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Run-time domain shifts from the training phase caused by sensor characteristic variation incur performance
drops of the deep learning-based sensing systems. To address this problem, existing transfer learning techniques
require substantial target-domain data and incur high post-deployment overhead. Differently, we propose to
exploit the first principle governing the domain shift to reduce the demand for target-domain data. Specifically,
our proposed approach called PhyAug uses the first principle fitted with few labeled or unlabeled data pairs
collected by the source sensor and the target sensor to transform the existing source-domain training data into
the augmented target-domain data for calibrating the deep neural networks. In two audio sensing case studies
of keyword spotting and automatic speech recognition, PhyAug recovers the recognition accuracy losses
due to microphones’ characteristic variations by 37% to 72% with 5-second unlabeled data collected from the
target microphones. In a case study of acoustics-based room recognition, PhyAug recovers the recognition
accuracy loss caused by smartphone microphone variation by 33% to 80%. In the last case study of fisheye
image recognition, PhyAug reduces the image recognition error due to the camera-induced distortions by 72%.
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1 INTRODUCTION
Recent advances of deep learning have attracted great interest of applying it in various embedded
sensing systems. The deep neural networks (DNNs), albeit capable of capturing sophisticated
patterns, require significant amounts of labeled training data to realize the capability. A sensing
DNN trained on a design dataset is often observed run-time performance degradations, due to
domain shifts [13]. The shifts are generally caused by the sensor characteristics deviations in the
real deployments from those captured by the design dataset.
Transfer learning [18] has received increasing attention for addressing domain shifts. It is a

cluster of approaches aiming at storing knowledge learned from one task and applying it to a
different but related task. Under the transfer learning scheme, ideally, with little new training
data, we can transfer a DNN trained from the source domain (i.e., the design dataset) to the target
domain (i.e., data captured by a specific sensor in real deployment). Prevalent transfer learning
techniques, including freeze-and-train [22] and domain adaptation [18], require substantial training
data collected in the target domain. The freeze-and-train approach retrains selected layers of a
DNN with new target-domain samples to implement the model transfer. Domain adaptation trains
a new DNN to transform the target-domain inference data back to the source domain. For instance,
the Mic2Mic [12] trains a cycle-consistent generative adversarial network (CycleGAN) to perform
the translation between two microphones with distinct characteristics. The training of CycleGAN
requires about 20 minutes of microphone recording from both domains for a keyword spotting
task [12]. In summary, although the prevalent transfer learning techniques reduce the demands on
the target-domain training data in comparison with learning from scratch in the target domain,
they still need substantial target-domain data to implement the model transfer. This paper exploits
the first principles governing the sensor characteristics to reduce the demand on target-domain
data for model transfer, vis-à-vis the aforementioned physics-regardless approaches [12, 18, 22].
Recent studies attempt to incorporate prior knowledge in the form of commonsense [35] or

physical laws [26, 27] to increase the learning efficiency. The presentation of the prior knowledge
to learning algorithms is the core problem of physics-constrained machine learning. In [26, 27], the
closed-form physical laws are incorporated into the loss function of DNN training. The improved
learning efficiency of the physics-constrained machine learning encourages exploiting first prin-
ciples to address domain shifts more efficiently. However, physics-constrained machine learning
requires new DNN architectures and/or training algorithms; it is not to exploit first principles in
transferring existing DNNs to address the domain shift problems.

In the domain of physics-rich cyber-physical systems, the domain shifts caused by the property
of the sensors are often governed by first principles. For example, the performance of a microphone
is often characterized by the frequency response curve [13]; a fisheye camera is characterized by
the polynomial function [29], etc. In this paper, we propose a new approach called physics-directed
data augmentation (PhyAug) to use a minimum amount of data collected from the target sensor
to estimate the parameters of the first principle governing the domain shift caused by a specific
sensor, then use the parametric first principle to generate augmented target-domain training data.
The augmented target-domain data samples are used to transfer or retrain the source-domain
DNN. PhyAug has the following two key features. First, different from the conventional data
augmentations that apply unguided ad hoc perturbations (e.g., noise injection) and transformations
(e.g., scaling, rotation, etc) on existing training data to improve the DNNs’ robustness against
variations, PhyAug augments the training data strategically by following first principles to transfer
DNNs. Second, PhyAug uses augmented data to represent the domain shifts and thus requires no
modifications to the legacy DNN architectures and training algorithms. In contrast, recently pro-
posed domain adaptation approaches based on adversarial learning [1, 12, 15, 30] update the DNNs
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under new adversarial training architectures that need extensive hyperparameter optimization and
even application-specific redesigns. Such needs largely weaken their readiness, especially when the
original DNNs are sophisticated such as the DeepSpeech2 [16] for automatic speech recognition.

This paper applies PhyAug to four case studies and quantifies the performance gains compared
with other possible approaches. The first two case studies aim to adopt DNNs for keyword spotting
(KWS) and automatic speech recognition (ASR) respectively to individual microphones. KWS and
ASR differ in DNN model depth and complexity. The domain shifts are from the microphone’s
hardware characteristics. We apply PhyAug to profile the source and the target microphones by
playing a 5-second white noise, then augment the source-domain data to re-train the DNN for
the target domain. PhyAug recovers the microphone-induced accuracy loss by 53%-72% and 37%-
70% in KWS and ASR, respectively. The third case study is the acoustics-based room recognition
(ARR). Our experiment shows that the room recognition accuracy drop can be up to 80% if the
pre-trained model is evaluated using the data collected from a specific smartphone microphone.
We apply PhyAug to profile the source and the target smartphones by recording 1-minute acoustic
background spectrograms in any room simultaneously, then augment the source smartphone’s data
to train the DNN for the target smartphone. PhyAug recovers the accuracy loss by 33%-80% for the
target smartphone. The fourth case study focuses on fisheye image recognition (FIR). We apply
PhyAug to adapt a ResNet-50 DNN designed for pinhole cameras to a specific fisheye camera using
the estimated parameters. The parameters estimation for a fisheye camera only requires around
20 image samples taken on a checkerboard picture. PhyAug recovers the camera-induced object
recognition accuracy loss by 72% and avoids the compute-intensive image rectification.
The main contribution of this paper is as follows. We propose to leverage the first principle

governing the sensing process and fitted with a small amount of source- and target-domain data to
extensively augment the target-domain data for model transfer. This approach is more efficient than
the physics-regardless transfer learning in terms of target-domain data sampling complexity. The
first principle’s parameters that capture the sensor characteristics can be obtained from either sensor
specification or a one-time calibration process. With the derived the parametric first principle, we
can avoid collecting substantial training data from each specific sensor forming an individual target
domain. The data and source code for the case studies are made publicly available.1
The remainder of this paper is organized as follows. §2 overviews the PhyAug approach and

reviews related work. §3, §4, §5, and §6 present the four case studies. §7 discusses several issues. §8
concludes this paper.

2 APPROACH OVERVIEW & RELATEDWORK
The design of the DNN used for a sensing task is often driven by a training dataset that is either
publicly available or collected by the system designer. However, when the DNN is deployed, the
actual distribution of the inference data samples may be different from that of the training dataset.
For instance, the sensors used for collecting the training and inference data samples can have differ-
ent characteristics caused by hardware model differences and manufacturing imperfections across
sensors of the same model. The basic principle of PhyAug is to obtain the sensor characteristics
using low-overhead approaches and then learn the mapping from the source-domain sensor to the
target-domain sensor. After the mapping is learned, we may convert the training data collected by
the source-domain sensor to the augmented data that are consistent with the target-domain sensor.
As a result, the deep model retrained using the augmented data can work effectively on the data
collected by the target-domain sensor.

1https://github.com/jiegev5/PhyAug
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Fig. 1. PhyAug workflow.

2.1 PhyAug Approach Overview
Fig. 1 illustrates PhyAug’s workflow using a simple example, where the DNN performs two-class
classification based on two-dimensional data samples and the first principle governing the domain
shift is a nonlinear polynomial transform. Such transform can be used to characterize camera lens
distortion [21]. To simplify the discussion, this example considers class-independent domain shift,
i.e., the transform is identical across all the classes. Note that PhyAug can deal with class-dependent
domain shifts, which will be discussed later. The general transfer learning approaches regardless of
the first principles need to draw substantial data samples from both the source and target domains.
Then, they apply domain shift learning techniques to update the existing source-domain DNN or
construct a prefix DNN [12] to address the domain shift. Extensive data collection in the target
domain often incurs undesirable overhead in practice.
Differently, as shown in the Fig. 1, PhyAug applies the following four steps to avoid extensive

data collection in the target domain. ❶ The system designer identifies the parametric first principle
governing the domain shift. For the current example, the parametric first principle is 𝑥 � � 𝑎1𝑥 �
𝑎2𝑦�𝑎3𝑥𝑦�𝑎4𝑥

2
�𝑎5𝑦

2 and𝑦� � 𝑏1𝑥 �𝑏2𝑦�𝑏3𝑥𝑦�𝑏4𝑥2�𝑏5𝑦2, where �𝑥,𝑦� and �𝑥 �,𝑦�� are a pair of
data samples in the source and target domains, respectively, and 𝑎𝑖 , 𝑏𝑖 are unknown parameters. ❷
A small amount of unlabeled data pairs are collected from the source and target sensors to estimate
the parameters of the first principle. For this example, if the domain shift is perturbation-free, the
minimum number of data pairs needed is the number of unknown parameters of the polynomial
transform. If the domain shift is also affected by other unmodeled perturbations, more data pairs can
be drawn to improve the accuracy of estimating the parameters under a least squares formulation.
If the domain shift is class-dependent, the data pair sampling and parameter estimation should be
performed for each class separately. ❸ All the existing source-domain training data samples are
transformed to the target domain using the fitted first principle, forming an augmented training
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Table 1. Categorization, used techniques, and requirements of various solutions to address domain shifts.

Category Used Solution Applications Requirements
technique in publication Source

domain
label

Target
domain
label

Paired la-
bel data

First
principle

Target do-
main data
volume*

D
om

ai
n
ad
ap
ta
tio

n
(M

od
el
tra

ns
fe
r)

FADA [15] computer vision ✔ ✔ ✔ – low
Adversarial ADDA [30] computer vision – – – – high
learning TransAct [1] activity sensing – – – – medium

Mic2Mic [12] voice sensing – – – – high
Meta learning MetaSense[5] voice & motion ✔ ✔ – – low
Contrastive CDCL [32] computer vision ✔ – – – mediumlearning
Data

PhyAug
voice sensing – – – ✔ low

augmentation room recognition – – – ✔ low
computer vision – – – ✔ low

Model ro- Data CDA [13] voice and activity – – – ✔ mediumbustness augmentation sensing
� The bars represent oracle scales partially based on the reported numbers in respective publications. Fully comparable scales are diffi-
cult to obtain because the solutions are designed for different applications. PhyAug is compared with FADA, Mic2Mic, and CDA in the
evaluation sections of this paper. Reasons for excluding other approaches from the comparison will be discussed in the case studies.

dataset in the target domain. ❹ With the augmented training dataset, various techniques can be
employed to transfer the existing DNN built in the source domain to the target domain. For instance,
we can retrain the DNN with augmented data. The retraining can use the existing DNN as the
starting point to speed up the process. For instance, for the DeepSpeech2 [16] which is a large-scale
ASR model used in §4, the retraining only requires half of the training time compared with the
training from scratch using the augmented data.
For sensing DNN design, the source domain is in general the design dataset. In such case, the

source domain cannot be excited any more for data pair sampling in both domains simultaneously.
However, we can recreate the excitation to collect the corresponding target-domain samples. For
instance, we can use a speaker to play voice samples from the source-domain dataset and collect the
corresponding samples from a target-domain microphone. Similarly, we can display image samples
from the source-domain dataset and collect the corresponding samples from a target-domain camera
that may have optical distortions.

2.2 Related Work
The applications of deep learning in embedded sensing systems have obtained superior inference
accuracy compared with heuristics and conventional machine learning. Various approaches have
been proposed to address the domain shift problems in embedded sensing [1, 5, 12, 13] and image
recognition [15, 30, 32]. Table 1 summarizes the categorization, used techniques, and requirements
of these approaches. In what follows, we discuss the important details of these approaches and
their differences from PhyAug.
Ì Domain adaptation: Few-shot Adversarial Domain Adaptation (FADA) [15] transfers the

model with limited amount of target-domain training data. It uses the supervised adversarial learning
technique to find a shared subspace of the data distributions in the source and target domains. FADA
requires labeled and paired data samples from both the source and target domains. Adversarial
Discriminative Domain Adaptation (ADDA) [30] uses unsupervised adversarial learning to learn
a feature encoder for the target domain. Although ADDA requires neither class labels nor data
pairing, it demands substantial unlabeled target-domain data. TransAct in [1] considers sensor
heterogeneity in human activity recognition and uses unsupervised adversarial learning to learn
stochastic features for both domains. It requires hundreds of unlabeled target-domain data samples.
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Mic2Mic [12] applies CycleGAN, which is also an adversarial learning technique, to map the target-
domain audio recorded by a microphone “in the wild” back to the source-domain microphone
for which the DNN is trained. Mic2Mic requires about 20 minutes of speech recording from both
microphones, which represents an overhead. It performs one-to-one translations. Our experiment
results in §3 and §4 show that CycleGAN may underperform when the source domains are publicly
available speech datasets collected using numerous microphones in diverse environments. Cross-
domain contrastive learning (CDCL) exploits contrastive self-supervised learning for domain
adaptation. Specifically, it minimizes the distance of the cross-domain data samples from the same
classes via the contrastive loss, such that the trained model is invariant to the domain difference.
We show in the §3 this approach requires a significant amount of target domain data to achieve a
satisfactory result.

PhyAug is a domain adaptation approach. Compared with ADDA [30], TransAct [1], and Mic2Mic
[12] that are based on unsupervised adversarial learning and thus require substantial target-domain
training data, PhyAug exploits the first principle governing the domain shift to reduce the demand
on target-domain data. Although FADA [15] aims at reducing the demand for target-domain data,
it requires extensive other information such as class labels in both domains. In contrast, PhyAug
requires unlabeled data only. Different from Mic2Mic [12] that requires the source domain to be a
single microphone, PhyAug admits a source-domain dataset collected via many (and even unknown)
microphones in the KWS and ASR case studies. This enlarges the application scope because the
datasets used to drive the design of DNNs for real-world applications often consist of recordings
from diverse sources.
MetaSense [5] employs meta-learning [10] to rapidly adapt model to the target user’ condition

with few shots. It uses data collected from multiple source domains to train a base model that can
adapt to a target domain related to the source domains. However, it requires substantial training
data from both domains and class labels from each source domain. For voice sensing, MetaSense
cannot use a source-domain dataset collected via many unlabeled microphones. But PhyAug can.
As an extension to the previous work [11], we apply our proposed PhyAug to two new case

studies. First, the new fisheye recognition (FIR) case study extends the application scope of PhyAug
from audio sensing to more complex image recognition. FIR and keyword spotting (KWS) share
some similarities in adopting the convolutional neural networks (CNNs) for classification. However,
FIR is more challenging compared with KWS in terms of task complexity. This extension shows that
PhyAug can be applied to different multimedia sensing tasks with varying sensing complexities.
Second, the new acoustic room recognition (ARR) case study extends the application scope of
PhyAug from multimedia data to the Internet of Things (IoT) sensing data. IoT sensing such as
ARR can be more challenging compared to multimedia sensing. The reasons are two-fold. First,
IoT sensing data are generally uninterpretable by humans, whereas multimedia data are human-
interpretable and often involve humans for labeling. Second, the subtle differences among the
classes of IoT sensing data also render more challenges for deep learning models to learn effective
representations. Apart from the case studies, we also strengthen the experiments and provide more
in-depth analysis.
ÌModel robustness via data augmentation: Data augmentation has been widely adopted for

enhancing model robustness. As illustrated in Fig. 2a, a conventional scheme presumes a number of
domain shifts (e.g., scaling, rotation, noise injection, etc) and follows them to generate augmented
training samples. Then, the original and the augmented data samples are used to train a single DNN.
During the serving phase, this DNN remains robust to the domain shift resembling the presumption.
However, should the actual domain shift be out of the presumption, the robustness is lost. The study
[13] adopts the above conventional data augmentation (CDA) approach to mitigate the impact of
sensor heterogeneity on DNN’s accuracy. Specifically, it estimates the probability distribution of
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DNN

(a) Data augmentation for model robustness
(e.g.,[13]).

(b) Data augmentation for model transfer (PhyAug).

Fig. 2. Different purposes of data augmentation illustrated using voice sensing. Note that the source domain
may contain many microphones used to collect training samples.

sensors’ heterogeneity characteristics from a heterogeneity dataset and then uses the characteristics
sampled from the estimated distribution to generate augmented training data. As the dataset needs
to cover heterogeneity characteristics, its collection in practice incurs a considerable overhead.
The heterogeneity dataset in [13] consists of 2-hour recordings of 20 different microphones placed
equidistant from an audio speaker. If the characteristic of a microphone “in the wild” is out of the
estimated characteristic distribution (i.e., a missed catch), the enhanced DNN may not perform
well. Since CDA uses sensor characteristics, we view it as an approach directed by first principles.
Different from CDA’s objective of enhancing model robustness, PhyAug uses data augmentation to
transfer a model to a specific target domain (i.e., sensor). Fig. 2b illustrates this in the context of
voice sensing, where microphones’ unique characteristics create domains. PhyAug constructs a
dedicated DNN for each target domain. Thus, PhyAug is free of the missed catch problem.

2.3 Methodology
As this paper proposes PhyAug which is a domain adaptation approach, it is desirable to show
PhyAug’s applicability to multiple applications and its scalability to address different levels of
pattern sophistication. Therefore, we apply PhyAug to four applications, i.e., KWS, ASR, ARR and
FIR. Although KWS and ASR are two specific human voice sensing tasks, they have significantly
different complexities. ARR is a mobile sensing application. The benchmark results presented in
this paper show that ARR performance is greatly affected by smartphone heterogeneity. FIR is a
visual sensing application where the fisheye camera produces non-linear distortion on the captured
images, causing domain shift from the pinhole camera. For each case study, we compare PhyAug
with multiple existing approaches to show the advantages and performance gains of PhyAug.

3 CASE STUDY 1: KEYWORD SPOTTING (KWS)
Human voice sensing is important for human-computer interactions in many Internet of Things
(IoT) applications. At present, the DNN for a specific human voice sensing task is often trained
based on a standard dataset. However, as IoT microphones are often of small form factors and low
cost, their recordings often suffer degraded and varied voice qualities. In addition, the environment
that an IoT microphone resides in can also affect its recording. For instance, the echo patterns in
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Fig. 3. CNN structure used in KWS case study.

Fig. 4. Microphones & experiment setup.

indoor spaces of different sizes can be distinct. Such run-time variations may be poorly captured
by the standard dataset. As a result, the DNN yields reduced accuracy after the deployment.

In this paper, we consider two human voice sensing functions: KWS and ASR. We apply PhyAug
to address the domain shift problem. Specifically, we start from a swift process of profiling the IoT
microphone’s frequency response curve (FRC) with the help of a smartphone. Then, we use the
FRC to transform the standard dataset. Finally, we retrain the DNN using the transformed dataset
to obtain a personalized DNN for the IoT microphone.

In the case studies of KWS (§3) and ASR (§4), source domain is the standard dataset originally
used to train the DNN; target domain is the dataset of voice samples captured by a specific deployed
microphone; first principle is the microphone’s FRC induced by the microphone hardware and its
ambient environment.

3.1 Problem Description
We conduct a set of preliminary experiments to investigate the impact of diverse microphones on
the KWS accuracy. Based on the results, we state the problem.

3.1.1 Standard dataset and DNN. We use Google Speech Commands Dataset [33] as the standard
dataset in this case study. It contains 65,000 one-second utterances of 30 keywords collected from
thousands of people. Audio files are sampled at 16 kilo samples per second (ksps). We pre-process
the voice samples as follows. First, we apply a low-pass filter (LPF) with a cutoff frequency of

8



50

60

70

80

90

100

M1 M2 M3 M4 M5

oracle test accuracy

74% 74% 72% 71%
74%

Te
st

ac
cu

ra
cy

(%
)

Fig. 5. KWS accuracy on microphones. Horizontal line is accuracy on standard dataset.

0

1

M
1

0

1

M
2

0

1

M
3

0

1
M

4

0

1

0 1 2 3 4 5 6 7 8

M
5

Frequency (kHz)

Fig. 6. The five microphones’ FRCs. The 𝑦-axis of each sub-figure is normalized amplitude.

4kHz on each voice sample, because human voice’s frequency band ranges from approximately
0.3kHz to 3.4kHz. Then, for each filtered voice sample, we generate 40-dimensional Mel-Frequency
Cepstral Coefficients (MFCC) frames using 30-millisecond window size and 10-millisecond window
shift. The 𝑧-score normalization is applied on each MFCC frame. Eventually, each voice sample is
converted to a 101 � 40MFCC tensor. The dataset is randomly split into training, validation, and
testing sets following an 8:1:1 ratio.
We implement a CNN to recognize 10 keywords, i.e., “yes”, “no”, “left”, “right”, “up”, “down”,

“stop”, “go”, “on”, and “off”. We also add two more classes to represent silence and unknown keyword.
Fig. 3 shows the structure of the CNN. It achieves 90% test accuracy, which is similar to that in [36]
and referred to as the oracle test accuracy.

3.1.2 Impact of microphone on KWS performance. In this section, we demonstrate that the CNN
has performance degradation as a result of microphone heterogeneity. We test the CNN on samples
captured by five different microphones named M1, M2, M3, M4, and M5 as shown in Fig. 4 that have
list prices from high ($80) to low ($3.5). M1 and M2 are two high-end desktop cardioid condenser
microphones, supporting sampling rates of 192ksps at 24-bit depth and 48ksps at 16-bit depth,
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effective frequency responses of (︀30Hz, 16kHz⌋︀ and (︀30Hz, 15kHz⌋︀, respectively. M3 is a portable
clip-on microphone with an effective frequency response range of (︀20Hz, 16kHz⌋︀. M4 and M5 are
two low-cost mini microphones without detailed specifications. Fig. 4 shows the placement of the
microphones. For fair comparison and result reproducibility, we use an Apple iPhone 7 to play the
original samples of the test dataset through its loudspeaker, with all microphones placed at equal
distances away.

The samples recorded by each microphone are fed into the KWS CNN for inference. Fig. 5 shows
the test accuracy for each microphone. Compared with the oracle test accuracy of 90%, there are
14% to 19% absolute accuracy drops due to domain shifts. By inspecting the spectrograms of the
original test sample and the corresponding ones captured by the microphones, we can observe
the differences. This explains the distinct accuracy drops among microphones. From the above
experiment results, the research questions addressed in this case study are as follows. First, how to
profile the characteristics of individual microphones with low overhead? Second, how to exploit
the profile of a particular microphone to recover KWS’s accuracy?

3.2 PhyAug for Keyword Spotting
PhyAug for KWS consists of two procedures: fast microphone profiling and model transfer via data
augmentation.

3.2.1 Fast microphone profiling. A microphone can be characterized by its frequency response
consisting of magnitude and phase. We only consider the magnitude component, because the
information of a voice signal is largely represented by the energy distribution over frequencies,
with little/no impact from the phase of the voice signal in the time domain. Let 𝑋�𝑓 � and 𝑌�𝑓 �
denote the frequency-domain representations of the considered microphone’s input and output.
The FRC to characterize the microphone is 𝐻�𝑓 � � ⋃︀𝑌�𝑓 �⋃︀

⋃︀𝑋�𝑓 �⋃︀ , where ⋃︀ � ⋃︀ represents the magnitude.
We propose a fast microphone profiling approach that estimates 𝐻�𝑓 � in a short time. It can be

performed through a factory calibration process or by the user after the microphone is deployed.
Specifically, a loudspeaker placed close to the target microphone emits a band-limited acoustic
white noise 𝑛�𝑡� for a certain time duration. The frequency band of the white noise generator is set
to be the band that we desire to profile. Meanwhile, the target microphone records the received
acoustic signal 𝑦𝑛�𝑡�. Thus, the FRC is estimated as 𝐻�𝑓 � � ⋃︀ℱ(︀𝑦𝑛�𝑡�⌋︀⋃︀

⋃︀ℱ(︀𝑛�𝑡�⌋︀⋃︀ , where ℱ(︀�⌋︀ represents the
Fourier transform. As 𝑛�𝑡� has a nearly constant power spectral density (PSD), this approach
profiles the microphone’s response at all frequencies in the given band.
In our experiments, we use the iPhone 7 shown in Fig. 4 to emit the white noise. We set the

frequency band of the noise generator to be (︀0, 8kHz⌋︀, which is the Nyquist frequency of the
microphone. Fig. 6 shows the measured FRCs of the five microphones used in our experiments.
Each FRC is normalized to (︀0, 1⌋︀. We can see that the microphones exhibit distinct FRCs. In addition,
we observe that the two low-end microphones M4 and M5 have lower sensitivities to the higher
frequency band, i.e., 5kHz to 8kHz, compared with the microphones M1, M2, and M3.

3.2.2 Model transfer via data augmentation. We augment training samples in the target micro-
phone’s domain by transforming the original training samples using FRC. The procedure for
transforming a sample 𝑥�𝑡� is as follows: (1) Apply the pre-processing LPF on 𝑥�𝑡� to produce 𝑥 ��𝑡�;
(2) Conduct short-time Fourier transform using 30-millisecond sliding windows with an offset of
10 milliseconds on 𝑥 ��𝑡� to produce 101 Fourier frames, i.e., 𝑋𝑖�𝑓 �, 𝑖 � 1, 2, . . . 100; (3) Multiply the
magnitude of each Fourier frame with the FRC to produce ⋃︀𝑌𝑖�𝑓 �⋃︀ � 𝐻�𝑓 � � ⋃︀𝑋𝑖�𝑓 �⋃︀; (4) Generate
the MFCC frame from each PSD ⋃︀𝑌𝑖�𝑓 �⋃︀2; (5) Concatenate all 101 MFCC frames to form the MFCC
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tensor. Lastly, PhyAug retrains the CNN with augmented data samples for the microphone using
the pre-trained CNN as the starting point.

3.3 Performance Evaluation
3.3.1 Alternative approaches. Our performance evaluation employs the following alternative
approaches.
ÌData calibration:At run time, it uses the measured FRC to convert the target-domain data back

to the source-domain data and then applies the pre-trained CNN on the converted data. Specifically,
let 𝑌𝑖�𝑓 � denote the 𝑖th Fourier frame after the microphone applies the LPF and short-time Fourier
transform on the captured raw data. Then, it estimates the corresponding source-domain PSD as
⋃︀𝑋𝑖�𝑓 �⋃︀2 � � ⋃︀𝑌𝑖�𝑓 �⋃︀

𝐻�𝑓 � �
2
and generates the MFCC frame from ⋃︀𝑋𝑖�𝑓 �⋃︀2. The MFCC tensor concatenated

from the MFCC frames over time is fed to the pre-trained CNN.
Ì Conventional data augmentation (CDA) [13]: This alternative captures the essence of

the approach in [13] following the conventional data augmentation scheme illustrated in Fig. 2a.
Specifically, one out of the five microphones, e.g., M1, is designated as the testing microphone. The
remaining four, e.g., M2 to M5, are used to generate a heterogeneity dataset [13]. The heterogeneity
generator [13] is constructed as follows. For each microphone in the heterogeneity dataset, FRC
is measured multiple times with the fast profiling process. At any frequency 𝑓 , the FRC value is
modeled by a Gaussian distribution. A Gaussian mixture is formed by the four heterogeneity-dataset
microphones’ Gaussian distributions with equal weights. The Gaussian mixtures for all frequencies
form the heterogeneity generator. Then, each source-domain training sample is transformed by
an FRC sampled from the heterogeneity generator into an augmented sample. Lastly, the DNN is
retrained with the augmented training samples and tested with the samples captured by the testing
microphone.
Ì CycleGAN (essence of [12]):Mic2Mic [12] trains a CycleGAN using unlabeled and unpaired

data samples collected from two microphones 𝐴 and 𝐵. Then, CycleGAN can translate a sample
captured by 𝐴 to the domain of 𝐵, or vice versa. Following [12], we train a CycleGAN to translate
the samples captured by a target microphone to the source domain of Google Speech Commands
Dataset. To measure the test accuracy, a test sample collected by a microphone is converted by the
corresponding CycleGAN to the source domain and fed into the pre-trained CNN.

Compared with PhyAug that requires a single 5-second profiling data collection process for each
microphone, CDA repeats the profiling process many times for each heterogeneity microphone
to construct the heterogeneity generator; the training of CycleGAN requires 15 minutes of data
collected from each target microphone. Thus, both alternative approaches have higher overheads.
Ì FADA [15]: It trains a feature encoder and classifier in the source domain. Then, it combines

source-domain and target-domain data to train a domain-class discriminator. Finally, the weights
of the feature encoder and classifier are updated to the target domain through adversarial learning
using the domain-class discriminator. To apply FADA for KWS, we follow the architecture in [15]
and modify the KWS model in Fig. 3 by adding a fully-connected layer before the last dense layer.
Thus, the model has a feature encoder (CNN layers) and a classifier (fully-connected layers).
Ì CDCL [32]: CDCL comprises three steps for domain adaptation. First, we train a domain-

invariant feature encoder to minimize the distance between the source-domain data and the
target-domain data via the contrastive learning. We follow the procedure in [32] and construct the
positive and negative data samples as follows. The data samples from the different domains but
in the same class are viewed as the positive samples. The data samples that are in the different
classes from the same or different domains are viewed as negative samples. Second, we freeze the
trained feature encoder and apply it on the labeled source-domain data to train a classifier. Third,
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Fig. 7. KWS test accuracy using various approaches on tested microphones. Compared with the unmodified
baseline, PhyAug recovers the accuracy losses by 64%, 67%, 72%, 53%, and 56% respectively for the five
microphones toward the oracle test accuracy.

we apply the trained feature encoder and the classifier on the target-domain data to evaluate the
domain adaptation performance. In this paper, the used feature encoder is a ResNet-18 model and
the classifier is a multi-layer perceptron (MLP) consisting of 4 layers. The numbers of neurons in
four layers of the MLP are 512, 1024, 1024 and 12.
We exclude the MetaSense, ADDA and TransAct reviewed in §2.2 from the baselines for the

following reasons. MetaSense cannot be applied to a source-domain dataset collected via many
unlabeled microphones. We obtain unsatisfactory results for ADDA in the adversarial training
with hours’ target-domain training data and extensive hyperparameter tuning. We suspect that
the amount of target-domain training data is still insufficient for ADDA. Note that PhyAug only
requires five seconds’ unlabeled target-domain data as shown shortly. TransAct is customized for
activity recognition that differs from human voice sensing.

3.3.2 Evaluation results. We apply PhyAug and the alternatives for the five microphones in Fig. 4.
The test accuracies are shown in Fig. 7. The bars labeled “unmodified” are the results from Fig. 5,
for which no domain adaptation technique is applied. We include them as the baseline. The results
are explained in detail as follows.
Ì Data calibration: It brings test accuracy improvements for M1, M2, and M3. The average

test accuracy gain is about 4%. For the cheap microphones M4 and M5, it results in test accuracy
deteriorations. The reason is as follows. Its back mapping uses the reciprocal of the measured
FRC (i.e., 1⇑𝐻�𝑓 �), which contains large elements due to the near-zero elements of 𝐻�𝑓 �. The
larger noises produced by the low-end microphones M4 and M5 are further amplified by the large
elements of 1⇑𝐻�𝑓 �, resulting in performance deteriorations. Thus, although this approach may
bring performance improvements, it is susceptible to noises.
Ì PhyAug: The black bars in Fig. 7 show PhyAug’s results. Compared with the unmodified

baseline, PhyAug recovers the test accuracy losses by 64%, 67%, 72%, 53%, and 56% for the five
microphones. PhyAug cannot fully recover the test accuracy losses. This is because PhyAug only
addresses the deterministic distortions due to microphones; it does not address the other stochastic
factors such as the environmental noises and the microphones’ thermal noises.
Ì CDA: It recovers certain test accuracy losses for all microphones. This is because for any target

microphone, there is at least one heterogeneity dataset microphone giving a similar FRC as the
target microphone. Specifically, from Fig. 6, M1, M2, andM3 exhibit similar FRCs; M4 andM5 exhibit
similar FRCs (i.e., they have good responses in lower frequencies). However, PhyAug consistently
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Fig. 8. CycleGAN translation results (mid column). (a) Translation from M5 to M1. High similarity between
first and second columns shows effectiveness of CycleGAN. (b) Translation from M5 to the domain of
Google Speech Commands Dataset. Dissimilarity between first and second columns shows ineffectiveness of
CycleGAN.

outperforms CDA. In addition, CDA introduces larger overhead than PhyAug as discussed in §3.3.1.

Ì CycleGAN: It leads to test accuracy deteriorations for all five target microphones. Although
CycleGAN is effective in translating the domain of a microphone to that of another microphone,
which is the basis of Mic2Mic [12]. Howerver, CycleGAN is ineffective in translating a certain
microphone to the source domain of a dataset that consists of recordings captured by many
microphones. We illustrate this using an example of CycleGAN translated audio spectrogram. First,
we train a CycleGAN to translate M5 to M1. The first and the third columns of Fig. 8a show the
spectrograms captured by M1 and M5 for the same sample played by the smartphone in the setup
shown in the paper. We can see that there are discernible differences. The mid column shows
the output of the CycleGAN, which is very similar to the first column. This result suggests that
CycleGAN is effective for device-to-device domain translation. Then, we apply the same approach
to train a different CycleGAN to translate M5 to the domain of Google Speech Commands Dataset.
Fig. 8b shows the results. The third column is the spectrogram captured by M5 when a dataset
sample shown in the first column is played by the smartphone in the setup shown in the paper. The
mid column is the CycleGAN’s translation result, which has discernible differences from the first
column, suggesting the ineffectiveness of CycleGAN. An intuitive explanation is that the CycleGAN
shown with samples captured by many microphones during the training phase is confused and
caters into no single microphone. Due to the discrepancy between CycleGAN’s output and the
dataset, the pre-trained CNN fed with CycleGAN’s outputs yields low test accuracy.
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Fig. 9. t-SNE visualization of different domain data. The 𝑟 value reported in the sub-figure caption characterizes
the effectiveness of the approach. It is the ratio of the source-translation and target-translation distances.

Ì FADA: When we set the number of labeled target-domain samples per class (LTS/C) to 10 for
FADA training, it recovers the accuracy loss for the five microphones by 56%, 38%, 47%, 47%, and
37%, respectively, as shown in Fig. 7. The performance of FADA increases with LTS/C. When we
increase LTS/C to 20, PhyAug still outperforms FADA. Note that PhyAug requires a single unlabeled
target-domain sample only. In addition, from our experience, FADA is sensitive to hyperparameter
settings.
Ì CDCL: The amount of the used target-domain data per class for contrastive learning is 200.

As shown in Fig. 7, CDCL recovers the accuracy loss for the five microphones by 50%, 25%, 56%,
53%, and 27%, respectively. However, the performance of CDCL is sensitive to the amount of
target-domain data used for contrastive feature learning. PhyAug outperforms CDCL even when
the number of the used target-domain data samples per class increases up to 400.

3.4 In-depth Analysis
3.4.1 Data translation performance of different approaches. We investigate the data translation
performance for each approach using the T-distributed Stochastic Neighbor Embedding (t-SNE) [31].
t-SNE is a dimensionality reduction technique to effectively visualize the high-dimensional data
in the low-dimensional feature space. As shown in Fig. 9, the red dots labeled “Source” represent
the source-domain data, i.e., the original keyword spotting data. The green dots labeled “Target”
represent the target-domain data. The target-domain data presented is collected by the microphone
M4. The blue dots in each subplot represent the translated data using different approaches. Ideally,
the data samples of the same color should cluster together. Moreover, the data translated by an
approach from the source-domain data should be close to the target-domain data. To simplify the
characterization of the translation effectiveness, we define a metric 𝑟 � 𝑑𝑠

𝑑𝑡
, where 𝑑𝑠 is the average

distance between the source-domain data points and the corresponding translated data points in
the t-SNE space and 𝑑𝑡 is the average distance between the target-domain data points and the
corresponding translated data points. If the value of 𝑟 is less than 1, the translated data is closer
to the source-domain data; otherwise, the translated data is closer to the target domain. Fig. 9d
shows the data translation performance for PhyAug. PhyAug applies the learned FRC to translate
the source-domain data to the target domain. Thus, the translated data via PhyAug is expected
to be closer to the target-domain data. The distance ratio 𝑟 for PhyAug is 10, indicating that the
translated data via PhyAug is closer to the target-domain data. Thus, when we apply the model
trained using the translated data on the target-domain data, we obtain performance improvement.
Fig. 9a shows the data translation performance for the Data calibration approach. Data calibration
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uses the learned FRC to calibrate the target-domain data back to the source domain. Thus the
translated data via Data calibration is expected to be closer to the source domain. The distance
ratio 𝑟 for Data calibration is 7, indicating that the calibrated data are closer to the target-domain
data. When we apply the trained DNN from the source-domain data on the calibrated data, the
performance improvement is limited. Fig. 9b shows the data translation performance for CDA. CDA
uses a heterogeneity generator to construct the augmented data that can contain the target-domain
data. Thus the augmented data is expected to be close to the target-domain data. The distance
ratio 𝑟 for CDA is 0.2, indicating that the augmented data are closer to the source-domain data.
When we apply the DNN trained using the augmented dataset on the target-domain data, the
improvement is limited. Fig. 9c shows the data translation performance for CycleGAN. CycleGAN
trains a data translation model that tries to map the data between the source domain and the target
domain. As the data is translated from the target domain, the translated data is expected to be
closer to the source domain. However, we observe that the translated data are far from both the
source-domain and the target-domain data. Thus, CycleGAN is observed the performance drop on
microphone M4 in the KWS case study. Fig. 9e shows the data translation performance for CDCL.
This approach applies the contrastive learning to learn the feature representation such that the
domain distance between the source-domain data and the target-domain data is minimized. The
translated data is expected to be close to the source-domain data. The distance ratio 𝑟 for CDCL is
0.4, indicating that the translated data is closer to the source-domain data. Thus, the learned feature
representation can reduce the domain difference to a certain extent. However, CDCL requires
substantial target-domain data in order to train the DNN model. In summary, PhyAug outperforms
the competing baselines in terms of the data translation quality, and it achieves the best results for
domain adaptation.
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Fig. 10. The impact of white noise emission time on the effectiveness of PhyAug.

3.4.2 Amount of target-domain data needed by each approach. In this section, we investigate the
amount of target-domain data needed by each approach in order to achieve satisfactory performance.
CDA, Data calibration and PhyAug use white noise to profile the microphones. They do not

require the target-domain data. In the previous experiments, the microphone profiling uses a 5-
minute noise. We conduct experiments to investigate the impact of shorter noise emission durations
on the performance of CDA, Data calibration and PhyAug. Since they use the same FRC to perform
data translation, we focus on the PhyAug on a specific microphone, M1. Fig. 10 shows the test
accuracy of PhyAug using the M1’s FRCs measured with various noise emission times. We can
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Fig. 11. Evaluation of the amount of the target-domain data needed for CDCL and FADA.

see that a noise emission time of five seconds is sufficient. This result shows that a minimum of
5-second white noise is sufficient to profile a microphone. Thus, Data calibration and PhyAug incur
little overhead. CDA is different from Data calibration and PhyAug as it requires a heterogeneity
generator to generate augmented training data. The construction of the heterogeneity generator
requires 10-minute white noise from each microphone.
CDCL, FADA and CycleGAN require both the source-domain and the target-domain data for

model training. We investigate the performance of CDCL and FADA when the amount of used
target-domain data varies. The plot labeled “CDCL” in Fig. 11 shows the CDCL’s test accuracy
with respect to the used target-domain data. The horizontal axis represents the number of the
target-domain data samples used per class; the vertical axis shows the test accuracy. We observe that
CDCL’s performance increases when the used target-domain data amount increases. Its performance
stabilizes when the number of used data samples per class in the target domain is greater than 200,
which is around 5% of the available training data. The plot labeled “FADA” in Fig. 11 shows the
FADA’s test accuracy with respect to the used target-domain data. We can see that FADA achieves
good performance with 20 data samples used in each class, which is around 0.5% of the available
training data. Despite that CDCL and FADA only require a small portion of target-domain data
to achieve good results. PhyAug is preferred for model transfer as it only requires a short noise
emission time and does not require the target-domain data.

3.5 Application Considerations
From the above results, PhyAug is desirable for KWS on virtual assistant systems. We envisage that
more home IoT devices (e.g., smart lights and smart kitchen appliances, etc.) will support KWS. To
apply PhyAug, the appliance manufacturer can offer the microphone profiling function as a mobile
app and the model transfer function as a cloud service. Thus, the end user can use the app to obtain
the FRC, transmit it to the cloud, and receive the customized KWS DNN. As the KWS DNN is not
very deep and PhyAug is a one-time effort for each device, the model retraining in the cloud is an
acceptable overhead to trade for better KWS accuracy over the entire device lifetime.

4 CASE STUDY 2: AUTOMATIC SPEECH RECOGNITION (ASR)
ASR models often have performance degradation after deployments. This section shows the impact
of the microphone on ASR and applies PhyAug to mitigate the impact.
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Fig. 12. WERs using various approaches on tested microphones. Compared with the unmodified baseline,
PhyAug reduces WER by 60%, 41%, 37%, 70%, and 42% respectively for the five microphones toward the oracle
WER. As CycleGAN gives high WERs (about 90%), it is not shown.

4.1 Impact of Microphone on ASR
We use LibriSpeech [19] as the standard dataset in this case study. It contains approximately
1,000 hours of English speech corpus sampled at 16ksps. Each sample is an utterance for four
to five seconds. We use an implementation [16] of Baidu DeepSpeech2, which is a DNN-based
end-to-end ASR system exceeding the accuracy of Amazon Mechanical Turk human workers on
several benchmarks. The used DeepSpeech2 model is pre-trained with LibriSpeech training dataset
and achieves an 8.25% word error rate (WER) on LibriSpeech test dataset. This 8.25% WER is
referred to as oracle WER. Note that the input to DeepSpeech2 is the spectrogram of a LibriSpeech
sample, which is constructed from the Fourier frames using a 20-millisecond window size and
10-millisecond window shift.

DeepSpeech2 has 11 hidden layers with 86.6 million weights. It is far more complicated than the
KWS CNN. Specifically, DeepSpeech2 is 175 times larger than the KWS CNN in terms of the weight
amount. All the existing studies (e.g., Mic2Mic [12], MetaSense [5], and CDA [13]) that aimed at
addressing domain shift problems in voice sensing only focused on simple tasks like KWS and did
not attempt a sophisticated model such as DeepSpeech2.
We test the performance of the pre-trained DeepSpeech2 on the five microphones M1 to M5

used in §3. We follow the same test methodology as presented in §3.1.2. In Fig. 12, the histograms
labeled “unmodified” represent the WERs of the pre-trained DeepSpeech2 on the test samples
recorded by the five microphones. The horizontal line in the figure represents the oracle WER. We
can see that the microphones introduce about 15% to 35% WER increases. In particular, the two
low-end microphones M4 and M5 incur the highest WER increases. This result is consistent with
the intuition. From the above test results, this section investigates whether PhyAug described in §3
for KWS is also effective for ASR. Different from the KWS CNN that takes MFCC tensors as the
input, DeepSpeech2 takes the spectrograms as the input. Thus, in this case study, PhyAug does not
need to convert spectrograms to MFCC tensors in the data augmentation.

4.2 Performance Evaluation
4.2.1 Comparison with alternative approaches. We use data calibration, CDA [13], and CycleGAN
(i.e., essence of [12]) described in §3.3.1 as the baselines. FADA [15] cannot be readily applied
to DeepSpeech2, because FADA requires class labels while DeepSpeech2 performs audio-to-text
conversion without the concept of class labels. Differently, PhyAug and the three used baselines
transform data without needing class labels.
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Ì Data calibration: Its results are shown by the histograms labeled “calibration” in Fig. 12.
Compared with the unmodified baseline, this approach reduces some WERs.
Ì PhyAug: Among all tested approaches, PhyAug achieves the lowest WERs for all microphones.

Compared with the unmodified baseline, PhyAug reduces WER by 60%, 41%, 37%, 70%, and 42%,
respectively, for the five microphones toward the oracle WER.
Ì CDA [13]: It performs better than the data calibration approach but worse than PhyAug. As

PhyAug is directed by the target microphone’s actual characteristics, it outperforms CDA that is
based on the predicted characteristics that may be inaccurate.
Ì CycleGAN:We record a 3.5-hour speech dataset and use it to train a CycleGAN to translate

samples captured by a target microphone to the source domain of LibriSpeech dataset. Unfortunately,
DeepSpeech2’s WERs on the data translated by CycleGAN from the microphones’ samples are
higher than 90%. A possible reason is as follows. Unlike the KWS task studied in Mic2Mic [12]
and §3 of this paper, which discriminates a few target classes only, end-to-end ASR is much more
complicated. CycleGAN may require much more training samples beyond we use to achieve good
performance.

4.2.2 Impact of various factors on PhyAug. We also evaluate the impact of the following three
factors on PhyAug: the indoor location of the microphone, the distance between the microphone
and the sound source, and the environment type. We evaluate the impact of the following three
factors on PhyAug: the indoor location of the microphone, the distance between the microphone
and the sound source, and the environment type. We adopt an evaluation methodology as follows.
When we evaluate the impact of a factor, the remaining two factors are fixed. For a certain factor, let
𝑋 and 𝑌 denote two different settings of the factor. We use PhyAug(𝑋 ,𝑌 ) to denote the experiment
in which the microphone profiling is performed under the setting 𝑋 and then the transferred model
is tested under the setting 𝑌 . Thus, PhyAug(𝑋 ,𝑋 ) evaluates in situ performance; PhyAug(𝑋 ,𝑌 )
evaluates the sensitivity to the factor.
Ì Impact of microphone location: Microphones at different locations of an indoor space

may be subject to different acoustic reverberation effects. We set up experiments at three spots,
namely, A, B, and C, in a 7 � 4m2 meeting room. Spot B is located at the room center; Spots A
and C are located at two sides of B, about 1m apart from B along the room’s long dimension.
Fig. 13 shows the results of the unmodified baseline approach tested at three spots, as well as
PhyAug’s in situ performance and location sensitivity. PhyAug’s in situWERs (i.e., PhyAug(A, A),
PhyAug(B, B), PhyAug(C, C)) are consistently lower than those of the unmodified baseline. The
WERs of PhyAug(A, B) and PhyAug(A, C) are slightly higher than PhyAug(B, B) and PhyAug(C, C),
respectively.
Similarly, we evaluate the impact of the microphone locations on CDA and Data calibration

approaches. Fig. 14 and Fig. 15 show the results of CDA and Data calibration, respectively. Similar
to PhyAug, we observe that the WERs are consistently lower than the unmodified results at three
tested locations for both approaches, and the WERs of (A, B) and (A, C) are slightly higher than
(B, B) and (C, C). These results show that location affects the performance of a certain ASR model
transferred by all evaluated approaches, but not much. Thus, CDA and Data calibration also exhibit
similar robustness trends as PhyAug.
Ì Impact of microphone-speaker distance: The distance affects the signal-to-noise ratio

(SNR) received by the microphone and thus ASR performance. With the setup at the aforementioned
Spot C, we vary the distance between the microphones and the iPhone 7 used to play test samples to
be 75 cm, 45 cm, and 15 cm (referred to as 𝐷1, 𝐷2, and 𝐷3). Fig. 16 shows the results. The unmodified
baseline’s WERs become lower when the microphone-speaker distance is shorter, due to the
increased SNR. PhyAug’s in situWERs (i.e., PhyAug(𝐷1,𝐷1), PhyAug(𝐷2,𝐷2), and PhyAug(𝐷3,𝐷3))
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Fig. 13. PhyAug’s in situ performance and location sensitivity evaluated at three spots in a 7 � 4m2 meeting
room.
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Fig. 14. CDA’s in situ performance and location sensitivity evaluated at three spots in a 7 � 4m2 meeting
room.
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Fig. 15. Data calibration’s in situ performance and location sensitivity evaluated at three spots in a 7 � 4m2

meeting room.

are consistently lower than those of the unmodified baseline. The performance gain is better
exhibited when the distances are longer. This suggests that in situ PhyAug improves the resilience of
DeepSpeech2 against weak signals. In most cases, the WERs of PhyAug(𝐷1,𝐷2) and PhyAug(𝐷1,𝐷3)
are slightly higher than those of PhyAug(𝐷2,𝐷2) and PhyAug(𝐷3,𝐷3), respectively. This shows that
the microphone-speaker distance affects the performance of a certain model transferred by PhyAug,
but not much. Thus, PhyAug for DeepSpeech2 is insensitive to the microphone-speaker distance.
Another related factor is the speaker’s azimuth with respect to the microphone that can affect

the quality of the recorded signal due to the microphone’s polar-pattern characteristic. For a certain
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Fig. 16. PhyAug’s in situ performance and microphone-speaker distance sensitivity evaluated with three
distances.
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Fig. 17. PhyAug’s in situ performance and environment sensitivity evaluated in three types of environment,
namely, small tutorial room (T), large lecture theater (L), and outdoor open area (O).

microphone, the different azimuths of the speaker create multiple target domains. If the speaker’s
azimuth can be sensed (e.g., by a microphone array), PhyAug can be applied. However, as the five
microphones used in this paper lacks speaker azimuth sensing capability, we skip the application
of PhyAug to address the domain shifts caused by the speaker’s azimuth.
Ì Impact of environment: Different types of environments in general have distinct acoustic

reverberation profiles, which may affect the microphone’s signal reception. We deploy our ex-
periment setup in three distinct types of environments: a small tutorial room (T), a large lecture
theatre (L), and an outdoor open area (O). Fig. 17 shows the results. The unmodified baseline
approach has similar results in T and L. Its WERs become higher in O, because O has a higher level
of background noise. PhyAug’s in situWERs in T, i.e., PhyAug(T,T), are consistently lower than
those of the unmodified baseline. PhyAug(L,L) and PhyAug(O,O) reduce WERs compared with the
unmodified baseline, except for the low-quality microphone M5. As M5 has higher noise levels, the
microphone profiling process may not generate fidelity FRCs for M5, leading to increased WERs.
As shown in Figs. 17b and 17c, the WERs of PhyAug(T,L) and PhyAug(T,O) are higher than those of
the unmodified baseline. The above results show that PhyAug for DeepSpeech2 may have degraded
performance on low-quality microphones. In addition, PhyAug for DeepSpeech2 is sensitive to
various environments.

4.3 Application Considerations
From results presented in §4.2, PhyAug suits ASR systems deployed at fixed locations, such as
residential and in-car voice assistance systems, as well as minutes transcription systems installed
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in meeting rooms. PhyAug can also be applied to the ad hoc deployment of ASR and automatic
language translation for a multilingual environment.

5 CASE STUDY 3: ACOUSTICS-BASED ROOM RECOGNITION (ARR)
Smartphone indoor localization without using extra sensors and infrastructure is desirable. Recent
studies exploit the smartphone’s built-in audio system for infrastructure-free room-level indoor
localization [25, 28]. Specifically, they use a smartphone to sense a room’s acoustic background
spectrogram (ABS) [28] or the room’s reverberation in response to a probe sound emitted by the
smartphone [25]. They follow supervised learning to train a model using labeled data samples
collected from multiple rooms. Then, the smartphone with the model can recognize which room it
is located in using the ABS or room reverberation sensed by the smartphone. Different from the
previous two case studies (KWS, ASR) that aim at interpreting the voices, ARR uses acoustic signals
to sense the environment. Since ARR uses a smartphone microphone as the sensor, presumably, its
performance can be affected by the heterogeneity of the smartphones’ microphones. Specifically, if
the target smartphone deployed with the trained ARR model is different from the smartphones or
specialized acoustic devices used to collect the training data samples, the performance of the ARR
model may drop. Conventional data augmentation approaches [13] may fail to capture such device
variability because of a lack of target sensors’ domain knowledge. Data translation approaches,
e.g., mic2mic [12] only address the single device-to-device data translation. In addition, it requires
a translation module installed on each device, hindering the generality of the approach.

In this section, we validate that the main cause of the ARRmodel performance drop is microphone
variability. To address this issue, we apply PhyAug to recover the performance degradation of
the ABS-based ARR model when being applied on a specific smartphone. Specifically, we exploit
the smartphone’s ABS profile to perform data translation from a source smartphone to the target
smartphone. Then, we apply the transfer learning technique to obtain a domain-adapted ARR
model for the target smartphone.
In this case study, source domain is the dataset collected from the smartphone’s microphone

used to train the ARR model; target domain is the dataset captured from a different smartphone;
first principle is the microphone’s FRC.

5.1 Problem Description
In this section, we describe the procedures for ABS feature extraction and DNN model used for
room recognition. Then, we measure the impact of smartphone microphone variability on the
pre-trained ARR model’s accuracy. Finally, we apply PhyAug to recover the model accuracy loss
and compare PhyAug with baseline approaches.

5.1.1 ABS feature extraction and DNN model design. We follow the acoustic signal preprocessing
steps described in [28] to extract ABS features. An ABS feature is extracted as follows. First,
the smartphone records a 1-second long background sound within a room at a sampling rate
of 44.1kHz. Second, we apply short-time Fourier transform (STFT) on the signal by sliding a
1,024-point hamming window with 512 points of overlap to obtain the ABS. Third, we discard the
frequencies that are greater than 7kHz and sort the values in each frequency bin. Lastly, we select
the 5th percentile of the sorted values in each frequency bin to form a one-dimensional vector with
163 elements as the ABS feature. The sorting and selection make sure the feature characterizes the
background sound, rather than transient foreground sound.
Different from the ABS-based ARR system in [28] that uses nearest-neighbor classification, we

adopt a 5-layer MLP model that takes the ABS feature as input to perform room recognition. The
number of neurons in the five layers are 163, 256, 512, 1024, and 𝑁 , where 𝑁 represents the number
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of rooms. During training, a 0.4 dropout rate is adopted between any two hidden layers to prevent
overfitting. We implement the model using Pytorch [20].

5.1.2 Impact of smartphone microphone variability on ARR. We investigate the impact of the
smartphone microphone on a pre-trained ARR model. We use three smartphones of different
models (Samsung Galaxy S7, Motorola Moto Z, and Google Pixel 4) to collect 20 rooms’ ABS
features. For each room, we collect 10-minute training data and 2-minute testing data using each
smartphone. We train the DNN model with data collected using a specific smartphone and then
test the trained model with data collected using all smartphones. The results are shown by the
histograms labeled “unmodified” in Fig. 18a, 18b, and 18c, respectively. Taking Fig. 18a as an
illustration, the source device used to train the DNN model is Galaxy S7. The oracle accuracy
numbers reported in the sub-figure captions are obtained by training and testing the model on
the data collected from the same smartphone, which are 98% for Galaxy S7 and Pixel 4, and 99%
for Moto Z. Thus, the ABS-based ARR can achieve high accuracy on recognizing different rooms
if the source and target devices are identical. However, from Fig. 18a, when applying the model
trained on Galaxy S7 to Pixel 4 and Moto Z, the DNN model’s accuracy drops to 17% and 16%,
respectively. Similar substantial accuracy drops can be observed when the source smartphone is
Pixel 4 or Moto Z. These results show that the ABS-based ARR is highly sensitive to smartphone
microphone variability.
To visualize the differences between the acoustic traces collected from different smartphones

in the same room, Fig. 18d plots the spectrograms of the phones’ 1-second data traces collected
at the same time. It shows that different smartphones record different ABSes, which is caused by
the microphone heterogeneity. From this observation, the research question is how to exploit the
microphone characteristics to recover the ARR DNN’s accuracy loss?

5.2 PhyAug for Acoustics-based Room Recognition
Similar to §3.2, PhyAug for ARR consists of fast microphone profiling and model transfer via data
augmentation.

For fast microphone profiling, we adopt a new approach that is different from but related to that in
§3.2. Specifically, instead of using a speaker to playback the white noise, we place the smartphone
in a profiling room to record a 1-minute ABS for phone characterization. The profiling room can be
different from those to be recognized. We follow the procedure in §5.1.1 to obtain the spectrogram
over a 1-minute window. Then, we sort the values in each frequency bin and compute the average
of the values from the first percentile to the 20th percentile. The resulted averages for all the
frequency bins form the smartphone’s ABS profile that is specific to the profiling room. We obtain
the ABS profiles of the source smartphone and the target phone, which are denoted by 𝐴𝐵𝑆𝑠�𝑓 �
and 𝐴𝐵𝑆𝑡�𝑓 �, respectively.
For model transfer via data augmentation, we transform the source-domain training data into

the target domain. The source-target transfer function is 𝐻�𝑓 � � 𝐴𝐵𝑆𝑡 �𝑓 �
𝐴𝐵𝑆𝑠�𝑓 �

. Then, we multiply the
labeled source-domain ABS features with𝐻�𝑓 � to generate augmented target-domain ABS features.
Finally, we re-train the ARR model with the augmented data.

5.3 Performance Evaluation
We compare PhyAug with two alternative approaches: data calibration and CDA. The evaluation
results are shown in Fig. 18a, 18b and 18c, which use Galaxy S7, Pixel 4, and Moto Z as the source
device, respectively.
Ì Data calibration: This approach converts the target domain data back to the source domain,

then applies the pre-trained model to the converted data. The histograms labeled “calibration” show
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Fig. 18. Impact of smartphone microphone variability on ABS-based ARR and comparison of different
approaches.

the results of this approach. Compared with the “unmodified” results, this approach recovers a
certain amount of the accuracy loss for most source-target phone combinations. However, it leads
to lower accuracy when the source and target phones are Pixel 4 and Moto Z. The accuracy drops
from 62% to 60%.
Ì CDA: We follow the scheme presented in §3.3.1 and use target smartphones’ ABS profiles

to generate a heterogeneity dataset. We train a DNN model on this dataset and evaluate on target
smartphones. The histograms labeled “CDA” show the results. Compared with the “unmodified”
results, we observe considerable accuracy recovery when transferring from Pixel 4 to Galaxy S7 and
from Moto Z to Galaxy S7. However, CDA underperforms when transferring between Pixel 4 and
Moto Z. The reason is as follows. From the “unmodified” results, any source-target pair involving
Galaxy S7 has a poor result. For example, the DNN model’s absolute accuracy drops between Pixel
4 with Moto Z is around 30% - 40%, whereas the accuracy drops between Galaxy S7 with Pixel 4 or
Galaxy S7 with Moto Z are more than 70%. This implies that Galaxy S7’s ABS profile is significantly
different from those of Pixel 4 and Moto Z. Under the CDA approach, when we transfer between
Pixel 4 and Moto Z, the Galaxy S7 is used as one of the two phones in the heterogeneity dataset.
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As a result, the heterogeneity dataset has a complex pattern, which adversely affects the dataset’s
representativeness.
Ì PhyAug: PhyAug can recover the accuracy loss for any source-target smartphone pair. In

addition, PhyAug achieves the best performance recovery among all evaluated approaches. Specifi-
cally, PhyAug recovers 24% to 72% absolute accuracy degradations on different smartphone pairs.
In particular, when the source device is Galaxy S7, the “unmodified” accuracies on Pixel 4 and
Moto Z are 17% and 16%. PhyAug can recover 52% and 68% absolute accuracy losses, outperforming
significantly over the data calibration and CDA approaches.

5.4 Summary
The DNN-based mobile application generally suffers from performance degradation due to the
heterogeneity of mobile sensors. This case study applies PhyAug to recover the ARR performance
loss caused by smartphone microphone variations. PhyAug only requires smartphones to record
1-minute ABS profiles in a certain room and achieves significant accuracy recovery. This case study
shows that PhyAug can be used to address the sensor heterogeneity issue in DNN-based mobile
sensing applications.

6 CASE STUDY 4: FISHEYE IMAGE RECOGNITION
DNN-based visual sensing can be found in many IoT applications, including video surveillance [9],
augmented reality [24], and autonomous driving [7]. Many such applications use fisheye cameras.
The fisheye camera is different from the normal pinhole camera with rectilinear mapping. The
fisheye camera produces images with a wide field of view (FOV) while creating strong distortions
due to the non-linear mapping of optical lens systems.
Prevalent image datasets consist of samples obtained using pinhole cameras. Standard DNNs

that achieve state-of-the-art performance are also trained and tested on such pinhole camera
datasets [2, 34]. They may not perform well on the images collected by fisheye cameras. Image
rectification is a conventional approach that applies inverted fisheye models to fix distorted images.
However, image rectification has two main limitations [34]. First, as fisheye images contain greatly
distorted peripheries, mapping the limited pixels from the image periphery to a larger region leads
to information loss. Second, the image rectification requires additional processing time for every
image before the image classification. The processing time grows drastically as the image resolution
increases. Thus, the image rectification approach is not suitable for applications that impose both
deadline and high-resolution requirements, e.g., visual sensing-based pedestrian detection on a
moving vehicle.

In this section, we apply PhyAug to recover DNN’s performance degradation caused by fisheye
camera distortion without performing image rectification. First, we utilize a non-linear polynomial
model to augment the original dataset to the images with fisheye distortions. Then, we apply a
transfer learning technique to obtain a domain-adapted DNN model for fisheye images.

In this case study, source domain is the image dataset that is captured by pinhole cameras and
used to train the DNN; target domain is the fisheye camera dataset for specific IoT applications;
first principle is the fisheye camera model described by a non-linear polynomial function.

6.1 Problem Description
In this section, we first introduce the original dataset captured by pinhole cameras. Then, we
describe the camera model used to generate synthesized fisheye images. Finally, we compare the
performance of PhyAug, CDA, and the image rectification approach.
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(a) Original (b) Synthesized (c) Rectified

Fig. 19. Fisheye image sythesization and rectification using parameterized model. (a) original image; (b)
synthesized fisheye image; (c) rectified image.

6.1.1 Fisheye camera model. For a given camera, distortions occur when the scenes deviate from
the rectilinear projection. The most common source of image distortions is the radial distortion
caused by the camera optical lens system. Fisheye cameras produce strong radial distortions on
images. Several models have been proposed to characterize a fisheye camera [8]. In this paper, we
adopt a generic fisheye model [29], which is a fourth-order polynomial function:

𝑅𝑠𝑟𝑐 � 𝑟 � �𝐴 � 𝑟 3 � 𝐵 � 𝑟 2 �𝐶 � 𝑟 �𝐷� , (1)
where 𝑟 is the destination image radius and 𝑅𝑠𝑟𝑐 is the source pixel. In this model, image radius is
normalized, so that 𝑟 � 1 refers to the half minimum width or height of the input image. 𝐴,𝐵,𝐶
represent the distortion of the image. When the three values are positive, the image contains barrel
distortion. When they are negative, pincushion distortion occurs in the image. 𝐷 describes the
linear scaling of the image. The values of𝐴,𝐵,𝐶,𝐷 are fixed for a given camera and are often stored
as metadata of the image captured by a fisheye camera.

6.1.2 Dataset and deep neural network model. In this case study, our experiments use Caltech-101
dataset [4]. It consists of image objects in 101 classes. Each class contains 40 to 800 images, with a
total of around 9,000 images. We split the dataset into training, validation, and testing sets at 70%,
10% and 20% ratio.

We adopt the ResNet-50 CNN model [6] to perform multi-class classification. ResNet-50 consists
of 48 convolutional layers along with one max-pooling and one average-pooling layer. The base
model is pre-trained on the ImageNet dataset [3]. We customize the model by reducing the output
layer size from 1,000 neurons to 101 neurons, to align with Caltech-101’s class number. We use
freeze-and-train to transfer the pre-trained base model for Caltech-101 dataset. In particular, we
freeze the weights in feature encoders and update the weights in the fully connected layers. In this
case study, we implement the model training and evaluation using PyTorch.

6.1.3 Impact of image distortion on DNN model. We investigate the performance of a DNN model
trained on a standard dataset captured by pinhole cameras and test it on images captured by fisheye
cameras. Due to the lack of publicly available fisheye image datasets, we use a synthetic dataset for
our experiments. We distort the images using the model depicted in Eq. (1). Fig. 19 shows a sample.
Fig. 19(a) is the original image. Fig. 19(b) is the corresponding distorted image with a positive
parameter set of 𝐴 � 0.2, 𝐵 � 0.2,𝐶 � 0.01, 𝐷 � 0.59, where a strong radial distortion effect can
be observed. We apply the same parameters set on Caltech-101 to generate the synthetic fisheye

25



50

60

70

80

90

100

oracle test accuracy

A
cc

ur
ac

y
(%

)

Unmodified
CDA

FADA
CDCL

Rectify
PhyAug

Fig. 20. ResNet-50 test accuracy on Caltech-101
dataset using different approaches.

0

100

200

300

400

500

600

700

224 512 1024 1414

Ti
m

e
(m

s)

Image size (pixels)

Rectify
DNN

Fig. 21. Execution time vs. image size on an NVIDIA
Jetson Nano.

image dataset. The fisheye model is implemented using the Wand package [14] in Python. We
test the pre-trained model on both the original and distorted datasets. As shown in Fig. 20, the
pre-trained ResNet-50 model achieves 90% oracle accuracy on the original test set. The accuracy on
the distorted dataset is 72%. Thus, there is an 18% absolute accuracy drop. Many fisheye cameras
can produce images with FOV greater than 180X, resulting in stronger non-linear distortions. Hence,
significant accuracy drops can be observed. Based on the experiment results, the research question
for this case study is: how to exploit the first principle of fisheye camera models to recover the
image classification DNN’s accuracy loss?

6.2 PhyAug for Fisheye Image Recognition
We use a generic fisheye model, which is described by a fourth-order polynomial function (cf.
Eq. (1)). Note that a fourth-order polynomial function can well represent the model of fisheye
cameras, while higher orders provide no additional benefit in terms of accuracy [34]. A system
designer can reconstruct the camera model based on lens parameters stored in the image’s metadata.
In case that the metadata is missing, a standard calibration procedure can be applied to estimate a
camera’s intrinsic parameters [23]. Specifically, the camera can capture photos of a printed image
with a known pattern, e.g., a chessboard, at different angles. In general, 20 to 30 pictures from a
fisheye camera are sufficient to obtain distortion parameters. Such calibration tools are available in
OpenCV [17] and Matlab [23].
PhyAug for FIR has the following two steps. First, we estimate the parameters of Eq. (1) for a

specific fisheye camera and apply the fisheye model on the original images to generate augmented
samples in the target domain. Then, we train the DNN model with the augmented data for the
fisheye camera. In this case study, we assume that the parameters of the target camera are known.

6.3 Performance Evaluation
6.3.1 Baseline approaches. Weevaluate PhyAug performance against following baseline approaches.
Ì CDA: This approach follows the conventional data augmentation scheme to build a DNN

model robust to camera lens distortions. Specifically, it randomly generates a set of potential fisheye
camera models using Eq. (1). Subsequently, CDA applies these camera models to augment the
training dataset. In our evaluation, we randomly generate 10 sets of parameters and use them to
augment the Caltech-101 training dataset.
Ì FADA: This approach follows the adversarial domain adaptation as presented in §3 to train

a domain-invariant feature encoder using paired source-domain and target-domain images. The
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feature encoder used is a ResNet-50 model and the discriminator used is a 4-layer MLP with the
neurons in the four layers are 1024, 1024, 1024 and 101. The number of images in each class used for
feature encoder training is set to 100 due to the relatively complex feature space for this case study.
Ì CDCL: This approach aims to train a domain-invariant feature encoder by applying the

contrastive learning. We follow similar procedures as presented in §3 to construct the positive and
negative samples for training. The number of images in each class used for contrastive feature
training is 400.
Ì Image rectification: This approach follows the conventional image rectification scheme to

correct image distortions. Once the camera lens distortion parameters are determined, one can tune
the same model as in Eq. (1) to rectify the image. Fig. 19(c) shows the rectified result by applying the
inverted parameters on the distorted image. In our evaluation, we apply the estimated parameters
to rectify distorted images and then evaluate the pre-trained model on rectified images.

6.3.2 Evaluation results. We apply PhyAug and the baseline approaches on the Caltech-101 dataset.
The results are presented as follows:
Ì CDA: As shown in Fig. 20, CDA achieves 79% accuracy on the target fisheye dataset. This

approach achieves higher accuracy than the unmodified result, which directly applies the pre-
trained model to the target test data. However, there is still an 11% accuracy gap towards the oracle
accuracy. The result shows that the model trained with CDA mitigates the impact of fisheye camera
distortion.
Ì FADA: As shown in Fig. 20, FADA achieves 76% accuracy on the fisheye images. It only gives

4% absolute accuracy gain compared with the unmodified result. The performance increase is subtle
even we increase the used target-domain images for model training. FADA does not perform well
on FIR compared to the KWS. The reasons are two-fold. First, the data complexity of FIR dataset is
higher than KWS dataset. The size of a fisheye image is 3 � 224 � 224, whereas the size of KWS
MFCC is 1 � 101 � 40. Second, the model complexity used is much higher. We use the ResNet-50
model for FIR and use the ResNet-18 for KWS. Thus, it is more difficult to adapt the DNN for FIR
using limited data. We conclude that FADA does not generalize well on the complex tasks for
domain adaptation.
Ì CDCL: As shown in Fig. 20, CDCL achieves 82% test accuracy on the fisheye images, represent-

ing a 10% absolute accuracy increase. The result shows that CDCL can effectively learn a feature
embedding for both the source-domain and the target-domain data. However, the performance of
CDCL is sensitive to the number of the target-domain data used for contrastive feature training.
Ì Image Rectification:We use pre-defined fisheye model in Eq. (1) to rectify the fisheye image,

then apply the pre-trained model on rectified images. As shown in Fig. 20, image rectification
achieves 85% test accuracy. This shows that image rectification can effectively recover information
loss caused by Eq. (1). However, as the image rectification algorithm is applied on every image,
thus will incur extra computing time. The evaluation of image rectification time on a resource-
constrained device is presented in the next section.
Ì PhyAug: We apply re-trained model on the distorted image dataset. The test accuracy is 85%.

PhyAug can effectively recover the accuracy loss caused by camera distortions. However, there
is still a 5% gap compared with the oracle test accuracy. This is because of the information loss
when applying the fisheye camera distortion model on the original image data. As shown in Fig. 19,
the occupied region of the distorted image (b) is smaller than the original image (a). The gray area
in image (b) represents the amount of lost content caused by the distortion. Therefore, a certain
amount of accuracy loss is expected.

We evaluate the execution time of image rectification and DNN inference on an NVIDIA Jetson
Nano that can execute DNN models. It is equipped with a quad-core Cortex-A57 CPU, a 128 core
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Maxwell GPU and 4GB RAM. Results are shown in Fig. 21. The curve labeled “Rectify” is the time
taken to rectify an image with respect to the image resolution. The horizontal axis represents
the length of a squared image in pixels, e.g., point 224 refers to a 224 � 224 RGB image. The solid
line in Fig. 21 shows that image rectification requires more processing time when the resolution
increases. It takes around 18ms to rectify an image of size 224 � 224. When processing an image
of 1414 � 1414 pixels, the rectification time increases up to 688ms. The curve labeled “DNN” is
DNN inference time on images with different resolutions. Note that we run image rectification
algorithm on CPU as there is lack of GPU version. In practice, there will incur overhead to create
GPU compilable program for every edge device. The dotted line in Fig. 21 shows that the inference
time is consistent across all tested images, which is around 36ms. This is because the floating-point
operation for a pre-defined neural network is generally fixed and regardless of input image size.
Our experiment shows that ResNet-50 network can work effectively on images with different
input sizes. In time-critical applications like autonomous driving, large delays are unacceptable. As
PhyAug directly adapts the DNN model to the target domain, it has the advantage of avoiding the
time-consuming rectification on resource-constrained devices.

6.4 Summary
This case study applies PhyAug to a visual sensing application. Applying DNNs trained using
standard pinhole camera image datasets on fisheye images suffers performance degradation. Despite
the prevalent use scenarios of fisheye cameras in visual sensing applications, few publicly fisheye
datasets are available for training customized DNNs. We identify that the main contributor to
the performance drop is the non-linear mapping of the fisheye camera. We apply parameterized
fisheye model to transfer existing DNNs to a specific fisheye camera via guided data augmentation.
The results show that PhyAug can significantly recover the accuracy loss; while requiring no data
collection effort in the target domain of the fisheye camera. Our experiment on NVIDIA Jetson Nano
shows that PhyAug requires less computational overhead than the conventional image rectification
approach.

7 DISCUSSIONS
In many sensing systems, the domain shifts are often governed by first principles. The four case
studies have demonstrated the advantages of exploiting the first principles in dealing with domain
shifts that are often experienced by deployed sensing systems. In practice, the complexity of the
identified first principles and the amount of data available for first principle fitting vary from
application to application. The quality of the fitted models affects the performance of the domain
adaptation. Though it is desirable to develop the theoretical analysis to describe howmuch the fitted
first principle can capture the true relations between the source-domain data and the target-domain
data, such analysis will need to be based on certain assumptions that are application-specific.
Intuitively, the first principle described with a more complex parametric model will require more
data for fitting. The focus of this paper is to establish the steps to exploit the physics governing the
domain shifts for domain adaptation and show its applicability to a number of case studies.
For the applications that lack useful first principles, we may fall back to the existing physics-

regardless transfer learning approaches. However, the fallback option should not discourage us
from being discerning on the exploitable first principles in the pursuit of advancing and customizing
deep learning-based sensing in the domain of physics-rich cyber-physical systems.

8 CONCLUSION AND FUTUREWORK
This paper described PhyAug, an efficient data augmentation approach to deal with domain shifts
governed by first principles. We presented the applications of PhyAug to four case studies of
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keyword spotting, automatic speech recognition, acoustics-based room recognition, and fisheye
image recognition. They have distinct objectives and require deep models with quite different
architectures and scales. The extensive and comparative experiments show that PhyAug can recover
significant portions of accuracy losses caused by sensors’ characteristics. In addition, it reduces
target-domain training data sampling complexity in dealing with the domain shifts.

The future work may consider applying PhyAug to exploit the following two parametric models.
First, room impulse response (RIR) describes indoor audio processes. Voice-based smart appliances
can exploit RIR as the first principle for effective adaptations to the deployment environments.
Active acoustic sensing-based indoor localization with deep learning [25] can exploit RIR to reduce
target-domain training data sampling complexity. Second, computational fluid dynamics (CFD)
describes the thermal processes in indoor spaces (e.g., data centers). A trained deep reinforcement
learning-based environment condition controller can adapt to new spaces with CFD models and a
few data samples in each new space.
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