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The 3D-printed mesh screen with dense penetrating pores is a new structure for massive manufacturing of molded pulp
package products. However, some of the pores may be clogged by the printing material powder during the printing process.
Such defects negatively affect the quality of the pulp packages produced using the mesh screen mold. To pinpoint the defects,
we design a model-based robotic visual sensing system, called RoboCam, which uses a robotic arm to carry a high-resolution
camera for full inspection of a mold consisting of joined mesh screens. To inspect the entire mold, RoboCam plans the camera
poses to capture multiple images of the mold and render synthesized images as references for identifying the clogged pores.
In particular, we propose novel designs to rectify the inherent run-time pose errors of the robotic system for ensuring the
reference quality and to accelerate the reference rendering for reducing inspection latency. Extensive evaluation shows
that RoboCam’s design outperforms various baselines, including three existing computer vision and convolution neural
network-based inspection systems. RoboCam achieves a recall rate of 94.95% within 528 seconds latency for inspecting an
entire mold with 13,000 designed pores.

CCS Concepts: « Computer systems organization — Sensor networks.

“Linshan Jiang is now with the National University of Singapore.
Zhuoran Chen is now with the Hong Kong University of Science and Technology.
*Xiaohua Peng is now with the Aputure.

Authors’ addresses: Siyuan Zhou, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, siyuan.zhou@
ntu.edu.sg; Duc Van Le, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, levanduc@ieee.org;
Linshan Jiang, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, LINSHAN001@e.ntu.edu.sg;
Zhuoran Chen, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, zhuoran.chen@ntu.edu.sg;
Xiaohua Peng, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological University, Singapore, XIAOHUA001@e.ntu.edu.sg;
Daren Ho, HP Inc., Singapore, kok-loon.ho@hp.com; Jianmin Zheng, College of Computing and Data Science, Nanyang Technological
University, Singapore, ASJMZheng@ntu.edu.sg; Rui Tan, College of Computing and Data Science, Nanyang Technological University,
Singapore, tanrui@ntu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1550-4859/2025/1-ART

https://doi.org/XXXXXXX XXXXXXX

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: January 2025.


https://doi.org/XXXXXXX.XXXXXXX

2 « S.Zhouetal

Additional Key Words and Phrases: Industrial IoT, smart manufacturing, visual sensing

1 INTRODUCTION

Additive manufacturing, also known as 3D printing, has been increasingly adopted for fast prototyping various
intermediary or final products involving complex 3D structures. However, it is challenging to perform thorough
quality inspection of the printed products. In this paper, we consider a representative target application of
inspecting our industry partner’s 3D-printed mesh screen molds [4] with a sample shown in Fig. 1. The mold is
used to mass-produce pulp packages (e.g., containers, dinnerware, packaging boxes). A mesh screen on the mold
is a complex 3D structure with many penetrating pores for draining unused pulp away. The major defects with
the mesh screens are the pores clogged with the printing material powder. Due to the clogging, the molded pulp
products may have non-uniform thicknesses and become fragile [37]. Therefore, it is critical to detect and locate
the clogged pores during an inspection process. Human eye-tracking with a microscope is a possible solution.
However, such manual inspection is subjective, error-prone, and laborious. Moreover, as the inspection is planned
as an essential function of our industry partner’s automated cleaning system [3] which eradicates the clogging
through vibration, vacuum, and air blasting, automated inspection is desirable to automate the whole process.

In this paper, we design and implement a model-based robotic visual sensing system, called RoboCam, which
employs a robotic arm to carry a camera for automated and precise inspection of the 3D-printed mesh screens.
RoboCam counts the clogged pores and locates them on the 3D-printed mesh screens. While the target mesh screen
inspection application is important because of the increasing molded pulp package manufacturing, RoboCam
also provides insights into the capability limit of a robotic visual sensing system in addressing practical industrial
inspection tasks. In what follows, we discuss the three main challenges in the design of RoboCam and the basic
ideas to address these challenges.

First, the pore sizes are at sub-millimeter level. Thus, to effectively image the pores, wave signals with short
wavelengths should be used to avoid undesirable diffraction and interference effects when they go through the
pores. The existing industrial defect inspection systems employ various sensing modalities including visible
light [15], ultrasound [43], terahertz wave [20], X-ray [17], and laser [26]. RoboCam uses visible light due to its
short enough wavelengths and the sensing equipment’s advantages of low cost, easy deployment and operation.
X-ray is also effective for imaging sub-millimeter-level pores, but it is hazardous and the X-ray imaging systems
are expensive (e.g., up to 90k USD [7]). Terahertz systems are even more expensive (e.g., up to 215k USD [25]).
In contrast, RoboCam’s main hardware components, including a robotic arm, a high-resolution camera, and a
computer workstation, cost a total of 26k USD only. Moreover, although laser can work in the visible spectrum,
the laser emitter needs to point to the pore exactly and the inspection can only be performed on a pore-by-pore
basis, which is inefficient. Ultrasound has centimeter-level wavelengths, which are incapable of imaging the
pores.

Second, the pores are densely and non-uniformly distributed on the mesh screens, providing no simple patterns
to follow when inspecting them. For instance, as shown in Fig. 1, a mesh screen consists of about 2,000 non-
uniformly distributed pores. As such, the manual inspection with an ad hoc nature has limited/no basis to
achieve the trustworthiness required by the industrial applications. In addition, as evaluated in this paper, the
recent convolutional neural network (CNN)-based object detection [23, 44, 48] and image segmentation [15, 38]
approaches cannot detect the clogged pores with satisfactory performance. The main reason is that detecting
clogged pores requires comparison between actual pores and designed pores; however, CNN-based approaches
aim to learn the feature patterns of clogged pores. Since the features of individual clogged pores are similar to the
structures of mesh screens, object detection methods cannot accurately differentiate the clogged and unclogged
pores. Meanwhile, image segmentation might not accurately segment out clustered clogging with cluster patterns
unseen in the training dataset. Furthermore, due to the small size and high density of pores, labeling the mesh
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Fig. 1. A 3D-printed pulp package mold (length: 142mm, width: 142mm, height: 35.7mm) consisting of joined mesh screens.
A screen has up to 2,000 non-uniformly distributed, sub-millimeter-sized pores (0.283mm?) on its curvy surface.

screen images for training the CNNs is tedious and labor-intensive. Instead of using the training-based approaches,
RoboCam utilizes the mesh screen’s computer-aided design (CAD) model, camera’s pose and intrinsics to render
references (i.e., images of the defectless mesh screen). Then, RoboCam compares the real images captured by the
camera and the rendered references to detect the clogged pores. This inspection task is a post-processing step for
the 3D-printed mold manufacturing which produces the mesh screens according to their CAD model. Thus, the
assumption on the availability of the CAD model holds in our problem context.

Third, the 3D-printed mesh screens can be curvy. As a result, a single image captured from a certain camera’s
view angle may not cover all the pores on the curvy surface. To fully inspect the mesh screen, the camera
needs to move and capture multiple images from various view angles. One possible approach is a precalibrated
multi-camera array to inspect customized 3D-printed mesh screens from multiple fixed view angles [32]. However,
given the limited quantity of each customized screen (even down to a single piece), frequently calibrating the
multi-camera array to different customized mesh screens leads to significant overheads. Differently, RoboCam
uses a robotic arm to move the camera by following computed waypoints for fully covering the mesh screen.
Thus, it adapts to the customized screen readily. However, any robotic arm has stochastic movement errors
because of its mechanical deformation, assembly, and machining deviations [13, 27]. Thus, the robotic arm cannot
reach the planned camera pose exactly. Our profiling experiments show that the Euclidean distance component
of the pose error is normally within 1cm to 2cm. Such pose errors cause discrepancies between the rendered
reference and the captured image, which negatively affect the inspection performance. To achieve high accuracy,
we propose a rectification approach that performs in both the physical and digital domains, aiming at eliminating
the discrepancies.

Based on the above component designs, we construct RoboCam that inspects a mesh screen in various poses
via multiple iterations. Each iteration begins with planning a virtual 6-degree-of-freedom (6DoF) camera pose
using the CAD model of the inspected mesh screen. The planned 6DoF pose allows the camera to inspect the
largest region among the mesh screen regions which have not been inspected in the previous iterations. After
the robotic system moves the camera to the planned pose with an unknown pose error and captures an image, it
performs the following two-domain rectification. First, it determines a rectified pose as a new movement target of
the robotic system for compensating the pose error. The robotic system further moves the camera to the rectified
pose to complete the physical-domain rectification. Then, it captures a new image and uses the mesh screen’s
CAD model, camera intrinsics, and the estimated camera pose of the newly captured image to render a reference
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image. This forms the digital-domain rectification. Finally, RoboCam compares the captured and rendered images
to pinpoint the clogged pores. The inspection results of all iterations until full coverage of the mesh screen are
aggregated as the final output.

We implement RoboCam on a real robotic arm mounted with a high-resolution camera and extensively evaluate
its performance for inspecting 3D-printed molds with both flat and curvy mesh screens. We evaluate RoboCam
by comparing its component designs with the respective baselines, including three approaches for camera pose
planning, three for camera pose estimation, one for system error rectification, three for image rendering, and four
for image processing-based inspection. The results show that RoboCam achieves a recall rate of 94.95% within
528 seconds latency for inspecting an entire mesh screen mold with 13,000 designed pores. Besides the detection
of clogged pores, RoboCam can also measure the sizes of the unclogged pores, which form another metric of the
3D printing quality of the mesh screen.

Our contributions are summarized as follows:

e We design and implement RoboCam which employs a novel model-based approach for automated and
precise inspection of 3D-printed mesh screens. RoboCam provides a useful reference for the development
of other 3D-printed object inspection systems in which the prior 3D geometric information can be utilized
to guide the 2D imaging with high-precision requirement.

e We propose a two-domain rectification approach to minimize the discrepancy between the captured image
and its rendered reference image. In the rectification process, we adopt a model-based PnP method without
pre-marking to automatically estimate the camera pose. Moreover, we propose a greedy-based parallel
rendering approach that achieves 0.3 seconds per image, which is 10 times faster than a widely adopted
rendering engine.

e We set up a real testbed to evaluate RoboCam and compare its key component designs with various respec-
tive baselines. Specifically, RoboCam’s reference-based inspection achieves 1.51x and 1.32x improvement
in terms of recall and precision, respectively, compared with an existing CNN-based approach [15].

The remainder of this paper is organized as follows. §2 reviews related work. §3 describes the hardware setup
and profiling experiments. §4 presents the detailed designs of RoboCam. §5 presents the evaluation results. §6
concludes the paper.

2 RELATED WORK

m Industrial visual inspection: The existing industrial visual inspection systems [15, 19, 31, 38, 44, 48, 49]
can be divided into the following three categories. The first category [31, 44, 48] employs the object detection
algorithms to inspect the manufactured products. For instance, the technical note [31] described a CNN-based
smart camera system that was designed to detect air bubbles for inspecting ink cartridges on the manufacturing
line. The study in [44] developed a real-time inspection system using CNN to detect the surface defects of the
molded pulp products moving on the conveyor belts. Moreover, the study in [48] used Mask R-CNN [24] to detect
and assess oil leaks on freight trains. The second category [15, 38] implements CNN-based image segmentation
to segment out the defect surface regions of the inspected products. For instance, in [15], a visual inspection
system adopted a CNN-based segmentation framework, called PSPNet [50], to estimate the air volume in the
manufactured ink bags. The study in [38] used U-Net, a CNN-based segmentation algorithm, for metal product
surface defect inspection. However, as shown by our experiments in §5, these two categories of approaches have
inferior performance in inspecting the clogged pores in our application.

Similar to RoboCam, the third category [19, 49] employs the reference-based approaches to inspect the defects
of industrial products such as printed circuit boards [19] and fabrics [49]. They adopted real images of the
defectless products that are pre-captured offline from predefined camera’s view angles as references. RoboCam
moves the camera and captures multiple images from various view angles to fully inspect the curvy mesh screen
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Mesh screen object | Holder

Fig. 2. Hardware setup.

via multiple iterations. Thus, pre-capturing the reference images is infeasible to RoboCam since the view angles
are dynamically determined, and thus unpredictable. The study [36] employed a 3D CAD-based direct comparison
method. Specifically, it used a laser scanner to capture point cloud data of the piping system, then compared
geometrically with the design CAD model. Similarly, our solution adopts a CAD-based method to construct 2D
defect-free references for comparison. Therefore, RoboCam uses the product’s CAD model and camera parameters
to render references online.

m Robotic visual sensing: Several existing industrial inspection systems [27, 34] employ the robotic arm-
mounted cameras for inspecting the product defects. For instance, in [34], a robotic arm system with a high-
resolution camera was prototyped to monitor the rim’s defects. Moreover, the authors in [27] proposed a
K-means-based region segmentation algorithm to design a motion planning approach for scanning the specular
surfaces for defects. Specifically, such robotic camera systems can perform highly flexible motions and adapt
to product structures under inspection. However, the robotic system errors negatively affect the inspection
performance. To address this issue, the existing studies have incorporated supplementary setups and equipment
such as marker images [13] and depth cameras [27], for online error rectification. Differently, we rectify the
errors without the need of additional equipment.

3 ROBOCAM’S HARDWARE & SYSTEM PROFILING
3.1 Hardware Setup of RoboCam

Fig. 2 shows the main hardware components of RoboCam. For sensing, we choose a high-resolution USB camera
See3Cam [6] with 13 megapixels CMOS sensor (1/3.2-inch) which can capture images with 3840 x 2160 resolution
at 30 frames per second (fps). We use a 3D-printed connector to mount the camera on the end-effector of a
collaborative robotic arm called UR3e [5]. The UR3e has six rotation joints which allow moving the camera and
capturing an image of the inspected 3D-printed object from an arbitrary view angle. A single-board computer
(i.e., Raspberry Pi) is used to control the image capturing. Moreover, the inspected 3D-printed object is placed
on a translucent resin holder near the robotic arm. We add a battery-based LED backlight under the holder to
illuminate the pores during the image capturing process. A workstation computer is used to execute the pore
inspection software pipeline.

3.2 Robotic System Error Profiling

The robotic system errors include the constant transformation error, denoted by S, and the dynamic movement
error.! The transformation error is caused by the physical-virtual coordinate transformation. The S can be

1A notation table is provided in Appendix.
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Fig. 3. Design overview of RoboCam.

estimated offline during system preparation and rectified during robotic arm movement planning. Specifically, to
reach a target pose, denoted by Py, the robotic arm should be directed to the pose P — S to capture the image.
While addressing S is straightforward, addressing the dynamic and stochastic movement errors is non-trivial.

We calibrate our robotic system using the hand-eye calibration approach [47]. Specifically, the hand-eye
calibration approach aims to compute the unknown spatial transformation X, including translation and rotation
between the mounted camera’s pinhole center and the robotic arm’s end-effector by solving AX = XB matrix
formulation, where A and B represent the poses of the end-effector and camera, respectively. We collect 15 sets of A
and B to compute X. The end-effector poses A are provided by the robotic arm system, while the camera poses B are
estimated using the checkerboard and perspective-n-point (PnP) method [35]. To obtain the camera’s ground truth
pose during movement, the camera captures an image containing a checkerboard with a 6 x 9 pattern of known
dimensions and position, which is used to estimate the actual pose. Specifically, given the captured image, we use
the PnP approach to calculate the ground truth of the camera’s actual pose using the 2D-3D correspondences. We
use the checkerboard corner detection approach [16] to detect the 2D pixel positions of the checkerboard’s corner
points. These 2D pixel positions, along with their known 3D positions, serve as the 2D-3D correspondences for the
PnP algorithm. When the camera is planned to move to the target pose Pcam, the robotic arm’s target pose Py can
be calculated as follows: Py = X! - Peam. Specifically, starting from an initial 6DoF pose P, (X¢, Ye, Ze» Pes Oe» @e ),
the robotic arm moves the camera and captures images at 15 randomly selected poses. The new pose P, is defined
as: Py = (Xn, Yns Zns On> On, 0n ), Where: (Xn, Yn, Zn, O, On, @) = (Xe + Op, Y + Ons Ze + Ons fe + 8, 0c + 80, 0 + O, )-
The translation components dy, §,, and &, are randomly selected from the ranges [-15cm, 15cm], [-15cm, 15cm],
and [-20cm, 20cm], respectively, while the rotational variations 5¢E, ¢, and 6, are randomly chosen from the
ranges [—45°, 45°], [-45°, 45°], and [—45°, 45°], respectively. The estimated camera pose P, and its end-effector
pose are used as inputs for the hand-eye calibration, with the output being the X between the camera and the
end-effector.

In this section, we conduct a set of profiling experiments to investigate the dynamic movement errors of our
robotic system. Specifically, we define an initial 6DoF camera pose, denoted by P,, with three Cartesian coordinates,
denoted by (x,, Yo, 2o ), and three Euler angles, denoted by (¢,, 85, ¢, )- Then, the robotic system repeatedly moves
the camera from P, to 25 target poses, denoted by Pp, = (Xm» Yms Zm> Pm»> Om»> @m ) Where m = 1,..., 25, to capture
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Fig. 4. Profiling the robotic movement errors: (a) Distance errors; (b) Difference between the distance errors of two camera
poses.

25 images. We define Py, as (Xm, Ym> Zm> Pms Oms @m) = (X0 + Ox,Yo + 8ys 20 + 82, ¢o, 0o, 90 ), Where the dy, 5y,
and §, are randomly selected in ranges of [0, 30cm], [0, 30cm], and [0, 40cm], respectively. We estimate the
actual camera pose, denoted by P, = (%, Gims Zms q;m, Orm, @m), from the image captured in the target pose Pp,
using a above checkerboard method [35]. Then, we consider the Euclidean distance, denoted by d,,,, and cosine
distance, denoted by C,,,, between P, and 13,,, as the robotic movement distance and orientation errors. Specifically,
dm =/ (Xm = %m)2 + (Ym — Gm)? + (Zm — Zm)2, and Gy, = 1— S Pt OmOm+¢m ém__ The first boxplot in Fig. 4(a)
GO 07\ i+ O340,

shows the distribution of the movement distance errors d,, of the 25 target poses, which are mostly distributed in
a range of [0.9cm, 2.2cm]. These results show that the robotic movement errors are dynamic and vary with the
target pose. Meanwhile, the cosine distance C,, of the 25 target poses is concentrated in a narrow range around
0.01, which indicates that the planned and actual poses have similar orientations angles, i.e., little orientation
errors. Thus, we focus on reducing the movement distance errors.

Furthermore, we investigate the difference between the movement distance errors of two target poses. In
particular, we define ten initial poses, denoted by P;y where i = 1,...,10. For each Pj, the robotic system moves
the camera to P;y (with movement error) to capture an image. Then, it further moves the camera from P;, along a
certain axis to capture images in 15 more target poses, denoted by P;; where j = 1,...,15. The distance between
two target poses P;(;_;) and P;; is lem. In total, the camera captures 160 images. The actual camera pose of each
image is estimated. Each boxplot in Fig. 4(b) shows the distribution of error differences given the distance d;.k
between the planned P;; and Pj; as shown on the x-axis. Note that an error difference is the difference between
the movement distance errors of P;; and P;x where j # k. We can see that the error difference shows a slight
increasing trend as presented by the fitting line in Fig. 4(b). However, the difference is mostly less than 1cm when
d;.k < 5cm. Thus, the close target poses on the straight trajectory have similar movement distance errors. This
provides insights to guide the design of our two-domain rectification in §4.

To better understand the robotic arm system error, we further break down the robotic system errors into
two cases: the robotic arm without a camera and the robotic arm with a camera. We collect 15 poses of the
robotic arm to measure its error without a camera. Specifically, a 3D-printed cone tool is attached to the robotic
arm’s end-effector to indicate the centroid point positions along the x-axis and y-axis, as shown in Fig. 5. A
ruler is used to measure the ground truth positions of the centroid points along the x-axis and y-axis. The
system error is defined as the Euclidean distance between the measured and target positions along these axes.
Moreover, we re-measure the robotic arm system error using a camera by capturing an additional 15 poses. The
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Euclidean distance between the target camera poses and the ground truth camera poses is computed as the
system error. The ground truth pose is obtained using the checkerboard and PnP method mentioned above. Fig. 6
shows the distribution of robotic system errors both without and with the camera. The robotic arm without
the camera has sub-millimeter errors, while the robotic arm with the camera exhibits an error range of [0.9cm,
2.2cm]. The errors of the robotic system with the camera arise from the pose accuracy obtained through the
checkerboard and PnP methods [41]. Specifically, vibrations at the end of the robotic arm can reduce the accuracy
of checkerboard corner detection, which in turn affects the camera’s pose estimation. The differences between
the intrinsic parameters provided by the camera specifications and those of the actual manufactured camera can
affect the PnP calculation accuracy. Additionally, accumulated errors in the robotic arm’s end-effector poses and
the camera’s pose estimation during calibration can affect the overall accuracy of the calibration. These factors
present challenges in achieving precise calibration of the robotic arm system.

4 DESIGN OF ROBOCAM

To fully inspect a 3D-printed mesh screen object, we adopt a 3D mesh segmentation method [9] to divide the
object into several mesh screens. Each mesh screen consists of multiple 3D faces with similar normal vector
directions. To detect the clogged pores on each mesh screen, RoboCam iteratively runs the inspection pipeline
consisting of the following four steps: camera pose planning, two-domain rectification, reference-based inspection,
and result aggregation, as illustrated in Fig. 3. In what follows, we present the detailed designs of these four steps.

4.1 Camera Pose Planning

At the beginning of each iteration k (k > 1), RoboCam selects the largest mesh screen region wy (a set of vertices
and faces), which has not been inspected in the previous iterations. Then, it plans a 6DoF pose, denoted by Py, in
which the camera can capture the image for inspecting the pores in wg.

4.1.1 Selection of wi. In our application, each mesh screen consists of up to one million 3D points in its CAD
model. Specifically, a 3D mesh point, denoted by p; = (xi, yi, zi, i, 0, ¢; ) including Cartesian coordinates (x;, y;, z;)
and Euler angles (¢;, 0;, ¢;). Searching and segmenting out wy from the massive 3D points is extremely compute-
intensive [42]. Thus, to reduce the latency, RoboCam employs a 3D-2D projection-based approach to select
Wp.

Specifically, we adopt the pinhole camera model [40] to project the entire 3D mesh screen to a 2D image
plane, denoted by C, as illustrated in Fig. 7. Let K = (cy, ¢y, fx, fy) denote the camera’s intrinsic parameters:
pixel coordinates (c, ¢ ) for the principal point and focal lengths (f;, f,) in both axes. These parameters can
be obtained from camera specifications or offline measurements. Then, the 3D point p; = (x4, y;, zi, 9i, 0i, @;) is
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projected to a 2D image point in C, denoted by p; with pixel coordinates (x;,y;). The pixel coordinates can
be derived as x; = fx’z‘—: +cx and y; = fy%’ + ¢y. This 3D-2D projection preserves perspective and geometric
information while losing depth information. As a result, multiple 3D points with the same Cartesian coordinates
but different Euler angles are projected to the same point in C. Nevertheless, this projection greatly reduces the
number of the points to be processed to determine wy.

We implement the following approach to determine wy in C. For instance, as illustrated in Fig. 7, the gray
and yellow 2D plane regions represent the uninspected and inspected mesh regions, respectively. To decide wy,
we divide C into multiple square windows of W x W pixels, where W is the window size. Then, we gradually
extend each window by increasing its width and height with a step size of one pixel until the window reaches
the inspected pixel. Finally, the window with the largest number of the gray pixels is selected as wy.

In the first iteration, w; is selected as the rectangle window that contains the entire mesh screen. However,
due to the curvy surface, the first iteration can only inspect the pores on the inspectable mesh screen regions. We
will discuss our approach for identifying these inspectable regions in §4.3.2. Similarly, the iteration k (k > 1) may
not be able to inspect all pores on its wi. Thus, RoboCam repeats multiple iterations to inspect the mesh screen.
The iteration stops when there is no further improvement in inspection coverage.

4.1.2  Determination of Px. Given wy, the camera should maintain a distance, denoted by d, (i.e., the camera-
object distance), from wy and look at wy’s 3D mesh screen region. Let (xx, yx, zx ) and (@, Ok, ¢ ) denote the
Cartesian coordinates and Euler angles of the 6DoF pose Py, respectively. Calculating Py requires the Cartesian
coordinates and the Euler angles of wy center point’s projection on the 3D mesh screen, which are denoted by
(Xa» Ya» 2q) and (Pg, 04, 0, ), respectively. RoboCam employs the ray-casting technique [12] to map the center point,
denoted by ay, of the 2D region wy to the 3D mesh screen. Let Ry, Ro, and R, denote the 3 x 3 rotation matrices
corresponding to the rotations of ¢, 0,, and ¢,, respectively. Then, the parameters of the Py are determined by

(Yo 2k) T = (Xas Yas 2a) " + dcoR¢R9R<p(0’ 0,1)" and (¢k, O, ¢k )" = ~(Pa> 0 0a) -

4.2 Two-Domain Rectification

In this step, the robotic system moves the physical camera to the planned pose Py and captures an image, denoted
by my;. However, due to the movement errors of the robotic arm, the actual pose of the camera when taking my,
denoted by Py;, may be different from Pi. Thus, the rendered image with the camera at P may be an invalid
reference for my;. Moreover, my; may not fully cover the planned region wy, as illustrated in Fig. 8. Based on
the movement error profiling results presented in §3.2, we design an approach that rectifies the errors in both
the physical and digital domains as illustrated in Fig. 3. It first uses a camera pose estimation method based on
the perspective-n-point (PnP) algorithm [18] to estimate the camera’s pose Py; from my. Then, the Py is used
to determine the rectified pose Py.. The robotic system further moves the camera to the new target pose P} to
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complete the physical-domain rectification. Then, the camera takes the second image and yields the camera pose
estimated by the PnP algorithm to complete the digital-domain rectification.

4.2.1 Estimation of the camera pose. We design a model-based camera pose estimation approach based on the
PnP algorithm [18] which has been widely adopted to estimate the camera’s pose from a 2D image captured by the
camera. Compared with existing PnP algorithm, our approach fully automates camera pose estimation without
the need for pre-marking. End-to-end deep learning methods [10] also utilize 2D images for pose estimation.
However, the lack of depth information in 2D images limits their ability to achieve accurate 3D pose estimation.
To calculate the six parameters of Py, from my, the PnP algorithm requires at least six 2D-3D corresponding pairs,
each consisting of a 2D image pixel point and its corresponding 3D point in the mesh screen’s CAD model. More
2D-3D corresponding pairs are useful to improving pose estimation accuracy. The main challenge in applying the
PnP algorithm lies in the identification of these 2D-3D corresponding pairs. A possible approach is to pre-mark
at least six anchor points on the inspected mesh screen area inside the camera view. Then, the 2D handcrafted
features of these anchor points are extracted to identify the 2D-3D corresponding pairs. However, as RoboCam
iteratively captures multiple images in various poses, many anchor points will be needed.

To avoid the pre-marking, our model-based PnP approach renders a 2D image, denoted by my, with the planned
pose Py for fully automated identification of 2D-3D corresponding pairs. Then, we adopt the Akaze feature
extraction approach [11] to extract the contour local features of the 2D points in both the rendered and captured
images, i.e., my and my;. Although the two images have different camera poses, they still contain overlapped
pixel points. Thus, we identify the 2D-2D corresponding pairs among the overlapped points by comparing their
features in terms of Euclidean distance. The obtained set of the 2D-2D corresponding pairs is denoted by ®p_sp.
Then, we apply ray casting to obtain the 3D mesh screen points corresponding to the rendered 2D points in
the set ®;p_;p. Finally, these obtained 3D mesh points and their corresponding captured 2D points are used to
estimate the camera pose Py; of the image my; with the PnP algorithm.

4.2.2  Calculation of the rectified camera poses. To compensate for the robotic dynamic movement errors, a
possible method is to capture multiple images at various poses close to Pk, and then select the image whose
estimated camera pose is closest to Px. However, given the robotic arm’s six degrees of freedom and fine-grained
movement at sub-millimeter level, this approach incurs a significant image capturing workload which is highly
undesirable in the online inspection system. In what follows, we present our proposed approach which is based
on the assumption that P; and P, will be close to each other. Thus, they have similar movement distance errors
as seen from our profiling experiment results in §3.2.

Specifically, we define the ground-truth camera pose of the image my; as Px; = Px + Tpk1, where Tpy; is the
unknown movement error. Let Py, denote the estimated pose of the image my, which is the output of the PnP
approach described in §4.2.1. The movement error Tpy; can be approximated by Tpr1 = Pr1 — P, which includes
the pose estimation error of the PnP approach. The rectified camera pose is calculated as P = P — Tpy. Then,
the robotic arm moves the camera to the pose P} to capture an additional image my,. As the movement error
for P,rc is similar to that for P, the camera pose with P,i as the movement target camera pose is closer to P,
compared with Py;. The second boxplot of Fig. 4(a) shows the distribution of the distance errors d,, between the
planned pose and the actual pose of image captured in the rectified pose with 25 target poses in our profiling
experiments. From Fig. 4(a), the above physical-domain rectification reduces the distance error range to [0.5cm,
0.8cm]. However, the distance error cannot be completely eliminated due to its stochasticity. Thus, the digital
rectification estimates the camera pose of my, which will be used for rendering the reference image for my; in
the reference-based inspection step.

In summary, our proposed two-domain rectification approach reduces the discrepancy between the images
captured in the physical system and its rendered reference image. A simpler approach is to only involve the digital
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rectification to estimate the camera pose of the first image my,; for rendering the reference image. However, our
experiments in §5.3.1 show that this digital-rectification-only approach requires more inspection iterations (i.e.,
higher inspection latency) and cannot fully inspect the entire mesh screen. The main reason is that the image
my; may not fully cover the selected region wy, and cover the regions which have been inspected in the previous
iterations. This causes redundant work.

4.3 Reference-based Inspection

In this step, RoboCam renders a reference image based on the mesh screen’s CAD model, camera intrinsic
parameters, and the estimated pose of the captured image my,. Then, the reference-based inspection employs
Hungarian matching [30] to perform the pore-wise association to detect the clogged pores. Moreover, due to
the curvy surface of the 3D mesh screen, the pores of the selected mesh regions which are not perpendicular
to the camera pose may appear distorted and occluded on the captured image, reducing the accuracy of the
reference-based inspection. To preserve accuracy, we only inspect the pores in the perpendicular/inspectable
regions of the captured image. Thus, at the end of each iteration, the inspection results of the inspectable regions
are used as the sensing feedback to update the inspected regions on the mesh screen as illustrated in Fig. 3.

4.3.1 Parallel image rendering. We perform image rendering by the rasterization technique [1]. It takes the mesh
screen’s CAD model, camera intrinsics parameters, and the estimated pose of the image my, as inputs to render
the reference for my..

However, rendering a mesh screen with millions of facets is computationally intensive. RoboCam needs to
render multiple images to inspect the entire mesh screen via multiple iterations. Thus, the image rendering
latency should be minimized to reduce the end-to-end inspection latency. We notice that the rasterization in
Blender, an open-source 3D computer graphics software, does not fully utilize all available processor cores. To
address this, we propose a greedy parallel rasterization method that maximizes multi-core usage. By employing a
greedy task assignment, we balance workloads across workers, reducing end-to-end rendering time.

Specifically, the image my;, is divided into multiple sub-images. We design a greedy approach to assign the
rendering tasks of these sub-images to the multiple workers. The end-to-end rendering latency is the highest
latency among the workers’ latencies. Meanwhile, each sub-image may vary in the number of pores and mesh
screen contours/edges, with more pores and edges resulting in higher rendering latency. Thus, the main objective
of the rendering task assignment is to balance the rendering workload among the workers such that the end-to-end
latency can be minimized. To this end, we build and fit a quadratic polynomial model offline, denoted by Y. The
model takes the image features (including the contrast, brightness, and number of object edges) of the sub-image
as input variables to estimate the sub-image rendering latency. In general, higher contrast and brightness values
indicate higher pore density, while more edges represent more contours of the mesh screen in the sub-image.

To assign the sub-images of my, to n workers, we employ an image processing algorithm to extract the contrast,
brightness, and number of edges of the sub-images. Then, the trained model Y is used to estimate the rendering
latency of these sub-images based on the extracted features. The sub-images are sorted into an ascending queue
according to their estimated rendering latency. The first n sub-images of the queue are assigned to the n workers.
These assigned images are removed from the queue. The latency of each worker is set to the total latency of its
assigned sub-images. Then, the first sub-image in the queue (i.e., the sub-image with the lowest latency among
the unassigned sub-images) is assigned to the worker which has the lowest latency. The iteration stops until all
sub-images are assigned. The workers render the references for their assigned sub-images simultaneously. The
outputs of all workers are aggregated to yield the entire reference.

4.3.2 Inspectable region selection. We select the inspectable regions which are perpendicular to the camera pose
of my, on the rendered image. Let fy = RyRgR,(0,0,1)" represent the camera pose vector. Here, R4, Rp, and R,,
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Fig. 9. Reference-based inspection: (a) Pixel-wise comparison; (b) Pore-wise comparison as a matching problem.

are the 3 x 3 rotation matrices corresponding to the Euler angles 0y, ¢z, and ¢k, of the camera pose for my.,
respectively. Then, an inspectable region consists of multiple connected mesh screen faces whose normal vectors
are parallel to f . However, the mesh screen’s CAD model may have millions of faces, making it challenging
to search all connected faces regions. Note that the connected faces searching needs to start from one face to
continuously check the neighbor faces until no connected faces or the face normal vector is not parallel to f,, and
then start the next searching. To reduce the latency, we adopt a one-time matrix operation to select the proper
normal vectors of the mesh screen instead of the connected face searching. Specifically, given the CAD model face
|-ui= ful <T

|-ui = full > T
where the s; is the i" face of the S,, the u; is the normal vector of s; and the T, is a threshold value. Each s; is
selected to S if the Euclidean distance between u; and f is less than Tj. The set S may include several disconnected
regions; the pores located in regions far from the camera pose may appear distorted in the captured image. To
remove the distorted pores, we project S to the 2D image plane of rendered image. Given the projected image
plane and the rendered image, RoboCam uses bitwise operations to select regions within the rendered image that
overlap with the projected 2D image plane. Then, the largest inscribed rectangle of the selected 2D image regions
is denoted as the inspectable region.

. . Su Si
normal vector set S,, we perform the matrix operation to select the faces set S as: S = S

4.3.3 Clogged pore detection. The clogged pores can be detected by performing pixel-wise comparison between
the inspectable regions of the rendered and captured images. However, due to differences in illumination and
texture between the rendered and captured images, the pores in the rendered image may not be consistent with
those in the captured image. For instance, Fig. 9(a) shows the pixel-level differences on the same pore between
rendered and real images. As a result, the pixel-wise comparison of the two images generates excessive false
positives. Differently, we employ a pore-wise comparison approach which extracts the pores from both images
for comparison. It is presented in the following.

Our design uses the following prior knowledge from the 3D printer’s yield quality assurance. First, the printer
will not print a pore that is not in the design. Second, the displacement of a pore from its designed position is
at most the pore diameter. From our subsequent analysis on the matching results, the displacement is at most
0.56mm and the maximum pore diameter is 0.7mm. Thus, the quality claim is supported by our results. In our
design, we process both the rendered and captured images to extract the pores’ centroids as pores’ positions. Let
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M and N denote the number of pores’ positions extracted from the rendered and captured images, respectively.
Due to the potential clogging, we have M > N.If M = N, the inspectable mesh screen region has no clogged
pores. Otherwise, the mesh screen has M-N clogged pores in the inspectable region. Let P, and P, denote the
sets of rendered and captured pores’ positions, respectively. Now, the objective is to identify the positions of the
M-N pores which appear in P;, but disappear in P, due to the clogging.

We formulate the clogged pore detection problem as a matching problem which aims to match M pores in P;
with N pores in P, with the objective of minimizing the total distance of the matched pore pairs as illustrated
in Fig. 9(b). We adopt the Hungarian method to solve the matching problem for finding the clogged pores.
Specifically, the method constructs an M x N cost matrix consisting of the distances of the pore pairs in P, and
‘Pc. Then, the matrix is refined through row and column operations to pinpoint the N matched pore pairs with
the minimum total distance. Finally, the M-N unmatched pores are detected as the clogged pores.

4.4  Result Aggregation

The inspectable regions in different iterations may overlap. As a result, a certain number of pores may be
repeatedly inspected in multiple iterations. Thus, we apply a distance-based approach to identify these repeated
pores. If the distance between a pore in an iteration and another pore in another iteration is less than a distance
threshold (e.g., pore diameter), they are considered as the same pore being repeatedly inspected. Then, we employ
the majority voting to yield the majority of the iterations’ inspection results for the same pore as the final result
for the pore. This voting improves the quality of the detection results.

5 EVALUATION
5.1 Evaluation Setup

We implement RoboCam on a real testbed as presented in §3.1. All computing for the inspection pipeline is
executed on a workstation computer with an Intel(R) Xeon(R) silver 4214 CPU of 3.2 GHz frequency and a 32GB
RAM. We use the python library Trimesh 3.2 to implement the image rendering, ray casting, and CAD model
processing. The 2D image processing and PnP-based pose estimation algorithms are implemented using OpenCV
3.4. Moreover, we use Scikit-learn 1.12 to implement the Hungarian matching and image rendering latency model
fitting. We evaluate RoboCam for inspecting two different samples of the mesh screen molds as shown in Fig. 10.
Specifically, Sample A and B include about 13,000 and 5,800 pores, respectively. Sample A consists of four curvy
and one flat mesh screens, while Sample B has one flat screen. We manually create the clogged pores with different
distributions on the mesh screens of the Samples A and B for evaluation. We adopt the following settings for
the design parameters of RoboCam. The camera-object distance d., and threshold Tj are set to 20cm and 0.2,
respectively, according to the experiments in the Appendix A.1 and A.2. For finding wy, the window size W
is set to 20 pixels, which is the diameter of a single pore in captured images. In what follows, we evaluate the
performance of RoboCam’s component designs and the whole pipeline in comparison with respective baseline
approaches using various metrics.

5.2 Performance of RoboCam’s Component Designs

5.2.1 Camera pose estimation. We evaluate the proposed model-based PnP approach for estimating the camera
pose of the captured images. Ideally, the pose estimation accuracy can be measured by the distance difference
between the ground-truth and estimated poses. However, it is non-trivial to obtain the ground-truth poses of
the captured images. Instead, we adopt an accuracy metric called 2D mask error [21]. To calculate the 2D mask
error, we apply the proposed model-based PnP approach to estimate the camera’s pose of the captured image.
Then, the estimated pose is used to render a reference image. We perform pixel-wise comparison between the
captured and rendered images. Two pixels with identical coordinates in two images are deemed unmatched if
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their absolute pixel value difference exceeds a threshold of 20. The 2D mask error is calculated as the ratio of the
number of unmatched pixels to the total number of captured image pixels. Lower mask error indicates higher
estimation accuracy.

We compare our model-based PnP approach with three baseline approaches, including the no-calibration,
manual PnP, and visual-inertial optimization (VIO). The no-calibration uses the planned pose Pk to render the
reference image, instead of the estimated pose. In the manual PnP, we perform human eye-tracking to obtain eight
2D-3D corresponding pairs as inputs for the PnP algorithm to calculate the camera’s pose. In the VIO method,
since the camera and robotic arm do not include an integrated IMU, we attach an external IMU sensor [28] to the
camera. We formulate the camera pose estimation as a camera registration problem, solved using a least-squares
method, as is typical in study [33], using sequential external IMU sensor data (acceleration and angular velocity)
and camera frames as inputs to estimate the camera’s movement trajectory. Fig. 11 shows the average 2D mask
error of three approaches for estimating the poses of ten Sample B’s images with a resolution of 2104 x 1560
pixels, captured in ten different poses. From Fig. 11, the model-based and manual PnP approaches have the similar
mask error of around 1.9% and 1.4%, respectively, while the no-calibration has much higher mask error of about
40%. These results show that our model-based PnP achieves similar performance as the manual PnP. However,
the manual PnP requires higher labor costs due to the use of the human eye-tracking for identifying the 2D-3D
corresponding pairs. As shown in Fig. 11, the VIO method exhibits higher camera pose estimation error compared
with other three approaches. This is because the IMU may introduce noise and cumulative errors with movement,
which negatively affect the camera pose estimation. The inertial data can reduce robotic system errors when
the environment or the object’s properties cause significant variations in visual data during pose estimation.
However, the VIO method requires high-quality inertial data to improve camera registration. The IMU sensor
typically exhibits errors at the level of tens of centimeters [39], which is similar to the movement scale in our
application (sub-meter). However, this level of accuracy may not be sufficient for our application scenarios.

5.2.2  Two-domain rectification. In this section, we evaluate the performance of our two-domain rectification
approach for inspecting a Sample A’s curvy mesh screen in multiple iterations. We compare RoboCam with its
variant, called digital-rectification-only which does not rectify the physical camera pose. For each inspection
iteration, it only captures the image my; and uses the estimated pose of the my; for the image rendering. Figs. 12(a)
and (b) show the distance error between the planned and captured poses, and the overlap rate between the
captured image and the selected region wy, respectively, achieved by the digital-rectification-only and two-domain
rectification. In particular, the overlap rate is defined as a ratio of the number of pixels of the wy covered by the
captured image to the total number of pixels of wy. Fig. 12(a) shows that our proposed two-domain rectification

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article . Publication date: January 2025.



RoboCam: Model-Based Robotic Visual Sensing for Precise Inspection of Mesh Screens « 15

—_
(9]

100

E g 75

1.0 2

2 s

: g%

<

q 03 S 25

L . 0L e —
Digi-rect-only 2-domain rectify Digi-rect-only 2-domain rectify
(a) Pose distance errors. (b) Overlap rate.
Fig. 12. Distance errors and overlap rate over six iterations.
30{ —— Ground-truth 41 7

— === Predicted

E20 ou

5 N

B £

= =2

10 =
1 4

0
0 50 100 0 -
Sub-image index (ordered) Blender Trimesh Partition RoboCam
(a) Prediction of rendering latency. (b) Rendering latency.

Fig. 13. Image rendering performance. In (a), the prediction root mean square error (RMSE) between the ground-truth and
predicted latencies of 120 testing sub-images is 2.1 ms.

approach can achieve a 3x distance error reduction, compared with digital-rectification-only. From Fig. 12(b), we
can see that with the smaller distance error, our approach achieves a 1.4x average overlap rate improvement.

5.2.3 Parallel image rendering. We evaluate our greedy-based parallel image rendering approach. Specifically,
we create a training dataset of 400 mesh screen sub-images (100x100 pixels) to fit the quadratic polynomial
model offline, which takes the contrast, brightness, and number of object edges of the sub-image to estimate the
image rendering latency. Fig. 13(a) shows the ground-truth and predicted latencies of 120 testing sub-images. The
predictions track the ground truths well. These results imply that our model can predict the image rendering
latency with high accuracy.

We also compare our parallel image rendering approaches with the three baseline approaches including the
Blender, Trimesh, and partition approaches. Specifically, the Blender [1, 22] is a widely adopted open-source 3D
computer graphics software, while the Trimesh is an image rendering function available in the python library
Trimesh. We utilize Blender’s python API, along with the BSDF shader and the Eevee engine, for rendering
execution. The partition approach aims to assign the similar number of the sub-images to the workers without
considering the rendering latency. We create 24 processes in the workstation to serve as the workers and evaluate
the performance by six reference images. Fig. 13(b) shows the averaged latencies of the three approaches for
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rendering six Sample A’s mesh screen images with a resolution of 2104 x 1560. Each image is divided into 100
sub-images which are assigned to 24 workers (i.e., the CPU cores). From Fig. 13(b), the Blender approach has
the highest rendering latency time since it fully renders the geometry and complex lighting information. The
partition approach has lower latency than the Trimesh approach due to the exploitation of the parallel rendering.
Meanwhile, RoboCam achieves a low latency of around 0.3 seconds, making it 10x faster in image rendering than
Blender.

5.2.4 Reference-based inspection. In this section, we compare RoboCam’s reference-based inspection approach
with the following four approaches. (1) Sliding window is a computer vision-based defect inspection approach
proposed in [46]. It applies the image threshold processing and sliding window with a size of 10 x 10 pixels to scan
the images line by line. Then, the pores located in a window are classified as clogged if the window has more black
0-pixels than white 1-pixels. (2) Mask R-CNN proposed in [48] employs R-CNN to extract the bounding boxes
of the clogged pores. Then, it uses a fully connected layer to segment out the clogged pores from the extracted
boxes. (3) PSPNet is an industrial defect inspection approach proposed in [15], which employs the deep image
segmentation framework, called PSPNet, to segment out the clogged pore regions. Both learning-based approaches
(i.e., the Mask R-CNN and PSPNet) use a ResNet50 as the backbone CNN model. The backbone is pre-trained
using the widely used image object dataset COCO [2]. (4) InternImage is a state-of-the-art image segmentation
model pre-trained using the ADE20K dataset [8], utilizing the deformable convolution operators [45]. We re-train
the models for clogged pore detection in our application, using a mix of real and synthesized images. Specifically,
200 synthetic images (2104 x 1560 pixels), with a random distribution of clogged pores, are generated from a
CAD model. Additionally, we collect and manually label 40 real images from mesh screens of Samples A and B,
categorizing each pixel as clogged or unclogged. Moreover, we employ the precision (%) and recall (%)
rates as the clogged pore inspection accuracy metrics, where TP, FP, and FN represent the numbers of true
positives, false positives and false negatives, respectively.

Fig. 14 presents the average and standard deviation of the precision and recall rates of three baseline and
RoboCam approaches in inspecting five mesh screens of the Samples A and B. RoboCam achieves the highest
average precision and recall rates with the lowest standard deviations among the approaches. For instance,
RoboCam has the precision and recall rates of 97.59% and 94.37%, respectively, which are 1.32x and 1.51x higher
than those of the PSPNet approach. Moreover, RoboCam achieves 1.29x and 1.37x higher precision and recall,
respectively, compared with the Internlmage model. This is because the image segmentation might not accurately
segment out clustered clogging with cluster patterns unseen in the training dataset. However, our approach
directly compares the actual pores in the captured image with the designed pores in the rendered image to
accurately detect the clogged pores.
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Table 1. End-to-end accuracy

Method Accuracy
Precision (%) Recall (%)
RoboCam (Aggregation + Voting) 92.35 94.95
Union 85.17 79.29

5.3 Overall Performance

5.3.1 End-to-end coverage. We assess RoboCam’s end-to-end inspection coverage and latency on a Sample A’s
curvy mesh screen which sizes 3.5 x 6.5cm? and consists of 2,287 pores. We compare RoboCam with its variant
(i.e., the digital-rectification-only approach) and the following three baselines. (1) Exhaustive search moves the
robotic arm in a grid search manner from bottom to top with a 1-cm interval to cover the target mesh screen.
(2) Offline plan divides the mesh screen into 15 equal-sized blocks, and defines the camera pose for each block.
(3) NBV [14] selects the next pose by choosing the one with the largest inspectable region from all possible
poses. Specifically, the NBV method generates a candidate pose set P, by generating one pose to each pixel in the
uninspected region of the 2D image plane C. The NBV method uses a brute-force approach to select the camera
pose with the largest inspectable region as the next inspection pose, continuing this process until full coverage is
achieved.

The above approaches iteratively inspect the mesh screen via multiple iterations. We define the inspection
coverage by the ratio of the number of the inspected pixels to the total number of pixels in the whole 2D image
plane C. Fig. 15 shows the coverage of RoboCam, exhaustive search, offline plan, and digital-rectification-only
approaches along the iterations. Moreover, RoboCam has the highest coverage among the four approaches.
For instance, after six iterations, RoboCam achieves 98% coverage, while the exhaustive search achieves 82.6%
coverage. Specifically, RoboCam’s variant (i.e., the digital-rectification-only approach) reaches the maximum
coverage of about 41% after three iterations. Then, its coverage remains the same along the iterations. This
result indicates that with the digital-rectification-only, the mesh screen may not be fully inspected even with
more iterations. The NBV method can achieve full coverage in a smaller number of iterations than RoboCam.
For example, NBV requires only 4 inspection iterations to reach 97.5% coverage, compared with RoboCam’s 7
iterations. However, as illustrated in Fig. 16, the time overhead for a single NBV iteration is nearly 21 hours,
whereas a single RoboCam iteration takes only 0.35 seconds. This is because the NBV method operates in a large
search space in our scenario, with size to 222,224. Note that in our scenario, the uninspected region C of a mesh
screen with dimensions 3.5 x 6.5 cm? contains 222,224 pixels. Differently, in the existing study [14], which uses
NBYV, the search space size is only 15. As such, the end-to-end latency reported in [14] is only 0.153 seconds.
These results show that RoboCam’s pose planning is effective in reducing the inspection time.

5.3.2 End-to-end accuracy. Table 1 shows the end-to-end precision and recall rates of RoboCam in detecting the
clogged pores of the above Sample A’s mesh screen. We can see that RoboCam can achieve 92.35% precision and
94.95% recall. We also compare RoboCam with a baseline approach called Union which merges the iterations’
inspection results without removal of repeated results. From Table 1, RoboCam achieves higher precision and
recall rates than those of the Union since the removal of repeatedly inspected pore results helps reduce the number
of false positives and false negatives in detecting clogged pores in overlapped inspectable regions. We further
obtain the precision-recall curve by adjusting the threshold value for the extraction of pores’ centroids from
the captured images. As shown in Fig. 17, the precision-recall curve indicates that the clogged pores inspection
model achieves high precision (i.e., 0.8923 to 1) over a wide range of recall values from 0 to 0.9553.
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Cam.

5.3.3 End-to-end latency. We measure the end-to-end latency of RoboCam which includes the latencies of
the individual processes including the computation, data transmission, and robotic arm moving. Specifically,
RoboCam sends image data to the backend computing workstation using 510Mb/s Wi-Fi. Our measurement
results show that RoboCam spends about a total latency of 528 seconds to fully inspect the entire mold Sample A
in 33 iterations. For Sample B, one iteration can cover the full flat mesh screen, which has a latency of about
16 seconds. Furthermore, we also study how the mesh screen size affects the inspection latency of RoboCam.
Specifically, we select an initial square region of the Sample A’s mesh screen with a size of 7cm? for the pore
inspection. Then, we expand the initial region to create larger regions with the size up to 23cm? and repeat the
inspections. Fig. 18 presents the total inspection latency under the different mesh screen sizes. From Fig. 18,
the latency generally increases with the mesh screen size. This is because RoboCam needs more iterations to
inspect larger mesh screen regions, resulting in higher end-to-end latency. Moreover, the reason of the non-linear
increase of the latency is that the mesh screen regions with a different size may have different curvy property.

5.4 Pore size measurements

In this paper, the design of RoboCam mainly focuses on clogged pore detection, which is a key inspection task for
ensuring the quality of the mesh screen products. We provide an additional function to perform the automated
fine-grained pore size measurement, which can be essential in certain 3D-printed mesh screen manufacturing
systems. For instance, the pore size of the mesh screens used for the oil and water separation greatly affects the
oil absorption efficiency [29]. Such a size measurement task is beyond the capability of manual inspection, due to
the small size and high density of the mesh screen pores.

We employ an image processing algorithm to extract pore contours within the inspectable region of the
captured images. The pore sizes are determined by counting the number of pixels within each contour, averaging
10 pixels. We then convert the pore size from pixels to area units using a pixel-to-area conversion baseline. This
baseline is obtained by capturing an image of a ruler under the same camera settings, ensuring accurate conversion.
However, as the robotic arm continuously moves the camera, the pixel-to-area conversion may vary. To address
this, we utilize the area unit information from the CAD model to obtain a pixel-to-area conversion baseline for
each captured image. Specifically, we calculate the baseline by comparing the area size of the inspectable region
in the CAD model with its pixel size in the captured image. This conversion is then applied to convert the pore
sizes from pixels to area units.

We further evaluate the performance of pore size measurements. A pre-calibrated USB digital microscope is
utilized for manual measurement of each pore’s size to validate the accuracy of pore size measurements. Fig. 19
presents the scatter plot comparing the ground-truth pore sizes with the measured sizes of 62 pores, illustrating a
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racy (RMSE=0.017).

close match with a root mean square error of 0.017. This result shows that our method is capable of precisely
measuring pore sizes at a sub-millimeter scale. Fig. 20 presents a histogram of the pore size distribution for
Sample A’s mesh screens. Fig. 20 shows that most pore sizes are close to 0.283mm?, the designed pore size of the
manufactured molds. These measurement results can be useful for the further improvement of the 3D printer’s
configuration.

6 CONCLUSION

This paper presents RoboCam, a model-based robotic visual sensing system designed for sub-millimeter pores
inspection on the 3D-printed mesh screens. To inspect sub-millimeter, densely, and non-uniform pores, RoboCam
compares captured images with rendered images to detect clogged pores. To fully inspect the customized curved
mesh screen, RoboCam uses a robotic arm to move the camera along computed waypoints. With the proposed
rectification approaches in both the physical and digital domains, the inconsistencies between the rendered and
captured images are rectified at run time. This addresses a key challenge caused by the inherent movement errors
of the robotic system. RoboCam achieves a recall rate of 94.95% within 528 seconds latency for inspecting an
entire mesh screen mold with 13,000 designed pores. It also outperforms a CNN-based approach by more than
1.51x in terms of inspection accuracy.
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A APPENDIX
A.1  Setting of dgo

The camera-object distance d., affects the size of the mesh screen pores appeared in the captured and rendered
images. Fig. 21(a) shows the distributions of the pore size in the rendered images of a flat mesh screen under
various settings of d.,. Note that we employ a CV-based contour extraction approach on the rendered images to
extract the pore regions, and then count the number of pixels inside each extracted region as the pore size. From
Fig. 21(a), the pore size decreases with d,. In general, the pores with a larger size are easier to inspect. Thus,
a lower value of d, is desirable to achieve high inspection accuracy. However, with d., < 0.2m, the proposed
model-based PnP approach (cf. §4.2.1) fails to estimate the camera poses of the captured images. This is because
the mesh screen contours may fall outside the camera’s field of view when the camera maintains a too close
distance from the mesh screen. As a result, the 2D-3D corresponding pairs can not be obtained for the camera
pose estimation. Thus, RoboCam adopts the d., of 0.2m which leads to a good balance between the pore size (i.e.,
inspection accuracy) and the pose estimation accuracy.
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A2  Setting of [

The setting of Tj affects the size of the inspectable region which is selected for detecting the clogged pores in each
inspection iteration. Fig. 21(b) and Fig. 21(c) show the quantity and size distribution of the pores in the inspectable
regions of a curvy mesh screen under various settings of Tj. From Fig. 21(b), the number of pores increases with
T,. This is because with a higher value of T;, more CAD model faces are selected to form the inspectable region
with more pores. Thus, a higher value of 7} may help reduce the end-to-end inspection latency because the larger
mesh screen regions are inspected in the iterations. Meanwhile, from Fig. 21(c), the distribution range of the
pore sizes varies under different settings of T;. The mesh screen’s CAD model is designed to generate the pores
with an identical size. Thus, the pore sizes of the printed mesh screen should be concentrated in a narrow range.
A larger distribution range of the pore size indicates that the selected regions may include more pores which
appear distorted on the captured image. Inspecting such distorted pores may reduce the recall rate in detecting
the clogged pores. Therefore, the setting of 7} should be chosen to achieve a narrow distribution range of the
pore size. For RoboCam, we set the Tj to 0.2 which leads to a good balance between the number of the inspected
pores and their distribution size range.

A.3 Notation

Notation in this paper is summarized in Table 2.
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Table 2. Notation

Notation | Definition
S the constant transformation error of robotic system
Py the planned camera pose in iteration k
P, an initial camera pose for dynamic movement error profiling
P, the m*" target camera pose for dynamic movement error profiling
P the estimated camera pose from the image captured in P,
dm the euclidean distance between P,, and ﬁm
Cm the cosine distance between P,, and P,,
P;; the j*" target camera pose for i" initial camera pose for investigating difference
between the movement distance errors
d;k the distance between P;; and P; for a given i
Wk the largest uninspected mesh screen region before iteration k
C the projected 2D image plane of wy
K the camera’s intrinsic parameters
w the window size used for dividing C
deo the camera-object distance
Py the actual camera pose when the robotic system moves to the planned pose Py
my the rendered image based on the planned pose Py
Mk the image captured at Py,
®yp_op | the set of 2D-2D corresponding pairs between my and my
Py the rectified camera pose based on Py
Tpi1 the movement error when the robotic system moves to Py
Pry the estimated pose of the image my,
Torr the estimated movement error when the robotic system moves to Py
M2 the captured image when the robotic system moves to Py
Y a quadratic polynomial model estimates sub-image rendering latency
n the number of workers for parallel sub-image rendering
fu the camera pose vector for image my.,
S, the CAD model face set
S; the i*" face of the S,
u; the normal vector of s;
S the set of selected faces for the inspectable region
T a threshold value for the selection of S
M the number of rendered image pores
N the number of captured image pores
Pr the set of rendered image pores’ positions
P the set of captured image pores’ positions
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