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Abstract—Autonomous driving (AD) systems demand high
computational power, leading to substantial carbon emissions
from power usage. Beyond emissions related to power usage,
embodied carbon from car-borne battery manufacturing is also
a major concern. Repeated battery charging cycles accelerate
capacity degradation, shorten battery lifespan, and ultimately
necessitate battery replacement, which results in additional
embodied carbon emissions. Moreover, battery degradation is
affected by environmental factors such as ambient temperature
and charging current, making it difficult to predict. To reduce
both power usage and embodied carbon emissions, we propose
LCAD, a low-carbon autonomous driving computing system via
adaptive solar battery systems. LCAD harvests solar energy
to reduce carbon emissions from fossil power usage. To miti-
gate embodied carbon from battery degradation, it dynamically
switches the car-borne battery between solar charging and
non-charging options. However, achieving optimal switching is
challenging due to intricate interdependencies among factors
such as temperature variations and fluctuating solar energy
availability. To this end, we employ deep reinforcement learning
(DRL) to learn an optimal switching policy. Real-world trace-
driven simulation results demonstrate that LCAD significantly
reduces overall carbon emissions compared with the conventional
design without solar energy and battery and the other battery
charging control approaches.

Index Terms—Autonomous Driving, Carbon Emissions, Em-
bodied Carbon

I. INTRODUCTION

The recent advances in artificial intelligence (AI) strengthen
the confidence in realizing autonomous driving. Various com-
mercial autonomous driving agents (e.g., Tesla Autopilot
and Baidu Apollo) have already been deployed on vehi-
cles. However, autonomous driving leads to higher power
usage. The highest level (L5) autonomous driving (AD) re-
quires over 2,000 TOPS computing, consuming 0.75 kW of
power [1]. Given Singapore’s power grid carbon intensity
of 467 gCO2/kWh [2], L5 AI emits approximately 350.25
gCO2/h. In contrast, a human driver emits only 28.7 gCO2/h
from respiration [3]. This means L5 AI has about 12 times the
carbon footprint of a human driver. It generates a significant
negative impact on the mission of achieving carbon neutral-
ity and mitigating climate change, especially as autonomous
driving becomes increasingly adopted.

In addition to emissions from the power grid, the em-
bodied carbon associated with batteries and hardware also
represents a significant environmental concern [4]. Embodied
carbon is produced during the manufacturing, transportation,
and disposal of equipment. Unlike emissions from the power
grid, embodied carbon is incurred upfront and cannot be

reduced after production. To mitigate the environmental impact
of embodied carbon, extending the operational lifespan of
components can be beneficial. A longer operational lifespan
amortizes the one-time embodied carbon over a longer period
of use, effectively reducing the embodied carbon emission
per unit usage. Therefore, lifespan optimization serves as
a potential strategy for reducing environmental impact. In
autonomous driving, components such as the vehicle body and
onboard computing units are often viewed to have lifespans
that do not depend on usage, leaving limited opportunities for
optimization. In contrast, the car-borne battery, which powers
AI computations, undergoes electrochemical cycles that lead
to battery degradation, making its lifespan highly dependent
on usage and operational conditions. This variability in battery
degradation provides an opportunity for optimization. Reduc-
ing battery degradation lowers the embodied carbon emission
per usage, thereby mitigating its environmental impact.

In this paper, we propose LCAD, a low-carbon autonomous
driving computing system via adaptive solar battery systems.
It is designed to reduce the combined impact of power grid
emissions and embodied carbon emissions arising from battery
degradation. To reduce power grid emissions, LCAD uses a
roof-mounted solar panel to harvest solar energy and store it in
a car-borne battery that exclusively powers AI computations.
Ideally, AI computations are powered entirely by carbon-free
energy, eliminating the emissions associated with the use of
grid electricity. However, since the amount of harvested solar
energy fluctuates with weather and driving conditions, the
stored energy may occasionally become insufficient to support
AI computations. In such cases, the system draws power from
the vehicle’s electrokinetic battery, assumed to be charged by
the power grid, thereby incurring power grid emissions.

However, charging cycles lead to battery degradation, which
shortens lifespan, thereby leading to embodied carbon emis-
sions. The battery degradation caused by solar charging is
highly affected by battery temperature. High temperatures
accelerate chemical side reactions, leading to faster degrada-
tion, while low temperatures reduce ion mobility, limiting the
battery’s effective capacity. As a result, charging under ex-
treme temperatures may lead to significant battery degradation,
potentially causing its embodied carbon emission per charge
to exceed the emission of the power grid. To minimize over-
all carbon emissions, LCAD dynamically switches between
charging and non-charging options for the car-borne battery,
considering the impact of temperature on battery degradation
while balancing the trade-off between embodied and power



grid carbon emission.
Achieving optimal switching is challenging due to intricate

interdependencies among various factors. Battery temperature
is affected not only by ambient conditions but also by the
charging process, creating a feedback loop that complicates
the switching decision. To this end, we employ deep re-
inforcement learning (DRL) to learn an effective long-term
switching policy. However, the typical online training of DRL
requires excessive time to converge, potentially leading to high
carbon emissions during the early training phase. To address
these challenges, we adopt an offline training approach that
leverages data traces to train the DRL agent. Finally, the
trained agent is evaluated in simulation environments.

We conduct extensive real-trace-driven simulations to eval-
uate the effectiveness of our proposed DRL method against
three baselines. The simulation results show that our method
can effectively reduce total carbon emissions by 20.4%.

II. RELATED WORK

Many studies have focused on investigating carbon emis-
sions. One research direction focuses on reducing system
operational power usage to lower carbon emissions [5]–[7].
The study in [5] proposes a DRL-based scheduling strategy to
dynamically allocate AI tasks with varying latency require-
ments and energy consumption across heterogeneous edge
devices, reducing overall energy usage to lower carbon emis-
sions while ensuring task deadlines are met. ECMS [6] assigns
compute-intensive tasks to high-performance servers for low
latency while offloading low-priority tasks to energy-efficient
nodes, reducing power spikes and overall energy consumption.
UPTPU [7] dynamically disables underutilized Multiply-And-
Accumulate units based on batch size, eliminating unnecessary
power consumption from zero-weight computations to reduce
carbon emissions.

Another direction focuses on evaluating the carbon footprint
of AI and identifying opportunities to reduce emissions [8]–
[10]. The study in [8] proposes Spatial-Temporal Embodied
Carbon (STEC) models to enhance the accuracy of embodied
carbon accounting for computer systems by considering spatial
and temporal variations in electricity carbon intensity. The
study in [9] quantifies the carbon emissions from training and
tuning large AI models based on hardware power consumption.
LLMCarbon [10] estimates operational and embodied carbon
emissions from the hardware used in LLM training. In con-
trast, our paper aims to minimize the total carbon emissions
of the autonomous driving system, including both computing-
related and embodied carbon emissions.

Reinforcement learning (RL) has been applied to control
the system configuration in autonomous driving [11]–[13].
The study in [11] applies deep reinforcement learning to
control vehicle acceleration and steering at busy roundabouts
by observing map information, routing trajectories, detected
objects, and historical ego states. The study in [12] uses
reinforcement learning to observe vehicle speeds, positions,
and lane-change behaviors, making speed and lane-change

decisions to maintain steady-state autonomous driving. EC-
Seg [13] employs an RL agent to switch between edge and
cloud processing options to achieve high image segmentation
accuracy in autonomous vehicles. Our work adopts a similar
DRL-based control approach for a switching strategy to reduce
carbon emissions in AD systems while considering the impact
of battery temperature.

III. THE PROPOSED METHOD

This section presents LCAD, which adopts a DRL agent
to control battery charging for solar energy storage, aiming
to minimize the total carbon emission in AD systems. In
the following, we first present the system design. Next, we
formulate the optimization problem and model it as a Markov
Decision Process (MDP). Finally, we propose a DRL-based
method to solve it.

A. System Design

We consider an AD system equipped with a solar panel.
Note that a vehicle typically has two batteries: a high-voltage
electrokinetic battery used for locomotion and a low-voltage
auxiliary battery used for the vehicle’s electronic systems [14].
In this paper, the low-voltage battery is used to store solar
energy, while the electrokinetic battery is charged using power
grid electricity and support the AD system only when solar
energy is insufficient. Fig. 1 provides an overview of the
LCAD design, which accounts for carbon emissions from
two sources: embodied carbon emissions and power grid
emissions.
∎ Embodied carbon: While our system harvests carbon-

free solar energy to exclusively power AI computations in
the AD system, embodied carbon emissions arise from low-
voltage battery degradation. The charging process induces
degradation due to electrochemical side reactions and thermal
stress, which are key contributors to embodied carbon emis-
sion. Charging under high battery temperatures accelerates
degradation, thus increasing the embodied carbon emissions.
Battery temperature is affected by ambient temperature and
charging current. High ambient temperatures impair the bat-
tery’s ability to dissipate heat, while high charging currents
generate more internal heat due to resistive losses.
∎ Power grid carbon: When the battery level is insufficient,

AI computations fall back on electricity pre-charged from the
grid, which relies on a mix of energy sources including fossil
fuels, thereby resulting in power grid carbon emissions. This
electricity is stored in the vehicle’s electrokinetic battery. The
pre-charging process refers to grid-based charging conducted
in well-controlled environments. As a result, we assume this
process causes negligible degradation of the electrokinetic
battery. Therefore, electricity obtained through pre-charging
does not lead to embodied carbon emissions.
∎ Switching: The system has two options: charging and

non-charging. The charging option harvests the solar energy
which is carbon-free, while battery charging can cause em-
bodied carbon emissions. The non-charging option avoids the
embodied carbon emissions but may lead to insufficient battery
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Fig. 1: Design overview of LCAD.

energy. As a result, AI computations depend on grid electricity,
which introduces power grid emissions. The charging option,
when operating under high battery temperatures, may result in
embodied carbon emission exceeding those from power grid
emissions. To minimize overall carbon emissions, including
both embodied and power grid emissions, we propose a DRL-
based controller that dynamically switches between charging
and non-charging options, based on ambient temperature and
solar charging current.

B. Problem Formulation

Time is divided into intervals with identical duration of
τ ≥ S minutes, which is referred to as switching period. At
the beginning of switching period, called time step, the LCAD
selects the charging or non-charging options for solar energy in
response to the changes of two exogenous stochastic factors,
including the time-varying ambient temperature, denoted by
T (t), and the current of solar energy, denoted by ξ(t). Denote
Tk = T (kτ) and ξk = ξ(kτ), where k ∈ Z≥0. Let T (k+1)τt=kτ and
ξ
(k+1)τ
t=kτ denote the trace of T (t) and ξ(t) over t ∈ [kτ, (k +
1)τ). At the kth time step, let ωk = π(ξk, Tk, . . . , ξ0, T0)
denote the switching decision based on the historical measure-
ments (ξk, Tk, . . . , ξ0, T0). The ωk represents the decisions,
including the charging and non-charging options, which jointly
affect the carbon emission during the switching period. For a
time horizon of K switching periods, where K corresponds
to the duration of the full battery lifespan, the switching aims
to solve the policy optimization problem:

π∗ = argmin
π∈Π

Eξ,T [
1

K

K−1

∑
k=0

Ck (ωk, ξ
(k+1)τ
t=kτ , T

(k+1)τ
t=kτ )] , (1)

where Π represents the policy space; ωk =
π(ξk, Tk, . . . , ξ0, T0); Eξ,T denotes the expectation over
the two stochastic processes of T (t) and ξ(t); the Ck(⋅)
denotes the carbon emissions in the kth switching period. The
objective is to find the optimal policy π∗ that minimizes the
carbon emissions per switching period.

C. System Carbon Emissions

The Ck(⋅) consists of two components: embodied carbon
emissions and power grid carbon emissions.

1) Embodied carbon: The Ck
e denotes the embodied carbon

emission in the kth period and is computed as Ck
e =∆Ck ⋅Cunit ⋅

Ek
c , where ∆Ck represents the battery lifespan degradation

per kilowatt-hour (kWh) of solar charging, Cunit is the carbon

emission per battery manufactured, and Ek
c is the amount

of charged solar energy in the kth period. The degradation
∆Ck is affected by the battery temperature Tb during the
kth period. We adopt a widely used empirical model [15]
to simulate battery degradation as a function of temperature:
∆Ck = (a ⋅T 2

b +b ⋅Tb+c) ⋅exp(d ⋅Tb+e) ⋅f , where a, b, c, d, e,
and f are empirical parameters obtained from experimental
data. This model indicates that charging under excessively high
or low temperatures significantly increases embodied carbon
emissions. The Cunit is related to battery materials and the
manufacturing process. It is treated as a constant in this paper.

2) Power grid carbon: The power grid carbon emissions
Ck

c represent the carbon emissions from pre-charged electricity
used in the kth period. It is computed as Ck

c = Ek
p ⋅ Cgrid.

Cgrid denotes the grid carbon intensity, defined as the carbon
emissions per kWh of electricity generated from the grid. The
value of Cgrid varies across countries due to differences in
their power generation mixes, such as reliance on coal, natural
gas, or renewable energy. In this paper, we assume a fixed
value for Cgrid, as vehicles are typically operated within a
single country. The value of Ek

p represents the amount of pre-
charged energy used in the kth period, which is defined as Ek

p =
max(0,Etask−Ek). The Etask refers to the energy required for
AI computation. It is assumed to be a fixed value throughout
the operation. The Ek represents the available solar energy
stored in the battery in the kth period. The decision to charge
using solar energy is made by comparing ∆Ck ⋅Cunit with Cgrid,
in order to select the option with lower carbon emissions.

D. Battery Temperature

The battery temperature Tb is affected by two dynamic
environmental factors: the ambient temperature T and the
solar charging current I . The charging current generates heat
through internal resistance, converting electrical energy into
thermal energy. Moreover, the ambient temperature T affects
the rate at which the battery dissipates heat. The Tb is
determined by the combined effects of internally generated
heat and externally dissipated heat.

In this paper, we simulate the battery temperature at each
time step using the following first-order heat transfer equa-
tion: Tb[k + 1] = Tb[k] − g(Tb[k] − T [k + 1]) + hI2[k + 1]
where Tb[k] represents the battery temperature at timestamp
k, T [k + 1] is the ambient temperature, and I[k] denotes
the charging current [16]. This equation indicates that the
battery temperature at time step k+1 is jointly determined
by the ambient temperature and charging current at time
step k+1, as well as the battery temperature at time step k.
This equation is applied iteratively to simulate the battery
temperature dynamics over time. The parameters g and h
depend on the battery’s physical characteristics, including its
size, thermal properties, and cooling conditions. It is difficult
to predict Tb[k + 1] due to its joint dependence on multiple
dynamic factors. To address the challenge, we employ a DRL-
based approach for making charging decisions under ambient
temperature and charging current uncertainty.



E. MDP Formulation

System state: At time step k, the system state, denoted by
xk, is a vector xk = [T k

b , Tk, Ik,Ek], where T k
b represents the

battery temperature in the last period, Ik represents the har-
vested solar charging current in the last period, Tk represents
the ambient temperature at the beginning of the kth period,
and Ek represents the remaining solar energy in the battery
at the beginning of the kth period. A value of T k

b that is too
high or too low can accelerate battery degradation, leading to
large embodied carbon emissions. A large Tk indicates that
the battery dissipates heat more slowly. A larger Ik represents
a higher charging current, which can increase the battery
temperature at time step k. A large value of Ek suggests that
the battery has enough stored solar energy, allowing LCAD to
avoid using pre-charged grid electricity to reduce power grid
carbon emission.

Switching action: The switching action, denoted by ak ∈
{0,1}, represents the choice between charging and not charg-
ing options to be executed in the current period.

Reward function: When an action ak is performed at the
current time step and the system state is xk, let Ck(xk, ak)
denote the total carbon emissions. Ck(xk, ak) varies in re-
sponse to changes ak and xk.

F. DRL Approach

We adopt the learning framework of a DRL algorithm,
called the proximal policy optimization (PPO) [17] to learn the
optimal switching policy. PPO directly learns from a stochastic
distribution, leading to more effective exploration, and adopts
a clipping mechanism to improve efficiency compared with
Deep Q-Networks and Trust Region Policy Optimization. Un-
der the typical setting, a PPO agent learns the optimal policy
during the online interactions with the controlled system.
However, for the formulated switching problem, the online
DRL scheme faces a challenge, as PPO agent training requires
a long time to learn the policy, which may lead to unnecessary
carbon emissions due to trials and errors. To address this
challenge, we adopt an offline training approach, as illustrated
in Fig. 2, which consists of three steps. First, we collect real
data traces from the environment. Second, we use the collected
data and a widely used empirical model to drive the offline
training of the PPO agent. Third, the trained PPO agent is
evaluated in simulation to make switching decisions.

IV. EVALUATION

This section presents the experiment settings and execution
performance of LCAD.

A. Experiment Setup

We use over two hours of self-collected, real-world so-
lar energy traces to simulate the available solar energy in
an autonomous driving system. Specifically, to collect these
traces, we built a solar energy harvesting testbed, as shown in
Fig. 3. The testbed comprises monocrystalline solar panels and
a maximum power point tracking (MPPT) charge controller,
which supports up to 10 A of current to optimize power

(1) Data collection

Action

State

Reward

(2) Offline training
Runtime action

Runtime state

(3) Online control

DRL agent

Data traces

Empirical model

Solar testbed

Fig. 2: Workflow of DRL-based switching.
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Charge 

controller

Battery

Fig. 3: Solar panel system.

TABLE I: Parameter set-
tings for simulation

Param Value
a 8.581 × 10−6

b −5.102 × 10−3

c 0.7589

d −6.7 × 10−3

e 2.344
f 1.5
g 0.208
h 0.042

extraction and regulate the charging process. The MPPT
charge controller is capable of recording harvested solar en-
ergy data, including the energy and charging current, at 10-
minute intervals. A lithium iron phosphate battery is included
to store the harvested solar energy. To emulate realistic driving
conditions, we mount a 100 W solar panel on a lorry. The panel
lies flat horizontally without any sun-tracking mechanism. The
lorry continuously travels through various environments such
as tunnels, overpasses, and open streets, at speeds of up to 60
km/h for 90 minutes on a sunny day.

We use over 7,030 minutes of vehicle temperature data
from a public dataset to simulate the ambient temperature
in our simulation [18]. The PPO agents are implemented
using the Python library Stable-Baselines3 version 2.4.1. We
assume each autonomous driving system is deployed on a
Jetson Orin device, whose peak power consumption is 60
Wh per hour. Accordingly, we set the energy consumption
of the AD system to 60 Wh per hour. The carbon emission
per battery manufactured Cunit is set to 150 kgCO2 [4]. The
Cgrid is set to 367 gCO2/kWh based on 2024 data from the
United States [19]. The corresponding hyperparameter settings
for battery degradation and the heat transfer equation are
presented in Table I.

B. DRL Training Performance

We build a PPO-based DRL model with an input layer, two
hidden layers and an output layer. The two hidden layers have
64 and 64 ReLUs, respectively. The Adam optimizer with a
learning rate of 10−4 is used for training. The PPO agent is
trained with a likelihood ratio clipping set at 0.25 to balance
stability during the learning process. Moreover, the switching
period τ is set to 10 minutes. At the beginning of every
period, the DRL agent observes a system state x, including the
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battery temperature, ambient temperature, charging current,
and remaining solar energy. Then, it selects an action a ∈ {0,1}
to choose the charging or no charging. Subsequently, the
embodied carbon and computing carbon emissions are utilized
to compute intermediate reward values.

The offline training is conducted for 200 episodes, each
of which includes 1,000 switching periods. Fig. 4 shows the
PPO training traces of the rewards with various state inputs.
Along the training episodes, the reward trace increases and
then becomes flat under different inputs. The results show that
the PPO agent can converge after a certain number of training
episodes.

C. Execution Performance

To assess the efficacy of the proposed LCAD system, we
compare our LCAD with three baseline methods as follows:
w/o charge: The vehicle does not charge its battery using solar
energy and always relies on power grid electricity to sup-
port AI computation tasks. Charge: The vehicle continuously
charges its battery using solar energy. MPC: The decision
to charge or not is determined using a model predictive
control (MPC) strategy, a widely adopted method for solving
sequential decision-making problems [20]. MPC leverages
autoregressive moving average (ARMA) models to forecast
ambient temperature, solar energy, and solar charging current.
These forecasts are used to estimate future carbon emissions
over a horizon length of 20 switching periods. The action
that yields the lowest carbon emissions in the immediate next
period is selected.

Fig. 5 presents the average carbon emission in every 10
minutes for the proposed LCAD and two baseline approaches
over a 10000 switching period. The w/o charge approach can
achieve 3.67 gCO2 across all periods. The charge approach
results in the highest carbon emissions of 7.78 gCO2, as
continuous charging can increase battery temperature and
accelerate battery degradation, leading to higher embodied
carbon emissions. Compared with the three baseline meth-
ods, our approach achieves the lowest carbon emissions and
outperforms the w/o charging approach by over 20.4%. This
improvement is attributed to the DRL agent’s ability to make
informed charging decisions that avoid severe battery degra-
dation when the battery temperature is high.

Moreover, on the Jetson Orin autonomous driving computer
unit, the MPC controller takes 718 seconds on average to
determine an action, while the DRL controller takes only 0.005
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seconds. Since each switching period is only 600 seconds, the
MPC approach violates the timeliness requirements. Given that
autonomous driving is a resource-constrained application, the
MPC method is unsuitable for practical deployment. Assum-
ing a 60 W power draw, the 718-second computation adds
approximately 11.97 Wh per decision, resulting in around
4.39 g of CO2 emissions, which may even exceed the carbon
savings achieved by the decision. This indicates that the MPC
approach introduces additional carbon emissions.

D. Evaluation in Different Power Grid Emission

We further conduct experiments to investigate the perfor-
mance of LCAD under different power grid carbon intensities.
Since the value of Cgrid varies across countries, we simulate
a range of Cgrid values from 50 to 700 gCO2/kWh, with an
interval of 100. This range reflects real-world grid carbon
intensities. For example, France has a low grid emission of 56
gCO2/kWh due to its reliance on nuclear energy, while India
reaches up to 700 gCO2/kWh owing to its coal-dominated
power generation [21]. For each simulated scenario, we train
a DRL agent and evaluate its performance under the corre-
sponding grid emission setting.

Fig. 6 presents the average carbon emissions of LCAD
under different Cgrid values. When Cgrid is 200 gCO2/kWh, the
average carbon emission is as low as 1 g, because the DRL
agent consistently selects the non-charging option. When Cgrid
exceeds 500 gCO2/kWh, the carbon emissions remain nearly
constant. This is because the DRL agent always chooses to
charge, making the system less sensitive to further increases
in grid emission. Therefore, LCAD can provide significant
carbon reduction benefits in countries where Cgrid is higher
than 300 gCO2/kWh.

E. Evaluation in Different Ambient Temperature

We further conduct experiments to evaluate the performance
of LCAD under different ambient temperature conditions.
Based on a public vehicle temperature dataset with artificial
biases, we generate temperature traces with varying average
values to emulate ambient conditions reflecting real-world
seasonal and geographical variations. Fig. 7 presents the aver-
age carbon emissions of LCAD in each period under various
average ambient temperatures. When the average temperature
is below 13 ○C or above 33 ○C, the carbon emission reaches
3.67 g, indicating that LCAD consistently decides not to
charge using solar energy to avoid severe battery degradation.
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Fig. 8: Impact of solar irradiation on LCAD performance.

Therefore, LCAD provides carbon reduction benefits when the
ambient temperature is between 13 ○C and 33 ○C.

F. Evaluation in Different Solar Irradiations

The harvested energy and charging current of solar panels
may vary across cities at different latitudes. Solar irradiation
is closely related to the performance of harvested energy from
solar panels [22]. Note that the solar irradiation is highly
affected by latitude. Due to the Earth’s axial tilt, cities at
lower latitudes receive higher solar irradiance. For instance,
cities near the equator receive more consistent solar irradiation
compared with those located closer to the poles. We collect the
solar irradiation data in five cities with varying latitudes from
the Global Solar Atlas [23], which is a global solar energy
platform.

Fig. 8(a) presents the latitudes of five cities located at
approximately sea level and their corresponding average daily
global horizontal irradiation over a 10-year period. As latitude
increases, solar irradiation decreases due to reduced direct
sunlight. For example, the solar irradiation in Bangkok (lati-
tude 13.45°) is 1.98× that of Edinburgh (latitude 55.57°). To
further analyze the effectiveness of LCAD under varying solar
irradiations, we simulate a series of harvested energy traces
by scaling the original trace to different irradiation levels,
ranging from 1 to 5 kWh/m2 in steps of 1. Specifically, we
apply a uniform scaling method [24], adjusting the harvested
energy and charging current proportionally based on the target
solar irradiation level. To better understand the impact of
solar energy, we adopt ambient temperature traces with an
average value of 23 ○C, as used in § IV-E, to evaluate system
performance.

Fig. 8(b) presents the average carbon emission of each
switching period under different solar irradiation. When the
average solar irradiation increases from 1 to 4 kWh/m2, the
carbon emissions gradually decrease, as LCAD is able to
harvest more solar energy to power the autonomous driving
system. However, when the irradiation reaches 5 kWh/m2,
carbon emissions rise. This is because excessive solar energy
results in a higher charging current, which can increase battery
temperature and induce additional embodied carbon emissions
due to battery degradation. These results indicate that while
increasing solar irradiation generally benefits carbon reduction,
effective thermal management becomes crucial under high
solar input conditions.

G. System Carbon Reduction
We further evaluate the total carbon emissions of the LCAD

system against a conventional design that relies solely on grid
electricity for AI computation across different countries with
different Cgrid, without solar integration. The generation of
solar energy is a carbon-free process, but the manufacturing
of solar panels results in carbon emissions. The embodied
carbon of a monocrystalline silicon solar panel is measured
at 127.3 kgCO2 per square meter [25]. We assume that both
the vehicle and the integrated solar panel have a lifespan of
10 years. During this period, the vehicle is assumed to operate
for 5 hours per day. We simulate the LCAD system over a 10-
year period, incorporating the embodied carbon of the solar
panel, and compare the carbon emission with those of the
conventional design.

Table II presents the total carbon emissions of the LCAD
system and the conventional design across different coun-
tries [21]. Under USA’s Cgrid, the LCAD system produces
lower total carbon emissions (382.1 kgCO2) over a 10-year
period compared with the conventional grid-only design (401.8
kgCO2). Under Singapore’s Cgrid, the LCAD system emits
411.9 kgCO2, compared with 511.4 kg from the grid-only
design. Under China’s higher Cgrid, LCAD emits 426.1 kgCO2,
compared with 637.3 kg from the grid-only design, achieving
a 33.1% reduction. These results indicate that LCAD provides
greater carbon savings in regions with higher grid carbon
intensity.

TABLE II: Total carbon emissions over a 10-year period across
countries

Country Cgrid Approach Emissions (kgCO2) Saving (%)

USA 367 LCAD 382.1 4.9grid-only 401.8

Singapore 467 LCAD 411.9 19.5grid-only 511.4

China 582 LCAD 426.1 33.1grid-only 637.3

V. CONCLUSION

This paper presents LCAD, a low-carbon autonomous driv-
ing computing system via adaptive solar battery systems. In
particular, this paper considers the embodied carbon emissions
of the autonomous driving system. We formulate an MDP to
minimize the carbon emissions of autonomous driving, con-
sidering both power grid emissions and the embodied carbon
associated with battery degradation, under dynamic variations
in solar energy availability and ambient temperature. To ad-
dress this challenge, we apply deep reinforcement learning to
learn an optimal solar energy charging policy. Our trace-driven
simulations demonstrate that LCAD can effectively reduce the
carbon emissions of autonomous driving and achieves lower
total emissions compared with three charging control baseline
approaches and the conventional design without using solar
energy and battery.
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