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ABSTRACT
Deep reinforcement learning (DRL) has shown good performance
in data center cooling control for improving energy efficiency. The
main challenge in deploying the DRL agent to real-world data cen-
ters is how to quickly adapt the agent to the ever-changing system
with thermal safety compliance. Existing approaches rely on DRL’s
native fine-tuning or a learned data-driven dynamics model to assist
the adaptation. However, they require long-term unsafe exploration
before the agent or the model can capture a new environment. This
paper proposes Phyllis, a physics-informed reinforcement learning
approach to assist the DRL agent’s lifelong learning under evolving
data center environment. Phyllis first identifies a transition model
to capture the data hall thermodynamics in the offline stage. When
the environment changes in the online stage, Phyllis assists the
adaptation by i) supervising safe data collection with the identi-
fied transition model, ii) fitting power usage and residual thermal
models, iii) pretraining the agent by interacting with these models,
and iv) deploying the agent for further fine-tuning. Phyllis uses
known physical laws to inform the transition and power models for
improving the extrapolation ability to unseen states. Extensive eval-
uation for two simulated data centers with different system changes
shows that Phyllis saves 5.7% to 13.8% energy usage compared with
feedback cooling control and adapts to new environments 8x to 10x
faster than fine-tuning with at most 0.74°C temperature overshoot.

CCS CONCEPTS
• Computing methodologies→ Online learning settings; Re-
inforcement learning; • Hardware→ Enterprise level and data
centers power issues.

KEYWORDS
Data centers, cooling control optimization, lifelong reinforcement
learning, safe exploration, domain adaptation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
e-Energy ’23, June 20–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0032-3/23/06.
https://doi.org/10.1145/3575813.3595189

ACM Reference Format:
Ruihang Wang, Zhiwei Cao, Xin Zhou, Yonggang Wen, and Rui Tan. 2023.
Phyllis: Physics-Informed Lifelong Reinforcement Learning for Data Center
Cooling Control. In The 14th ACM International Conference on Future Energy
Systems (e-Energy ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3575813.3595189

1 INTRODUCTION
The global data center (DC) industry has been growing rapidly to
support the Internet ecosystem. Such growth would require more
electricity to operate the information technology (IT) devices and
associated cooling systems. The IT devices consume electricity to
provide computing and storage services under the required thermal
conditions maintained by the cooling systems. Several reports have
estimated that DC electricity usage will triple or even quadruple by
2030 [2, 3]. To mitigate such growth and attain energy sustainability,
it is crucial to improve DC energy efficiency by developing and
deploying novel technologies and solutions.

Perpendicular to introducing energy-efficient facilities, we con-
sider cooling control optimization to improve DC energy efficiency.
The optimization aims to reduce the long-term average energy
usage subject to specified thermal conditions by periodically ad-
justing the air temperatures and mass flow rates supplied from the
computer room air conditioning (CRAC) units. This problem can
be modeled as a constrained Markov decision process (MDP) and
solved with the deep reinforcement learning (DRL) techniques [19,
22, 31, 34]. Compared with the traditional feedback controllers (e.g.,
the proportional–integral–derivative (PID) controller [39]) that only
maintain the temperature at the setpoint, the DRL-based solutions
can optimize the expectation of a reward that jointly captures the
time-averaged DC energy usage and the temperature deviation
from the setpoint. Prior studies have shown that DRL can save 11%
to 15% DC cooling cost while satisfying thermal constraints [19].
However, these studies assume that the DC environment remains
unchanged over time, i.e., the agents are trained in advance and
then deployed to a test environment same or similar to that for
training. Unfortunately, this assumptionmay not be true for real DC
operations where the environment may have significant changes.

In real-world DC operations, the system dynamics are changing
over time due to facility upgrades. As shown in Figure 1, high-
performance IT devices may need to be installed to meet new ser-
vice level agreements, which can lead to an unexpected increase
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Fig. 1: DC upgrades over time with changing system dynam-
ics. For example, new IT devices and air containments could
be installed during the run time, whichmay affect the system
power usage and indoor airflow distribution.

in IT power usage that is not covered in the DRL training. A DRL
agent is observed with run-time performance degradation when the
system configuration changes [26]. Such degradation is primarily
caused by the shift of state transition probabilities and reward values
given the same state-action pairs under different environment con-
figurations. To address the degradation, transfer learning has been
studied to apply the knowledge learned from the source domains to
adapt the agent to a different but related target domain [46]. Under
the reinforcement learning scheme, we refer to these domains as
different MDPs and the transfer to different MDPs as a lifelong
learning process. Prior studies have shown that policy transfer can
be accelerated by relaxing the overly specialized source policies [40]
or adding higher weights to the reward that captures important
information of the target domain [11]. However, these approaches
still require substantial exploratory data in the target domain to
effectively implement the policy transfer. In the context of DC cool-
ing control, collection of exploratory data from the environment
poses thermal safety risks.

The implementation of lifelong reinforcement learning for DC
operations faces two challenges. First, the adaptation to a new
MDP should not lead to thermal unsafety. Second, the DRL agent
should converge to the new optimal policy quickly for maintaining
energy efficiency. Traditional model-free DRL agent tends to adapt
slowly due to the need of extensive trial-and-error explorations [31].
Model-based reinforcement learning is an alternative method that
offloads the learning process to a model of state transition and
reward. Recent studies have shown that using a learned model
to assist the training can improve learning efficiency and reduce
the system’s excursions to unsafe states [18]. The conventional
model-based reinforcement learning methods build the model with
black-box function approximators, such as Gaussian process [7]
and neural network models [24]. However, these models are often
data-demanding and poorly extrapolated to states unseen in the
training process. As a result, the DRL agent still needs to experience
(marginally) unsafe states before the model and agent can capture
the new environment.

To overcome the limitations of the black-box function approxi-
mators, we propose to exploit the governing thermodynamics and
cooling system laws as the prior knowledge to build the system
models. Incorporation of prior knowledge into machine learning
has been an interest of research due to its advantages in reducing
data demand and improving extrapolation ability [16]. Physics-
informed neural network (PINN) is a recent technique to embed
the physical constraints into the training process of deep neural

networks [30]. Several studies have attempted to extend the PINN
to model-based optimal control [20, 25]. However, these studies
assume both the state transition and reward values can be derived
from the PINN given the current state-action pairs. For a DC, which
is a complex multi-physics cyber-physical system, while the state
transition can be characterized by the thermodynamics in the data
hall, determining the reward requires the energy usage models of
the cooling systems (e.g., the chiller plants). Unfortunately, such
models are often not specified and can only be fitted using online
exploratory data. To learn the system power usage model after the
system changes, safe collection of exploratory data is necessary.

To address the above specific challenge, we propose Phyllis 1,
a physics-informed lifelong reinforcement learning approach to
assist the policy adaptation to the ever-changing DC environments
with safety and speed considerations. Specifically, in the offline
stage, Phyllis identifies a differentiable thermal transition model
that adheres to the physical laws. In the online adaptation stage,
Phyllis implements the following four steps to implement the adap-
tation. First, the identified transition model is used to supervise a
short period of online exploration to safely collect data. Second, the
collected online data is used to find the relationship between the
control actions and cooling power usage. A residual model is also
learned with the new online data to complement the previously
identified transition model. Third, with the identified thermal state
transition and reward functions, the policy is pre-trained by inter-
acting with these models. Finally, we deploy the pre-trained policy
to interact with the physical system for further fine-tuning. Phyl-
lis draws the respective advantages of model-based reinforcement
learning and physics-informed machine learning to address specific
challenges faced by policy adaptation in DC. The incorporation of
known physical laws reduces the data demand for system identi-
fication and helps better manage thermal safety when collecting
online exploratory data. The main contributions of this paper are
summarized as follows:

• We formulate the online adaptation as two associated prob-
lems that aim to search for the minimal action adjustment
to enforce thermal constraints and maximize the forward
transfer performance, respectively.

• We propose Phyllis that incorporates known physical laws
to build system models and assist policy adaptation under
changing DC environments. The incorporation of these laws
improves the model extrapolation ability and better manages
thermal safety.

• We conduct extensive evaluation on two simulated DCs with
additions of IT devices and air containments, respectively.
Evaluation results show that Phyllis saves 5.7% to 13.8% total
power usage compared with traditional PID controller and
accelerates the convergence speed by 8x to 10x compared
with pure fine-tuning adaptation.

Paper roadmap: §2 reviews and categories the relevant studies. §3
presents the preliminary system models. §4 overviews the Phyllis
approach design and associated problems. §5 illustrates the techni-
cal details of Phyllis. §6 evaluates Phyllis on two DCs. §7 discusses
two issues and §8 concludes this paper.

1Phyllis means green leaf. We use this word to draw an analogy with green data centers
and represent our physics-informed lifelong reinforcement learning approach.
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Table 1: Categorization of relevant studies in cooling control optimization.

Environment Approach Study Application System modeling approach Requirements for
Thermal transition Power usage System models Safety

Stationary

model-free [19, 22, 31]

DC cooling

Not required Exploratory data

model-based†
[18] Linear model Safe exploratory data Action range
[44] Long short term memory networks (LSTM) Exploratory data
[36] Physics model Not required Thermodynamics & historical data

Non-stationary∗

model-free [8, 43] Building Not required Exploratory data

model-based

[42] HVAC Fully-connected neural network (FNN) Historical & exploratory data
[27] LSTM + FNN Exploratory data

Phyllis DC cooling Hybrid models Polynomial Thermodynamics & Thermodynamics(PINN/POD + FNN) models safe exploratory data
∗ “Non-stationary” means the state transition probabilities and reward values can be different given the same state-action pairs.
† The “model” refers to whether a model is introduced for direct DRL training interaction or assisting safe online exploration.

2 RELATEDWORK
This section reviews the relevant studies in DRL-based cooling
control. These approaches are categorized in Table 1 based on their
types of environments and requirements for system models.

2.1 DRL-based DC Cooling Control
The DC cooling control can be viewed as an MDP and fitted into the
DRL framework. Early studies adopt themodel-free paradigm that al-
lows the agent to learn by interactingwith the system [19, 22, 31, 34].
Although these studies demonstrate substantial energy savings com-
pared with conventional controllers, they suffer from high explo-
ration risk and poor sample efficiency. For example, the model-free
agent in [22] requires about 200,000 interaction steps to converge.
The corresponding time for performing such many steps is 5.7
years, rendering the approach unrealistic. In addition, during the
lengthy interaction, the thermal constraints in these studies are
relaxed by following the reward shaping, which is only a pallia-
tive solution. When deploying DRL to DC operations, it is criti-
cal to address thermal safety and sample cost. Another group of
studies adopts the model-based paradigm to improve the learning
efficiency [18, 44]. However, the models used in these studies are
either over-simplified [18] or data-intensive [44]. Recent studies
propose to exploit the governing physics to assist the learning and
rectify unsafe actions [36, 45]. The introduction of physical laws
reduces the data demand for modeling. However, the models are
expressed in the form of differential equations, and hence non-
differentiable with respect to the control actions. As a result, the
rectified actions can only be determined via heuristic search. The
search process may fail to converge within a control period when
the dimension of system variables is high. In contrast, we aim to
develop a physics-informed differentiable model to efficiently solve
the action search problem. Such a model shall ensure timely rectifi-
cation and facilitate online usage. In summary, although existing
studies have demonstrated remarkable performance for DRL-based
DC cooling control, few of them focus on addressing the challenges
when deploying the policy to non-stationary DC environments.

2.2 Transfer Learning in DRL
Transfer of a DRL agent to the changing MDPs is closely related to
lifelong or continual reinforcement learning [17]. Previous studies

on this topic aim to tackle the forgetting problem [32]. In this paper,
we focus on optimizing the forward transfer performance with
adaptation safety and speed considerations, which is more relevant
to DC operations. To speed up transfer, previous studies adopt the
pre-trained value or policy networks for fine-tuning [8, 43]. For
example, [43] proposes to fine-tune the parameters of a sub-network
in a new environment. While parameter transfer can reduce the
convergence time compared with training from scratch, the re-
learning process in [43] still requires weeks to converge and the
system constraints are not explicitly addressed during the learning.
Different from the parameter space transfer, we aim to learn system
dynamics models and use them to assist the agent’s transfer. A
recent study [42] has shown that online learning can be accelerated
by pre-training the agent offline with system models learned from
historical data. However, the historical data collected from a DC
running at a stable operating point are often non-exploratory and
centered around a target setpoint under conventional feedback
control. The model learned with such data may be overfitted and
poorly extrapolated to unseen states. To capture the system changes,
the dynamics model in [27] is continuously updated with incoming
online data. However, the data-driven model needs to accumulate
enough data to achieve satisfactory accuracy, which may require
unsafe explorations. To address this issue, we develop an approach
that captures both physical constraints and online data distribution
to model the system dynamics.

2.3 Physics-Informed Learning and Control
Physical knowledge can be embedded into machine learning via
observation data, model architecture and loss function [16]. To
model the thermodynamics of the building environments, recent
studies impose physical constraints on the neural networks’ archi-
tecture [10] or loss function [13]. Another study [4] incorporates
the energy balance principle to regulate the prediction of a DC ther-
mal model based on the proper orthogonal decomposition (POD) and
Gaussian process. While these studies have shown good prediction
accuracy compared with black-box models, they do not evaluate
the efficacy of the physics-informed models for optimal control and
consider the system power usage. The latest study [25] extends the
PINN to model the temperature and humidity in human-centric
buildings. The PINN is then used to optimize the energy usage of
the heating, ventilation, and air-conditioning (HVAC) systems using
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Table 2: Summary of Notations

Symbol Definition

𝑉𝑠 volume of the data hall
𝐶p, 𝜌air specific heat capacity and density of air
𝑛 number of temperature sensors

𝑄 heat load of the sensible and removed part
𝑃IT IT power, which equals the sensible heat load
𝑃c cooling power, 𝑃c = 𝑃crac + 𝑃chp + 𝑃ch + 𝑃cp + 𝑃ct
𝑃ch chiller power usage
𝑃crac, 𝑃ct power usage of CRAC and cooling tower fans
𝑃chp, 𝑃cp power usage of chilled and condensed water pumps
𝑈IT IT device utilization
𝑇s, 𝑇z air temperatures of supply and zone return
𝑇in server inlet temperature, 𝑇in = (1 − 𝛼)𝑇s + 𝛼𝑇z
𝛼 hot air recirculation ratio
�̂�s setpoint of supply air mass flow rate
𝑇s, 𝑇z setpoints of supply and zone air temperature
𝑇l, 𝑇u allowable temperature lower and upper limits

𝜏 time-slot length for a control period
s state, s = (𝑇s,𝑇z, 𝑃IT)
µ action, µ = (𝑇s, �̂�s)
𝑅, 𝐶 reward and cost value for step transition
S safety set for temperature variations
M Markov decision process
F , Fp, Fd true dynamics, physics prior and residual models

model predictive control. While the study [25] shows the advan-
tages of PINN for thermodynamics modeling, it is not designed to
assist the DRL agent’s transfer under changing environments where
the models face more challenges in capturing system dynamics.

3 PRELIMINARY
This section presents the DC cooling control system models. We
consider a typical enterprise single-hall DC equipped with a chilled
water (CW) cooling system as shown in Figure 2. The cooling
process consists of two stages. The first stage adopts the CRACs
to supply cold air to the IT devices and cool the return hot air
by the water-air heat exchangers. The second stage transfers the
water-carried heat by the chiller and dissipates it to the ambient
by the cooling tower. In this study, we focus on the data hall heat
transfer and system power usage modeling. Table 2 summarizes
the notations used in this paper.

3.1 Data Hall Thermodynamics
The heat transfer of the first stage can be characterized by the
computational fluid dynamics and heat transfer (CFD/HT) technique.
Let Tz ∈ R𝑁 denote the vector of zone air temperature containing
𝑁 discrete points. The thermodynamics derived from the energy
conservation as the partial derivative equation (PDE) form is [38]:

𝜌air

(
𝜕Tz
𝜕𝑡

+ 𝜕U𝑖Tz
𝜕𝑥𝑖

)
=

𝜕

𝜕𝑥𝑖

(
Γeff

𝜕Tz
𝜕𝑥𝑖

)
+𝑄 (𝑡), (1)

IT

CRACs
cold air  

hot airData hall

Chilled water pump

Chiller

Condensed water 
pump

Cooling tower

Chilled water 
supply

Condensed water 
supply

First stage Second stage

Tin

Ts

Tz

Power usage determined by 
speci!c system models 

Heat transfer governed by 
thermodynamics

Fig. 2: A typical chilled water-cooled DC with two cooling
stages. The first stage is governed by thermodynamics and
the power usage is determined by specific system models.

where 𝑡 is time, 𝑥𝑖 is one of the three-dimensional spatial coordi-
nates, U𝑖 ∈ R𝑁 is the vector of air velocity in different directions
with 𝑖 equals 1, 2 or 3, respectively, 𝜌air is the air density, Γeff is the
diffusion coefficient and𝑄 is the heat load that comprises the sensi-
ble part converted from device energy usage and the removed part
by the CRACs. In this study, we assume the heat generated from the
IT power usage (denoted by 𝑃IT) dominates the sensible parts com-
pared with those from lighting and human workers. To simplify the
modeling, the EnergyPlus [6] simulation adopts the nodal model by
considering that all CRACs take the same supply settings and the
data hall has a uniform spatial temperature distribution. In practice,
uniform spatial temperature distribution can be achieved with air
containment and thermal-aware load balancing [21]. Thus, Eq. (1)
is simplified to the ordinary differential equation (ODE) form:

𝑑𝑇z (𝑡)
𝑑𝑡

=
𝑚s (𝑡)
𝑉s𝜌air

(𝑇s (𝑡) −𝑇z (𝑡)) +
1

𝛼𝐶p𝑉s
𝑃IT (𝑡), (2)

where 𝐶p is the air heat capacity, 𝛼 is the air recirculation ratio, 𝑉s
is the data hall volume,𝑚s and 𝑇s are the supply air mass flow rate
and temperature, respectively. The ODE form omits the detailed
spatial temperature distribution and focuses on the transient heat
transfer process. In this study, we consider both uniform and non-
uniform spatial temperature distributions. To simplify presentation,
we use the scalar form notation in the following analysis.

The differential equations describe the temperature transition in
the data hall as a continuous-time stochastic process. The stochas-
ticity comes from the uncertain evolution of 𝑃IT over time. To ana-
lyze the control process, we follow the time-slotted treatment [29]
to discretize the time into 𝐾 control periods of 𝜏 and assume 𝑃IT
only changes at the start of each period, i.e., 𝑃IT (𝑡) |𝑡 ∈ (𝑘𝜏,(𝑘+1)𝜏 ] =
𝑃IT [𝑘], 𝑘 ≤ 𝐾 . Let µ denote the control action that consists of the
supply air temperature and mass flow rate as µ = (𝑇s, �̂�s). At the
start of the 𝑘-th period, the cooling system also implements the con-
trol action via the actuator. Formally, 𝑇s (𝑡) |𝑡 ∈ (𝑘𝜏,(𝑘+1)𝜏 ] = 𝑇s [𝑘],
𝑚s (𝑡) |𝑡 ∈ (𝑘𝜏,(𝑘+1)𝜏 ] = �̂�s [𝑘]. Thus, the discrete thermal transition
function is derived by substituting the above variables to Eq. (2):

𝑇z [𝑘 + 1] = F (s[𝑘],µ[𝑘]), (3)

where F is the transition function and s is a vector of the state that
consists of the supply air temperature, zone return air temperature
and the IT power usage, i.e., s = (𝑇s,𝑇z, 𝑃IT). In practice, the mea-
surements of temperature and power usage during a control period
can be averaged over 𝜏 for discrete analysis.
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Fig. 3: Example of run-time performance degradation of the
DRL agent without online adaptation. When new IT devices
are installed on the 3rd and 6th days, (a) the temperature
gradually deviates from the target setpoint, i.e., 27°C, and (b)
the total power usage is getting higher than that under the
PID control.

3.2 System Power Usage
The total DC power usage comprises electricity consumed by the IT
devices and the associated cooling systems. The IT power is used
by the CPU for computing and the internal fans for dissipating heat,
which depend on the new CPU utilization (denoted by𝑈IT) and the
previous inlet air temperature (denoted by 𝑇in). Thus, the IT power
usage of the 𝑘-th period is modeled by 𝑃IT [𝑘] = 𝑓IT (𝑈IT [𝑘],𝑇in [𝑘 −
1]). The inlet temperature depends on the temperatures of the sup-
ply air and recirculated hot air, i.e.,𝑇in [𝑘] = (1 − 𝛼)𝑇s [𝑘] + 𝛼𝑇z [𝑘].
In practice, 𝛼 can be determined using historical data [38]. For a
CW-cooled DC, the cooling power (denoted by 𝑃c) is defined by
𝑃c = 𝑃crac +𝑃chp +𝑃ch +𝑃cp +𝑃ct, where 𝑃crac, 𝑃chp, 𝑃ch, 𝑃cp, 𝑃ct are
the power usages of the CRAC fans, chilled water pump, chiller,
condensed water pump and cooling tower fan, respectively. The
power usage of each component at the 𝑘-th period can be mod-
eled by 𝑃crac [𝑘] = 𝑓1 (�̂�s [𝑘]), 𝑃chp [𝑘] = 𝑓2 (�̂�chw [𝑘]), 𝑃ch [𝑘] =

𝑓3 (𝑇chws [𝑘],𝑇cws [𝑘],𝑄ch [𝑘]), 𝑃chp [𝑘] = 𝑓4 (�̂�cw [𝑘]), and 𝑃ct [𝑘] =
𝑓5 (𝑇cws [𝑘],𝑇cwr [𝑘],𝑇o [𝑘], 𝑄ct [𝑘]), respectively, where �̂�chw, �̂�cw
are mass flow rates of the chilled water and condensed water,𝑇chws,
𝑇cws, 𝑇cwr, 𝑇o are temperatures of the chilled water supply, con-
densed water supply, condensed water return and outdoor air, 𝑄ch
and 𝑄ct are heat loads removed by the chiller and cooling tower,
respectively. Typically,𝑇chws,𝑇cws and𝑇cwr are fixed. These models
are non-linear in general [35]. However, the detailed forms are
often not specified and can only be identified from operational data.
In this study, we need to understand the impact of data hall envi-
ronment changes (e.g., adjusting 𝑇s and �̂�s) on the power usage of
these components. To characterize the impact, in §5, we propose a
safety-aware strategy to collect online exploratory data and exploit
proper system laws to model the impact.

4 MOTIVATION & THE PHYLLIS APPROACH
This section first uses an example to illustrate the motivation of
adapting the DRL agent to system changes. Then, we overview the
proposed Phyllis approach and the associated technical problems.

4.1 A Motivating Example
Figure 3 illustrates an example of run-time performance degrada-
tion when the number of servers changes over time for a CW-cooled
DC simulated by EnergyPlus. We also use this DC for evaluation
in §6.2. In this example, the DRL agent is first trained with a reward
design (c.f. §6.2) that aims to maintain 𝑇z at 27°C and reduce power
usage in a training environment of a simulated DC with 100 IT
devices. Then, the agent is deployed to a system with the same con-
figuration. From the figures, we observe that the agent can maintain
the temperature at the target setpoint and power usage lower than
that under the PID control during the first three days when the en-
vironment keeps stationary. However, when additional 50 servers
are installed on the 3rd and 6th days, respectively, the temperature
maintained by the DRL gradually deviates from the setpoint. The
higher temperature leads to faster rotation of the internal servers’
fan and thus more IT electricity usage. Such degradation is caused
by the increases in IT power usage that are not seen during the DRL
training. Therefore, the DRL agent needs to adapt to the evolving
DC environments.

4.2 Approach Overview & Associated Problems
To model the environment changes, we consider an infinite se-
quence of MDPs, denoted by M 𝑗 , 𝑗 = 1, 2, . . . ,∞. The state tran-
sition probabilities and reward functions are different given the
same state-action pairs under different MDPs. Thus, the DRL-based
lifelong learning aims to find a parameterized policy that maximizes
the discounted expected return with incoming M sequentially. We
denote the policy by 𝜋\ 𝑗 , where \ 𝑗 is the set of parameters learned in
M 𝑗 . Figure 4 illustrates the proposed Phyllis approach to assist the
DRL-based policy adaptation fromM 𝑗−1 toM 𝑗 . Specifically, in the
offline stage, Phyllis first identifies a thermal transition model based
on known thermodynamics. This step can be completed without
interactions with the environment. The resulting model is generally
applicable throughout all MDPs, where its minor MDP-dependent
error will be rectified by a residual model learned for each MDP
in the online stage. When the MDP changes in the online stage,
Phyllis implements the following four steps to assist the adaptation.
In Step 1 marked by 1 , the identified transition model is used to
supervise 𝑙 periods of exploratory data collection in the newM 𝑗 .
The actions are still determined by the previous policy 𝜋\ 𝑗−1 . In
Step 2 marked by 2 , the collected exploratory data is used to fit
the power usage models and a residual model to complement the
prediction of the previous transition model. Note that as the power
usage models change with the environment, it is necessary to fit
new power usage models for the new environment that will be
used to determine the DRL’s reward. This is also the reason for Step
1 to collect exploratory data. In Step 3 marked by 3 , the policy
𝜋\ 𝑗 is initialized to 𝜋\ 𝑗−1 and pre-trained by interacting with the
models obtained in the second step. In step 4 marked by 4 , the
adequately pre-trained 𝜋\ 𝑗 is deployed to the system for further
fine-tuning through the interactions withM 𝑗 . The time needed for
online implementing of Steps 2 & 3 will be given in Table 3 of §6.4.
In the following, we formulate the problems in Steps 1, 3 and 4.

The effectiveness of Phyllis relies on the accuracy of the ther-
modynamics and power usage models. While the thermodynamics
F is governed by the differential equations in §3, modeling the



e-Energy ’23, June 20–23, 2023, Orlando, FL, USA R. Wang, et al.

l periodsControl period 𝜏

Identify 
thermodynamics

Collect l periods 
of data with 𝜋!!−"

Fit power and 
residual models

Pretrain agent 
in the models

… …ℳ"#$

Time

Online 
adaptation

𝐾

… ……

𝜋!!"# 𝜋!! 𝜋!!$#

Offline 
identification

Deploy 𝜋!!
for fine-tuning

ℳ" ℳ"%$

… …

Fig. 4: Overview of the Phyllis approach to achieve lifelong
DRL. Phyllis first identifies a transition model to capture the
thermodynamics. When the environment changes, Phyllis
assists the adaptation by i) collecting 𝑙 periods of exploratory
data, ii) fitting power and residual models with the collected
data, iii) pre-training the DRL agent in the fitted models, and
iv) deploying the agent for further fine-tuning.

power usage requires online exploratory data in the new operating
environment. In this regard, the data collection, directed by the old
policy, shall not violate the thermal constraints. With F identified
in the offline stage, Phyllis can predict the temperature at the end
of each control period. If the predicted temperature falls out of the
allowed range, Phyllis searches for the minimum rectification to the
action recommended by 𝜋\ 𝑗−1 to avoid the breach of the thermal
constraints. This is formulated as:

µ̃∗ [𝑘] ≜ argmin
µ̃[𝑘 ]

1
2
∥µ̃[𝑘] − µ[𝑘] ∥22 ,

s.t. F (s[𝑘], µ̃[𝑘]) ∈ S,
(4)

where S is the allowable temperature region to ensure thermal
safety, µ̃ and µ are the rectified and original actions, respectively.
The complexity of solving Eq. (4) depends on the property of F
and the definition of S. Typically, S is specified with an upper and
lower limit based on the service level agreement. In §5, we will
present the modeling approach of F to facilitate fast solving of
Eq. (4) for online usage.

With the safely collected exploratory data, we use them to fit
the power usage models in Step 2. Once these models for M 𝑗

are identified, we pre-train the policy 𝜋\ 𝑗 by interacting with the
models and deploy for further fine-tuning. This pre-training and
fine-tuning addresses a problem of maximizing the expected reward
underM 𝑗 , which is formally expressed as:

\∗𝑗 ≜ argmax
\ 𝑗

E𝜋\ 𝑗 ,𝑃IT

[
𝐾∑︁
𝑘=1

𝛾𝑘𝑅 [𝑘]
]
, (5)

where 𝑅 is the reward and 𝛾 is a discount factor. The adaptation
for every informed upgrade leads to {\∗1 , \

∗
2 , . . . , \

∗
𝑗
, . . . } and thus

achieves lifelong DRL. Note that forM1, the \1 can be randomly
initialized or learned by imitating an existing PID controller [5, 38].
In the next section, we present the technical details in modeling
the system and solving the above optimization problems in Eqs. (4)
and (5), respectively.

5 DETAILED DESIGN OF PHYLLIS
In this section, we present the solutions and technical details in-
volved in the Phyllis approach.

5.1 Offline Thermodynamics Modeling
The thermodynamics model aims to predict the zone air temper-
ature (denoted by 𝑇z) of the next control step given current state-
action pairs. This ability is used in determining the action rec-
tification for ensuring safety during exploratory data collection
(i.e., Eq. (4). To predict 𝑇z [𝑘 + 1], the straight solution is to nu-
merically solve the differential equations presented in §3 with the
initial values specified at the 𝑘-th control period. However, the
numerical solutions are often computationally expensive and non-
differentiable in terms of control actions. As a result, grid search is
the only viable approach to solving the quadratic problem in Eq. (4),
which is undesirable for online usage, because fine-grained grid
search incurs high computation overhead. Thus, we aim to develop
a differentiable surrogate model which can lead to an efficient so-
lution to Eq. (4). We separately consider the scenarios of uniform
and non-uniform data hall spatial temperature distribution.

5.1.1 Uniform spatial temperature distribution. The governingODE
is given by Eq. (2). Assuming the control system has zero steady-
state errors for the 𝑘-th control period, the supply air temper-
ature and mass flow rate of the period is equal to the applied
setpoints µ = (𝑇s, �̂�s). Formally, 𝑚s (𝑡) |𝑡 ∈ (𝑘𝜏,(𝑘+1)𝜏 ] = �̂�s [𝑘],
𝑇s (𝑡) |𝑡 ∈ (𝑘𝜏,(𝑘+1)𝜏 ] = 𝑇s [𝑘]. If the IT power remains constant for
the 𝑘-th control period, the temperature evolution can be mod-
eled by 𝑇z (𝑡) = Fp (𝑇z [𝑘], 𝑃IT [𝑘], �̂�s [𝑘],𝑇s [𝑘], 𝑡) where 𝑡 ∈ [0, 𝜏],
𝑇z (𝑡) |𝑡=0 = 𝑇z [𝑘] and Fp is a FNN-based surrogate model. To cap-
ture the thermodynamics, we embed Eq. (2) to the loss function
of Fp to train the model with specified initial values. With these
initial values, the physical loss is defined as the averaged residuals
of the governing equations in the discrete form:

Lp=
1
𝑁b

1
𝑁𝜏

𝑁b∑︁
𝑖=1

𝑁𝜏∑︁
𝑡=1

𝑑𝑇z (𝑡)𝑑𝑡
−H(𝑇z [𝑖], 𝑃IT [𝑖], �̂�s [𝑖],𝑇s [𝑖])

2
2
, (6)

where H is the right-hand side of Eq. (2), 𝑁b and 𝑁𝜏 are the batch
size of the specified initial values and the intermediate points col-
lected within a control period 𝜏 . For example, if 𝜏 is 15 minutes and
the data is collected every 1 minute, 𝑁𝜏 is 15. We also consider the
loss corresponds to data at the initial values by:

Lb =
1
𝑁b

𝑁b∑︁
𝑖=1

𝑇z (𝑡) |𝑡=0 −𝑇z [𝑖]2
2
. (7)

In practice, the initial values of �̂�s and 𝑇s are set within the allow-
able control action ranges. 𝑇z can be set to cover a wide range of
states for better generalization. 𝑃IT can be set based on the designed
IT power usage. We will illustrate the ranges of these initial values
in Table 6 of the Appendix. The physics-informed modeling cap-
tures the prior DC thermodynamics and doesn’t require any online
data to optimize the above loss functions.

5.1.2 Non-uniform spatial temperature distribution. The governing
PDE is given by Eq. (1), which can be also incorporated into the
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loss function for training. However, when the spatial domain is dis-
cretized with fine-grained mesh grids, the number of temperature
points 𝑁 can be up to millions [37]. Thus, directly approximating
such high dimensional output can cause statistical and computa-
tional issues. To reduce the modeling complexity, we adopt the
POD technique [4] to decompose the high-dimensional temper-
ature field with a linear combination of 𝐽 (𝐽 ≪ 𝑁 ) orthogonal
basis functions (i.e., POD modes) and the corresponding coeffi-
cients as Tz [𝑘] =

∑𝐽
𝑖=1 𝛽𝑖 [𝑘]ϕ𝑖 , where ϕ𝑖 and 𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝐽

are the vector of the POD modes and coefficient value, respec-
tively. In practice, the POD modes can be derived by the snap-
shot method based on the results of solving Eq. (1). Once the
POD modes are determined, the thermal transition modeling is
shifted to predict the low-dimensional POD coefficients given the
boundary conditions of the hosted facilities of the 𝑘-th period as
β[𝑘+1]=Fp (T̂s [𝑘], m̂s [𝑘], PIT [𝑘],mIT [𝑘]), wheremIT is the vector
of the IT mass flow rates. In practice, mIT can be identified offline
using historical data [37]. Different from the uniform temperature
modeling that directly embeds the physical equation into the loss
function for training, the physics in POD modeling is informed
via the observational data generated from Eq. (1) to extract the
orthogonal basis functions and coefficients.

5.2 Step 1: Safety-Aware Online Exploration
This section presents how to use the thermodynamics model identi-
fied in §5.1 to safely guide online exploration after the DC upgrade
is implemented. The exploration aims to collect a short period of on-
line data to fit the power usage models and an augmented residual
model to further complement the temperature prediction. Since the
previously learned policy has converged to address the last MDP
M 𝑗−1, the collected data may concentrate on a certain operating
point and negatively affect the model fitting. To encourage explo-
ration, Phyllis first relaxes the learned policy 𝜋\ 𝑗−1 to randomly
select actions from a uniform distribution as:

µ[𝑘] =
{
Uniform(A), if 𝑘 ≤ 𝜖,
𝜋\ 𝑗−1 (µ | s), if 𝜖 < 𝑘 ≤ 𝑙,

(8)

whereA is a set of available actions and 𝜖 is the number of random
exploration periods. The relaxed policy may lead to thermal un-
safety during exploration. To address this issue, Phyllis adopts the
thermal transition model identified in §5.1 to solve the constrained
optimization problem in Eq. (4). According to the guideline from the
American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) [33], the DC temperature should be main-
tained within a range of certain standards with a lower and upper
limit, denoted by 𝑇l and 𝑇u, respectively. Thus, a proper form of S
is defined as S =

{
𝑇
(𝑖 )
z [𝑘] | 𝑇l ≤ 𝑇

(𝑖 )
z [𝑘] ≤ 𝑇u,∀𝑘, 𝑖 = 1, 2, . . . , 𝑛

}
,

where 𝑛 is the number of deployed temperature sensors. We refer
to [28] by considering return zone air 𝑇z and IT inlet temperature
𝑇in for safety evaluation in §6, respectively. To incorporate the con-
straints into the problem, we define a cost function (denoted by
𝐶) to represent the temperature violation magnitude at the 𝑘-th
control period by:

𝐶 [𝑘] =
𝑛∑︁
𝑖=1

ReLU
(
𝑇
(𝑖 )
z [𝑘] −𝑇u

)
+ ReLU

(
𝑇l −𝑇

(𝑖 )
z [𝑘]

)
, (9)

where ReLU is the rectified linear activation function defined as
ReLU(𝑥) = max{𝑥, 0}. With this definition, the enforcement of the
constraints in Eq. (4) is then equivalent to ensure 𝐶 [𝑘 + 1] is less
equal than 0 after the rectified control action is applied at the 𝑘-th
period. Formally,𝐶 (µ̃[𝑘]) ≤ 0. We now present a two-step method
to solve this problem.

5.2.1 Convex set projection. In the first step, Phyllis adopts the
first-order Taylor expansion to locally approximate the cost with
the rectified action at the start of the 𝑘-th period as 𝐶 (µ̃[𝑘]) =

𝐶 (µ[𝑘]) +𝐶′ (µ[𝑘]) (µ̃[𝑘] − µ[𝑘]). To ensure 𝐶 (µ̃[𝑘]) ≤ 0, Eq. (4)
is converted to a convex quadratic program as:

µ̃∗ [𝑘] ≜ argmin
µ̃[𝑘 ]

1
2
µ̃⊺ [𝑘]Iµ̃[𝑘] − µ⊺ [𝑘]µ̃[𝑘],

s.t. 𝐶′ (µ[𝑘])⊺µ̃[𝑘] ⪯𝐶′ (µ[𝑘])⊺µ[𝑘] −𝐶 (µ[𝑘]),
(10)

where I is an identity matrix and 𝐶′ (µ[𝑘]) is the first-order de-
rivative of the violation cost to the original control action. With
the first-order approximation, the safe action can be efficiently de-
rived by solving Eq. (10) in polynomial time with CVXPY [9]. The
first-order approximation is similar to [5] that assumes the state
transition function is linear for the investigated system. However,
since the DC thermodynamics is nonlinear, the approximation error
could degrade thermal safety compliance.

5.2.2 Local search. To mitigate the approximation error, Phyllis
uses the original form of Fp to predict the violation cost and derive
the safe action via a local search. In this case, the constraint func-
tions are nonlinear and more accurate to capture the true state tran-
sition. While the second step is more rigorous to enforce thermal
safety without transition approximation, it can be time-consuming
when the dimension of action space is high or the original action de-
viates far from the safety region. Therefore, Phyllis only conducts it
locally when an approximated solution is found by solving Eq. (10).
Note that since Fp may not well approximate the online data before
the residual model is identified. To mitigate this effect, we could
slightly tighten the temperature bound to offset the approximation
error during the first exploration epoch. Figure 5 shows an example
of the constraint compliance and rectification overhead by adopting
the two-step method for one CRAC with two-dimensional action
space. From the figure, we can see the linear projection generates
a higher violation cost than the grid search and two-step meth-
ods, indicating the linear approximation is insufficient to address
the thermal safety compliance. In contrast, the proposed two-step
method maintains a lower cost while significantly reducing the
search overhead compared with the grid search method.

5.3 Step 2: Power Usage & Residual Modeling
With the collected online data, Phyllis aims to model the impact
of data hall environment changes on the system power usage. As
discussed in §3, the system power usage mainly comes from the
IT devices and the associated cooling systems. For fans and pumps
involved in the cooling process, the affinity laws [35] describe that
the power usage is proportional to the cubic shaft speed. Thus, we
can adapt the cubic polynomial regression to model 𝑓1, 𝑓2 and 𝑓5,
which reduces the complexity of introducing high-order models.
For IT equipment, the power usage is jointly affected by the CPU
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utilization and inlet air temperature. Thus, Phyllis adopts the bi-
quadratic regression to model the IT power usage of the 𝑘-th period
as 𝑃IT [𝑘] = 𝑃rated (𝑎0+𝑎1𝑈IT [𝑘]+𝑎2𝑈 2

IT [𝑘]+𝑎3𝑇in [𝑘−1]+𝑎4𝑇
2
in [𝑘−

1] +𝑎5𝑈IT [𝑘]𝑇in [𝑘−1]), where 𝑃rated is the rated IT power which is
specified by the manufacture and 𝑎𝑖 , 𝑖 = 0, 1, . . . , 5 are unknown co-
efficients. The chiller is the most complex component in the cooling
system, whose power usage is affected by multiple factors. Phyllis
quantifies its power usage by the coefficient of performance (COP)
defined as the ratio of the heat removed to the chiller power usage
by COP = 𝑄ch/𝑃ch. To satisfy the energy balance, the cooling load
𝑄ch should approximately match the generated heat load in the data
hall, i.e.,𝑄ch ≈ 𝑃IT+𝑃crac. Therefore, if the COP value is determined,
we can derive the chiller power usage by 𝑃ch = (𝑃IT + 𝑃crac) /COP.
Its value has been observed to change quadratically with the supply
air temperature in [21]. Similarly, we use a bi-quadratic polyno-
mial regression to model the COP as a function of the supply air
temperature and mass flow rate at the 𝑘-th period by COP[𝑘] =

𝑏0 +𝑏1𝑇s [𝑘] +𝑏2𝑇 2
s [𝑘] +𝑏3�̂�s [𝑘] +𝑏4�̂�2

s [𝑘] +𝑏5𝑇s [𝑘]�̂�s [𝑘], where
𝑏𝑖 , 𝑖 = 0, 1, . . . , 5 are unknown coefficients. Ideally, the minimum
number of data pairs needed to fit these models is equal to the
coefficients numbers.

In addition to fitting the power usage models, Phyllis also uses
the collected data to learn a residual model to complement the
prediction of the physics model. As discussed in §3, the dynamics
captured by the physical prior can be inaccurate due to incomplete
consideration of unknown factors, such as heat transfer from in-
terzone air mixing or infiltration of outside air. To mitigate this
effect, we augment the physics model with a data-driven compo-
nent (denoted by Fd) to predict the unmodeled residuals. Thus, the
dynamics is approximated by F = Fp + Fd .With this decomposi-
tion, we aim to fine-tune Fp to be close to the true dynamics while
leaving Fd as a complementary term. Thus, the objective can be
achieved by minimizing the third loss function:

Ld =
1
𝑁d

𝑁d∑︁
𝑖=1

𝑇z𝑖 −𝑇z𝑖2
2
+ _ ∥Fd∥22 , (11)

where 𝑁d is the number of collected data samples and _ is a hy-
perparameter to balance Fd as small as possible. In this study, the
residual model is continuously updated with more collected online
data to improve prediction accuracy. Figure 6 shows the box plot
of the absolute temperature prediction error of different dynamics

Algorithm 1 Physics-informed policy adaptation
Input: Initialize policy parameters 𝜋\ 𝑗−1 , temperature transition

model Fp, residual model Fd, IT power models 𝑓IT, cooling
power models 𝑓𝑖 , 𝑖 = 1, 2, . . . , 5, initial state estimations, envi-
ronment dataset Denv and synthetic dataset Dmodel.

Output: Optimal policy 𝜋∗
\ 𝑗

for M 𝑗 .
1: Train Fp in the offline stage with estimated initial values and

thermodynamics based on Eq. (6) and (7);
2: whileM changes do
3: // Step 1: Safe exploratory data collection
4: for 𝑙 exploration steps do
5: Generate actions µ by Eq. (8);
6: Generate data with safe actions rectified by solving Eq. (4)

using the two-step method and add data to Denv;
7: end for
8: // Step 2: Fit power usage and residual models
9: Sample data from Denv;
10: Fit models of 𝑓IT and 𝑓𝑖 , 𝑖 = 1, 2, . . . , 5;
11: Train Fd based on Eq. (11);
12: // Step 3: Pre-train the policy to optimize Eq (5)
13: for 𝐺 gradient steps do
14: Collect synthetic data and add to Dmodel;
15: Sample data from Dmodel and update policy 𝜋\ 𝑗 ;
16: end for
17: // Step 4: Deploy policy for further fine-tuning
18: Fine-tune 𝜋\ 𝑗 online by repeating line 13 to 16 with Denv
19: end while

models. In this example, the black-box model is an ensemble of
black-box MLPs used in [15] trained with historical data. The test
data are randomly sampled. From this figure, we can see the black-
box model extrapolates poorly to the test data since the historical
data are insufficient to cover various states. In contrast, the physics-
informed methods all achieve good prediction performance. With
the hybrid modeling, the average prediction error is only 0.7°C.

5.4 Steps 3 & 4: Pre-training and Fine-tuning
With the identified transition and power models, Phyllis adopts
the model-based reinforcement learning paradigm to transfer the
policy to the target MDP. Specifically, the policy is first trained by
the synthetic data generated from these models. Compared with
collecting data from the physical DC, the synthetic data generation
is much more sample efficient as the computation overhead for
executing these models is low. Moreover, as our transition model
captures physical laws, it is good at extrapolating states that are
hard to obtain from a stably running DC. Thus, the agent can ex-
tensively explore a better initial policy without risking the physical
system before online deployment. Once the policy is adequately
trained, Phyllis deploys it to interact with the target system to fur-
ther improve its performance. With model-assisted training, the
policy is expected to adapt faster when deployed to a new MDP.

Putting together all the steps presented in §5.1-§5.4, we have the
physics-informed policy adaptation process. Algorithm 1 shows
the pseudocode of this process.
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6 EVALUATION
This section evaluates the performance of Phyllis in two cases with
uniform and non-uniform temperature distributions and compares
it with five baseline approaches.

6.1 Evaluation Methodology and Settings
We present the implementation and configurations of Algorithm 1.
The configurations include 1) the DRL policy used to optimize the
energy efficiency, 2) the parametrization of Fp and Fd, 3) and the
hyperparameters. The details are as follows.

6.1.1 Implementation& Evaluation settings. To optimize DC energy
efficiency, we adopt soft actor-critic (SAC) [14] as the optimization
algorithm due to three considerations. First, the entropy regular-
ization in SAC encourages exploration, making it suitable when
transferring to a new environment. Second, it learns in an off-policy
manner and can effectively use the data sampled by the rectified ac-
tions. Third, it can be used for DC cooling control with continuous
action space. In this study, we use the SAC in Tianshou library [41].
To capture the temperature transition and prediction residual, we
model Fp and Fd with two MLPs, respectively. Fp is trained in a
physics-informed manner while Fd is trained with online streaming
data enters. To drive the simulation, we use the weather data that
contains 1-year outdoor air temperature collected from a tropical
area [6]. The IT utilization trace is aggregated from a real Internet
DC hosting 4,000 servers [1]. Table 4 in the Appendix summarizes
other default settings used in our evaluation.

6.1.2 Comparison baselines. To evaluate the performance of Phyl-
lis, we implement the following baseline approaches:
■ BL1 (PID) uses the feedback of temperature deviation to ad-

just the supply air temperature and focuses on maintaining the
temperature at a specified setpoint [39]. The coefficients for the
proportional, integral and derivative terms are 0.4, 0.6 and 0, re-
spectively.
■ BL2 (Model-free fine-tuning) sequentially fine-tunes one single

agent when transferring to new environment [43]. Without using
models to rectify actions, the constraint is addressed in a relaxed
manner using a reward shaping method from [22].
■ BL3 (Model-free progressive learning) extends BL2 with an

expansion-based progressive neural network (PNN) [32]. When
adapting to a new environment, it freezes previously learned pa-
rameters and allocates new sub-networks for re-learning.
■ BL4 (Model-based policy optimization) refers to a state-of-the-

art model-based method that uses short rollouts from the model to
update the agent [15]. The used model is an ensemble of 10 black-
box neural networks as [15] that jointly predicts the temperature
transition and reward with a rollout length of 1.
■BL5 (Physics-informed only) uses the physics-informedmethod

to learn the transition model and adopts it to guide the safe explo-
ration. Similar to [36, 45], this baseline only focuses on addressing
the safety constraints without additional power consumption mod-
eling and model-based pre-training. It stands as an ablation of the
Phyllis approach.

6.1.3 Evaluation metrics. We consider the following four metrics
to evaluate the performance when the agent adapts to a new DC
environment, i.e., 1) the jumpstart performance that measures the
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initial violation when encountering system upgrades; 2) the con-
vergence speed that measures how many days are needed for the
temperature to converge to the setpoint; 3) the average cost that
measures the temperature violation magnitude, and 4) the average
total power usage during the online learning period.

6.2 Case 1: Install Servers in a CW-Cooled DC
6.2.1 DC testbed and configurations. We first evaluate the adapta-
tion performance when new servers are installed in a CW-cooled
DC. The DC model is configured by [22] and implemented us-
ing EnegyPlus 9.5.0 simulator. The control actions applied at the
𝑘-th period consist of the CRAC’s supply air temperature and
mass flow rate defined as µ[𝑘] = (𝑇s [𝑘], �̂�s [𝑘]). The states con-
sist of the supply air temperature, return zone air temperature,
and power usage of the IT and cooling systems, respectively. For-
mally, s[𝑘] = (𝑇s [𝑘],𝑇z [𝑘], 𝑃IT [𝑘], 𝑃c [𝑘]). The control objective is
to maintain the air temperature at a certain setpoint, denoted by𝑇z,
and reduce total power usage. Thus, we define the reward function
of the 𝑘-th time step as 𝑅 [𝑘] = −_P𝑃DC [𝑘] + _TG(𝑇z [𝑘],𝑇z) where
G is a Gaussian function defined as G = exp(−_1 (𝑇z [𝑘] − 𝑇z)2),
𝑃DC is the sum of cooling and IT power usage, _1, _T and _P are
hyperparameters set to 0.5, 1.5 and 10−5, respectively. In this study,
the setpoint is 27°C, which is a typical return air setting in DC [28].
The allowable temperature variation range is 1°C. Thus, the lower
and upper bound in Eq. (9) are 26°C and 28°C, respectively. In this
case, the original DC is equipped with 100 servers. Each server is
specified with a rated power of 1,000W. To evaluate the Phyllis
approach, we install additional 60 servers at the start of the 3rd and
6th week, respectively.

6.2.2 Jumpstart and convergence performance. Figure 7(a) shows
the per-day average violation cost of various approaches during the
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Fig. 8: DC layout of the second case. (a) Air mixing; (b) air
separation before and after the containment is installed. The
sensor is placed at the positions marked with blue dots.

six-week operations. The dashed lines with symbols are mean val-
ues and the shaded areas represent the standard deviation over five
independent experiments. From this figure, we can see that model-
free fine-tuning and progressive learning generate high violation
costs on the initial day when new servers are installed. Progressive
learning has a higher cost since it allocates new sub-networks with
randomly initialized parameters for re-learning. MBPO also gener-
ates a high cost when first deployed to interact with the system, but
it converges faster than the model-free approaches, indicating the
model-based method has higher sample efficiency. However, since
the black-box model requires more data and does not extrapolate
well to the evolving dynamics, it still suffers from high violation
costs when new servers are installed in the DC. In contrast, the
PID control and Phyllis can maintain the temperature violation at a
lower cost during the entire adaptation process. Note the baseline
BL5 is excluded in Figure 7(a) for better visualization since it also
achieves similar performance in addressing safety compliance as
Phyllis. In summary, Phyllis converges 8x to 10x faster than the
model-free fine-tuning approach.

6.2.3 Average performance. Figure 7(b) and (c) show the average
violation cost and total power usage over the six-week operational
period. From Figure 7(b), we observe that Phyllis reduces the vi-
olation cost by 53.7% to 74.0% compared with other DRL-based
methods. This suggests the proposed two-step method is effective
in preventing safety violations. The PID uses temperature deviation
feedback to control and also generates a low cost. However, it has
high power usage since it only focuses on maintaining the temper-
ature at the target setpoint. In contrast, the DRL-based methods
additionally admit the DC power usage for optimization and thus
exhibit savings in energy usage. From Figure 7(c), we can find that
MBPO slightly saves more energy compared with the model-free
approaches, suggesting that the model-based method performs well
in the evolving dynamics. Phyllis achieves 13.8% power saving com-
pared with the PID controller. We also conduct the ablation study
that only adopts the trained PINN to guide safe exploration. While
it also performs well in addressing thermal safety as Phyllis, the
power usage under this method is higher than that under Phyllis.
This is due to the lack of the model-based pre-training in Step 3.

6.3 Case 2: Install Containment to Hot Aisle
6.3.1 DC testbed and configurations. We next evaluate the adap-
tation performance when a hot aisle containment is installed. In-
stalling air containments is a typical method to improve DC energy
efficiency [28]. Figure 8(a) and (b) show the data hall layout and
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Fig. 9: CRAC’s actions over time. (a) supply air temperature;
(b) supply air mass flow rate. Phyllis quickly learns to in-
crease the air temperature and decrease the mass flow rate
to save cooling energy after the containment is installed.

air flow streamlines before and after the containment is installed,
respectively. The evaluated DC is equipped with 20 racks placed
in two rows that host 299 servers in total [4]. Each server has a
rated power of 1,000W. A CRAC unit is installed to supply cold
air and draw hot air on its top. Six sensors are deployed at the
inlet positions of the rack to monitor the IT intake air temperature.
Since the air mixing causes non-uniform temperature distribution
before the containment is installed, we adopt the fine-grained POD
method to model the temperature transition in the data hall. In this
case, Fp is modeled using a Gaussian process in GPytorch [12] to
predict the POD coefficients. Similar to the first case, the control
actions include the CRAC’s supply air temperature and mass flow
rate applied at the 𝑘-th period defined as µ[𝑘] = (𝑇s [𝑘], �̂�s [𝑘]).
The states consist of the temperature measured by the six sen-
sors and the power usage of the IT and cooling systems, respec-
tively. Formally, s[𝑘] = (𝑇in1 [𝑘], . . . ,𝑇in6 [𝑘], 𝑃IT [𝑘], 𝑃c [𝑘]). In this
case, the control objective is to maintain the server inlet tempera-
ture within the range of 18-27°C according to the ASHARE guide-
line [33]. Thus, the reward function of the 𝑘-th time step is defined
as 𝑅 [𝑘] = −_P𝑃DC [𝑘] − _T𝐶 [𝑘], where 𝐶 is the temperature viola-
tion cost with the lower and upper bound in Eq. (9) defined as 18°C
and 27°C, respectively. _P and _T are two hyperparameters set to
10−5 and 1, respectively. In this case, the hot aisle containment is
installed on the 21st day during the operations.

6.3.2 Convergence analysis. Figure 9 (a) and (b) show the CRAC
supply air temperature and mass flow rate varying over the training
days. The dashed orange line and purple line represent the results
of the model-free fine-tuning and Phyllis, respectively. From the
figures, we observe that Phyllis quickly learns to adjust the supply
air temperature and mass flow rate periodically with respect to
the IT load variation after one day of exploration. Such behavior
is attributed to the air recirculation effect before the hot aisle con-
tainment is installed. To maintain the inlet temperature within the
allowable range, the CRAC needs to decrease the supply air temper-
ature and increase the mass flow rate when the IT workload is high.
In contrast, the model-free agent learns a conservative policy to
supply low temperature and high mass flow rate, which consume
more cooling energy. It takes about 15 days for the model-free agent
to learn to periodically adjust the supply air temperature. Phyllis
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Fig. 10: Performance of different methods on the second case.
(a) Per-day violation cost; (b) average violation cost and (c)
DC cooling power usage during the online learning period.

brings about 8x acceleration compared with the model-free agent.
After the containment is installed on the 21st day, the hot air is
separated from the cold supply air. Phyllis then quickly learns to
increase the supply air temperature and reduce the mass flow rate
to save cooling energy. In contrast, the model-free agent supplies
a lower supply temperature and higher mass flow rate. It takes
another 8 days to learn an energy-efficient policy.

6.3.3 Jumpstart and average performance. Figure 10 (a) shows the
per-day violation cost. From the figure, we observe that Phyllis
and PID both maintain a low-cost value over the period. Other
DRL-based methods suffer from high jumpstart violation costs
before the containment is installed and take about 3 to 7 days to
converge. After the containment is installed, all the methods can
eliminate the safety violation since the hot air is separated from
the cold supply air, indicating the hot aisle containment is useful
in preventing thermal unsafety. In this case, since the number of IT
devices keeps the same, we focus on analyzing the cooling power
usage. Figure 10(b) and (c) show the average violation cost and
cooling power usage over the online learning period. From the
figures, we can see Phyllis reduces violation cost by 89.7% to 91.3%
compared with other DRL-based methods and saves 5.7% cooling
power usage compared with the PID controller.

6.4 Online Adaptation Overhead
We next present the time needed for Steps 2 & 3 during the online
adaptation in Table 3. From the results, we can see that the two
steps consume at most 1120.26 seconds (i.e., 18.67 minutes) for
data collection and thermal modeling. Thus, these two steps can be
finished in about 1 to 2 control periods (i.e., 15 to 30 minutes). The
DRL training takes more time with non-uniform thermal modeling.
This is because the forwarding process of POD takes more time
since it needs to generate a high dimensional temperature vector
for each control step.

Table 3: Overhead for online model fitting & pre-training.

Step Uniform modeling Non-uniform modeling
(PINN) (s) POD (s)

Step 2 4.23 ± 1.37 3.90 ± 1.48
Step 3 40.89s ± 3.0 1116.36 ± 0.64
*Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz

7 DISCUSSION
We now discuss two issues that are not addressed in this paper and
leave them for future work.
■Heterogeneity in state-action space: In this study, we focus

on investigating policy transfer to environments where only the
reward and transition functions change over time. We assume the
state-action space keeps the same. In future studies, heterogeneous
transfer learning can be incorporated into our framework to address
the changes in the state-action space. Specifically, when new sensors
or CRACs are installed, the input or output of the networks used
in this framework can be correspondingly expanded.
■ Clustering of similar environments: From the evaluation

results, our approach can adapt well to abrupt changes in DC. For
small changes (e.g., the 28th day in case 1 with fewer servers being
installed), the original policy also adapts faster with a few days of
fine-tuning. Therefore, environments with similar configurations
can be clustered. The online re-learning will be triggered only when
new clusters are instantiated. This consideration will further reduce
the re-learning overhead.

8 CONCLUSION
This paper proposes Phyllis, a physics-informed lifelong reinforce-
ment learning approach for DC cooling control. By leveraging the
thermodynamics and system laws, Phyllis can safely collect online
data and efficiently model the DC thermal transition and power
usage. With the identified state transition and reward models, Phyl-
lis adopts the model-based paradigm to accelerate online adapta-
tion. Our extensive evaluation shows that, with new IT devices
and containment installed, Phyllis converges 8x to 10x faster than
model-free fine-tuning methods with at most 0.74°C temperature
overshoot. With a faster convergence speed, Phyllis saves more
energy usage for DC operations. The proposed Phyllis approach
sheds light on deploying DRL-based policies to non-stationary DC
with better safety and convergence speed management.
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Table 4: Experimental settings.

Hyperparameter Setting Hyperparameter Setting

Control period 𝜏 (minutes) 15 PINN hidden units [32, 32]
Update per step 96 Fd hidden units [32, 32]
Actor/Critic learning rate 1e-3 Used POD modes 5
Actor/Critic hidden units [32, 32] Entropy regularization 0.02
Training batch size 256 Discounted factor (𝛾 ) 0.99
Pre-training steps 2880 Exploration steps 96
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Fig. 11: (a) Aggregated CPU utilization trace; (b) one-year
historical weather data collected from the tropical area.

A EVALUATION SETTINGS AND DATASET
The hyperparameter settings used in the experimental evaluation
are summarized in Table 4. To drive the simulation, we also need to
specify the CPU utilization and outdoor air temperature. Fig. 11(a)
shows the aggregated CPU utilization trace collected from a real-
world DC hosting 4,000 servers, which is provided by Alibaba
Inc. [1]. Figs. 11(b) shows the outdoor air temperature collected
from the tropical zone, which is provided by EnergyPlus.

B SYSTEM POWER USAGE MODELS
In the evaluation of this paper, we adopt the instantiated curves
from 2ZoneDataCenterHVACwEconomizer.idf provided by Ener-
gyPlus [6] to model the DC cooling system power usage. This model
is also used in [19, 22, 36, 44] for evaluation. For the IT devices,
we model the power usage as a biquadratic function of the CPU
utilization (denoted by𝑈IT) and the inlet air temperature (denoted
by𝑇in), i.e., 𝑃IT = 𝑃rated (𝑐0+𝑐1𝑈IT+𝑐2𝑈 2

IT+𝑐3𝑇in+𝑐4𝑇
2
in+𝑐5𝑈IT𝑇in),

where 𝑃rated is the rated IT power usage which is specified by the
manufacture and 𝑐𝑖 , 𝑖 = 0, 1, . . . , 5 are coefficients. In this paper,
these coefficients are obtained from EnergyPlus [6] for Case 1 and
the on-site measurement from Schneider Electric [23] for Case 2.
Table 5 shows the fitted coefficient values for the two cases. For
Case 1, the IT power usage is linear in terms of the inlet air temper-
ature. While for Case 2, the relationship becomes quadratic. Note
that the design inlet temperature for the two cases are set to 18°C
and 22°C, respectively.

Table 5: Coefficient values for IT power model.

Case Coefficient
𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5

Case 1 -1 1 0 0.0556 0 0
Case 2 0.32 1 0 -0.032 0.0008 0
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Fig. 12: Total power usage versus inlet air temperature (a)
Case 1; (b) Case 2.

To help understand the optimization results, we plot the average
total and cooling power usage under various inlet air temperatures
in Figure 12. The input IT utilization is from Figure 11(a). From
the figures, the total DC power usage exhibits an interesting trend
where it initially declines and then rises as the inlet air temperature
increases. This can be attributed to the fact that the internal IT
fans need to rotate faster when the intake air temperature rises.
When the temperature exceeds a certain point, the rise in IT power
usage may offset the savings from the cooling side. As a result,
simply increasing the inlet air temperature may not be beneficial
for energy saving. The energy efficient cooling control is expected
to find a policy that can maintain the IT inlet temperature at an
optimal setpoint.

C INITIAL VALUE SETTINGS
To identify the thermal transition model in the offline stage, we
need to specify the initial value ranges to create the training dataset.
Normally, the initial value ranges should be set to cover a wide
range of system states for better generalization. Table 6 shows the
initial value ranges for training Fp. In this paper, ten values are
uniformly sampled within each specified range.

Table 6: Initial value ranges for training Fp.

Variable Range Variable Range

𝑇s (°C) [10, 25] 𝑇z (°C) [20, 35]
�̂�s (kg/s) [5, 15] 𝑃IT (kW) [60, 180]


	Abstract
	1 Introduction
	2 Related Work
	2.1 DRL-based DC Cooling Control
	2.2 Transfer Learning in DRL
	2.3 Physics-Informed Learning and Control

	3 Preliminary
	3.1 Data Hall Thermodynamics
	3.2 System Power Usage

	4 Motivation & The Phyllis Approach
	4.1 A Motivating Example
	4.2 Approach Overview & Associated Problems

	5 Detailed Design of Phyllis
	5.1 Offline Thermodynamics Modeling
	5.2 Step 1: Safety-Aware Online Exploration
	5.3 Step 2: Power Usage & Residual Modeling
	5.4 Steps 3 & 4: Pre-training and Fine-tuning

	6 Evaluation
	6.1 Evaluation Methodology and Settings
	6.2 Case 1: Install Servers in a CW-Cooled DC
	6.3 Case 2: Install Containment to Hot Aisle
	6.4 Online Adaptation Overhead

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Evaluation Settings and Dataset
	B System Power Usage Models
	C Initial Value Settings

