Deep Room Recognition Using Inaudible Echos

Qun Song ^{1,2} Chaojie Gu² Rui Tan²

¹Energy Research Institute, Interdisciplinary Graduate School ²School of Computer Science and Engineering Nanyang Technological University

Room-level Localization

Museum with many exhibition chambers

- Useful in a range of applications
 - Automated multimedia guide in a museum
 - Robot localization & patient/newborn tracking in a hospital

Autonomous delivery robot in Changi General Hospital, Singapore

Objective

- Reliable room-level localization using phone/wearable built-in audio system only
 - Infrastructure-free
 - No add-on hardware
- Practical
 - Designer: effortless training data collection
 - End users: download and use
- Privacy-preserving
 - Very short audio recording

Related Work

- Passive audio sensing
 - SurroundSense [MobiCom'09], Batphone [MobiSys'11]
 Susceptible to interference, privacy breaching (10s recording)
- Active audio sensing
 - RoomSense [AH'13]

Uses full-spectrum audio, susceptible to foreground sound

- Semantic localization
 - Backpack, drawer, restroom, elevator, etc *Recognize context, rather than location*

Susceptibility of Passive Sensing

- Batphone [MobiSys'11]
 - Install on an iPhone 6s from Apple's App Store
 - Quiet environment: down to 40% accuracy
 - Ambient music during testing: 0% accuracy for L1 to L4

Outline

- Motivation
- Measurement
- Approach & Evaluation
- Conclusion

Probe Signal

- Those used in existing studies
 - Sine sweep, maximum length sequence (MLS), multi-frequency chirp Audible (annoying), wide-band (susceptible to foreground sounds)
- Short-time single-frequency chirp
 - 2ms

Echos from objects >34cm away won't mix with chirp

— 20kHz

Inaudible, different from man-made sounds

- Challenge: limited information carried by echos

Room's Response

Frequency Analysis

- L1 and L2 have the same size and furniture
 - A room gives stable frequency response
 - Different rooms respond differently

Time-Frequency Analysis

• Spectrogram

- Each room has stable spectrogram
- Perceptible differences for different rooms

Outline

- Motivation
- Measurement
- Approach & Evaluation
- Conclusion

Candidate Designs

- Existing systems use "shallow" learning (SVM)
 - Manually engineered features
 - Ineffective in addressing subtle differences
- Deep learning
 - Automates feature extraction

Data Format and Deep Model

- Google TensorFlow
 - DNN: 2 hidden layers, each with 256 ReLUs

Test accuracy in classifying 22 rooms

	PSD	Spectrogram
DNN	19%	80%
CNN	33%	99%

Example Room Types

(a) Bedroom

useum hall

(d) Lab open area

(e) Meeting room L4

Examples of several room types

(c) Visitor office L1

(a) Teaching room 1

(c) Teaching room 3 (d) Teaching room 4

(e) Teaching room 5

Examples of similar rooms

Robustness to Foreground Sound

• Test our approach in rooms R1 – R15

Comparisons with Baselines

The average classification accuracy.

Approach	Probe signals	Features/formats	Learning model	No music	Music
RoomSense [AH'13]	Full spectrum	Full spectrum	SVM	76%	39%
	Single tone	Full spectrum		83%	27%
	Single tone	Narrowband		69%	50%
Our approach	Single tone	Narrowband	CNN	100%	81%

Deep learning improves the recognition accuracy even when the probe signal is very simple and the audio recording is limited to a very narrow band.

Impact of Changes in Rooms

(a) Original layout.

(c) Chairs removed.

(b) Chairs and table moved.

(d) More chairs added.

Furniture changes in L3.

100%

Evaluation in Similar Rooms

- TR1 to TR10 have the similar size and furniture
 - Our approach achieves an average accuracy of 88.9%.

Confusion matrix of our approach in recognizing 10 similar teaching rooms (TR).

Evaluation Results in Two Museums

Museum-A floor plan and data collection spots (red points).

Museum-B floor plan and data collection spots (red points).

- Museum-A is generally quite with few visitors walking around. The average spot recognition accuracy is 99%.
- Museum-B is crowded and has background music. The average spot recognition accuracy is 89%.

Conclusion

- Narrowband, short-time probing and recording
- High/good accuracy
 - 99.7%: 22 residential/office rooms
 - 97.7%: 50 residential/office rooms
 - 99.0%: 19 spots in a quiet museum
 - 89.0%: 15 spots in a crowded museum
- Much improved robustness against interfering sounds