
An Electromagnetic Covert Channel based on
Neural Network Architecture

Chaojie Gu∗§ Jiale Chen† Rui Tan† Linshan Jiang†
∗College of Control Science and Engineering, Zhejiang University, China

†School of Computer Science and Engineering, Nanyang Technological University, Singapore

Abstract—Outsourcing the design of deep neural networks may
incur cybersecurity threats from the hostile designers. This paper
studies a new covert channel attack that leaks the inference
results over the air through a hostile design of the neural
network architecture and the computing device’s electromagnetic
radiation when executing the neural network. Specifically, the
hostile neural network consists of a series of binary models
that correspond to all classes and are executed sequentially. The
execution terminates once any binary model given the input is
positive about its responsible class. We describe an approach to
generate such binary models by pruning a benign neural network
that is trained using the standard method to deal with all the
classes. Compared with the benign neural network, the hostile one
has similar memory usage and negligible classification accuracy
drop, but distinct inference times for the samples of different
classes. As a result, the hostile neural network’s classification
result can be eavesdropped by measuring the duration of the
electromagnetic radiation emanated from the computing device.
As neural networks are stored and transmitted as data files, this
covert channel attack is more stealthy to the anti-malware than
other code-based attacks. We implement the described attack
on two edge computing devices that execute the hostile neural
network on CPU or GPU. Evaluation shows 100% empirical
accuracy in eavesdropping the inference results.

Index Terms—Covert channel; electromagnetic radiation; neu-
ral network.

I. INTRODUCTION

Deep neural networks (DNNs) have shown appealing perfor-
mance in various applications, e.g., computer vision, speech
recognition, natural language processing, and etc. However,
designing and training an advanced DNN often require ex-
tensive expertise and massive compute power with hardware
acceleration. For instance, it is estimated that Google spends
more than 1.3 million US$ to train a natural language process-
ing DNN for a single run [1]. Many companies and organi-
zations in general lack the required expertise and thereby risk
wasting costly compute time even if they can access massive
compute power in the cloud and dare the design challenge.
To make deep learning more accessible, Deep Learning as a
Service (DLaaS) [2] and privatization development strategy
[3], [4] have emerged. DLaaS is a cloud environment with
hardware acceleration and toolkit that simplifies and automates
the DNN designing process. In the simplest workflow, after the
user uploads the training data, the DLaaS returns the trained
DNN together with the performance report. In the privatization
development strategy, the customer pays an expert individual

§Part of this work was completed while Chaojie Gu was with the School
of Computer Science and Engineering, Nanyang Technological University.

or company for designing and training the DNN. The experts
can be obtained via crowdsourcing competitions through the
existing platforms (e.g., Kaggle).

However, the above DNN design outsourcing schemes (i.e.,
DLaaS, privatization, and crowdsourcing competition) may
incur cybersecurity threats from the hostile DNN designer.
For instance, the recent studies [5], [6] show that the hostile
designer can implant a backdoor to the DNN, which, once
triggered by a certain pattern in the inference sample, can
induce the DNN to yield wrong inference result. In this paper,
we study and verify the feasibility of a new covert channel
attack that leaks the inference result of the DNN running on
an air-gaped computing device. In a nutshell, the DNN is
designed such that it has distinct execution times for different
inference results, which can be sensed by measuring the
electromagnetic radiation of the computing device. Thus, once
such a hostile DNN is deployed, the covert channel presents
a persistent confidentiality threat throughout the run time.

Recent studies [7]–[10] have shown that personal com-
puter’s Power Management Unit (PMU), which is a microcon-
troller governing the power supplies of computer components
for energy efficiency, generates electromagnetic radiation at a
certain frequency when the central processing unit (CPU) is
busy. This creates a user-space covert channel, by which the
attacker can modulate the CPU utilization to transmit infor-
mation bits across the air gap. In this paper, we show through
experimentation that the PMU-based electromagnetic covert
channel is also available on the emerging edge computing
devices equipped with graphics processing units (GPUs), e.g.,
the NVIDIA Jetson AGX Xavier [11] and Jetson Nano [12].
This is because such edge computing platforms also integrate
the Power Management Integrated Circuits (PMICs) to manage
the power supplies of CPU and GPU.

The availability of the electromagnetic covert channel on
GPU-equipped edge devices motivates us to investigate the
possibility of leaking the inference results of the DNN running
on either the CPU or GPU of the edge device. To this end,
we design a hostile DNN architecture that consists of a series
of binary models, each sensitive to the samples of a particular
class. Such binary models are generated by pruning a benign
DNN that is trained using the standard method to deal with
all classes. In the inference phase after the hostile DNN
is deployed on the edge device, when given a sample, the
binary models in the hostile DNN are executed sequentially
and the execution process terminates once any binary model
yields a positive result. The terminating binary model suggests

the final classification result. As such, the inference time is
strongly correlated with the classification result. Therefore, by
measuring the time duration of the PMIC’s electromagnetic
radiation, an external eavesdropper can obtain the classification
result over the air. In addition, from our extensive evaluation,
the hostile DNN has similar memory usage and negligible
classification accuracy drop compared with the benign DNN.

Vis-à-vis the existing PMU-based electromagnetic covert
channel attacks [7]–[10] that use useless computation to
exhaust the CPU naively, our attack inherently embeds the
covert channel into the useful inference computation via DNN
architecture. As DNN architecture and parameters are stored
as data and loaded by certain deep learning frameworks (e.g.,
TensorFlow) for execution, our attack is more stealthy than the
code-based CPU exhaustion attack method to the anti-malware
that can analyze the behaviors of scripts and executables. Our
study provides insights into understanding the implications of
DNN architecture on information confidentiality.

The main contributions of this paper are summarized as
follows.

• We show via experimentation that the PMU-based elec-
tromagnetic covert channel is also available on edge
computing devices when the computation is executed
mainly on either CPU or GPU.

• We present an approach to generate a hostile DNN that
has distinct inference times for different classes. Thus,
this DNN leaks inference results via the PMU-based
electromagnetic covert channel.

• We evaluate the presented covert channel attack on sev-
eral platforms using CPU or GPU to execute the hostile
DNNs on a number of datasets. An attacker using a cheap
software-defined radio achieves 100% empirical accuracy
in eavesdropping the inference results.

The rest of this paper is organized as follows. Section II
presents the background. Section III presents the measure-
ments regarding the electromagnetic covert channel on edge
devices. Section IV presents the approach to construct the hos-
tile DNN. Section V presents evaluation results. Section VII
reviews related works. Section VI discusses limitations and
countermeasures. Section VIII concludes this paper.

II. BACKGROUND

A. Electromagnetic Radiation on Power Management Unit
1) Power Management: Power management is a technology

that helps modern computers save power, improve thermal
performance and energy efficiency. Among various power
management functions, managing the power supply to the
CPU is critical because the CPU consumes about 30% of the
total power [13]. Dynamic Frequency-Voltage Scaling (DFVS)
and clock gating are two representative power management
techniques. DFVS adjusts the CPU clock frequency and the
supply voltage according to the performance requirements.
Clock gating sets the unused units in a processor at a low
power state, typically by removing the clocking signal. These
CPU power management techniques help conserve power and
reduce the heat generated by the CPU.

To save more power, modern computer CPUs combine the
abovementioned techniques and customize their power man-
agement policies based on Advanced Configuration and Power
Interface (ACPI) [14]. ACPI is an open standard for operating
systems to communicate with computer hardware components
and perform power management. ACPI defines multiple power
states (C States) and performance states (P States) to describe
idleness and performance of a CPU, respectively. Among all
P States, a higher number represents a lower performance
state. For example, the P0 state is the highest state resulting in
maximum power and frequency. Differently, the C0 represents
the normal state of the CPU. A higher number in C State
stands for higher idleness. Different manufacturers develop
different power management implementations based on APCI.
Examples include Demand Based Switching (DBS) in Intel
processors and “PowerNow!” in AMD processors.

2) Voltage Regulator Module: To allow the CPU to control
its power levels actively, most PMUs and PMICs utilize
a Voltage Regulator Module (VRM) to control the supply
voltage. The CPU sends hardware signals, e.g., Voltage Iden-
tification [15], to VRM to control the voltage. The VRM is
usually plugged into or soldered onto a motherboard. Some
other VRMs are integrated into the CPU’s package or the
CPU’s silicon die.

The Buck converter (step-down converter) is the most
widely used implementation for the voltage regulator. It is
a DC-to-DC converter that steps down the voltage. A Buck
converter consists of a capacitor at its output. To keep the
output voltage stable on the required level, the Buck converter
periodically connects to the capacitor to refill it. In a refilling
period, the power-on time and the power-off time are denoted
by ton and toff , respectively. A switching period Tswitch is
the sum of ton and toff . Accordingly, the switching frequency
is computed by 1

Tswitch
. The VRM changes ton and toff to

control the final output voltage changes in a switching period.
3) Electromagnetic Radiation: The VRM switching gener-

ates a burst of current in circuits. According to Faraday’s law,
the burst further changes the electromagnetic field near the
VRM. The periodic VRM switching induces electromagnetic
radiation (EMR) at a certain frequency. Note that the frequency
of the PMU EMR is not the same as the switching frequency.
Instead, it is the frequency of the capacitor’s refilling fre-
quency, which is the reciprocal of the interval between two
consecutive ton.

Recall that the VRM controls the final output voltage by
changing ton and toff . If the switching period remains un-
changed, the control forms a Pulse-Width Modulation (PWM).
Differently, in Pulse-Frequency Modulation (PFM), the ton is
fixed, while toff is variable, resulting in a changeable switch-
ing frequency. PWM and PFM have their advantages and
disadvantages when the CPU loading varies. Emerging VRMs
adopt a combination of these two modulation schemes [16].
Different voltage control methods have different capacitor
refilling frequencies, exhibiting different PMU EMR patterns
on the spectrum. For instance, the PMU EMR emitted by a
VRM with PWM has a fixed frequency. Although different

import time

def cpu_example(t_idle, t_active):
counter = 0
while True:

t_start = time.now()
while(time.now() - t_start < t_active):

counter++
sleep(t_idle)

Fig. 1. The method for generating PMU EMR using CPU.

Fr
eq

ue
nc

y
(k

H
z)

1100

1000

900

800

700

Time (ms)
1 2 3 4 5

Active

Idle

Active

(a) Spectrogram

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 1 2 3 4 5

M
ag

n
it

u
d
e

Time (ms)

(b) Time domain

Fig. 2. Spectrogram of PMU EMR caused by CPU activities on a laptop
computer and the corresponding time-domain signal after Band Pass Filter.

VRMs have different voltage modulation methods, the switch-
ing frequency always has a lower bound and an upper bound.
For example, the switching frequency of an Intel VRM ranges
from 500 kHz to 1.2 MHz [17]. Many commercial off-the-
shelf Software-Defined Radio (SDR) devices can receive these
frequencies and have enough bandwidth. For example, RTL-
SDR v3 can receive frequencies from 500 kHz up to 1.75 GHz
with a 2.4 MHz bandwidth, which costs about 25US$ [18].
Thus, we can observe the PMU EMR using a cheap SDR
device. Moreover, the PMU EMR signals become strong when
the processor performs intensive tasks and weak when the
processor is in an idle state.

B. PMU EMR Proof-of-Concept

To demonstrate the PMU EMR is caused by switching
between the idle state and the busy state of a processor, we
design a proof-of-concept example for CPU (as shown in
Fig. 1). We implement the example in Python. The CPU’s idle
time and active time are represented by t idle and t active,
respectively. We perform increment operations continuously to
keep the CPU in the active state for t active. Similarly, the
CPU stays in the idle state for t idle. The t idle and t active
are set to 1 ms.

We run the programs on a MacBook Pro 2015 and receive
the PMU EMR signal using an RTL-SDR v3. Fig. 2(a) shows
the spectrogram of the received signals. We can see that the
PMU EMR shows a “spike” pattern when the CPU is in the
active state. The central frequency of the PMU EMR is near
900 kHz. As shown in Fig. 2(b), after passing a Band-Pass
Filter (BPF), the PMU EMR is weak but does not disappear
when the CPU is in the idle state.

1 2 3 4 5 6 7 8 9 10
Time (ms)

700

800

900

1000

1100

1200

1300

Fr
eq

ue
nc

y
(k

H
z)

Active Active Active Active Active

Idle Idle Idle Idle

(a) CPU

1 2 3 4 5 6 7 8 9 10
Time (ms)

700

800

900

1000

1100

1200

1300

Fr
eq

ue
nc

y
(k

H
z)

Active

Idle Idle Idle

Active Active Active

(b) GPU

Fig. 3. Spectrogram of the PMU EMR on Jetson Nano caused by CPU and
GPU activities.

1 2 3 4 5
Time (ms)

950

1000

1050

1100

Fr
eq

ue
nc

y
(k

Hz
)

Idle Idle

Active ActiveActive

(a) CPU

Fr
eq

ue
nc

y
(k

H
z)

Time (ms)
1 2 3 4 5

1050

1000

950

900

Active

Idle Idle

Active

(b) GPU

Fig. 4. Spectrogram of the PMU EMR on Jetson AGX Xavier caused by
CPU and GPU activities, respectively.

III. COVERT CHANNEL AVAILABILITY ON EDGE DEVICES

As discussed in Section II-A, the activities in processors
create PMU EMR around VRM. We further conduct experi-
ments to confirm the association between the PMU EMR and
processors’ states on edge devices.

A. PMU EMR on Edge Devices

The NVIDIA Jetson Nano and Jetson AGX Xavier are
two representative edge computing devices. Both Nano and
AGX Xavier have a high-efficient PMIC to optimize power
efficiency. Besides PMU EMR triggerd by CPU activities, we
also investigate whether the GPU on edge devices can trigger
the PMU EMR. Similar to the algorithm in Fig. 1, as shown in
Fig. 5, we implement the program for generating PMU EMR
by controlling the active and idle time of the GPU. We use
TensorFlow [19], one of the most widely used deep learning
frameworks, to implement the program.
Jetson Nano. Jetson Nano has a Quad-core ARM A57 CPU
and a 128-core Maxwell GPU. As shown in Fig. 3, the
PMU EMR on Jetson Nano exhibits a unique vertical “stripe”
pattern. The PMU EMRs caused by CPU and GPU activities
have the same pattern. The central frequency of the PMU EMR
is near 950 kHz.
Jetson AGX Xavier. Jetson AGX Xavier has an 8-core ARM
64-bit CPU and a 512-core Volta GPU. The PMU EMR
on AGX Xavier has a similar “spike” pattern as the laptop
computer. As shown in Fig. 4(b), when the Jetson Xavier is
idle, the central frequency of the PMU EMR is about 960 kHz.
The central frequency of the PMU EMR hops to 1 MHz when
the processor is in the active state.

import time
import tensorflow as tf

def gpu_example(t_idle, t_active):
counter = tf.Variable(0,

trainable=False, dtype=tf.int32)
while True:

t_end = time.time() + t_active
while time.time() < t_end:

increment = tf.assign(counter,
counter + 1)

time.sleep(t_idle)

Fig. 5. The method for generating PMU EMR using GPU.

B. Association between PMU EMR and processor states

We further conduct experiments to confirm that the as-
sociation between the PMU EMR and processor states. We
change the t idle and t active to different values, as shown
in Fig. 1 and Fig. 5. We observe that the PMU EMR signals
that represent idle and active states change accordingly at run
time.

On Nano and AGX Xavier, the support for power man-
agement can be divided into CPUIdle, which guides power
usage when the CPU is idle, and CPUFreq, which governs
power usage when it is active. We can change the device tree
to disable CPUIdle by editing the command line. Similarly,
we can boost clock speed to the maximum to disable P-
State. To check how CPUIdle and CPUFreq affect the PMU
EMR, we try to disable either one or both. For Nano, if
we disable CPUIdle, the CPUFreq is disabled too. Both the
CPU and GPU run at the highest frequencies. For Xavier,
no matter how we enable/disable CPUIdle and CPUFreq, we
can still observe the PMU EMR because the PMU EMR
signals that represent idle/active states of processors are at
different frequencies. We also notice that the PMU EMRs are
salient even when the processors do not have intensive tasks.
Although the PMU EMR channel cannot accurately describe
the idle/active time of the processor, the association between
PMU EMR and processor states is strong enough for designing
a covert channel.

IV. ATTACK DESIGN

This section presents the detailed design of the proposed
covert channel attack. We first overview the attack setup and
then present how to construct the hostile DNN and receive
leaked inference results.

A. Attack Setup

Fig. 6 shows the setup of the covert channel attack. The
upper part shows the perspective of the attack, while the lower
part is from the perspective of the victim. The attacker first
builds the covert channel by manipulating the neural network
architecture. Thus, the attacker can eavesdrop on the covert
channel on a host device. The victim uses the hostile model
to infer the classification results of input samples.

Reshuffle datasets

Covert channel
embedding

Retrain submodels

Class serialization

①
Deploy

</>

User input

Host device

Dog
Inference result

Eavesdropper

Hostile Model

②
input

Band Pass Filter
(BPF)

Data exfiltration

Running Average
Filter (RAF)

Quantization

User

Attacker

Pruning submodels

PMU EMR

Fig. 6. Attack setup.

A B C D E

...

C Non-C

Fig. 7. Data reshuffling.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 1 2 3 4 5

M
ag

n
it

u
d
e

Time (ms)

BPFed
RAFed

Fig. 8. The Running Average Filtered
(RAFed) signal versus Band-Pass Fil-
tered (BPFed) signal.

B. Construction of the Hostile DNN (Transmitter)

The construction of the hostile DNN consists of four steps:
data reshuffling, submodels pruning, submodels retraining, and
class serialization.

1) Data Reshuffling: The benign neural network model uses
all-class training data to achieve multi-class inference. The
data reshuffling reorganizes data into multiple binary classes.
Fig. 7 presents the data reshuffling process. For a certain class
C, the training data is divided into two classes based on it,
i.e., C and Non − C. For example, “Dog” and “Non-Dog”.
However, dividing the training data into two classes will cause
imbalanced data volumes in the new dataset. For example, in
CIFAR10, the Non − C class data will be nine times the C
class data. Thus, we only use the same number of Non− C
class data samples as the number of C class data samples
instead of using all the Non−C class data samples. This sub-
dataset is equally sampled from each class within the Non−C
class.

2) Submodels Pruning: After data reshuffling, we obtain
the same amounts of C and Non − C class data samples.
Taking all C class data as input, we output the feature maps
of each convolutional layer. For each feature map in one layer,
we compute its Average Percentage of Zero (APoZ) [20].
Let O(i)

c denote the output of the c-th channel in the i-th
layer, the APoZ

(i)
c of the c-th neuron in the i-th layer is

APoZ
(i)
c = APoZ(O

(i)
c) =

∑N
k

∑M
j f(O(i)

c ,j(k)=0)

N×M , where
f(·) = 1 if true, and f(·) = 0 if false, M denotes the
dimension of output feature map of O(i)

c , and N denotes the

 0

 50

 100

 150

 200

 250

 0 0.005 0.01 0.015 0.02 0.025

P
D

F

Magnitude

RAFed
BPFed

Fig. 9. Peak PDF

 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 0 1 2 3 4 5

 0

 0.2

 0.4

 0.6

 0.8

 1

R
A

F
 r

e
su

lt

Q
u

a
n

ti
z
a
ti

o
n

Time (ms)

RAFed Quantization

Fig. 10. Quantization

total number of validation examples. If the APoZ of a feature
map is higher than a threshold, the corresponding kernel will
be removed. The joined submodels (i.e., the model with the
covert channel) will have a similar or smaller size than the
benign one by adopting submodels pruning.

3) Submodels Retraining: The pruned submodels need to
be retrained to generate the final binary models. The retrained
binary model is in general much smaller than the original
model. The attacker can tune the pruning parameters to let the
size of the hostile model close to the benign one. A detailed
comparison will be given in Section V.

4) Class Serialization: Finally, we concatenate the submod-
els sequentially. The data will be fed into the submodels one
by one. Instead of running through all the submodels, the
joined model performs an early stop if the output probability
of one submodel is higher than a threshold. Compared with the
benign model, the hostile model’s inference times for different
classes are distinct while the overall classification accuracy is
retained.

C. Covert Channel Receiver

We conduct three steps to extract information through the
covert channel, including bandpass filtering, moving average,
and binary quantization.

Although the PMU EMR has different central frequencies
on different devices, the PMU EMR has a fixed central
frequency for a particular type of device. Thus, we can apply
a Band Pass Filter (BPF) on the received signals to extract the
PMU EMR and improve the Signal-to-Noise Ratio.

As shown in Fig. 8, the PMU EMR has a rising edge when
the processor switches from the idle state to the active state.
Based on this observation, we can apply a Running Average
Filter (RAF) on the BPFed signals to retain this edge and
reduce random noises. The RAF’s window length, denoted
by lRAF , is decided by the receiver’s sampling rate. Fig. 8
presents a PMU EMR signal segment before and after RAF.
We can see that the RAF smoothes the signal and zooms in
the edges.

Since the distance between the eavesdropper and the host
device may change, we apply an auto-quantization approach
to gain the processor states. We use ‘0’ and ‘1’ to represent
the processor’s idle state and active state, respectively. A
magnitude threshold decides these two states. We can learn
the Probability Density Function (PDF) of the filtered signals
to find the threshold. For example, as shown in Fig. 9, the

Loop

Antenna

Thinkpad

L490

RTL-SDR

Fig. 11. Setup of eavesdropper.

magnitude values of the filtered signal mainly gather into two
clusters. We can find peak magnitude values in each cluster,
i.e, pidle and pactive. We can get the threshold, denoted by α,
by averaging these two clusters’ magnitude values. With this
threshold, we can apply the quantization function in Eq. 1
to the filtered signals. The data points greater than α are
converted to 1. The data points less than α are converted to
0.

Θ(S(t)) =

{
1, S(t) > α

0, S(t) < α
,α =

pidle + pactive
2

. (1)

Fig. 10 presents the result of the quantization.

V. EVALUATION

In this section, we implement the proposed covert channel
attack on real devices and show the feasibility by several
experiments.

A. Setup

Eavesdropper. Different from the previous works that used
expensive near-field probes [21] and oscilloscopes to capture
PMU EMR, as shown in Fig. 11, we use an RTL-SDR
v3, a low-cost SDR device, and an LA400 magnetic loop
antenna [22]. The sampling rate of the RTL-SDR is 2 Msps.
We use a ThinkPad L490 to collect data from the RTL-SDR.
Victim (targeted device). We use two edge devices mentioned
in Section III, i.e., NVIDIA Jetson Nano and AGX Xavier.
As shown in Fig. 11, we place an eavesdropper near the
victim. The distance between the eavesdropper and the victim
is 25 cm.
Datasets and DNN models. There are three datasets we
used in the performance evaluation, i.e., MNIST [23], CIFAR-
10 [24], and Speech Commands [25].

• MNIST: The MNIST dataset is a handwritten digit
dataset. The dataset has 60,000 training samples and
10,000 testing samples. Each sample is a 28 × 28
grayscale image.

• CIFAR-10: The CIFAR-10 dataset is a 10-class image
dataset. The ten classes are airplanes, cars, birds, cats,
deers, dogs, frogs, horses, ships, and trucks. For each
class, it has 5,000 images for training and 1,000 images
for testing. The image sizes are 32×32 and in RGB color.

TABLE I
COMPARISON BETWEEN BENIGN MODELS AND HOSTILE MODELS

Dataset Benign model
size (MB)

Hostile model
size (MB)

Test acuracy
(Benign/Hostile)

MNIST 241 133.5 95.61%/95.76%
CIFAR-10 241 56.28 82.61%/81.93%

Speech Commands 241 165.1 69.02%/83.34%

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 1 2 3 4 5 6 7 8 9

In
fe

re
n

ce
 t

im
e

(m
s)

Input sample label

Xavier
Nano

(a) MNIST, CPU

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 1 2 3 4 5 6 7 8 9

In
fe

re
n

ce
 t

im
e

(m
s)

Input sample label

Xavier
Nano

(b) MNIST, GPU

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 1 2 3 4 5 6 7 8 9

In
fe

re
n

ce
 t

im
e

(m
s)

Input sample label

Xavier
Nano

(c) CIFAR10, CPU

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 1 2 3 4 5 6 7 8 9

In
fe

re
n

ce
 t

im
e

(m
s)

Input sample label

Xavier
Nano

(d) CIFAR10, GPU

 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9

In
fe

re
n

ce
 t

im
e

(m
s)

Input sample label

Xavier
Nano

(e) Speech Commands, CPU

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 1 2 3 4 5 6 7 8 9

In
fe

re
n

ce
 t

im
e

(m
s)

Input sample label

Xavier
Nano

(f) Speech Commands, GPU

Fig. 12. The inference time of hostile models on different devices. Each box
plot shows min, max, 25%, and 75% percentiles.

• Speech Commands: The Speech Command dataset con-
sists of 105,829 utterances of 35 words, including “Yes”,
“No”, “Up”, “Down”, etc. Each utterance is sampled at
16 kHz and stored in WAVE format. We select the first
ten classes in the dataset.

In summary, our evaluation datasets cover image, text,
and voice modalities and represent practical deep learning
applications.

B. Measurements of Hostile Models

Tab. I compares the performances of the benign models and
hostile models. The hostile models have smaller sizes while
maintaining similar accuracy. We run these hostile models on
Nano and AGX Xavier to measure the inference time. For each
hostile model on each device, we run the hostile model with

 0
 2
 4
 6
 8

 10
 12

Nano
CPU

Nano
GPU

Xavier
CPU

Xavier
GPU

E
rr

o
r

(m
s)

PMU EMR channel

Fig. 13. Timing errors from the
PMU EMR side channel on different
devices.

 0
 20
 40
 60
 80

 100

Nano
CPU

Nano
GPU

Xavier
CPU

Xavier
GPU

SS
R

 (
%

)

PMU EMR channel

Fig. 14. SSR

CPU and GPU, respectively. Fig. 12 presents the inference
times of the hostile CIFAR-10, Speech command, MNIST
models on different devices. The inference times of different
classes of input samples exhibit a step pattern, which enables
the attacker to eavesdrop the inference result from the covert
channel.

C. Eavesdropping Performance

We use two metrics, Relative Time Difference (RTD) and
Sniffing Success Ratio (SSR), to describe the attack’s effect
quantitively. The RTD is the absolute difference between the
inference time of a sample measured on the targeted device
and the inference time the attacker gets from the covert
channel. An RTD close to 0 indicates the PMU EMR covert
channel well reflects the real inference time. The SSR is
defined as nsame/ntotal, where nsame denotes the number
of input sample labels that the attacker correctly infers from
the covert channel, ntotal represents the total number of input
samples used in the evaluation. The SSR describes how well
the estimation via the PMU EMR covert channel matches the
inference result from the DNN model.

Fig. 13 shows the box plot of the RTD of the PMU
EMR covert channel on different devices. The covert channel
describes the activity states of CPU/GPU on edge devices with
a maximum error of 11 ms. Notice that in the hostile models,
the inference time difference between two neighbor sample
classes (e.g., 1 and 2) is greater than the RTD. Thus, the
proposed attack works well on edge devices. The measured
SSR results are shown in Fig. 14, which are 100% on all
devices.

VI. LIMITATIONS AND COUNTERMEASURES

This section discusses the limitations of the proposed covert
channel attack and possible countermeasures against it. A
limitation of the proposed covert channel attack is that the
attacker needs to obtain the proximity of the air-gapped device.
The PMU EMR attenuates significantly after propagating for
a certain distance. From our measurements, when the distance
between the loop antenna and the edge device is larger than
70 cm, we cannot differentiate the states of the processor from
the EMR signal. The EMR emitted by the PMU used to
build the covert channel is categorized as an electromagnetic
interference (EMI). The EMI may affect or even disable other
circuit components. Thus, many countries and agencies now

have requirements for manufacturers to control the EMI of
products [26]. Since the Buck converter in PMU is also a
source of EMI, the PMU EMR has limited power and cannot
propagate far away. Even the distance is limited, the attack
should arouse cybersecurity attention, because there are many
IoT and edge computing devices deployed and obtaining the
proximity to such devices distributed in the physical world
does not present a significant barrier to the attackers.

Now, we discuss the potential countermeasures against the
studied covert channel attack.
EMI control. A possible countermeasure is to reduce the EMI
so that the propagation distance of PMU EMR will further
reduce. Considering that the manufacturers have followed the
regulations regarding EMI, how to further reduce EMI is
an open and challenging issue. Another approach is to add
a physical shield to attenuate PMU EMR, which introduces
additional costs in manufacturing.
Eavesdropper detector. EarFisher [27] is a system that can
detect wireless eavesdroppers by simulating wireless eaves-
droppers using bait network traffic and then capturing eaves-
droppers’ responses by sensing and analyzing their memory
EMRs. However, in EarFisher, the traffic stimulus to trigger
the eavesdropper’s responses needs to be bigger than 2 MBps,
which is far beyond the data rate of the proposed covert
channel.
DNN inspection. The user can inspect the DNN model
structure to check whether it is embedded with a covert
channel. However, it needs adequate expertise because all
computation structures we use in the proposed covert channel
attack are useful. Moreover, in a privatization deployment
scheme, the model provider may encrypt the model file to
protect intellectual property.

VII. RELATED WORK

Covert/side channels. Recent data exfiltration attacks exploit
physical channels to bypass network security inspection. These
physical channels spread in a broad spectrum, including
acoustic [28], thermal emanation [29], backscatter [30], and
magnetic field [31]. Researchers try to leverage EMR as a
side channel for extracting information from a targeted device.
GSMem [32] modulates memory EMR using binary on-off
keying. EMLoRa [33] adopts LoRa physical layer modulation
technique (Chirp Spreading Spectrum, CSS) for the EMR to
boost the communication range. Sehatbakhsh et al. [10] exploit
the EMR emitted by the power management unit for covert
communication and keystroke detection. Other researchers
utilize EMR side channels for device identification [34]–[36],
malware/intrusion detection [37]–[39], neural network reverse
engineering [40], hardware/software attestation [41], power
grid monitoring [42], and wireless eavesdropper detection [27].

Different from all existing works on EMR covert/side
channels that intentionally use useless computation to exhaust
CPU to create EMR, our attack implants the covert channel
in useful inference computation by manipulating the DNN
architecture. The proposed covert channel attack on DNN
models is more stealthy because it does not perform any

useless computation. Moreover, compared with full-fledged
devices such as workstations and rack servers, edge devices
face a higher risk of attack because they are often deployed
at the frontier, especially in IoT. Besides, Intel’s x86-64
processors, we find that ARM processors and some GPUs are
vulnerable to the proposed covert channel attack.
Backdoor attacks on DNN. Backdoor attack injects backdoor
into a DNN model such that the backdoored model can
perform well on the main task and attacker-chosen task. On
the one hand, the backdoored model behaves normally on
the clean test dataset. On the other hand, it can misclassify
the input data samples with secret triggers, as the attacker
preferred. Gu et al. proposed Badnet, which generates a back-
doored model by training on the poisoned training set [43].
By poisoning the clean dataset with efficient data samples
which contain the secret triggers and modified labels, the
model is injected with the backdoors during the training phase.
Chen et al. also use data poisoning to realize a targeted
backdoor attack [44]. Different from the Badnet, they focus
on the design of the secret trigger. Aiming at physically
implementable backdoors, they propose a pattern-key strategy
of generating more feasible triggers. Liu et al. focused on the
Trojan Attack to generate the backdoored model [45]. They
propose to generate the trigger based on values that would
induce the maximum response of specific internal neurons
in the model. In this way, they do not need access to the
clean training dataset. Although the above approaches achieve
high attack rates more than 90%, they solely focus on the
backdoored data samples to mislead a learning system, which
is orthogonal to this work. This work investigates how to steal
the inference results of a DNN model on an air-gapped device.

VIII. CONCLUSION

This paper studies a new covert channel attack that leaks
the inference results on air-gapped devices. The covert channel
utilizes the electromagnetic radiation emitted by the power
management unit of the computing device. Experiment results
show that the hostile DNN model with the covert channel
design achieves similar memory usage and negligible classifi-
cation accuracy drop, compared with the benign model. The
external attacker can then use a cheap software-defined radio
receiver to eavesdrop the inference results over the air. These
results call for further research on the countermeasures against
the covert channel attack based on neural network architecture.

ACKNOWLEDGEMENT

The authors acknowledge Dr. Jun Huang, Cheng Shen,
and Prof. Mo Li’s insightful discussions for this work. This
research was supported by Science and Technology Innovation
2030 program under grant 2018AAA0101605 and an MOE
AcRF Tier 1 grant 2019-T1-001-044.

REFERENCES

[1] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence,
Italy, Jul. 2019, pp. 3645–3650.

[2] B. Bhattacharjee, S. Boag, C. Doshi, P. Dube, B. Herta, V. Ishakian,
K. Jayaram, R. Khalaf, A. Krishna, Y. B. Li et al., “Ibm deep learning
service,” IBM Journal of Research and Development, vol. 61, no. 4/5,
pp. 10–1, 2017.

[3] Baidu, Inc. Baidu ai solution. [Online]. Available: https://ai.baidu.com/
solution/private

[4] JD.com, Inc. Jd ai open platform. [Online]. Available: https:
//jddoversea-neuhub.jd.com/index.html

[5] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in NDSS, 2018.

[6] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks
on deep neural networks,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
2041–2055.

[7] M. Alagappan, J. Rajendran, M. Doroslovački, and G. Venkataramani,
“Dfs covert channels on multi-core platforms,” in 2017 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC).
IEEE, 2017, pp. 1–6.

[8] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: exposing
the perils of security-oblivious energy management,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 1057–1074.

[9] S. K. Khatamifard, L. Wang, A. Das, S. Kose, and U. R. Karpuzcu,
“Powert channels: A novel class of covert communicationexploiting
power management vulnerabilities,” in 2019 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2019, pp. 291–303.

[10] N. Sehatbakhsh, B. B. Yilmaz, A. Zajic, and M. Prvulovic, “A new
side-channel vulnerability on modern computers by exploiting electro-
magnetic emanations from the power management unit,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 123–138.

[11] N. Corporation. Jetson agx xaiver. [Online]. Available: https:
//developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

[12] ——. Jetson nano. [Online]. Available: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit

[13] Intel Corp., “Power Management in Intel®Architecture Servers,”
2009. [Online]. Available: https://www.intel.com/content/dam/support/
us/en/documents/motherboards/server/sb/power management of intel
architecture servers.pdf

[14] A. C. Architecture. Advanced configuration and power interface
(acpi) specification. [Online]. Available: https://uefi.org/sites/default/
files/resources/ACPI 6 3 May16.pdf

[15] Intel Corp. (2009) Voltage Regulator Module (VRM) and
Enterprise Voltage Regulator-Down (EVRD) Design Guidelines 11.1.
[Online]. Available: https://www.intel.it/content/dam/doc/design-guide/
voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.
pdf

[16] Maxim Integrated. (2020) Max774/max775/max776. [Online]. Avail-
able: https://datasheets.maximintegrated.com/en/ds/MAX774-MAX776.
pdf

[17] Intel Corp. (2014) ER2120QI: 2A Step-Down
DC-DC Switching Regulator. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/products/
power/devices/dc-dc-switching-regulators/er2120qi.html

[18] RTL-SDR v3. [Online]. Available: https://www.rtl-sdr.com/
buy-rtl-sdr-dvb-t-dongles/

[19] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[20] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[21] Langer EMV, “Rf2 set near-field probes 30 mhz up to 3 ghz,”
2020. [Online]. Available: https://www.stratatek.com/product-page/
langer-emv-rf2-set-near-field-probes-30-mhz-up-to-3-ghz

[22] AOR, LTD., “La400,” 2020. [Online]. Available: http://www.aorja.com/
antennas/la400.html

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[24] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[25] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[26] I. E. Commission. Basic emc publications. [Online]. Available:
https://www.iec.ch/basic-emc-publications

[27] C. Shen and J. Huang, “Earfisher: Detecting wireless eavesdroppers by
stimulating and sensing memory EMR,” in 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), 2021,
pp. 873–886.

[28] M. Guri, Y. Solewicz, A. Daidakulov, and Y. Elovici, “Acoustic data
exfiltration from speakerless air-gapped computers via covert hard-
drive noise (‘diskfiltration’),” in European Symposium on Research in
Computer Security. Springer, 2017, pp. 98–115.

[29] M. Guri, M. Monitz, Y. Mirski, and Y. Elovici, “Bitwhisper: Covert
signaling channel between air-gapped computers using thermal manipu-
lations,” in 2015 IEEE 28th Computer Security Foundations Symposium.
IEEE, 2015, pp. 276–289.

[30] Z. Yang, Q. Huang, and Q. Zhang, “Nicscatter: Backscatter as a
covert channel in mobile devices,” in Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking, 2017,
pp. 356–367.

[31] M. Guri, B. Zadov, and Y. Elovici, “Odini: Escaping sensitive data
from faraday-caged, air-gapped computers via magnetic fields,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 1190–
1203, 2019.

[32] M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and Y. Elovici,
“Gsmem: Data exfiltration from air-gapped computers over GSM fre-
quencies,” in 24th USENIX Security Symposium (USENIX Security 15),
2015, pp. 849–864.

[33] C. Shen, T. Liu, J. Huang, and R. Tan, “When lora meets emr: Electro-
magnetic covert channels can be super resilient,” in IEEE Symposium
on Security and Privacy (SP), 2021, pp. 529–542.

[34] G. Vaidya, A. Nambi, T. Prabhakar, S. Sudhakara et al., “Iot-id: A novel
device-specific identifier based on unique hardware fingerprints,” in 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design
and Implementation (IoTDI). IEEE, 2020, pp. 189–202.

[35] D. Yang, G. Xing, J. Huang, X. Chang, and X. Jiang, “Qid: Identifying
mobile devices via wireless charging fingerprints,” in 2020 IEEE/ACM
Fifth International Conference on Internet-of-Things Design and Imple-
mentation (IoTDI). IEEE, 2020, pp. 1–13.

[36] B. B. Yilmaz, E. M. Ugurlu, A. Zajić, and M. Prvulovic, “Cell-
phone classification: A convolutional neural network approach exploiting
electromagnetic emanations,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 2862–2866.

[37] A. Sayakkara, N.-A. Le-Khac, and M. Scanlon, “Leveraging electromag-
netic side-channel analysis for the investigation of iot devices,” Digital
Investigation, vol. 29, pp. S94–S103, 2019.

[38] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic,
“Syndrome: Spectral analysis for anomaly detection on medical iot and
embedded devices,” in 2018 IEEE international symposium on hardware
oriented security and trust (HOST). IEEE, 2018, pp. 1–8.

[39] Z. Zhang, Z. Zhan, D. Balasubramanian, B. Li, P. Volgyesi, and X. Kout-
soukos, “Leveraging em side-channel information to detect rowhammer
attacks,” in 2020 IEEE Symposium on Security and Privacy (S&P’20),
2020, pp. 862–879.

[40] L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse engi-
neering of neural network architectures through electromagnetic side
channel,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 515–532.

[41] N. Sehatbakhsh, A. Nazari, H. Khan, A. Zajic, and M. Prvulovic,
“Emma: Hardware/software attestation framework for embedded sys-
tems using electromagnetic signals,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
983–995.

[42] T. Shekari, C. Bayens, M. Cohen, L. Graber, and R. Beyah, “Rfdids:
Radio frequency-based distributed intrusion detection system for the
power grid.” in NDSS, 2019.

[43] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[44] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[45] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” 2017.

https://ai.baidu.com/solution/private
https://ai.baidu.com/solution/private
https://jddoversea-neuhub.jd.com/index.html
https://jddoversea-neuhub.jd.com/index.html
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
https://www.intel.com/content/dam/support/us/en/documents/motherboards/server/sb/power_management_of_intel_architecture_servers.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_May16.pdf
https://uefi.org/sites/default/files/resources/ACPI_6_3_May16.pdf
https://www.intel.it/content/dam/doc/design-guide/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.pdf
https://www.intel.it/content/dam/doc/design-guide/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.pdf
https://www.intel.it/content/dam/doc/design-guide/voltage-regulator-module-enterprise-voltage-regulator-down-11-1-guidelines.pdf
https://datasheets.maximintegrated.com/en/ds/MAX774-MAX776.pdf
https://datasheets.maximintegrated.com/en/ds/MAX774-MAX776.pdf
https://www.intel.com/content/www/us/en/programmable/products/power/devices/dc-dc-switching-regulators/er2120qi.html
https://www.intel.com/content/www/us/en/programmable/products/power/devices/dc-dc-switching-regulators/er2120qi.html
https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
https://www.rtl-sdr.com/buy-rtl-sdr-dvb-t-dongles/
https://www.stratatek.com/product-page/langer-emv-rf2-set-near-field-probes-30-mhz-up-to-3-ghz
https://www.stratatek.com/product-page/langer-emv-rf2-set-near-field-probes-30-mhz-up-to-3-ghz
http://www.aorja.com/antennas/la400.html
http://www.aorja.com/antennas/la400.html
https://www.iec.ch/basic-emc-publications

	Introduction
	Background
	Electromagnetic Radiation on Power Management Unit
	Power Management
	Voltage Regulator Module
	Electromagnetic Radiation

	PMU EMR Proof-of-Concept

	Covert Channel Availability on Edge Devices
	PMU EMR on Edge Devices
	Association between PMU EMR and processor states

	Attack Design
	Attack Setup
	Construction of the Hostile DNN (Transmitter)
	Data Reshuffling
	Submodels Pruning
	Submodels Retraining
	Class Serialization

	Covert Channel Receiver

	Evaluation
	Setup
	Measurements of Hostile Models
	Eavesdropping Performance

	Limitations and Countermeasures
	Related Work
	Conclusion
	References

