Deep Room Recognition Using Inaudible Echos
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Museum with many exhibition chambers

* Useful in a range of applications
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Autonomous delivery robot in
Changi General Hospital, Singapore

— Automated multimedia guide in a museum
— Robot localization & patient/newborn tracking in a hospital
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Objective

* Reliable room-level localization using phone/wearable built-in
audio system only

— Infrastructure-free
— No add-on hardware

 Practical

— Designer: effortless training data collection
— End users: download and use

* Privacy-preserving
— Very short audio recording
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Related Work

* Passive audio sensing

— SurroundSense [VIobiCom’09], Batphone [VIobiSys'11]
Susceptible to interference, privacy breaching (10s recording)

e Active audio sensing

— RoomSense [AH'13]
Uses full-spectrum audio, susceptible to foreground sound

e Semantic localization

— Backpack, drawer, restroom, elevator, etc
Recognize context, rather than location
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Susceptibility of Passive Sensing
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Laboratory floor plan

 Batphone [MobiSys'11]

— Install on an iPhone 6s from Apple’s App Store
— Quiet environment: down to 40% accuracy
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— Ambient music during testing: 0% accuracy for L1 to L4

L4
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Outline

* Measurement
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Probe Signal

* Those used in existing studies

— Sine sweep, maximum length sequence (MLS), multi-frequency chirp
Audible (annoying), wide-band (susceptible to foreground sounds)

* Short-time single-frequency chirp
— 2ms
Echos from objects >34cm away won’t mix with chirp

— 20kHz
Inaudible, different from man-made sounds

— Challenge: limited information carried by echos
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Frequency Analysis
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L1 and L2 have the same size and furniture
— A room gives stable frequency response
— Different rooms respond differently
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Time-Frequency Analysis
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* Spectrogram
— Each room has stable spectrogram

— Perceptible differences for different rooms
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Outline

 Approach & Evaluation
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Candidate Designs

e Existing systems use “shallow” learning (SVM)
— Manually engineered features

— Ineffective in addressing subtle differences

* Deep learning

— Automates feature extraction

Four candidate designs

Design 1 Design 2

Design 3 Design 4
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Data Format and Deep Model

* Google TensorFlow
— DNN: 2 hidden layers, each with 256 RelLUs
— CNN:

1

28x5 spectrogram

pooling1
X conv1 (2x2 filter, Y Y
L (16 4x4 filters) stride: 2) pooling2 % i densef dense2
k conv1 - Voo (K ReLUs)*
(2x2 filter, . L (1024 3
(324x4fiters)  stride:2) % iReLUs)

Test accuracy in classifying 22 rooms

e e

33% 99%
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Example Room Types
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(a) Bedroom (b) Museum hall (c) Visitor office L1 (d) Lab open area

Examples of several room types

g\

(a) Teaching room 1 (b) Teaching room 2 (c) Teaching room 3 (d) Teaching room 4 (e) Teaching room 5

Examples of similar rooms
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Robustness to Foreground Sound

* Test our approach in rooms R1 — R15

Confusion matrix (quiet rooms) Confusion matrix (play Youtube)
RIS ! RIS :
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100% 81%
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Comparisons with Baselines

The average classification accuracy.

Full spectrum Full spectrum 76% 39%

RoomSense o I SVM . .
[AH'13] Single tone Full spectrum 83% 27%
Single tone Narrowband 69% 50%
Our approach Single tone Narrowband CNN 100% 81%

Deep learning improves the recognition accuracy even when
the probe signal is very simple and the audio recording is
limited to a very narrow band.
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Impact of Changes in Rooms
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individuals in L3 (7m?).
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Evaluation in Similar Rooms

TR10
TR9
TRS
TR7
TR6
TRS
TR4
TR3
TR2
TRI1

Actual room

N oV ad a™ a? Qo N g O
FFIFFIFIFIITE &

Predicted room

.;\\\.

Confusion matrix of our approach in
recognizing 10 similar teaching rooms (TR).
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e TR1 to TR10 have the similar
size and furniture

— Our approach achieves an
average accuracy of 88.9%.
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Evaluation Results in Two Museums

10m

Museum-B floor plan and data

Museum-A floor plan and data collection spots (red points). _ )
collection spots (red points).

* Museum-A is generally quite with few visitors walking around.
The average spot recognition accuracy is 99%.

* Museum-B is crowded and has background music. The average
spot recognition accuracy is 89%.
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Conclusion

* Narrowband, short-time probing and recording

* High/good accuracy
— 99.7%: 22 residential/office rooms
— 97.7%: 50 residential/office rooms
— 99.0%: 19 spots in a quiet museum
— 89.0%: 15 spots in a crowded museum

* Much improved robustness against interfering sounds
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