov decision process (MDP). Deep reinforce-
ment learning (DRL) has shown good performance in tackling various MDP problems [29, 41].
Recent studies [11, 16] have also applied DRL to learn the energy-efficient policies for operating
the heating, ventilation, and air conditioning (HVAC) systems of human-centric buildings. The
learning process is steered by a reward function that jointly captures the cumulative penalty of
process deviations from the setpoint and the long-term average energy efficiency of the HVAC
system. Thus, compared with the conventional feedback controls that only focus on maintaining
the temperature at the setpoint, DRL additionally admits the goal of energy efficiency optimization.
The existing results show that the adequately trained DRL agents achieve up to 16.7% HVAC energy
savings over long runs [11]. Such energy efficiency gains achieved for HVAC control motivate us
to develop DRL for DC cooling control. However, DC cooling control faces more dynamics in heat
load and more stringent thermal safety requirements.

In online DRL (including the on-policy and off-policy schemes), the agent interacts with the
controlled system iteratively and learns from positive and negative rewards caused by the performed
action. For an intricate MDP problem, the convergence of the DRL often requires experiencing a
large number of action-state trials. For instance, model-free DRL for HVAC control in [16] performs
500,000 interactions to converge. To apply DRL for DC, it is critical to avoid the data hall’s excursions
to thermal unsafety during the learning process, which forms a constrained MDP (CMDP) problem.
To tackle CMDP in the general context, recent studies (e.g., [24, 37]) adopt a reward shaping
approach that applies a penalty in the reward function when the constraints are violated. However,
this approach, which is essentially a Lagrangian relaxation [18], does not explicitly enforce the
constraints. Post-hoc rectification is another approach that explicitly addresses the constraints of
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CMDP. Specifically, in each control period, the approach aims to find the smallest rectification to
the potential unsafe recommendation made by the DRL agent such that the rectified action will not
drive the system to the unsafe region. The study [15] has derived the closed-form rectifications
when the controlled system follows a linear state transition. Under the same linear assumption, the
study [12] incorporates the rectification into the DRL training with a differentiable projection layer.
However, the thermal state transition in DC is nonlinear and non-differentiable in terms of the
control action. As such, the domain-agnostic solutions based on the linear approximation of the
thermal state transition will inevitably lead to degradation of thermal safety compliance.

In this work, we first present a safety-aware reinforcement learning framework (Safari) for DC
cooling control. We consider both single-hall and multi-hall schemes. The single-hall and multi-hall
schemes are often adopted in enterprise [22] and co-located DCs [43], respectively. Safari comprises
an offline stage and an online stage. First, Safari adopts offline imitation learning to initialize the
DRL agent. The imitation learning is based on the historical traces when the CRAC is operated by
the conventional controller that empirically assures thermal safety. Such data traces are in general
available in the DC infrastructure management (DCIM) system. The imitation learning can reduce
the DRL agent’s unsafe attempts and accelerate the convergence in the online stage. Second, for
the online stage, we design a new post-hoc rectification approach based on state transition models
that capture the data hall thermodynamics. The model fitted with historical traces generated by
the safe conventional controller can accurately extrapolate the state transitions that are unseen
in the historical traces and explored by the DRL agent. Thus, a salient advantage of Safari lies in
the low overhead and low demand for data (i.e., only safe data are needed) when fitting the state
transition model. In contrast, as shown in this paper, the domain-agnostic approach of using a
neural network to model the state transitions requires unsafe exploratory training data, which is in
general unavailable and contradictory to the original goal of ensuring safety.

To capture the thermal state transition, the above setting assumes that the air of the considered
data hall is well-mixed to exhibit uniform spatial temperature distribution. Under this assumption,
the thermal transition is modeled using an ordinary differential equation (ODE) that can be solved
with low computation overhead for online action rectification. For a DC that hosts diverse IT
equipment for different computing tasks, the spatial temperature distribution can be non-uniform
due to the heterogeneous equipment placements and workload distributions. Therefore, it is neces-
sary to extend the transition model with fine-grained spatial temperature prediction capabilities
for safety considerations. The computational fluid dynamics and heat transfer (CFD/HT) [36] is
a typical technique to characterize the full-fledged temperature distribution of a given space by
solving the Navier-Stokes (NS) and energy balance equations [6]. It has been adopted in offline
optimization for reducing the DC energy cost and preventing thermal risk [37]. However, the vanilla
CFD/HT model does not meet the online rectification requirement due to its compute-intensive and
non-differentiable nature. At the start of each control period, the online rectification is expected to
perform in time to catch up with the system state transition. Unfortunately, the iterative rectification
of the DRL recommended action is computationally prohibitive based on the CFD/HT model.

To address the above computation challenges, we propose a reduced-order modeling approach to
accelerate the rectification based on the proper orthogonal decomposition (POD). The POD method
aims to describe a full field profile with a linear combination of a set of spatial basis functions, i.e.,
the POD modes and the corresponding coefficients. Specifically, for the offline stage, we first derive
the POD modes and the relationship between the boundary conditions and POD coefficients based
on the data generated from a calibrated CFD/HT model [44]. After that, we apply the POD model for
online post-hoc rectification. In this paper, we develop the closed-form and heuristic search-based
rectifications based on two forms of POD models, respectively. The proposed methods extend the
Safari framework for data hall safety considerations with fine-grained spatial temperature modeling.
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As the development of the POD model only requires the simulation data from the CFD/HT model,
it eliminates the safety concern of collecting exploratory data from the physical DC.

In summary, this paper proposes the Safari framework that enables the adoption of DRL to pursue
DC energy savings while effectively preventing excursions to thermal unsafety. The contributions
of this paper are summarized as follows.

• We formulate DC cooling control as an MDP problem and design a DRL agent. Then, we
conduct extensive measurements using the EnergyPlus simulator [14] to show the DC energy
savings achieved by the DRL agent. The study also shows that the agent designed without
rigorous thermal safety considerations produces excessive unsafe events, even when the
temperature setpoint is conservatively low.

• We design Safari that applies imitation learning and post-hoc rectification to holistically
prevent thermal unsafety during online DRL. We develop a DC-specific post-hoc rectification
approach that exploits thermodynamic laws and outperforms the existing domain-agnostic
rectification approaches.

• We conduct extensive simulations for DCs with chilled water and direct expansion cooling
systems in two climate conditions. When the IT workload pattern is simple, Safari saves
22.7% to 26.6% power compared with conventional control and reduces safety violations by
94.5% to 99% compared with reward shaping. When the IT workload pattern is complex, the
power savings and violation reductions are 25.7% and 99%, respectively.

• We extend Safari to address DCs with non-uniform temperature distributions for detailed
safety considerations. With the extended formulation, we derive the post-hoc rectifications
based on two forms of the POD model. Through evaluation, Safari saves 14% power compared
with the PID control and addresses the thermal safety constraint compared with other DRL
controls.

The rest of this paper is organized as follows. §2 reviews the related work. §3 presents the
background and preliminaries. §4 presents a measurement study. §5 presents the design of Safari.
§6 presents evaluation results. §7 discusses several relevant issues. §8 concludes this paper.

2 RELATEDWORK
This section reviews the existing studies on machine learning (ML)-based DC cooling control and
safe reinforcement learning. Table 1 categorizes the relevant approaches and summarizes their
requirements and implementation properties for safety considerations. In what follows, we discuss
the details of these existing studies.
■ML-basedDC cooling control.DC cooling control is a CMDP problem. The existing ML-based

solutions can be categorized into model-free [13, 24, 37, 42] and model-based [22, 46] approaches.
The model-free approaches learn the control policy by directly interacting with the controlled

system, which in general follows the online DRL scheme. The study [24] applies the deep determin-
istic policy gradient (DDPG) to learn the cooling control policy for a two-zone DC. The studies [37]
and [13] adopt the parameterized deep Q-network (DQN) and the DDPG, respectively, to learn
the policy for joint control of cooling and IT (e.g., via compute job allocation). The study [42]
applies DQN to learn the policy for air free cooling control. After adequate learning, the DRL agents
in [13, 24, 37, 42] achieve energy savings. During the learning phase, they all follow the reward
shaping strategy to relax the constrained optimization problem to an unconstrained one. Thus, they
only address the thermal safety constraints in a semi-explicit manner. Differently, our proposed
approach directly and explicitly addresses the thermal safety constraints via post-hoc rectification.
As indicated in Table 1, the reward shaping approach needs exploratory data that covers the unsafe
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Table 1. Categorization and summary of the existing studies relevant to ML-based cooling control.

Category Approach Ref. Application
Requirements for safety Consideration

Exploratory
data

Transition
model When? How?

Model-

Simplex [27, 35] Load balanc-
ing, etc. Required Not required Reactive

Explicit

free*

Reward shap-
ing

[13, 24,
37, 42] DC cooling Semi-

explicit
Post-hoc [12, 15] HVAC Not required† Linear model Proactive Explicitrectification Safari DC cooling Not required Physics model

Model-

Reward shap-
ing [46] DC cooling Required LSTM Reactive Semi-

explicit

based* MPC [22] Required Linear model – Implicit
[20] Building Required Gaussian – Implicit

Offline Regularization [26] Building Not required Not required – Implicit
*The “model” refers to that needed/used for learning the control policy toward the optimization objective,
not for safety considerations. The three categories of model-free approaches are used as baselines for
comparison when evaluating Safari in §6.
†If the state transition is linear, [12, 15] do not require exploratory data. However, for nonlinear DC
thermodynamics, although [12, 15] can be extended to use DNNs capturing nonlinear transitions, our
experiments in §5.3 show that exploratory data will be needed to train the DNNs.

region to learn from the penalty in a reactive manner. Therefore, the learning phase of reward
shaping in general experiences unsafe states.

The model-based approaches (e.g., [20, 22, 46]) aim at reducing the sampling complexity (i.e., the
number of interactions with the controlled system) by allowing the ML-based controller to interact
with a computational model of the system dynamics. The study [22] presents the model-predictive
control (MPC) of DC cooling based on a linearized thermodynamic model. However, the MPC
formulation does not explicitly address the thermal constraints. The study [20] also applies MPC
and uses a Gaussian process model for the state transition. It continuously updates the model with
online data that are sampled by following an optimal experiment design strategy. The study [46]
constructs a deep neural network (DNN) to capture the thermodynamics and uses it to reduce the
sampling complexity of a DRL agent designed with reward shaping. However, the training of the
DNN requires a large amount of exploratory data.
■ Safe reinforcement learning. Various safe reinforcement learning techniques have been

proposed to address the CMDP problem under the general context, which can be categorized
into the simplex, reward shaping, and post-hoc rectification approaches. As the reward shaping
approach has been reviewed earlier in the context of DC cooling control, we will focus on the
remaining two. The studies [27, 35] follow the simplex architecture that executes the DRL as the
high-performance learner to maximize the reward and falls back to a safe controller once the system
enters the unsafe region. For each fallback, the simplex approach requires and reacts to at least one
unsafe state. Although the use of the safe controller renders the safety implementation explicit,
the frequent interruptions to the DRL may adversely affect its learning efficiency. A recent work
adopts the offline reinforcement learning algorithm for HVAC control. To address safety concern,
a Kullback-Leibler regularization term is incorporated to penalize policies that deviate far from
the one learned from historical data. This mechanism reduces the randomness of exploration that
could damage the system.
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Fig. 1. A typical chilled water-cooled DC system.

The post-hoc rectification approach searches for the minimum modification to the control action
generated by an ML-based controller to proactively prevent the system from entering the unsafe
region. In [15], based on a linear state transition model, a closed-form rectification is found by
solving a convex constrained optimization problem. The work [12] extends the above approach
by augmenting the DRL policy network with a projection layer that projects the action onto a
predefined safety set and applies the extended approach to HVAC and power grid inverter control.
However, the effectiveness of the approaches in [12, 15] depends on the linearity and differentiability
of the system dynamics. In this paper, we will analytically show the nonlinear property of the
thermodynamics in DC. This paper further advances the post-hoc rectification approach with state
transition models incorporating the knowledge of DC thermodynamics to enforce thermal safety.
The models can be either fitted with historical non-exploratory data produced under the control of
a safe controller or simulation data generated by CFD/HT. As the fitted model remains accurate in
the unsafe region, our approach does not require undesirable exploratory data.

3 PRELIMINARIES
This section presents the preliminaries of DC cooling control and DRL. The notations used in this
paper are summarized in Table 2, which are grouped into six categories of DC configurations,
POD-related, power/heat-related, air volume-related, temperatures, and DDPG-related. The default
vectors are in column forms unless particularly specified.

3.1 DC Model and Cooling Control
3.1.1 DC system overview. This paper considers both chilled water (CW) and direct expansion (DX)
cooling systems. Fig. 1 illustrates a typical CW-cooled DC consisting of a cooling tower, a chiller,
two water pumps (i.e., chilled water pump and condensed water pump), and multiple data halls
hosting multiple CRAC units and servers. The single-hall and multi-hall schemes are often adopted
in enterprise [22] and co-located DCs [43], respectively. The heat generated by the IT equipment is
moved out of the DC via three cycles. In the indoor air cycle, the CRAC units supply cold air to
the data hall cold aisle, draw hot air from the zone, and cool the hot air by their internal air-water
heat exchangers. In the chilled water cycle, the chilled water pump supplies chilled water to the
CRAC units. The return warm water from CRAC is cooled by the chiller via a vapor-compression
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Table 2. Summary of Notations

Sym. Definition Sym. Definition

𝑙 number of CRACs 𝑁 , 𝐻 number of field points and POD modes
𝑚 number of servers 𝚽 ∈ R𝑁×𝐻 matrix of POD modes
𝑛 number of temperature sensors β ∈ R𝐻 vector of POD coefficients

𝑃IT total IT power usage 𝑓in total mass flow rate of supply air
𝑃c total cooling power usage 𝑓in setpoint for 𝑓in
𝑃DC DC total power usage, 𝑃DC = 𝑃IT + 𝑃c 𝑓IT mass flow rate of IT equipment
𝑈IT IT utilization 𝑉𝑠 volume of the data hall
𝑄 sensible heat load, 𝑄 = 𝑃IT in analysis 𝛼 a system dependent parameter

𝑇in cold aisle temperature 𝜏 control period
𝑇in setpoint for 𝑇in µ ∈ R2𝑙 action µ =(𝑇in1 , 𝑓in1 , . . . , 𝑇in𝑙 , 𝑓in𝑙 )
𝑇z zone temperature s ∈ R𝑛+3 state s =(𝑇z1 , . . . , 𝑇z𝑛 , 𝑃c, 𝑃IT, 𝑇w)
𝑇 z thermal safety upper bound for 𝑇z 𝑟 reward function
𝑇C setpoint for 𝑇z in DDPG 𝑇L, 𝑇U bounds for 𝑇z for reward shaping
𝑇z predicted 𝑇z by transition model 𝜆T, 𝜆P 𝜆S, 𝜆1 coefficients of reward function
𝑇w outdoor weather temperature G, T Gaussian, and Trapezoid functions

refrigeration process. In the condenser water cycle, the chiller transfers heat to the cooling tower
by the condenser. The cooling tower dissipates the heat to the outdoor environment. The total
power usage of the cooling system, denoted by 𝑃c, comprises the power usage of the CRAC units,
the chiller, the cooling tower, and the water pumps. A component’s power usage depends on its
working status. The EnergyPlus simulator contains realistic power usage models of the cooling
components. The IT power usage (denoted by 𝑃IT) comprises the powers used by computing and
the IT equipment’s internal fans, where the former mainly depends on the utilization of the IT
equipment (denoted by𝑈IT) and the latter mainly depends on the data hall’s cold aisle temperature
(denoted by 𝑇in). Therefore, we model 𝑃IT = 𝑝 (𝑈IT,𝑇in). In the simulations conducted in this paper,
we configure the EnergyPlus to use a model 𝑝 (𝑈IT,𝑇in) from [31]. As the design of Safari does not
require the power usage models discussed above, we omit introducing their details. Compared
with CW, the DX cooling system is simpler – it consists of two cycles only. It directly cools the
air through the evaporation and condensation of refrigerant. We add a brief description of the
DX-cooled system in supplementary material. Note that Safari is agnostic to the type of cooling
system. In §6, we will evaluate the performance of Safari for both CW and DX cooling.

3.1.2 Data hall heat process model. Then, we describe the heat process in the data hall. In this
paper, we consider two modeling methods of the data hall heat process with 1) nodal dynamics and
2) fine-grained spatial heat transfer, respectively. Their modeling principles are as follows.
■ Nodal dynamics model. The nodal dynamics is a simplified modeling method adopted by

the EnergyPlus simulation. The model considers a scenario where 1) the CRAC units adopt the
same setpoint for the supply air temperature and 2) the zone air temperature has a uniform spatial
distribution. The zone temperature of a data hall, denoted by 𝑇z, is governed by the following
thermodynamic model derived from the law of the energy conservation [7]:

d𝑇z (𝑡)
d𝑡 =

𝑓in (𝑡)
𝜌𝑉s

(𝑇in (𝑡) −𝑇z (𝑡)) + 1
𝛼𝑉s

𝑄 (𝑡), (1)

where 𝑡 is time, 𝑓in (𝑡) is the instantaneous total mass flow rate of the supply air from all CRAC
units, 𝜌 is the density of air, 𝑉s is the data hall volume, 𝛼 is a system dependent parameter that
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is relevant to the thermal capacitance of air, and 𝑄 (𝑡) is the instantaneous sensible heat load. In
practice, 𝑄 comprises the portion of 𝑃IT converted to heat, the heat emitted from lighting and
human workers temporarily in the data hall, and the external heat transferred into the data hall via
walls. As the IT-generated heat usually dominates 𝑄 (𝑡), to simplify the discussion in this paper,
we assume 𝑄 (𝑡) = 𝑃IT (𝑡). Note that in the EnergyPlus simulations conducted in this paper, we
account for lighting heat as well. In practice, thermal-aware load balancing [28] can be applied
to achieve the uniform spatial distribution of the hot zone air temperature. In addition, the total
mass flow rate 𝑓in (𝑡) can be attributed to the CRAC units properly to help equalize the IT racks’
outlet temperatures. For this scenario, we will not detail the zone temperature distribution. Instead,
we focus on the main challenge of improving DC energy efficiency while maintaining the overall
thermal safety in the hot zone.
■ Fine-grained spatial model. Although today’s DCs are often equipped with hot aisle con-

tainments to prevent air re-circulation, the temperature distributions can be non-uniform due to the
heterogeneous server placements and workload distributions. The CFD/HT is a typical method to
characterize fine-grained thermodynamics by solving the NS and energy balance equations. How-
ever, the vanilla CFD/HT model is compute-intensive due to the iterative solving process. To reduce
the computation overhead, we adopt the POD technique to approximate the CFD/HT-generated tem-
perature field. Let Tz (𝑡) ∈ R𝑁 denote the vector of temperature field containing 𝑁 discrete points
at a time step. With the POD approximation, the temperature field can be expressed by the linear
combination of 𝐻 orthogonal basis functions (i.e., POD modes 𝚽 = (ϕ1,ϕ2, . . . ,ϕ𝐻 ) ∈ R𝑁×𝐻 ) and
the corresponding coefficients (i.e., POD coefficients β(𝑡)=(𝛽1, 𝛽2, . . . , 𝛽𝐻 ) ∈ R𝐻 ) as:

Tz (𝑡) = To +
𝐻∑︁
𝑖=1

𝛽𝑖 (𝑡)ϕ𝑖 , (2)

where To is a vector of the average temperature field from CFD/HT simulation. In practice, the POD
modes can be efficiently derived by the snapshot method [19]. The POD coefficients are determined
by the boundary conditions of the hosted facilities, i.e., β(𝑡)=F (Tin (𝑡), fin (𝑡), PIT (𝑡), fIT (𝑡)) where
F is a function that models the relationship between the boundary conditions and the POD
coefficients, Tin, fin, PIT, and fIT are the vectors of the CRAC supply temperatures, CRAC mass
flow rates, IT powers, and IT mass flow rates, respectively. Similarly, we assume that the total
IT-generated heat equals the total sensible heat load. In practice, F can be modeled using heat flux
matching [38] or spline interpolation [39]. To apply POD for action rectification, we will design two
forms of F and evaluate their performance in meeting the safety constraints. For this scenario, we
will consider the detailed temperature distribution of a DC and focus on specific spatial locations
for safety evaluation.

3.1.3 DC cooling control. As discussed in §1, to maintain𝑇z (𝑡) at a setpoint, the DC cooling control
periodically adjusts the setpoints for 𝑓in (𝑡) and 𝑇in (𝑡). Let 𝜏 denote the control period. A typical
setting for 𝜏 is 15 minutes [46]. Let 𝑓 [𝑘] and 𝑇in [𝑘] denote the setpoints applied at 𝑡 = 𝑘𝜏 for the
𝑘-th control period of 𝑡 ∈ (𝑘𝜏, (𝑘 + 1)𝜏). The cooling system implements 𝑓in [𝑘] and 𝑇in [𝑘] via the
primary controls of its components. Due to the uncertain evolution of 𝑃IT (𝑡), the cooling process
is a continuous-time stochastic process. To make the analysis tractable, we make the following
simplifying assumptions, while the simplified model still captures the main challenges of DC cooling
control. Note that these assumptions will be relaxed in the performance evaluation.

Assumption 1. 𝑃IT (𝑡) only changes at the start of the control period and 𝑃IT [𝑘] ≜ 𝑃IT (𝑡) |𝑡 ∈( (𝑘−1)𝜏,𝑘𝜏)
is Markovian.
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Assumption 2. At the end of each control period, the DC system has converged to a steady state
and the cooling components’ primary controls have zero steady-state control errors.

Assumption 1 follows from the time-slotted treatment that has been widely adopted to convert a
continuous-time problem to its discrete-time counterpart [33]. Under Assumption 2, the setpoints
𝑓in [𝑘 − 1] and 𝑇in [𝑘 − 1] are implemented when 𝑡 → 𝑘𝜏−. Formally, 𝑓in (𝑡) |𝑡→𝑘𝜏− = 𝑓in [𝑘 − 1],
𝑇in (𝑡) |𝑡→𝑘𝜏− = 𝑇in [𝑘 − 1], d𝑇z (𝑡 )

d𝑡

���
𝑡→𝑘𝜏−

= 0. By substituting the above simplification-induced results
into Eq. (1) and by defining 𝑇z [𝑘] ≜ 𝑇z (𝑡) |𝑡→𝑘𝜏− , we obtain the following steady-state transition of
the nodal dynamics model of a data hall by:

𝑇z [𝑘] = 𝑇in [𝑘 − 1] + 𝜌𝑃IT [𝑘]
𝛼 𝑓in [𝑘 − 1]

. (3)

Under the same assumptions, the steady state transition of the fine-grained POD model is obtained
by:

Tz [𝑘] = To + 𝚽F
(
T̂in [𝑘 − 1], f̂in [𝑘 − 1], PIT [𝑘], fIT [𝑘]

)
. (4)

3.2 Deep Reinforcement Learning
DRL is a deep learning-based approach that learns a policy function 𝜇θ with parameters θ to tackle
an MDP problem. The DRL agent uses the policy to select the action µ[𝑘] based on the current
system state s[𝑘], i.e., µ[𝑘] = 𝜇θ (s[𝑘]). The action drives the system to the next state s[𝑘 + 1],
while the agent receives an immediate reward 𝑟 [𝑘]. Let 𝛾 denote a discounted factor. The agent
uses an algorithm to learn the optimal policy θ∗ for the following unconstrained optimization
problem: θ∗ = arg maxθ E

[∑∞
𝑘=0 𝛾

𝑘𝑟 [𝑘]
�� 𝜇θ] .

In this paper, we use the DDPG [25] learning algorithm to deal with the continuous action
space in DC cooling control. It concurrently learns 𝜇θ (s) and a Q-function 𝑄ψ (s,µ) parame-
terized with parameters ψ and differentiable with respect to action µ. To learn the Q-function,
the agent samples a batch of 𝑁 transition data samples {𝑠𝑖 , 𝜇𝑖 , 𝑠𝑖+1, 𝑟𝑖 |𝑖 = 1, . . . , 𝑁 } through inter-
acting with the controlled system. Then, it updates ψ by minimizing the loss function L(ψ) =
1
𝑁

∑𝑁
𝑖=1

(
𝑄ψ (𝑠𝑖 , 𝜇𝑖 ) − 𝑦𝑖

)2, where 𝑦𝑖 is the target Q value given by 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄 ′
ψ

(
𝑠𝑖+1, 𝜇

′
θ
(𝑠𝑖+1)

)
.

The 𝑄 ′
ψ

and 𝜇 ′
θ

are two target networks copied from the original networks and updated once
per main network update. To learn the policy function, it updates θ by maximizing J (θ) =
1
𝑁

∑𝑁
𝑖=1𝑄ψ (𝑠𝑖 , 𝜇θ (𝑠𝑖 )).

4 PERFORMANCE BENCHMARK AND MOTIVATIONS
This section formulates the DC cooling control as an MDP problem with reward shaping for
thermal safety considerations. Then, we benchmark a DDPG’s performance on energy savings in
comparison with a conventional controller. We also evaluate the effectiveness of reward shaping in
thermal unsafety prevention during learning. The results motivate the pursuit of better solutions
in §5.

4.1 MDP Formulation for DC Cooling Control
We consider a DC hosting 𝑙 CRACs,𝑚 servers, and 𝑛 temperature sensors deployed in the cold and
hot aisles, respectively. The IT workload and outdoor environment temperature are two exogenous
factors to DC cooling control. Let 𝑃IT [𝑘] =

∑𝑚
𝑖 𝑃𝑖 [𝑘] and 𝑇w [𝑘] denote the total IT workload

and outdoor weather temperature at 𝑡 = 𝑘𝜏 , respectively. We assume both 𝑃IT [𝑘] and 𝑇w [𝑘] are
Markovian. The zone air temperature at specific locations should be kept within a thermal safety
upper bound denoted by 𝑇 z, i.e., 𝑇z𝑖 [𝑘] ≤ 𝑇 z, ∀𝑘 , 𝑖 = 1, 2, . . . , 𝑛. In the simulations conducted in
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Fig. 2. Impact of 𝜆T and 𝜆P on performance of DDPG over 1-year test. (a) Data hall zone temperature; (b) DC
average total power usage, with error bar representing the standard deviation over multiple DDPG agents.

this section, we set 𝑇 z = 32°C. With the above considerations, we define the control action, system
state, and reward of the MDP as follows.

Control action: The action applied in the 𝑘-th control period, denoted by µ[𝑘], consists of the
setpoints of the 𝑙 CRACs’ supply air temperature and mass flow rate. Formally, the control action is
a vector defined as µ[𝑘] = (𝑇in1 [𝑘], 𝑓in1 [𝑘], 𝑇in2 [𝑘], 𝑓in2 [𝑘], . . . , 𝑇in𝑙 [𝑘], 𝑓in𝑙 [𝑘]) ∈ R2𝑙 .
System State: The state at the 𝑘-th time step consists of the indoor/outdoor temperature

measurements and the total power usage of the cooling and IT systems, respectively. Besides the
notation defined in §3.1, we also define 𝑃c [𝑘] ≜ 𝑃c (𝑡) |𝑡→𝑘𝜏− . Formally, the system state is a vector
defined as s[𝑘] = (𝑇z1 [𝑘], 𝑇z2 [𝑘], . . . , 𝑇z𝑛 [𝑘], 𝑃c [𝑘], 𝑃IT [𝑘], 𝑇w [𝑘]) ∈ R𝑛+3. When the action µ[𝑘] is
to be chosen at 𝑡 = 𝑘𝜏 , s[𝑘] is fully observable. From the assumption that the two exogenous state
components 𝑃IT [𝑘] and 𝑇w [𝑘] are Markovian, the probability distribution of the transition from
s[𝑘] to s[𝑘 + 1] under an action µ[𝑘] is conditioned on the probability distributions of s[𝑘] and
µ[𝑘] only. Thus, the control process is an MDP.

Reward function: According to [17], a good DC cooling controller should maintain the average
data hall air temperature at a certain setpoint denoted by 𝑇C and reduce total energy usage. We
adopt the following reward function that incorporates the above two goals and also includes a
penalty term for thermal safety considerations:

𝑟 (s[𝑘]) = 𝜆TG (Tz [𝑘],𝑇C) − 𝜆P𝑃DC [𝑘]︸                               ︷︷                               ︸
optimization goals

+ 𝜆ST (Tz [𝑘],𝑇U,𝑇L)︸                  ︷︷                  ︸
penalty term

, (5)

where G is a Gaussian function defined as G =
∑𝑛
𝑖 exp

(
−𝜆1

(
𝑇z𝑖 [𝑘] −𝑇C𝑖

)2
)
, T is a trapezoid

penalty function defined as T =
∑𝑛
𝑖

( [
𝑇z𝑖 [𝑘] −𝑇U

) ]+ + [
𝑇L −𝑇z𝑖 [𝑘]

]+), 𝜆T, 𝜆P, 𝜆S and 𝜆1 are several
hyperparameters, 𝑃DC [𝑘] is the DC’s total power usage (i.e., 𝑃DC [𝑘] = 𝑃IT [𝑘] +𝑃c [𝑘]), [𝑇L,𝑇U] spec-
ifies a desirable range for𝑇z [𝑘] and [𝑥]+ = max{0, 𝑥}. The Gaussian function regulates the average
zone air temperature to be close to the target setpoint and the penalty term penalizes the reward
when the temperature is out of [𝑇L,𝑇U]. The𝑇U can be set lower than𝑇 z to better address the thermal
safety considerations in practice. The objective of the MDP problem is to find the policy parameters
to maximize the long-term accumulative reward, i.e., θ∗ = arg maxθ E𝑃IT,𝑇w

[∑∞
𝑘=0 𝛾

𝑘𝑟 [𝑘]
��µθ] ,

where 𝑃IT and 𝑇w are two stochastic processes.

4.2 Performance Measurements
In this section, we adopt the nodal dynamics to model a single-hall DC and conduct a set of
simulations in EnergyPlus to evaluate the performance of the DDPG solution. We implement DDPG
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Fig. 3. Comparison between EnergyPlus’ built-in controller (baseline) and converged DDPG over 1-year
testing. (a)-(c) IT, cooling and total power consumption; (d) average zone air temperature.

in PyTorch [34] and integrate the EnergyPlus 8.8.0 simulator with the OpenAI gym [9] interface.
Thus, the DDPG agent can learn the control policy for a CW-cooled DC simulated by EnergyPlus.
The control period 𝜏 is 15 minutes. Other hyperparameter settings of the DDPG can be found
in Table 4. To drive the simulations, we use the historical weather trace of Singapore, which is
provided by EnergyPlus. We adopt a simple IT utilization variation pattern for each simulated day:
𝑈IT = 0.5 from 00:00 to 06:00;𝑈IT = 0.75 from 06:00 to 08:00;𝑈IT = 1.0 from 08:00 to 18:00;𝑈IT = 0.8
from 18:00 to 24:00. We set the first 50 days as the learning phase. After that, we disable the policy
update and the system enters a 1-year testing phase. We compare the testing-phase performance of
DDPG with an EnergyPlus’ built-in controller [3] (referred to as baseline controller) that only aims
at maintaining 𝑇z [𝑘] at 𝑇C by adjusting the supply air temperature.

4.2.1 Impact of 𝜆T and 𝜆P. In Eq. (5), the hyperparameters 𝜆T and 𝜆P are the weights for combining
the goals of maintaining temperature and reducing total power usage. We fix the other hyperpa-
rameters (i.e., 𝜆1=0.5, 𝜆S=0.1,𝑇C=21°C,𝑇L = 𝑇C − 1.5°C,𝑇U = 𝑇C + 1.5°C) and vary 𝜆T and 𝜆P. Fig. 2(a)
shows the distribution of𝑇z versus 𝜆T when 𝜆P = 10−5. We train a separate DDPG agent for each 𝜆T
setting. Each error bar shows the distribution of 𝑇z during testing. When 𝜆T ≠ 0, the 𝑇z fluctuates
around 𝑇C and the variation of 𝑇z decreases with 𝜆T. When 𝜆T = 0, 𝑇z has large variations. Next,
we fix 𝜆T to a certain setting and vary 𝜆P. For each 𝜆P, we train multiple DDPG agents. For each
agent, we obtain the average 𝑃DC during testing. Each error bar in Fig. 2(b) shows the standard
deviation of the average 𝑃DC over the multiple agents. The DC power usage shows a decreasing
trend when 𝜆P increases. In addition, under the same setting for 𝜆P, the setting of 𝜆T = 0 leads to
lower 𝑃DC compared with the setting 𝜆T = 1. This is because the DDPG agent with 𝜆T = 0 can focus
on reducing 𝑃DC. The horizontal dash line in Fig. 2(b) shows the average 𝑃DC during testing when
the baseline controller is used. We can see that the DDPG controllers bring DC power savings. The
results in Fig. 2 show that 𝜆T and 𝜆P affect the trade-off between data hall temperature stability and
DC power efficiency. In the rest of this section, we set 𝜆T = 1 and 𝜆P = 10−5.
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Fig. 4. DDPG’s training phase under various setpoints. (a) Cumulative count of safety violations; (b) violation
magnitude: midline, box, and whisker represent the median, interquartile range, and dispersion degree.

4.2.2 Comparison of DDPG and baseline controllers under various𝑇C settings. The zone temperature
setpoint is an important operation setting. We vary 𝑇C from 20°C to 24°C with a step size of 1°C.
For each setpoint, we train multiple DDPG agents and measure the averages of 𝑃IT, 𝑃c, and 𝑃DC
during testing for each of the agents. Figs. 3(a)-(c) show the power measurements versus 𝑇C. The
error bar shows the standard deviation over the multiple agents. The figures also show the power
measurements when the baseline controller is adopted, as well as the relative savings achieved by
DDPG. We can see that with the baseline controller, the IT power increases with 𝑇C. With DDPG,
the IT power also shows a slightly increasing trend. However, DDPG saves more than 20% IT power.
Although both controllers maintain 𝑇z at the setpoint with small deviations as shown in Fig. 3(d),
our investigation shows that, compared with the baseline controller, DDPG recommends lower
𝑇in and 𝑓 such that the 𝑇in can be maintained lower, according to Eq. (3). As such, the IT power is
lower since the server fans rotate slower.

From Fig. 3(b), the cooling power decreases with 𝑇C under the baseline controller. A key reason
is that, with hotter return air, the temperature difference between the hot air and the chilled water
in the CRAC is larger, which allows the CRAC fan to rotate slower while exchanging the same
amount of heat. Differently, for DDPG, the cooling power changes slightly when 𝑇C increases. This
is because the optimized system under DDPG control has almost hit the minimum cooling power
needed to move a certain amount of heat generated by the IT equipment. Fig. 3(c) shows the sum
of the results in Figs. 3(a) and (b). Compared with the baseline controller, the DDPG agent can save
20% to 25% total power. In particular, when 𝑇C is 21°C, the relative saving achieves the peak. Note
that 21°C is one of the typical zone temperature setpoints in DCs [43].

Under a certain 𝑇C setting, the above results show that the DDPG agent achieves substantial
power savings compared with the baseline controller. In addition, under the conventional control
that maintains 𝑇z at 𝑇C, running hotter data center (i.e., by setting higher 𝑇C) can be beneficial to
energy efficiency [17], due primarily to the saving in cooling power. However, from Fig. 3(c), under
the DDPG control, this understanding may not be true, since the proposed DDPG agent jointly
considers the impacts of 𝑇in and 𝑓 on the IT/cooling power and minimizes the DC total power.

4.2.3 Thermal safety compliance of DDPG. We evaluate the thermal safety compliance in terms of
the cumulative count and magnitude of the violations to the constraint 𝑇z [𝑘] ≤ 𝑇 z. Specifically,
in the 𝑘-th control period, the cumulative count is

∑𝑘
𝑖=0𝐻 (𝑇z [𝑖] −𝑇 z), where 𝐻 (·) is the unit step

function; the violation magnitude is
[
𝑇z −𝑇 z

]+
. For each temperature setpoint 𝑇C, we conduct

multiple independent experiments and record the two metrics over time. In Fig. 4(a), a curve
shows the average of the cumulative counts produced by multiple DDPG agents under a certain 𝑇C
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Fig. 5. The Safari framework consists of two stages. In the offline stage, the agent initializes its policy by
learning from the demonstrations of an existing safe controller. Meanwhile, the historical data is also used to
fit a thermal transition model that captures the knowledge of thermodynamics. In the online stage, the agent
interacts with the physical DC to improve its policy supervised by the physics-based transition model. This
model is adopted as a safety layer that continuously rectifies the potential unsafe DRL recommendations.

setting in the learning phase; the shaded area in the same color shows the corresponding standard
deviation. We can see significant increases in the cumulative violation counts up to more than
1,000. In particular, in the first 10 days, there are sharp increases. Fig. 4(b) shows the box plots of
the violation magnitude in the 50 days under three settings of 𝑇C. We can see that the violation
magnitude can be more than 15°C even when𝑇C is 21°C, which is 11°C lower than𝑇 z. These results
show that DDPG with reward shaping generates excessive, serious safety violations. In addition,
simply adjusting the temperature setpoint 𝑇C does not solve the problem.

5 THE SAFARI APPROACH
This section formulates the constrained optimization problem and proposes the Safari framework
to address the CMDP problem. Then, four variants of Safari with different transition models and
prior knowledge are presented for online action rectification.

5.1 CMDP Formulation & Approach Overview
From the results in §4.2, DDPG achieves energy savings. However, as reward shaping addresses the
thermal constraints implicitly, it is weak in preventing thermal unsafety. The excessive, serious
safety violations during the learning phase will impede the adoption of DRL for DC. In this paper,
we aim to explicitly enforce the thermal safety constraints of the following CMDP problem:

θ∗ ≜arg max
θ

E𝑃IT,𝑇w

[ ∞∑︁
𝑘=0

𝛾𝑘𝑟 [𝑘]
����� 𝜇θ

]
,

s.t. Pr
(
𝑇z𝑖 [𝑘] ≤ 𝑇 z𝑖

)
> 1 − 𝜖, ∀𝑘, 𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝜖 is a small enough number for high confidence in ensuring the thermal safety requirement.
Note that the constraints in Eq. (6) are expressed in the probabilistic form in general because𝑇z𝑖 [𝑘]
is stochastic due to the stochasticity of 𝑃IT [𝑘 − 1].

Fig. 5 illustrated the proposed Safari framework. The proposed approach consists of the following
two stages that aim to address the CMDP problem in Eq. (6).
■ Offline imitation learning: Before the DDPG agent is applied, it is trained offline to imitate an

existing conventional safe controller using the historical data traces generated by the safe controller.
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Fig. 6. Effectiveness of imitation learning. (a) Per-day reward average; (b) cumulative count of safety violations.

Meanwhile, these traces are also used to fit a state transition model (e.g., Eq. (3)) that will be used for
the online stage. With imitation learning, the DDPG agent produces much fewer safety violations
when interacting with the DC.
■ Online post-hoc rectification: After the DDPG agent is applied, it learns the optimal policy by

interacting with the DC. To ensure the constraints in Eq. (6), after an actionµ[𝑘] is recommended by
the DDPG agent at 𝑡 = 𝑘𝜏 , we use the state transition model obtained in the offline stage to predict
the zone temperature resulted from µθ [𝑘] at the end of the control period. Let 𝑇z𝑖 [𝑘 + 1] denote
the 𝑖-th predicted temperature by the state transition model as 𝑇z𝑖 [𝑘 + 1] = ℎ𝑖 (µ[𝑘], 𝑃IT [𝑘], · · · ) ,
where “· · · ” represents the other factors that the prediction needs to consider. To ensure the system
constraints, we solve the following problem to find the minimal rectified action µ∗ [𝑘]:

µ∗ [𝑘] ≜arg min
µ′ [𝑘 ]

∥µ′[𝑘] − µθ [𝑘] ∥2
2 /2,

s.t. ℎ𝑖 (µ′[𝑘], 𝑃IT [𝑘], · · · ) ≤ 𝑇 z𝑖 , 𝑖 = 1, 2, . . . , 𝑛.
(7)

The ℓ2 norm minimization in Eq. (7) aims at preserving the policy learned by DDPG. The accuracy
of the state transition model ℎ(µ[𝑘], 𝑃IT [𝑘], · · · ) is critical to the safety compliance of the post-hoc
rectification. We derive the optimal rectification of Eq. (7) using the Karush-Kuhn-Tucker (KKT)
conditions as: 

µ∗ [𝑘] − µθ [𝑘] +
𝑛∑︁
𝑖=1

𝜆∗𝑖 ▽µℎ𝑖 (µ∗ [𝑘], 𝑃IT [𝑘], · · · ) = 0,

𝜆∗𝑖 ℎ𝑖 (µ∗ [𝑘], 𝑃IT [𝑘], · · · ) = 0,
𝜆∗𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛,

(8)

where 𝜆𝑖 is the optimal Lagrange multiplier in terms of the 𝑖-th temperature constraint. With the
above conditions, the rectified actions can be derived asµ∗ [𝑘] = µθ [𝑘]−𝜆∗𝑖∗▽µℎ𝑖∗ (µ∗ [𝑘], 𝑃IT [𝑘], · · · ),
where 𝑖∗ ≜ arg max𝑖 𝜆∗𝑖 . The existing studies on post-hoc rectification [12, 15] adopt the linear
state transition models such that the problem in Eq. (7) is a tractable convex quadratic program.
Unfortunately, the thermal state transition in DC is nonlinear and non-differentiable in terms of µ.
To address the challenges, §5.3 will present various surrogate state transition models and analyze
their efficacy for the safety-oriented post-hoc rectification.

5.2 Offline Imitation Learning
The imitation learning uses a training dataset over 𝐾 consecutive control periods: {ssafe [𝑘], µsafe [𝑘]
| 𝑘 = 1, . . . , 𝐾 }, where µsafe [𝑘] is the action performed by the conventional safe controller on
the state ssafe [𝑘] in the 𝑘-th control period. Such a dataset can be retrieved from the DCIM. The
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DDPG agent’s parameters θ is trained using the dataset to minimize the following loss function:
Limit (θ) = 1

𝐾

∑𝐾
𝑘=0 ∥µθ (ssafe [𝑘]) − µsafe [𝑘] ∥2

2. On the completion of the offline imitation learning,
the DDPG agent captures the control policy of the conventional safe controller.

Now, we present an experiment to investigate the effectiveness of the offline imitation learning.
In this experiment, two groups of DDPG agents, with and without imitation learning respectively,
are deployed to interact with the DC and further updated with online data according to the reward
function in Eq. (5). Figs. 6(a) and (b) show the traces of reward and cumulative safety violation
count of the two groups of DDPG agents, respectively. From Fig. 6(a), the average reward of the
agents with imitation learning converges after around 50 days of online training. For another
group without imitation learning, it takes a longer time, i.e., around 400 days, to reach a similar
performance. From Fig. 6(b), imitation learning can also reduce the cumulative violation count
since these agents behave like the conventional safe controller at the start of online training. In
summary, imitation learning accelerates DRL convergence and alleviates the safety concern of
DRL. §5.3 will further develop online post-hoc rectification approaches aiming at eliminating safety
violations during DDPG exploration.

5.3 Online Post-hoc Rectification
As discussed in §5.1, the accuracy of the state transition model ℎ(µ[𝑘], 𝑃IT [𝑘], · · · ) is critical to the
safety compliance of post-hoc rectification. In this section, we first discuss a possible design that
uses a long short-term memory (LSTM) network to model the transition. Our experiments show that
it requires exploratory data. Then, we present four designs of Safari, i.e., Safari-1, Safari-2, Safari-3,
and Safari-4 with different transition models that progressively integrate more prior knowledge
and run-time information. Safari-1, -2, and -3 are designed for DCs with uniform temperature
distributions, while Safari-4 considers the detailed spatial temperature modeling and can be applied
for DCs with non-uniform temperature distributions. Specifically, Safari-1 uses the steady state
transition model in Eq. (3). Safari-2 uses the transient model in Eq. (1) and is unleashed from
Assumption 2. Based on Safari-2, Safari-3 applies the maximum ramp-up trajectory of 𝑃IT observed
in history as the predicted trajectory within the next control period and is further unleashed from
Assumption 1. Safari-4 uses the POD-based transition model in Eq. (4) for fine-grained thermal
safety considerations.

5.3.1 A pure data-driven design of LSTM-based rectification. LSTM networks can model complex
and nonlinear temporal correlations with satisfied accuracy [46]. However, the non-exploratory
data generated by the conventional safe controller may not support fitting an LSTM to capture
the transitions to unsafe states explored by DDPG. To investigate this issue, we build a three-
layer LSTM that predicts the next state based on a candidate action and the state, action traces
in the past 20 control periods. We conduct experiments to investigate the LSTM’s requirement
for training data. Fig. 7 shows the distributions of non-exploratory data (produced by the baseline
controller), random exploratory data (produced by a controller performing random actions), and
marginally safe exploratory data (produced by a controller performing clipped random actions),
which have increased coverage in the state and action spaces. The mean absolute errors (MAEs) of
the predictions made by the LSTMs trained using these datasets are shown by the histograms labeled
“LSTM” in Fig. 8(a). The LSTM trained with the random exploratory data achieves MAEs lower than
0.5°C, indicating the LSTM design is satisfactory. The LSTMs trained with non-exploratory and
marginally safe exploratory data have high MAEs, due to their poor performance in characterizing
the transitions to unsafe states. Fig. 8(a) includes results for both a CW cooling system and a DX
cooling system. From the above results, this LSTM-based design requires exploratory data including
the unsafe states, which are in general unavailable and contradictory to the original goal of ensuring
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Fig. 7. Non-exploratory data, random exploratory data, and marginally safe exploratory data. (a) System
state; (b) Control action.
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Fig. 8. Test MAE of different state transition models. The test data are randomly sampled, including the
unsafe state. (a) MAE of zone air temperature for DCs with uniform temperature distributions; (b) MAE
distributions of cold and hot aisles of a CW-cooled DC with non-uniform temperature distribution.

safety. This motivates us to explore transition models that incorporate physical knowledge and
require less exploratory data to fit.

5.3.2 Safari-1: Steady state transition-based rectification. Safari-1 uses the non-exploratory data
produced by the conventional safe controller to fit the parameter 𝛼 in Eq. (3). Then, Safari-1 uses
Eq. (3) as the prediction model for one data hall, i.e., 𝑇z [𝑘 + 1] = ℎ(µ[𝑘], 𝑃IT [𝑘], · · · ). If 𝑇z [𝑘 + 1]
exceeds 𝑇 z, Safari-1 solves the optimization problem in Eq. (7). For this scenario, the optimization
problem of Eq. (7) is not disciplined quasiconvex programming and thus cannot be directly solved by
existing convex optimization tools. To derive the optimal solution, we solve the following equation
system derived from its KKT conditions:

𝑇 ∗
in [𝑘] −𝑇in [𝑘] + 𝜆∗ = 0,

𝑓 ∗ [𝑘] − 𝑓 [𝑘] − 𝜆∗ 𝑃IT [𝑘 + 1]
𝛼 (𝑓 ∗ [𝑘])2

= 0,

𝜆∗
(
𝑇 ∗

in [𝑘] +
𝑃IT [𝑘 + 1]
𝛼 𝑓 ∗ [𝑘]

−𝑇 z

)
= 0,

(9)

where 𝜆 is the Lagrange multiplier, µ∗ [𝑘] = (𝑇 ∗
in [𝑘], 𝑓 ∗ [𝑘]) is the rectified action. Under the

definition 𝑃IT [𝑘 +1] ≜ 𝑃IT (𝑡) |𝑡 ∈(𝑘𝜏,(𝑘+1)𝜏) , 𝑃IT [𝑘 +1] is unknown when the DDPG agent chooses the
action at 𝑡 = 𝑘𝜏 . However, pragmatically, the controller can wait for a short while until 𝑃IT [𝑘 + 1]
is observable and then solve Eq. (9).
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Fig. 9. (a) IT utilization ramp-ups (gray curves) and the max ramp-up (red curve) when starting utilization is
40%; (b) max ramp-ups when starting IT utilization is 40%, 45%, and 50%, respectively.

If the state evolution strictly follows the steady state transition in Eq. (3), the solution to Eq. (9)
can ensure safety. However, in practice, the DC cooling system components’ primary controls may
have a convergence process longer than the control period. This issue may undermine the safety
assurance of the solution given by Eq. (9). This motivates us to adopt the original transient model
in Eq. (1) to guide the rectification.

5.3.3 Safari-2: Transient-based rectification. To predict𝑇z [𝑘+1] more accurately, we need to further
consider the transient of 𝑇in within a control period, which depends on the primary controls of the
CRAC units and the back-end cycles (i.e., the chilled water cycle and the condenser water cycle).
Thus, the accurate prediction of 𝑇in transient requires a precise model of the whole cooling system.
The high modeling overhead is undesirable.

In this section, we develop a heuristic prediction approach merely based on Eq. (1). From Eq. (1),
the trajectory of𝑇z (𝑡) depends on the trajectories of𝑄 (𝑡),𝑇in (𝑡), and 𝑓 (𝑡). From Assumption 1, the
𝑄 (𝑡) |𝑡 ∈[𝑘𝜏,(𝑘+1)𝜏) remains constant at 𝑃IT [𝑘 + 1]. For 𝑇in (𝑡) and 𝑓 (𝑡), we adopt their setpoints as
their approximations. Specifically, we set 𝑇in (𝑡) |𝑡 ∈[𝑘𝜏,(𝑘+1)𝜏) = 𝑇in [𝑘] and 𝑓 (𝑡) |𝑡 ∈[𝑘𝜏,(𝑘+1)𝜏) = 𝑓 [𝑘].
Then, with the initial condition 𝑇z (𝑘𝜏) = 𝑇z [𝑘], we can solve 𝑇z (𝑡) from Eq. (1) as 𝑇z (𝑡) =𝑊 [𝑘] +
(𝑇z [𝑘] −𝑊 [𝑘]) e−𝑓 [𝑘 ] (𝑡−𝑘𝜏)/𝑉s , 𝑡 ∈ [𝑘𝜏, (𝑘 + 1)𝜏), where 𝑊 [𝑘] = 𝑇in [𝑘] + 𝑃IT [𝑘+1]

𝛼 𝑓 [𝑘 ] is a constant
within the 𝑘-th control period. Then, we mitigate the impact of making approximations for 𝑇in (𝑡)
and 𝑓 (𝑡) by adopting the average of 𝑇z (𝑡) as the prediction, i.e., 𝑇z [𝑘 + 1] = 1

𝜏

∫ (𝑘+1)𝜏
𝑘𝜏

𝑇z (𝑡)d𝑡 .
Safari-2 uses the above heuristic prediction approach to predict 𝑇z [𝑘 + 1] for the action µ

recommended by DDPG. If 𝑇z [𝑘 + 1] exceeds 𝑇 𝑧 , it applies grid search in the two-dimensional
action space to solve the problem in Eq. (7), in which ℎ(µ′, 𝑃IT [𝑘], · · · ) given any candidate rectified
action µ′ is also computed by the above heuristic prediction approach. Since the dimension of the
search space is low (i.e., two), the computational overhead of the grid search is acceptable. For
instance, our Safari-2 implementation only takes at most 0.2 seconds to complete the search.

5.3.4 Safari-3: Integrate predicted IT power trajectory. Safari-2 and 3 only differ in the algorithm to
predict the trajectory 𝑇z (𝑡). Safari-3’s prediction algorithm is as follows. First, during offline stage,
Safari-3 builds the maximum ramp-up function 𝑃

↗ (Δ𝑡 |𝑃 start
IT ) for IT power from the historical trace

of IT power, where Δ𝑡 represents the relative time. Specifically, it is the upper envelope of all IT
power traces with the length of 𝜏 minutes provided that the starting IT power is 𝑃 start

IT . Then, at
𝑡 = 𝑘𝜏 , Safari-3 adopts 𝑇in (𝑡) = 𝑇in [𝑘], 𝑓 (𝑡) = 𝑓 [𝑘], and 𝑄 (𝑡) = 𝑃↗ (𝑡 − 𝑘𝜏 |𝑃IT [𝑘]) to solve 𝑇z (𝑡)
from Eq. (1), where 𝑡 ∈ (𝑘𝜏, (𝑘 +1)𝜏]. Since Safari-3 uses the maximum ramp-up observed in history,
the predicted 𝑄 (𝑡) is conservatively high, which is beneficial to unsafety prevention.
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In Fig. 9(a), the gray curves show the aggregated IT utilization ramp-ups in a historical trace
collected in a real DC (cf. Fig. 10(b)) when the starting IT utilization is 40%. The upper envelope of
these curves is the maximum ramp-up. Fig. 9(b) shows the maximum ramp-ups when the starting
IT utilization is 40%, 45%, and 50%.

5.3.5 Safari-4: POD-based rectification. To predict the temperature field T̃z [𝑘 +1] with fine-grained
spatial considerations, we adopt the POD model from Eq. (4). To apply the POD model for rectifi-
cation, we need to find the boundary-specific POD coefficients β such that the error between
the POD-predicted temperature and the original calibrated CFD/HT output is minimized as
β∗ ≜ arg minβ


𝚽β − TCFD

z
2

2, where TCFD
z is the calibrated CFD/HT simulation results. In this

section, we develop two forms of the POD model to solve the problem of Eq. (7), respectively.
The first form, termed Safari-4.1, aims to derive a closed-form rectification from the KKT condi-

tions of Eq. (8). In this form, we consider a linear function to model the relationship F in Eq. (4) be-
tween the boundary conditions and the POD coefficients. Specifically, F (x,µ) = W⊺1 x[𝑘]+W⊺2 µ[𝑘],
where W1 ∈ R2×𝐻 and W2 ∈ R2𝑙×𝐻 are matrices of trainable weights, x consists of the boundary
conditions of total IT heat load and flow rate, i.e., x = (𝑃IT, 𝑓IT). With this form of POD model, the
temperature transition is modeled as T̃z [𝑘 + 1] = To +𝚽

(
W⊺1 x[𝑘] +W⊺2 µ[𝑘]

)
. Thus, the analytical

rectification at the 𝑘-th control period is derived from Eq. (8) as:

µ∗ [𝑘] = µθ [𝑘] − 𝜆∗𝑖∗W2𝚽
⊺
𝑖∗ , (10)

where 𝚽𝑖 ∈ R1×𝐻 is the 𝑖-th row of the POD modes matrix associated with the 𝑖-th temperature
constraint and the corresponding Lagrange multiplier is derived as:

𝜆∗𝑖 =

[
𝑇 o𝑖 + 𝚽𝑖

(
W⊺1 x[𝑘] +W⊺2 µ[𝑘]

) −𝑇 z𝑖(
W2𝚽

⊺
𝑖∗
)⊺ (

W2𝚽
⊺
𝑖∗
) ]+

, 𝑖 = 1, 2, . . . , 𝑛. (11)

The detailed derivation can be found in the supplementary material.
The second form, termed Safari-4.2, aims to predict Tz [𝑘 + 1] more accurately with nonlinear

function to model F in Eq. (4). In this form, we adopt a two-layer MLP to learn the relationship
between the boundary conditions and POD coefficients. The MLP consists of 32 and 64 neurons
for each layer, respectively. With the nonlinear form of POD model, the temperature transition is
modeled as T̃z [𝑘 + 1] = To + 𝚽F (x[𝑘],µ[𝑘]). If the predicted temperature T̃z [𝑘 + 1] exceeds 𝑇 z,
the rectification of Safari-4.2 can be numerically solved using the OptNet [5] or grid search for low
dimensional action space.

5.3.6 Performance of state transition models and data requirements. We first evaluate the nodal
form temperature transition models developed for Safari-1, -2 as well as a linear form used in [15].
Fig. 8 also shows the MAEs of these state prediction models when 𝑃IT (𝑡) follows Assumption 1.
The results are labeled “Steady”, “Transient”, and “Linear”, respectively. The linear transition model
uses the design of [15] to predict the next state temperature by 𝑇z [𝑘 + 1] = 𝑔𝜔 (s[𝑘])⊺µ[𝑘] +𝑇z [𝑘]
where 𝑔𝜔 is modeled using a three-layer MLP to predict the linear correlation coefficients and each
layer has 32 neurons. If only non-exploratory training data produced by the baseline controller are
used, Safari-2 achieves the lowest MAEs of less than 0.9°C. In addition, the steady-state transition-
based prediction model used by Safari-1 outperforms the linear prediction model in [15]. We next
evaluate the two forms of the POD model developed for Safari-4 for fine-grained temperature
field predictions. The training data used to extract the POD models contains 96 samples generated
from the calibrated CFD simulation. The test data contains 36 samples generated with different
boundary conditions. We select the first five modes, i.e., 𝐻 = 5, as the basis functions since they
capture the majority of the energy of the temperature field. The results are labeled as “POD linear”
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Table 3. Configurations of the evaluated DCs.

DC Weather Cooling No. of Modeling
system zones methods

DC 1 Singapore CW 1 EnergyPlusChicago
DC 2 Singapore DX 1 EnergyPlus
DC 3 Singapore CW 2 EnergyPlus
DC 4 Singapore CW 1 CFD/HT

Table 4. Hyperparameter settings

Hyperparameter Setting

Training Batch size 1,024
Update per step 96
Actor/critic learning rate 0.001
Actor/critic hidden layer [32, 32]
Replay buffer size 1 × 107

Discounted factor (𝛾 ) 0.99
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Fig. 10. (a) Historical weather data at Singapore and Chicago; (b) aggregated IT utilization trace in a real DC
hosting 4,000 servers [2].

and “POD nonlinear” as shown in Fig. 8(b). The overall MAEs for the linear and nonlinear form
of POD models are 0.54°C and 0.46°C, respectively. From the figure, we observe the linear form
POD performs better for cold aisle temperature prediction while the nonlinear form produces
lower MAE in predicting hot aisle temperature. As the considered DC is equipped with a hot aisle
containment to prevent air re-circulation, the cold aisle temperature is linearly related to the CRAC
settings. The temperature distribution in the hot aisle is more complex due to the heterogeneous
heat load generated by the IT equipment. As such, the nonlinear form of the POD model performs
better for hot aisle temperature prediction. Note the training data for extracting the POD modes
are generated from the calibrated CFD model. Thus, the online exploratory data is not required.
The performance of the various designs of Safari will be extensively evaluated in §6.

6 PERFORMANCE EVALUATION
This section applies the proposed Safari approach to optimize different DCs and presents the
performance in energy saving and compliance with thermal safety constraints. We evaluate Safari
on four DCs with different configurations. The DC configurations and hyperparameter settings of
DDPG are summarized in Table 3 and 4, respectively.

6.1 Evaluation Methodology and Testbed Settings
6.1.1 EnergyPlus-based simulation testbed. We use EnergyPlus to simulate the physical processes
of a CW-cooled and a DX-cooled DC with uniform temperature distribution, respectively. Figs. 10(a)
and (b) show the outdoor air temperature and IT utilization data used for evaluation. The outdoor
temperature data, which are provided by EnergyPlus, were collected from Singapore and Chicago
in the tropical and temperate climate zones, respectively. Fig. 10(b) shows the aggregated CPU
utilization trace collected from a real Internet DC hosting 4,000 servers [2]. By default, we consider
the tropical condition. Other default settings for the DDPG agent and the simulation environments
such as the outdoor condition and IT workload have been described in §4. We have implemented
the three designs of Safari presented in §5.3 and the following baseline approaches discussed in §2:
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Fig. 11. Performance of various approaches on a CW-cooled DC with uniform temperature distribution. (a)
Per-day reward average during learning; (b) cumulative count of safety violations during learning; (c) violation
magnitudes during learning; (d) DC average total power usage and (e) zone air temperature distribution
during 1-year testing.

■Baseline controller is the EnergyPlus’ built-in controller as described in §4 that only considers
to maintain the temperature at the target setpoint [3].
■ Reward shaping refers to the DDPG agent presented in §4.1 that uses Eq. (5) as the shaped

reward function. It captures the essence of [13, 24, 37, 42].
■ Simplex follows the essence of [27, 35]. Specifically, when the observed system state is safe,

the DDPG agent is applied. Once an unsafe state is observed, the next action is set to the allowable
minimum inlet temperature setpoint (i.e., 10°C) and maximum supply air flow rate (i.e., 15 kg/s).
■ Projection implements the post-hoc rectification with the linear transition model described

in §5.3.6. It captures the essence of [12, 15] to solve a convex optimization problem of Eq. (7) with
simplified system dynamics.

6.1.2 CFD/HT-based testbed. To simulate the detailed temperature distribution in the data hall, we
employ a CFD/HT-based testbed that is built based on OpenFOAM [21]. The testbed captures a
data hall that is equipped with one CRAC unit and two rows of racks hosting 299 servers as shown
in Fig. 14(a). The rated power of each server is 1,000W and the server air flow rates are calibrated
by the method in [44]. A hot aisle containment and rack blanking panels are installed to prevent
air mixing caused by re-circulation. To monitor the temperature, 9 sensors are deployed at the
cold and hot aisles, respectively. The fluid domain is discretized by OpenFOAM into 396,032 mesh
grids. After the mesh is created, the NS and energy balance equations are solved by OpenFOAM to
derive the airflow and temperature distributions. The air in the simulated data hall is assumed to
be incompressible and the turbulence is modeled using the k-epsilon method [30]. The simulated
data hall is equipped with a CW-cooled system based on the default settings adopted from §6.1.1.
For this unmixed temperature scenario, the safety constraint should satisfy that the hot exhausted
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Fig. 12. Performance of various approaches on a DX-cooled DC under tropical climate.

air temperature should not exceed 20°C beyond the supply air temperature as suggested by [1]. On
this testbed, we implemented the two forms of Safari-4 and the following baseline approaches for
evaluation:
■ PID controller that aims to maintain the temperature difference at a target setpoint below

the safety constraint. We set this target to 18°C. The parameters for the proportional, integral and
derivative terms are 𝑘p = 1.2, 𝑘i = 1, 𝑘𝑑 = 0.05, respectively [45].
■ Vanilla DDPG that only takes energy saving into the optimization objective without safety

considerations.
■ Reward shaping that adds a penalty term to the reward function when the temperature

difference exceeds 20°C [1].

6.2 Evaluation Results
6.2.1 Performance of Safari-1,-2 on a single-zone CW-cooled DC. We conduct simulations based
on the IT utilization pattern described in §4.2, which satisfies Assumption 1. Fig. 11(a) shows the
per-day reward averages of various approaches in the first 50 days. The high rewards in the first
several days are due to imitation learning. The rewards stabilize after about 20 days of training.
Fig. 11(b) and (c) show the cumulative count and distribution of the violation magnitudes during
DRL. The reward shaping exhibits the poorest performance in terms of either violation count or
magnitude. In Fig. 11(b), the simplex, projection, and Safari-1 produce hundreds of violations in the
50 days. In contrast, Safari-2 only produces five violations. From Fig. 11(c), the projection, Safari-1,
and Safari-2 produce smaller violation magnitudes compared with the reward shaping and simplex.
This suggests that the proactive unsafety prevention measures are better than the reactive ones.
Safari-1 produces lower violation magnitudes compared with the projection. This shows that the
steady state transition model in Eq. (3) is better than the linear model in [15]. Safari-2 achieves
the lowest violation count and magnitudes. Specifically, on the 50th day, the violation count of
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Table 5. Performance under real IT utilization trace.

Approach DC total Violation Violation magnitude (°C)
power (kW) count (#) Q1 Q2 Q3

Baseline 110.69 N.A. N.A. N.A. N.A.
R-shaping 79.48 3446 1.86 4.46 7.13
Safari-2 81.27 42 0.42 0.65 1.31
Safari-3 82.22 18 0.14 0.34 0.73

Q1, Q2, Q3 represent the 1st, 2nd, 3rd quartiles.

Safari-2 is only 1.0%, 1.4%, 1.0%, and 1.1% of those of reward shaping, simplex, projection, and
Safari-1, respectively. The 3rd quartile of temperature violation magnitudes of Safari-2 is only
0.81°C, lower than the 14.5°C, 7.6°C, 2.3°C and 1.48°C of reward shaping, simplex, projection, and
Safari-1. Figs. 11(d) and (e) show the DC’s total power and the zone temperature under various
controllers during testing. Safari-1 and Safari-2 achieve similar power savings and outperform the
other baseline approaches. In summary, Safari-2 achieves 26.4% and 22.7% power savings compared
with the baseline controller in the tropical and temperate climates, respectively. It also effectively
prevents unsafety during learning and maintains small temperature deviations during testing.

6.2.2 Performance of Safari-2,-3 with real-world IT utilization. Next, we conduct a set of simulations
using a 6-day real IT utilization trace of 4,000 servers collected from a data center [2]. Fig. 10(b)
shows the aggregated utilization trace. The trace is re-sampled with a one-minute interval, which
is the finest zone time granularity setting of EnergyPlus. Therefore, the 𝑃IT changes within each
control period of 15 minutes. We choose the first four days to construct the maximum ramp-
up function and the remaining two days’ data repeatedly to drive the simulations. This set of
simulations mainly evaluates the performance of Safari-2 and -3 when Assumption 1 is not strictly
followed. Table 5 shows the results. Safari-3 saves 25.7% power usage compared with the baseline
controller, reduces thermal violations by 99%, and maintains sub-1°C 3rd quartile of violations.

6.2.3 Performance of Safari-1,-2 on a single-zone DX-cooled DC. In what follows, we conduct
simulations in which the simulated IT power satisfies Assumption 1. Fig. 12 shows the evaluation
results. The CW and DX systems generate different impacts on the validness of Assumption 2
because they have different cooling components and associated primary controls. From Fig. 12(b),
Safari-1 produces more violations in the DX-cooled DC than the CW-cooled DC. This implies
that the validness of the steady state transition assumption (i.e., Assumption 2) is weakened in
DX-cooled DC. Nevertheless, Safari-2 still performs satisfactorily. On the 50th day, the violation
count of Safari-2 is only 5.5%, 8.6%, 4.9%, and 4.0% of those of reward shaping, simplex, projection,
and Safari-1, respectively. The 3rd quartile of temperature violation magnitudes of Safari-2 is only
0.99°C, lower than the 9.1°C, 8.0°C, 2.7°C and 2.4°C of reward shaping, simplex, projection, and
Safari-1. Safari-2 achieves 26.5% average power savings compared with the baseline controller.

6.2.4 Performance of Safari-1,-2 on a two-zone CW-cooled DC. Next, we conduct evaluations on a
two-hall CW-cooled DC with distinct temperature setpoints. Specifically, the actions and states
of the two data halls are concatenated to form the action and state of the whole DC. The DC is
under the control of a centralized DDPG agent. The target zone setpoints for the two halls are
21°C and 23°C, respectively. Fig. 13 shows the evaluation results. From Fig. 13, both Safari-1 and -2
reduce the magnitude of temperature violations compared with reward shaping. Safari-1 produces
more violations in hall 1, indicating the steady state transition is weakened in hall 1. Safari-2 keeps
sub-1°C 2nd quartile of violations for both data halls. With the centralized agent, Safari-1 and -2
both achieve 18% to 19% average power savings compared with the baseline as shown in Fig. 13(c).
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However, from the results in Fig. 13(b), the temperature variance of each data hall is larger than
the single-hall scheme. This implies the centralized DDPG control does not accommodate well to
individual targets, which is in agreement with the findings in [23, 32].

6.2.5 Performance of Safari-4 on a single-zone CW-cooled DC. To extend Safari to address DCs
with non-uniform temperature distributions, we conduct evaluations on the CFD/HT-based testbed
as described in §6.1.2 based on the IT utilization pattern used in §4.2 and the tropical weather trace.
Fig. 14(b) shows the distribution of temperature difference between the hot and cold aisles during
1-month training. We observe that Safari-4.1 is able to maintain sub-1°C 3rd quartile of violations
and Safari-4.2 can almost keep the maximal temperature difference within 20°C. Safari-4.1 produces
a few times violations due to the approximation error of the linear form POD model. Fig. 14(c)
shows the DC total power usage under various control over one month. Although the vanilla
DDPG achieves the highest saving, i.e., 15.2% compared with the PID control, it produces excessive
training violations during the training. Safari-4 achieves about 14% power saving and successfully
addresses the thermal safety compliance.

7 DISCUSSION
This section discusses two issues not addressed in this paper.
■Multi-agent control: For the multi-hall scenario with distinct zone temperature setpoints,

the DDPG algorithm can be extended to multi-agent control. The multi-agent control is expected
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to achieve better temperature maintaining performance for each data hall. Specifically, each DDPG
agent will contain a decentralized actor and a centralized critic, respectively. The decentralized
actor will recommend action based on the state of the controlled data hall and the centralized critic
will observe the global DC state. The Safari approach can be applied in each data hall independently.
■ Eliminating thermal violations: From the evaluation results, Safari-4 can effectively prevent

thermal violations. Although the ultimate goal of eliminating any thermal violations is desirable,
the stochastic nature of the zone temperature as explained in §5.1 makes the guaranteed elimination
difficult. To achieve guaranteed elimination, thinking-outside-the-box solutions will be needed. A
possible solution is as follows. Typically, redundant CRAC units are deployed for fail-safe operations.
A standby CRAC unit is activated when its paired unit fails. The DC operator can build a controllable
conduct that can direct the cold supply air to the hot zone when needed. When a nearly unsafe
state is detected via close temperature monitoring (e.g., every second), the system can activate the
standby CRAC unit and direct the cold air to the hot zone. With Safari-4 deployed, the activation of
this standby CRAC unit is rare. Thus, the energy usage of this last line of defense is negligible.

8 CONCLUSION
This paper presents Safari, a safe DRL toward DC cooling control. By integrating imitation learning
and post-hoc rectification designed based on the thermodynamics governing the heat process in the
data hall, Safari can effectively prevent thermal unsafety. Our extensive evaluation that covers both
CW and DX cooling systems under two climate conditions shows that, with varying IT workload
patterns, Safari saves 18% to 26.9% total DC power compared with conventional control and reduces
safety violations up to 99% compared with reward shaping. With the extended evaluation on a
CW-cooled DC with non-uniform temperature distribution, Safari achieves 14% total power saving
while ensuring the thermal safety constraint during training. Safari sheds light on the deployment
of DRL algorithms to safety-critical cyber-physical systems.
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A DERIVATION OF THE CLOSED-FORM SOLUTION FOR SAFARI-4.1
For Safari-4.1, we have the following optimization problem:

µ∗ [𝑘] ≜argmin
µ′ [𝑘 ]

∥µ′[𝑘] − µ𝜽 [𝑘] ∥22 /2,

s.t. 𝑇 o𝑖 + 𝚽𝑖

(
W⊺1 x[𝑘] +W⊺2 µ[𝑘]

)
≤ 𝑇 z𝑖 , 𝑖 = 1, 2, . . . , 𝑛.

(1)

Then, we write the Lagrangian of Eq. (1) as:

𝐿 (µ[𝑘], 𝜆) = ∥µ′[𝑘] − µ𝜽 [𝑘] ∥22 /2 +
𝑛∑︁
𝑖=1

𝜆𝑖

(
𝑇 o𝑖 + 𝚽𝑖

(
W⊺1 x[𝑘] +W⊺2 µ[𝑘]

)
−𝑇 z𝑖

)
. (2)

As the objective and constraints in Eq. (1) are convex, the feasible solution should satisfy the KKT
conditions. From the KKT conditions, we can get:

▽µ𝐿 = µ∗ [𝑘] − µ𝜽 [𝑘] +
𝑛∑︁
𝑖=1

𝜆∗𝑖 W2𝚽
⊺
𝑖
= 0, (3)

𝜆∗𝑖

(
𝑇 o𝑖 + 𝚽𝑖

(
W⊺1 x[𝑘] +W⊺2 µ

∗ [𝑘]
)
−𝑇 z𝑖

)
= 0, 𝑖 = 1, 2, . . . , 𝑛. (4)

Substituting Eq. (4) in Eq. (3), we get:

𝜆∗𝑖 =

[
𝑇 o𝑖 + 𝚽𝑖

(
W⊺1 x[𝑘] +W⊺2 µ𝜽 [𝑘]

)
−𝑇 z𝑖(

W2𝚽
⊺
𝑖∗
)⊺ (W2𝚽

⊺
𝑖∗
) ]+

, 𝑖 = 1, 2, . . . , 𝑛. (5)

If the constraints are satisfied, the Lagrange multiplier should be inactive, i.e., 𝜆∗𝑖 = 0, 𝑖 = 1, 2, . . . , 𝑛.
If the constraints are not satisfied, the DRL recommended action will be rectified by µ∗ [𝑘] =

µ𝜽 [𝑘] − 𝜆∗
𝑖∗W2𝚽

⊺
𝑖∗ , where 𝑖

∗ ≜ argmax𝑖 𝜆∗𝑖 .

B A BRIEF INTRODUCTION OF THE DX COOLING SYSTEM
Different from the CW system that has three cycles, the DX system has two cycles only as shown in
Fig. 1. It directly cools the air through the evaporation and condensation of refrigerant. It consists
of a compressor, an evaporator, a condenser, and an expansion valve. The heat is removed via the
following process. At the evaporator, hot air is extracted from the data hall and blown through
the heat exchange coil by the CRAC fan. The liquid refrigerant in the coil absorbs the heat and
expands into vapour. Then, the compressor uses electricity to drive the refrigerant vapour into high
pressure gas. At the condenser, heat is dissipated to the outside environment and the refrigerant
turns back to liquid.
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Fig. 1. DX-cooled DC.
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