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Abstract—Intelligent vehicles with increasing complexity face
cybersecurity threats. This paper studies action-space attacks on
autonomous driving agents that make decisions using either a
traditional modular processing pipeline or the recently proposed
end-to-end driving model obtained via deep reinforcement learn-
ing (DRL). Such attacks alter the actuation signal and pose direct
risks to the vehicle’s state. We formulate the attack construction
as a DRL problem based on the input from either an extra camera
or inertial measurement unit deployed. The attacks are designed
to lurk until a safety-critical moment arises and cause a side
collision upon activation. We analyze the behavioral differences
between two driving agents when subjected to action-space
attacks and demonstrate the superior resilience of the modular
processing pipeline. We further investigate the performance and
limitations of two enhancement methods, i.e., adversarial training
through fine-tuning and progressive neural networks. The result
offers valuable insights into vehicle safety from the viewpoints
of both the assailant and the defender and informs the future
design of autonomous driving systems.

I. INTRODUCTION

The complexity and connectivity of autonomous driving
(AD) systems increase as vehicle autonomy improves, ex-
panding the scope for potential targets of malicious attacks.
Attackers could potentially target various points of the vehicle
such as sensor inputs. Furthermore, attackers may find the
actuation component to be an appealing target. By directly
affecting the actuator units, the attack could bypass the poten-
tial defense along the system from perception to control level
and generates direct impacts on the vehicle’s state. Recent
studies have shown that autonomous driver assistance systems
(ADAS) are susceptible to safety concerns regarding action-
space attacks. These attacks can be achieved through model-
based approaches that rely on in-vehicle data or knowledge
of the vehicle’s kinematics, resulting in a demanding form of
white-box attack [1], [2]. Alternatively, these attacks can be
formed in a black-box setting, disregarding the knowledge of
the vehicle’s internal workings. However, they have mostly
been studied in toy models like OpenAI Gym [3], [4] and
Mathworks [5], which may not fully capture the complexities
of real-world driving. Additionally, previous studies have been
limited to specific ADAS designs and have not explored the
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impact of these attacks across different AD architectures,
highlighting a gap in current research.

To fill this gap, our study investigates the impact of the
attack across two types of AD agents: 1) the traditional mod-
ular processing pipeline and 2) the recently proposed end-to-
end policy model obtained via DRL. Modular driving pipelines
use a hierarchy of modules to achieve driving goals, with each
module addressing a sub-task. The end-to-end driving agent
maps sensor inputs to the actuation signal through a single
policy model, learned from a reward function that aggregates
multiple driving goals. We hypothesize that the differences
in design between the two solutions will result in distinct
responses to action-space attacks. Through an analysis of the
results, we can gain valuable insights into how to make AD
designs more resilient to such attacks.

In this study, we introduce learning-based action-space
attacks that inject additive perturbations to the steering of a
victim vehicle within predetermined limits. The goal of the
attack is to cause side collisions with other vehicles on the
road during safety-critical moments, such as lane changing and
overtaking. Previous research has demonstrated its practical
settings through different means. For instance, intentional
electromagnetic interference (IEMI) can target analog sig-
nals, while intrusive interference in digital messages over
the control area network (CAN) bus has also been shown
to be effective [1], [6]–[8]. For the realism of the attack,
we assume that: 1) the model architecture of the driving
agent is unavailable to the attacker, and 2) the driving agent’s
sensor readings are not accessible to the attacker. The black-
box setting in the first assumption reduces the requirement
for launching the attack. The second assumption stems from
the fact that real-time data is usually protected. Furthermore,
we design the attack to have limited access to the actuation,
ensuring that the vehicle’s thrust unit remains unaffected while
retaining partial control over the steering unit. This enables the
ego vehicle to brake or utilize its remaining control capability
and avoid a collision, making the problem more challenging.

Strategic execution of attacks requires intelligent decision-
making. In this study, we employ DRL to develop attack
policies under a black-box setting, with input from an extra
camera or an inertial measurement unit (IMU). A compact
and low-cost camera is sufficient for detecting nearby vehicles
but requires a location with a good field of view, which
may attract human attention. An IMU that records driving
movements is virtually unnoticeable but less informative and



interpretative than images. Although physical access is re-
quired to install a third-party sensor, such opportunities are
not rare, such as during maintenance by an auto care provider
colluding with the adversary. Our extensive evaluation in
the CARLA [9] gives the following key observations: 1)
the camera-based attack outperforms the IMU-based attack
in terms of attack success rate and the reduction of driving
performance, indicating a trade-off between attack precision
and covertness; and 2) the modular processing pipeline shows
greater resilience than the end-to-end driving agent in terms
of trajectory following accuracy. These results are attributed
to the modular processing pipeline’s focus on the path fol-
lowing and its timely rectification provided by the local
feedback control mechanisms. Furthermore, the end-to-end
driving agent’s reward shaping, which incorporates multiple
optimization objectives, may compromise its steering precision
to satisfy other objectives, thereby creating an opportunity for
attacks to exploit.

Prior research has indicated that adversarial training can
improve the policy’s robustness against action-space attacks
[3], [10]. In this study, we investigate the efficacy and limita-
tions of this approach by utilizing fine-tuning and progressive
neural networks (PNN) to enhance our driving policy. Al-
though adversarial training with fine-tuning improves driving
performance in the presence of attacks, it leads to degraded
performance in the absence of the attack due to overfitting
adversarial cases. Tuning the ratio of training cases with and
without attacks is crucial, but only offers a palliative solution.
We implement the PNN approach to address this issue by
using the first column for regular performance and the second
column for handling adversarial scenarios. Our results show
that the driving agent with PNN outperforms the one with
fine-tuning when facing attacks and effectively overcomes the
catastrophic forgetting problem. Nevertheless, it still requires
prior knowledge of the attacker’s strategy, which may limit its
practical application.

This paper makes the following contributions:
• We propose a learning-based approach to construct

action-space attacks against AD systems in a black-box
setting. To our knowledge, it is the first time such an
approach has been discussed in the context of AD.

• We present an attack policy causing a side collision of
the ego vehicle based on camera, and a ‘learning-from-
teacher’ structure is proposed to transfer learned policy
to a different form based on less informative IMU input.

• We assess driving agents’ resilience to action-space at-
tacks and find that the modular agent embedded with a
feedback controller, is more resilient than the end-to-end
agent that uses reward shaping for multiple objectives.
This insight can inform the design of AD agents utilizing
AI technology, particularly in identifying the components
that may enhance vehicle safety and security.

• We evaluate the effectiveness of adversarial training with
fine-tuning and PNN in enhancing driving agents. The
analysis provides a comprehensive understanding of the
limitations and potential of these two methods.

This paper is organized as follows: In Section II, we intro-
duce the background and related work. Section III presents
the system model. Section IV describes the approach for
constructing action-space attacks. The evaluation results are
presented in Section V. Section VI demonstrates the model
enhancement. Finally, we conclude the paper in Section VII.

II. BACKGROUND AND RELATED WORK

A. Autonomous Driving Approaches

Typically, AD approaches can be divided into two cat-
egories: (i) modular driving pipelines and (ii) end-to-end
driving agents.

Modular driving pipeline: The modular driving pipeline is
based on a decision-making hierarchy, usually including route
planning, behavioral layer, motion planner, and local feedback
control [11]. Since a consensus on the optimal pipeline has not
yet been achieved, the hierarchy details may vary depending
on specific requirements. In general, its modular structure
provides clear interpretability for maintenance purposes. How-
ever, decomposing the driving into multiple tasks increases
research and development costs.

End-to-end driving agent: Due to the high development
cost of modular driving pipelines, the end-to-end driving
approaches as a competitor are gaining considerable research
interest. By replacing the modules with a single policy model,
the end-to-end driving policy maps raw inputs (e.g., images)
directly to action distributions. This simplified architecture
eases implementation. Usually, imitation learning [12] (IL)
or DRL is used to train an end-to-end policy. Although IL
converges fast by utilizing expert data for supervised learning,
it is hard to outperform its teacher [13]. With sufficient
training, the DRL-based end-to-end policy may efficiently deal
with complicated tasks, such as lane changing and collision
avoidance [14]–[16]. Despite recent advancements in DRL-
based AD, it still has several challenges such as lack of
generalizability [17] and reproducibility issues. In this paper,
we apply DRL for end-to-end freeway driving. To gain a
comprehensive understanding of this evolving approach, it is
important to proactively study its cybersecurity concerns, even
though end-to-end AD is still in its early stages.

B. DRL and Its Security

DRL has shown impressive capabilities in solving problems
with high dimensions in state space. It has been applied to
address various AD tasks, including lane keeping [18], lane
changing [19], ramp merging [20], and intersection navigating
[21]. However, DRL lacks safety guarantees, which is essential
for real-world autonomy. Despite continuous efforts to develop
safe-DRL for AD [22], [23], its safety remains a question and
becomes worse when facing malicious attacks. Adversarial
attacks on DRL agents can be categorized into white-box
attacks or black-box attacks. The former requires the details
of the target model, while the latter only requires access to
the executable agent. Attacks can also be categorized as state-
space attacks, targeting agent inputs, oraction-space attacks,
targeting agent outputs. Most state-space attacks are carried
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Fig. 1. (a) The traffic scenario created for the lane changing and overtaking
tasks in CARLA. Green arrows indicate the safe and legal driving waypoints
generated by a path planner for the driving agent to follow. (b) The victim
vehicle side collides with an NPC vehicle. The black dash line indicates the
driving route lasting for 3 seconds.

out by tampering with the input image at the pixel level [24]
or manipulating the environment observed by the agent [25],
while action-space attacks studied in [3] directly alter the agent
output and hijack the system to a state desired by the attacker.
DRL agent is a regression model that predicts action values
and interacts with the environment. Thus, the attack impact
should be considered when attacked, e.g., rules violations or
game losses. However, the end-to-end AD scenario is not a
simple win-or-lose game but a safety-critical issue. To create
such a situation, we target creating collisions between vehicles.

III. SYSTEM MODEL

In this section, we describe the experimental setups for
evaluating the impact of action-space attacks on AD using
CARLA 0.9.11 [9]. We provide details on the model designs,
performance characteristics, and scenario configurations of
both the modular driving pipeline and the end-to-end driving
agent used in our experiments.

A. Traffic Scenario Setup

We construct the driving scenario on a freeway in CARLA
Town 4 Road 23 without traffic lights or intersections, as
shown in Fig. 1(a), allowing a focus on lane-changing and
overtaking tasks. The ego vehicle in green travels at a high
reference speed (16m/s) and needs to pass six NPC vehicles
in yellow moving with a slower reference speed (6m/s) within
limited steps (180 steps), with each step lasting 0.1 seconds.

B. Modular Driving Pipeline

We use CARLA Autopilot to serve as our modular driving
pipeline, which plans feasible waypoints based on map in-
formation, makes real-time driving decisions, and applies pro-
portional–integral–derivative (PID) controllers to trace planned
routes. The modular pipeline uses longitude and latitude PID
controllers to calculate the variation of throttle and steering
needed to follow the generated path. The actuation variation
at each time step is limited by a constant ε in order to prevent
sudden changes in driving action. Modular driving agents can
be configured accordingly to different driving scenarios. To
eliminate any risk of collisions, a cautious driving agent would
be a foolproof system that always drives at a slow speed,
maintains a long safety distance from the nearby vehicle(s),
and never changes lanes or overtake. However, this may block
the way and pose an additional safety risk to the rear end.

To match the specific driving scenario in this paper (freeway
driving with lane changing and overtaking), we have tuned
the driving agent to an aggressive mode: the driving agent
is configured with a typical reference speed (16m/s) accom-
panied by a set of commensurate PID controller parameters,
shorter following distance allowing more decisive lane chang-
ing and overtaking, and permission to overtake in all lanes.
This configuration results in desirable driving behavior during
evaluation, with the agent passing all NPC vehicles without
collision and following the predefined trajectory accurately.

C. DRL-based End-to-end Driving Agent

We employ the advanced DRL algorithm, soft actor-critic
[26], to construct the driving policy πv . The driving agent
successfully completes all 180 steps and overtakes an average
of 5.96 out of 6 NPC vehicles per episode in the considered
traffic scenario over 30 driving episodes. No collisions are
observed in test cases. In this section, we detail its state space,
action space, and reward function.

State space: To optimize driving performance, we utilize
front-view images obtained from the CARLA semantic seg-
mentation camera. Each observation is a concatenation of 300-
degree panoramas with 84 × 420 pixels, stacked by three
frames per step, similar to the setup in [16].

Action space: Actuation has two elements: steering angle
and thrust input, both clipped within the range of unit values to
match the CARLA control command. Negative thrust means
braking, while positive means throttling. Negative steering
means turning left, while positive means turning right. The
maximum steering angle is 70 degrees. Similarly to the
modular driving pipeline, the DRL-based driving agent also
predicts the steering angle variation ν and thrust variation γ
of actuation a, within the range of ε. Specifically, at each time
step t, the overall driving actuation at is calculated based on
the current variation value νt and γt as well as its previous
actuation value at−1 as follows:

asteer
t = (1− α) · νt + α · asteer

t−1, ν ∈ [−ε, ε],

athrust
t = (1− η) · γt + η · athrust

t−1 , γ ∈ [−ε, ε],
(1)

where α and η determine the rate of previous actuation retain,
while ε represents the mechanical limits of the actuation.

Reward function: We leverage the strengths of multiple
existing works to create a reliable driving agent. Our reward
design, inspired by [16], computes rewards using the dot prod-
uct of the vehicle’s speed and the waypoints vector. We also
incorporate ideas from both [13] and [27] to train our policy
model with the knowledge of a privileged agent. Specifically,
we use the global and local path-planning modules described
in Section III-B to generate a safe and reasonable reference
path and incorporate it into our reward scheme. From a vague
requirement (i.e., driving along the road without collision)
to precise instruction (i.e., driving along a series of legal
waypoints), this reward design allows us to achieve a highly re-
liable end-to-end AD agent that follows a safe and reasonable
path. The shaped reward function aggregates multiple driving
goals, including trajectory following, speed requirement, and



Fig. 2. Overview of the DRL-based action-space attack.

safety consideration. Without hard constraints, the agent may
drive faster for higher rewards.

IV. DRL-BASED ATTACK CONSTRUCTION

The goal of the adversary is to create side collisions
between the ego vehicle and other vehicles through a learning-
based action-space attack strategy. The attack strategy involves
interfering with driving actuation only during safety-critical
moments while remaining undetected at all other times, allow-
ing the adversary to execute an inconspicuous and successful
attack with minimal effort. The attacker can be trained offline
using the identical driving agent as the vehicle being targeted.

A. Attack Model

We refer to the driving agent as the victim policy πv , and
the attacker as the adversarial policy πadv . To formulate the
attack model, we make the following assumptions for the
adversary. First, the victim driving agent is a fixed policy when
deployed. Secondly, the adversary has the ability to manipulate
the victim’s steering action within the mechanical constraints
while the agent’s input/output readings are not necessarily
required. Fig. 2 depicts an overview of the DRL-based action-
space attack. By treating the entire driving system as a black
box, the adversarial strategy is acquired through a learning
approach. As the victim driving agent is fixed, its response
to the environment and its state transitions form stationary
dynamics. By designing input-output relationships properly,
DRL can learn adversarial policies to achieve its goals. It is
desirable for the adversary to access the same input as the
victim agent and/or utilize the victim’s output as part of the
attack input as done in [3], [4]. However, such access may not
be available and requires additional hacking and decoding. In
our study, the attacker utilizes either an extra camera or an
IMU to identify safety-critical moments. The former provides
adequate information while its installation demands a wide
field of view, which may attract attention from humans. The
latter can be concealed within the vehicle, making them nearly
unnoticeable, but provides a less informative inertia trace
making the timing identification more challenging.

Since the attack involves injecting an additive signal rather
than taking over the steering control, the victim driving agent
is still predicting correct decisions based on its observation and
consistently resists the attack to remedy the caused deviation.
The result of the competition between the two policies leads to

the final move of the vehicle. In other words, the attack budget
which gives the attacker a boundary over the competition plays
a key role in the attack’s impact. Further, since the AD’s thrust
unit is not disturbed in this study, the AD agent can avoid a
collision by slowing down or braking. This leads to another
challenge for the attacker with only partial control over the
actuator. Although our action-space attack model may not be
as destructive as that with all control accesses [3], [4], its
impact on AD solutions can provide insights.

B. Attack Feasibility

This section discusses the feasibility of action-space attacks
in real-world AD systems. The digital control signals undergo
a procedure of transmission from the vehicle’s control unit to
the actuator unit through the CAN bus, followed by conversion
to analog signals using a digital-to-analog converter before fi-
nally operating the servo units. The above process exhibits two
potential attack points: the CAN bus and the cable carrying the
analog signals. The CAN bus adopts a message-based protocol
for reliable and prioritized communications between devices.
Message manipulation can be achieved through various entry
points, such as remote hacking or false data injection [1]. How-
ever, this requires decoding and reverse engineering to corrupt
specific CAN messages carrying the control commands. If
hacking is unavailable, IEMI offers another alternative and
non-intrusive approach, as cited in [6]–[8]. By intentionally
generating electromagnetic interference near the target wire,
IEMI can disturb the analog signals sent to the servo units,
causing disruptions in the vehicle’s motion. For instance, the
attacker may target the electric power steering column, which
assists the vehicle steering with the aid of an electronically
controlled electric motor. After deploying required devices
during premeditated car maintenance, the attacker can inject
malicious commands into steering at safety-critical times with
an IEMI device, thereby directly threatening driving safety.

C. Adversarial State Space and Action Space

Adversarial state space: To implement the camera-based
attack, the camera is installed on the victim vehicle’s roof in
our setup to have a wide FOV. Front-view images for time-
stacked semantic segmentation are used as state inputs for
adversarial policy and are denoted by simg . To implement the
IMU-based attack, a triaxial IMU is mounted in the center
of the victim vehicle, where the x-y-z axis readings record
changes in the vehicle as it advances, rolls, and yaws. A trace
of the IMU readings sampled at 20 sps over 3.2 seconds in the
x-axis and the z-axis is the state input to the adversarial policy,
which is denoted by simu. Note that the readings in the y-
axis provide limited information about steering characteristics
and are therefore not used. In cases where the IMU is
installed elsewhere, the triaxial sensor readings and orientation
alignment may be required.

Adversarial action space: The attack aims to interfere with
the AD’s steering by perturbing the steering angle variation
ν as specified in Eq. (1). It is not a single-frame attack,
but continuously injects perturbations when safety-critical



moments arise. Once an attack has been initiated, a collision
is expected to occur within around one second, leaving no
time for the human driver to make adjustments to correct.
The magnitude of the injected perturbations is determined
by the attack budget based on the mechanical limit of the
steering system (ε= 1). The attack budget may vary based on
the attacker’s desired degree of imperceptibility or follow the
safety check rules of the target vehicle. Specifically, at each
time step t, the steering angle variation νt is perturbed by δt:
ν′t = νt + δt, δt ∈ [−ε, ε], where the after-attacked variation
ν′t is weighted and accumulated with the last steering value
asteer
t−1 by Eq. (1), forming an overall steering actuation asteer

t .

D. Adversarial Reward Shaping

This section presents the design of the adversarial reward
function that aims to create side collisions. The adversarial
reward consists of the following three components.

■ Collision reward C(λ) gives a positive value a if a side
collision occurs, a negative value -a if an undesired collision
occurs, and a zero value if no collision occurs, where λ= 1,
λ=-1 or λ= 0 represent the three cases, respectively.

■ Collision potential reward re2n characterizes the poten-
tial that the ego vehicle collides with the closest NPC vehicle.
It is given by re2n = v̂e2n ·v̂ego, where v̂e2n denotes the relative
unit vector from the ego vehicle to the target vehicle, and v̂ego
denotes the speed unit vector of the ego vehicle. The maximum
of the dot product of the two vectors corresponds to the case
that the ego vehicle drives toward the target vehicle, thereby
leading to the maximum collision potential.

■ Attack maneuver penalty pm is the amount of pertur-
bation injected per time step. Through this penalty term, the
attacker learns to achieve the goal with minimal perturbations.

We conditionally combine re2n and pm, depending on the
relative spatial relationship between the ego vehicle and the
closest NPC vehicle. We define the indicator function I(ω)
to identify the safety-critical moments. Specifically, I(ω) is
1 if |ω| ≤ β and 0 otherwise, where ω is the dot product
between v̂e2n and the speed unit vector of the NPC vehicle
denoted by v̂npc. β is a pre-defined threshold that is set to be
cos(π/6) in this paper, where this threshold plots a spatially
appropriate time for an attack. I(ω) indicates the relative
locations between the ego vehicle and the target NPC vehicle.
Its being activated or not determines whether the current
time is a critical moment. In summary, the overall adversarial
reward Radv combines the terms above, which is given by:
Radv = C(λ) + I(ω)re2n + (1 − I(ω))pm. By maximizing
this, the attack will hijack the ego vehicle towards a target
NPC vehicle during the critical moment characterized by I(ω).

Fig. 3 shows successive phases for the action-space attack.
During the pre-attack phase, when the ego vehicle (green)
is in the early stage of lane changing and overtaking, it is
considered a non-critical moment for the attacker and no action
should be taken. When the position between the ego vehicle
and the target NPC vehicle (yellow) satisfies the conditions
specified by I(ω), it is considered a critical moment. At this
point, the action-space perturbation is continually injected into

Fig. 3. A schematic plot illustrating the critical and non-critical moments for
the action-space attack. The outcome of the attack is displayed in the post-
attack phase, including both successful and unsuccessful attacks.

the steering control of the ego vehicle, resulting in a side
collision. The goal of the attack during the attacking phase, as
specified by in the collision reward C(λ), is to cause a side
collision with the target vehicle.

E. Training of IMU-based attack

The camera-based adversarial policy is trained using the
SAC algorithm with reward function Radv , and training stops
either when the maximum number of training steps is reached
or when the average reward stabilizes during periodic evalu-
ations. However, the same training process is ineffective for
IMU-based policies due to the lack of correlation between
location information and the IMU trace. To overcome this
issue, we adopt a ‘learning-from-teacher’ approach and use
the camera-based policy to teach the IMU-based policy. To
achieve this, we modify the previous Radv and introduce a new
term: RIMU

adv = C(λ)+I(ω)re2n+(1−I(ω))pm+pse. Here, pse
minimizes the discrepancy between the camera-based (teacher)
and IMU-based (student) attacks at each time step through
negative square error. As a result, the IMU-based attack agent
is trained with additional information that captures the teacher
policy. Once the training phase is complete, the camera is no
longer needed since the IMU trace is sufficient for the attack.

V. PERFORMANCE OF ATTACKS

This section analyzes the performance of action-space at-
tacks on AD agents. The analysis covers driving metrics
(nominal driving reward and passed vehicles) and the attack
effectiveness metrics (mean cumulative adversarial reward and
attack success rate). The attack success rate is defined as the
ratio of the number of collisions to the total number of evalu-
ation episodes. The higher the adversarial reward, the stronger
the attack effect, which results in lower driving performance.
If the attacker elicits the desired side collision, the episode
is considered successful from the attacker’s perspective, and
its cumulative adversarial reward is positive. If there is no
collision, the vehicle hits a roadside barrier or the vehicle
collides with an NPC vehicle in an unexpected posture (e.g.,
rear-end collision), the episode is considered unsuccessful
which results in a negative cumulative adversarial reward.

A. Attack Effects under Various Attack Configurations

The nominal driving case can be considered as an attack
case with zero attack budget (i.e., ε= 0), resulting in a negative
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Fig. 4. Box plot of average cumulative reward across 30 episodes under
different attack budgets. (a) The distribution of the average of nominal
driving rewards under different attack budgets. (b) Attackers’ performance
via adversarial reward under various attack budgets.

cumulative adversarial reward. Fig. 1(b) shows a side collision
between the ego vehicle and an NPC vehicle under attack.

Camera-based vs. IMU-based attacks: We compare the
performance of camera-based and IMU-based attacks with
maximum attack budget (ε= 1.00), as shown in Fig. 4. The
camera-based attack significantly decreases the driving agent’s
performance, reducing the cumulative nominal driving reward
by approximately 84%. The mean adversarial cumulative
reward over a hundred episodes achieved by the camera-based
attack indicates that side collisions almost all occur when the
ego vehicle encounters the first NPC vehicle. The IMU-based
attack achieves a slightly lower mean adversarial reward than
the camera-based attack, indicating that the IMU-based attack
has successfully learned from the camera-based attack in the
‘learning-from-teacher’ process.

Impact of attack budget: Comparative results of the attack
effectiveness under various attack budgets are given in Fig. 4.
Both attacks show increasing effectiveness as the attack budget
increases. However, the camera-based attack outperforms the
IMU-based attack in terms of higher means and smaller
variances in adversarial reward under the same attack budget.
The IMU-based attack exhibits a lower transition curve in the
drop of attack effectiveness versus attack budget, indicating
that the driving agent under camera-based attacks is more
likely to have a side collision. These results highlight the trade-
off between attack effectiveness and stealthiness. A camera
provides direct observation of the ego vehicle, making it easier
for the attacker to hijack the vehicle toward the target (i.e.,
the NPC vehicle). In contrast, with only indirect observations
via IMU, detecting the target vehicle’s location and producing
the desired attack effect becomes more difficult. Additionally,
there is a sharp variation in both the nominal driving reward
and the adversarial reward when the attack budget drops from
ε= 0.75 to ε= 0.25. We hypothesize that the driving agent’s
action space may have a threshold of tolerance, and once the
perturbation injected exceeds that threshold (e.g., ε= 0.5), the
driving behavior is negatively affected.

B. End-to-end vs. Modular Driving Agents

This section evaluates the resilience of modular and DRL-
based driving agents against camera-based attacks, with attack
budgets ranging from 0 to 1.2 in steps of 0.1. Each budget

(a) Modular driving agent (b) End-to-end driving agent

Fig. 5. Evaluation of different driving agents under attacks.

is tested with 10 rounds of simulations. Fig. 5 shows the
relationship between the steering deviation from the predeter-
mined path and the attack effort. The attack effort is the total
amount of perturbation injected during the attack attempt. The
y-axis represents the root mean square error (RMSE) in the
percentage of the steering deviation. The x-axis gives the mean
attack effort averaged over the number of steps in each attack
attempt. Each red triangle corresponds to a successful attack
case that leads to a side collision; each black dot corresponds
to cases that are not aligned with the attack objectives.

Successful attacks begin to dominate when the attack effort
level surpasses a certain level, which is approximately 0.6 for
the modular driving agent and about 0.5 for the end-to-end
driving agent. Compared with the end-to-end driving agent,
the modular driving agent can maintain more minor tracking
errors in the trajectory following task when the attack effort is
low. The modular driving agent outperforms the DRL-based
end-to-end driving agent against camera-based attacks due to
the inclusion of a PID controller, which instantly adjusts the
actuator values to maintain the vehicle’s planned path. On
the other hand, the end-to-end driving agent may tend to
prioritize speed over precision, leading to weakened resilience
against attacks. These findings highlight the effectiveness of
traditional feedback control, as implemented in the modular
driving pipeline, in ensuring trajectory following and resilience
to action-space attacks. Additionally, a successful attack case
can be created in an average time of 0.87 sec (Min. 0.3 sec) for
the end-to-end driving agent and 1.14 sec (Min. 0.9 sec) for
the modular driving agent, which is 30.4% and 8.8% shorter
than the best human driver reaction time (Min. 1.25 sec) in a
complex real-world condition [28].

VI. DRIVING AGENT MODEL ENHANCEMENT

A. Adversarial Training via Fine Tuning

Compared with modular driving pipelines, the end-to-end
policy model has the advantage of being adaptable to new
situations with further training. Adversarial training, which
retrains the policy model in the presence of attacks, has
been shown to form a defense strategy in previous research
[3], [10]. We investigate this method for enhancing end-to-
end driving agents against action-space attacks, where the
camera-based attack is chosen due to its superior effectiveness.
To increase the generalizability of the adversarially-trained
driving agent, we randomly initiate the training episode with
different attack budgets ranging from 0 to 1 with a granularity



Fig. 6. Box plot of the nominal driving rewards for the original and enhanced
end-to-end driving agents, showing the distribution of rewards for each agent.

of 0.1. Moreover, we control the ratio of selecting zero attack
budget (i.e., no attack) to prevent overfitting to adversarial
cases. In the following sections, we use πadv,ρ to represent the
adversarially-trained driving agent, where ρ denotes the ratio
of nominal driving cases selected during the enhancement on
a scale of one. In experiments, the values of ρ are set to 1/11
and 1/2, representing two variants: 1) each case has an equal
probability of being selected during training; 2) the nominal
case accounts for half of all the training cases. Besides, we
use πori to denote the original end-to-end driving agent.

Fig. 6 shows the improved performance of the enhanced
driving agents against attacks with different budgets. Com-
pared to πori under camera-based attacks, the enhanced agents
exhibit noticeable increases in the mean nominal driving
reward. However, their driving performance suffers when the
attack budget is small (i.e., ε= 0.25 and 0.00), indicating that
it sacrifices nominal driving behavior for enhanced resilience.

Fig. 7 shows the deviation from driving trajectory versus
attack effort for both adversarially-trained agents. In Fig. 7(a),
the average trajectory tracking error for πadv,ρ=1/11 across
all attack efforts is 0.038. Compared with Fig. 5(b), the
attack effort level where the successful attack cases become
dominating shifts right, suggesting that the enhanced driving
agent can resist higher-budget attacks. However, large tracking
errors are observed at zero and small attack efforts due to
catastrophic forgetting problems. In Fig. 7(b), πadv,ρ=1/2 shows
a more convergent relationship between the two variables, with
fewer outliers and an average trajectory tracking error of 0.027.
However, due to the reduced number of adversarial cases in
training, successful attacks cluster more at high attack efforts,
which weakens its resilience against high-budget attacks.

Adversarial training can counteract action-space attacks, but
it may also degrade the driving agent’s performance without
attacks. Balancing the ratio of simulated attack cases during
training to maintain run-time performance is challenging.

B. Model Enhancement with Progressive Neural Networks

To address the catastrophic forgetting problem, we inves-
tigate using Progressive Neural Networks (PNN) [29] during
adversarial training. PNN transfers previously learned features
of the original network (a column) through lateral connections
to a new column without changing the original weights. The
switcher determines the use of the original driving policy or
the newly trained column, with σ as the threshold for the

(a) Enhanced agent πadv,ρ=1/11 (b) Enhanced agent πadv,ρ=1/2

(c) Enhanced agent πpnn,σ=0.4 (d) Enhanced agent πpnn,σ=0.2

Fig. 7. Evaluation of robustness of enhanced driving agents in terms of
deviation from trajectory with the presence of camera-based attackers.

switcher to choose between the two. Specifically, the switcher
chooses πori if ε≤σ and the adversarially trained column
otherwise. The above design, which follows the Simplex archi-
tecture [30], makes an idealized assumption that the switcher
is aware of the attack budget. Two settings for σ are evaluated:
0.2 and 0.4 in our experiments. In practice, the switcher
can use different metrics such as confidence of exposure to
attacks, the magnitude of a detected perturbation, or the type
of attack being classified as a proxy of the attack budget.
Fig. 6 presents the performance of PNN agents in terms of
cumulative nominal driving reward in the presence of attacks.
Compared with the agents enhanced by adversarial training
via fine-tuning, the PNN method successfully addresses the
forgetting problem when the attack budget is small. When
attack budgets are higher, the two PNN agents exhibit similar
performance as they share the same model structure and
weights. From the above results, the PNN method enhances
the resistance of the driving policy to action-space attacks
without damaging its nominal performance. Fig. 7(c) and
Fig. 7(d) show the deviation from driving trajectory versus
attack effort for the two PNN-enhanced driving agents. The
πpnn,σ=0.4 achieves an average trajectory tracking error of 0.02
for all attack efforts. No attacks are successful when the attack
effort is smaller than 0.4. The πpnn,σ=0.2 achieves an average
trajectory tracking error of 0.017 for all attack efforts. No
attacks are successful until the attack effort exceeds 0.6.

C. Fine Tuning vs. Progressive Neural Networks

Fig. 8 shows the trend of attack success rate with respect
to the attack effort windows. The two adversarially-trained
agents with fine-tuning show higher attack success rates even
when the attack effort is small, while PNN-enhanced agents
perform better with lower attack success rates in all attack
scenarios. The results demonstrate the superior performance of
the PNN method compared with fine-tuning in resisting action-



Fig. 8. A comparison of attack success rate between the nominal driving
agent and four resulting enhanced driving agents across different attack effort
windows. We window the data points in Fig. 7 along the attack effort axis
with a size of 0.2, ranging from 0.0 to 0.8+.

space attacks while maintaining normal driving performance.
Despite its effectiveness, the PNN method is constrained by
its reliance on the switcher mechanism to detect and classify
attacks, which can be viewed as a limitation.

VII. CONCLUSION

In this study, we present a DRL-based architecture capable
of launching a black-box action-space attack on AD agents
using camera or IMU sensor data, resulting in side collisions
at safety-critical moments. Our evaluation has revealed that
modular driving pipelines are more resilient to these attacks
than end-to-end driving agents. we evaluate the effectiveness
of adversarial training techniques, including fine-tuning and
PNN, to enhance end-to-end agents. While the fine-tuning ap-
proach shows promise in improving the agent’s performance,
it also presents a potential issue of overfitting to adversarial
cases that may impact nominal driving performance. The PNN
method provided stronger resistance to attacks and overcame
the catastrophic forgetting problem, but requires prior knowl-
edge of the attacker’s strategy, which may limit its practical
application. Given that action-space attacks are rare but cannot
be ignored, our results suggest that a simplex driving agent
[31] that switches between the enhanced driving policy model
and the nominal driving agent upon the capability of attack
detection is desirable.
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