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Abstract

Recent advances in machine learning inspire the development of
deep neural network-based smart sensing applications for the Ar-
tificial Intelligence of Things (AIoT). However, due to the nature
of the AIoT sensing data, the machine learning models are in gen-
eral subject to poor generalizability due to the scarcity of labeled
training data and run-time domain shifts. The existing solutions
rely on data-driven approaches and do not consider the physical
laws that govern data generation or domain shifts. This paper dis-
cusses the potential of utilizing the known physical laws to improve
the machine learning model generalizability for AloT applications.
Through three case studies, we demonstrate that physics-informed
machine learning can (1) effectively assist the generalization of deep
neural networks and (2) achieve better performance compared with
conventional approaches. Our objective is to encourage more ex-
ploration into combining physical principles and machine learning
algorithms in physics-rich AIoT.
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1 Introduction

The Internet of Things (IoT) is a global network consisting of
trillions of edge sensors. Artificial intelligence (AI) converts vast
amounts of IoT sensing data into actionable insights and enhances
the smart sensing capabilities of the IoT. The integration of Al,
particularly deep learning, with IoT has given rise to the para-
digm of Artificial Intelligence of Things (AloT). Nowadays, AloT
has emerged as an important infrastructure for smart cities, smart
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Fig. 1: Human-interpretable media data vs. human-
uninterpretable IoT sensing data.

transportation, and other smart systems. However, two main chal-
lenges arise in developing generalized machine learning models for
AloT sensing, which are

e Scarcity of labeled training data. The superior perfor-
mance of the deep neural network (DNN) models relies on
the availability of large, labeled data to uncover useful feature
representations. The widespread use of DNNs in computer
vision (CV), natural language processing (NLP), and voice
sensing can be attributed to the massively available labeled
training datasets, such as ImageNet [5] and LibriSpeech cor-
pus [12], etc. Despite the abundance of IoT sensing data,
constructing labeled datasets for DNN model training re-
mains a challenging task due to the uninterpretable nature
of most sensor data. Fig. 1 uses a simple example to illustrate
this challenge. On the left part, it depicts the conventional ap-
proach for creating labeled training datasets in the field of CV
and NLP. The media data, such as images, audio recordings,
and texts, are interpretable by humans. Human assistants
can be involved in annotating the data after the data col-
lection is completed. Multiple platforms, such as Amazon
Mechanical Turk [1] are established to facilitate this process.
On the contrary, as shown in the right part of Fig. 1, the
human-uninterpretable property of IoT sensing data makes
it difficult for human assistants to understand the meaning
behind the data if the labeling process is separated from the
data collection. Thus, IoT data labeling must be performed
in tandem with data collection, which incurs undesirable
overhead, however. The inherent inseparability of the collec-
tion and labeling of IoT sensing data results in the scarcity
of extensive and labeled training data.

¢ Run-time domain shifts are common in AloT sensing ap-
plications. The domain shifts result in distribution deviations
between the collected sensor data at the inference stage and
the standard training data. A pre-trained DNN model will
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have degraded performance if evaluated on collected sen-
sor data due to run-time domain shifts. The cause of these
domain shifts can stem from differences in the sensors’ hard-
ware or the changing ambient environment where the DNN
model is deployed. As a result, the run-time domain shifts
need to be carefully addressed while developing DNN mod-
els for AIoT sensing applications. In general, the adaptation
of a DNN model requires labeled/unlabeled data from the
target domain. Thus, data centralization approaches, such as
constructing datasets for training generalized DNN models
are infeasible in the field of AloT sensing. Run-time domain
shifts exacerbate the scarcity of labeled training data for
AIoT sensing applications.

Existing solutions for addressing the above challenges have their
limitations. Self-supervised learning, due to its ability in extracting
feature representations from large amounts of unlabeled sensing
data, has been exploited to address the scarcity of labeled training
data in AloT sensing. Self-attention [17] and contrastive learning
[3] are two prevalent techniques. They are used to pre-train DNN
models on the abundant unlabeled training data. The pre-trained
model is then fine-tuned to a task-specific application using a small
amount of labeled training data. Typically, self-supervised learning
can reduce the requirement of the labeled training dataset by two
orders of magnitude [3, 21]. Despite its capability in feature discov-
ery from unlabeled data, self-supervised learning has its limitations.
For example, the quality of learned features can be degraded by
noisy or biased data samples. The model trained by self-supervised
learning may suffer from overfitting and there is a lack of guidance
to evaluate the quality of the feature since labeling information is
lacking during the model training. Transfer learning is a prevalent
technique to address the run-time domain shift in AIoT sensing.
Ideally, transfer learning adapts a pre-trained DNN model from the
source domain to the target domain with limited labeled/unlabeled
target-domain data. However, the existing solutions for address-
ing run-time domain shifts still require a considerable amount of
target-domain data [6, 9, 11].

This paper discusses the potential of physics-informed machine
learning model generalization in AIoT sensing applications. Specif-
ically, we target the data scarcity and run-time domain shift chal-
lenges and discuss the opportunities and benefits of integrating
prior knowledge in the machine learning processes. Through illus-
trating case studies, we answer the following two questions:

(1) What are the opportunities of the physics-informed machine
learning model generalization? In physics-rich IoT sensing, the data
generation or domain shifts are governed by certain physical laws.
For instance, the distribution of indoor temperature is governed
by the fluid dynamics model and the microphone data received is
determined by its frequency response curve. A comprehension of
these physical laws can aid in the creation of more efficient and
generalized machine learning models by incorporating physical
laws as additional constraints during model training. The conven-
tional approaches for physical laws estimation involve constructing
mathematical models to match the observational data generated by
these laws. However, the process of mathematical modeling is often
hindered by the need for intricate formulations and costly computa-
tions [13]. Recent studies [7, 13] propose physics-informed machine
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Fig. 2: Left: Physics-informed class augmentation. Right:
physics-informed domain adaptation.

learning (PIML) to leverage the prior knowledge obtained from the
observational data to enhance the performance of machine learning
models. PIML-based DNN models outperform conventional mod-
els and require fewer training data in modeling multi-physics and
multi-scale systems.

In this paper, we examine the potential of using physical laws
to enhance the generalization capabilities of machine learning
models in AIoT sensing applications. We propose physics-informed
class augmentation (PICA) and physics-informed data augmentation
(PIDA) to address the scarcity of labeled training data and run-time
domain shifts, respectively. Fig. 2 shows the general ideas of the two
approaches. The left part of Fig. 2 depicts PICA, which considers
the data scarcity challenge where certain classes and the respective
data points are unavailable in the classification tasks. A pre-trained
DNN model cannot provide plausible predictions on the data sam-
ples out of training classes. To overcome this challenge, PICA takes
advantage of the fact that data generation in certain temporal and
spatial scales follows a known physical law. This enables us to use
the physical law to augment data for the unavailable classes and
train a new DNN model that can cover all classes.

The right part of Fig. 2 illustrates PIDA. PIDA considers the
AloT sensing tasks with run-time domain shifts governed by cer-
tain physical laws. Typically, obtaining labeled training data for a
target AloT sensing application for DNN model adaptation incurs
significant overhead. PIDA addresses the data scarcity in the target
domain. Specifically, we identify the physical laws governing the
domain shifts and use a small amount of source-domain and target-
domain data to fit the physical law. The fitted law is then used to
transfer the training dataset from the source domain to the target
domain for DNN model adaptation.

(2) What are the benefits of the physics-informed machine learn-
ing model generalization? The benefits of the proposed physics-
informed machine learning model generalization in AloT sensing
applications are three-fold. First, DNN models have improved gen-
eralization capabilities when tested with unfamiliar data samples.
PICA uses the fitted physical law to generate synthetic data for
the unavailable classes. The trained DNN model can produce ac-
curate predictions when evaluated with data collected from these
unavailable classes during training. In §3.1, we use the fitted floor
slowness model to generate an augmented dataset for DNN model
training. The new location recognition model has reduced recog-
nition errors on data samples generated from unknown locations.
Second, incorporating physical principles into machine learning
algorithms reduces the need for large amounts of labeled data for
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AlIoT sensing applications. Both PICA and PIDA use the fitted phys-
ical laws to generate an augmented training dataset. The amount of
data required for law fitting is significantly smaller compared with
the traditional machine learning methods. Our previous study [8]
shows that only a few seconds of microphone data were sufficient
to fit the frequency response curve that governs the domain shift
in a voice sensing task. Third, physics-informed machine learning
improves the DNN model’s performance. The conventional data
augmentation applies ad hoc perturbations or transformations on
the training data to improve the DNN models’ robustness. How-
ever, such robustness will be lost if the distribution of the inference
data is out of the scope of the augmented training data. Differ-
ently, physics-informed machine learning pinpoints the physical
law governing the data generation or domain shifts and uses the
fitted law to guide the DNN model learning. As shown in §3.2, the
yielded DNN model exhibits better performance compared with
the conventional approaches in our evaluation.
The contributions of this paper are summarized as follows:

e We identify the data scarcity and run-time domain shift
challenges and their root causes in developing generalized
machine learning algorithms for AlIoT sensing. We propose
to integrate the known physical laws in machine learning
models to address these challenges.

e With a primary goal of encouraging more research in inte-
grating physical laws into machine learning models in the
field of AloT sensing, we explicitly discuss the opportunities
and challenges in this paper.

e We propose physics-informed class augmentation (PICA)
and physics-informed domain adaptation (PIDA) approaches
to address the unavailability of classes and domain shifts,
respectively. The effectiveness of the proposed approaches
is illustrated using three distinct case studies.

The rest of this paper is organized as follows. §2 reviews related
work. §3 uses a set of case studies to demonstrate the opportunities
of physics-informed machine learning. §4 discusses the challenges
of physics-informed machine learning. §5 concludes this paper.

2 Related Work

m Self-supervised learning: Despite the limited availability of
labeled training data, AloT sensing applications often have abun-
dant unlabeled data. Recent advances in self-supervised learning
inspire studies to apply it to improve the learning efficiency of AloT
sensing applications. LIMU-BERT [21] exploits the self-attention
mechanism of the transformer to extract temporal relations from
the unlabeled IMU sensor data. LIMU-BERT reduces the require-
ment of labeled data in IMU-based human activity recognition tasks.
Contrastive learning is another effective feature representation
learning technique. SImCLR [4] proposes an effective framework
to construct positive/negative data pairs from unlabeled images.
A feature extractor trained on such data pairs using contrastive
loss can learn useful image representations without labels. Using
the pre-trained model, SimCLR can achieve comparable results as
supervised learning in image recognition tasks while requiring
only 1% to 10% labeled training data. The studies mentioned above
[4, 21] utilize machine learning techniques to extract useful feature
representations from abundant unlabeled data. This paper discusses
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the possibilities of incorporating physical knowledge in the design
of generalized machine learning models for AloT sensing. Our ap-
proach has the potential to decrease the need for labeled data and
result in more robust deep neural network models.

m Transfer learning: Few-shot learning and generative ad-
versarial learning-based domain adaptation are common transfer
learning techniques for addressing domain shifts. MetaSense [6]
employs the meta-learning technique to build a base model that
can be adapted to a new target domain with a few data samples in
voice sensing and human activity recognition tasks. Mic2mic [9]
uses the unpaired source- and target-domain data to train a Cy-
cleGAN model for data translation. It is used to improve the voice
sensing model’s performance for an IoT microphone. In this paper,
we consider the domain shifts governed by physical laws and use
a small amount of source- and target-domain data to fit physical
laws for DNN model transfer. Our proposed method identifies the
cause of the domain shift and is more effective in addressing the
run-time domain shifts in AloT sensing applications.

m Physics-informed machine learning leverages the known
prior knowledge to accelerate model training or improve the perfor-
mance of machine learning algorithms. Its applications [13] include
molecular properties prediction, fluid flow inference, edge plasma
dynamics modeling, etc. According to a recent review [7], the cur-
rent PIML approaches can be classified into three categories based
on their representation of physics. The method based on observa-
tional biases utilizes the data generated by the physical laws to guide
the training of DNN models. The DNN models trained on such data
can capture the mechanism governing data generation. The method
based on the inductive biases focuses on designing specialized neu-
ral network architectures with physical laws embedded. The study
[18] provides an example of this method, in which the cooling and
heating units in a data center space are incorporated into the ar-
chitecture of the neural network for temperature prediction. The
method based on learning biases incorporates physical laws into
the DNN model’s loss function. This yields a more efficient model
training due to additional constraints imposed by the physical laws.
The study [16] is an example of this method, in which the free-fall
law is incorporated into the loss function of an object detection
neural network. The methods based on inductive biases and learning
biases require redesigns of neural network architecture and/or loss
function. Differently, the method based on the observational biases
does not modify the existing DNN designs and learning algorithms,
rendering it universally applicable. Our approaches proposed in
this paper belong to the method based on observational biases.

3 Opportunities

We use three case studies to illustrate the opportunities of physics-
informed machine learning model generalization.

3.1 Physics-Informed Class Augmentation

In classification or regression tasks, a pre-trained DNN model will
have poor performance on data samples from the classes unseen
during the training phase. For example, a DNN model trained to
recognize digits from 0 to 9 cannot determine the actual label if
the tested data is a digit 10. A straw-man approach is to collect
the data for new classes and retrain the DNN model. However,
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Fig. 3: Floor slowness model fitting.

collecting training samples can result in unwanted overhead, due to
the difficulty in separating the collection and labeling process of IoT
data. PICA leverages physical laws that govern the data generation
to augment training datasets for DNN model generalization. The
procedures are as follows. First, we identify the parameterized
physical model that governs the data generation for a specific AloT
application. The physical law may contain unknown parameters.
Second, we use a small amount of genuine data to fit the unknown
parameters of the physical model. Third, we use the fitted model
to generate massive synthetic data for the unavailable classes or
unavailable data points. Lastly, we use both the genuine and the
augmented new class data to train a new recognition model that
covers unknown classes. As a result, the new classification model
can provide plausible predictions on unknown classes. We use a
case study to demonstrate the advantages brought by PICA.

3.1.1 Case Study: Occupant localization at unknown locations. Oc-
cupant localization is a fundamental requirement of smart buildings.
It can be used for crowd and energy management in museums or pa-
tient tracking in hospitals. Footstep-induced floor vibration [10] can
be exploited for occupant localization. The floor vibration reaches
sensors deployed on the floor at different times. If the signal propa-
gation velocity is spatially consistent, the time differences of arrival
(TDoA) can be calculated to determine the source of the signal
using triangulation. However, the uneven floor medium causes the
vibration wave propagates at a non-constant speed across the floor,
leading to the inaccurate result of the TDoA approach. Thus, the
fingerprinting approach is employed to collect footsteps’ finger-
prints and train DNN models to recognize footsteps’ locations. We
investigate the challenge of unavailable class issues and the benefit
brought by the proposed PICA for a footstep localization system.
This case study is similar to our published work [8] while bearing
a different objective. Our earlier work [8] focuses on adapting an
event source localization model from a homogeneous medium to
a heterogeneous medium, which is a domain adaptation problem.
Our current study focuses on improving the generalization of a
DNN model to unseen locations in a heterogeneous medium.

We simulate footstep localization on a 10m X 10m floor with
an uneven medium. The wave propagation in the floor is depicted
by the floor’s slowness model, which is denoted as s. The floor
consists of 100 X 100 grids, each grid is associated with a distinct
wave propagation speed as shown in Fig. 3a. The color bar value
corresponds to the wave propagation speed (m/s). The footstep-
induced vibration signal propagates through the uneven medium
and is detected by 8 sensors placed on the floor. Fig. 4a shows the
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Fig. 4: PICA for occupant localization.

simulated footsteps and deployed sensors, where dots and crosses
represent the footstep locations and stars represent the sensor
locations. A total of 1000 footstep events are triggered at each
location with a 20cm radius. A 5% random noise is added to each
sensor’s reading to introduce bias. The TDoA is calculated as the
fingerprint of a footstep based on a reference sensor.

Collecting fingerprints with ground-truth locations is difficult in
a building. Data collection is typically performed through manually
triggered events at a limited number of spots, e.g., hiring volun-
teers to stimulate step vibration at marked locations. As a result,
the fingerprints only cover a small portion of the floor, leading to
unavailable classes and data points in the training dataset. This
results in a degraded performance of the pre-trained model when
applied to data collected outside of the fingerprinted locations. To
illustrate this phenomenon, we train a location recognition model
using the fingerprints collected at locations marked by the red dots
in Fig. 4a. The plot labeled "w/o missing" in Fig. 4b shows the cu-
mulative distribution function (CDF) of the localization errors. The
mean localization error is 0.05 m. When the model is tested using
data collected at locations marked by blue crosses, which are not
part of the training dataset, the plot labeled "w/ missing" shows the
result. The mean localization error increases to 1.8 m, indicating
a significant performance degradation of the classification DNN
model on data from unavailable classes.

PICA improves the DNN model’s performance on unavailable
classes through four steps. First, we identify that the physical law
governing the wave propagation is the floor’s slowness model s,
which contains the unknown propagation speed value for each grid.
Second, we use a small amount of real data to estimate the propa-
gation speed of s based on the Bayesian Algebraic Reconstruction
Technique algorithm [20]. Third, we use the estimated slowness
model § to generate a large amount of synthetic data that can cover
the locations marked by the crosses. Fig. 3b shows the fitted slow-
ness model using 100 footstep data, which closely resembles the
ground truth. Lastly, we train a new location recognition model
using both synthetic and real training data. The plot labeled “PICA”
shows the result when the new model is evaluated on the data
from locations marked by the crosses. The mean error decreases to
0.15 m. PICA effectively tackles the unavailable class problem by
augmenting the data with fitted physical laws.

3.2 Physics-Informed Domain Adaptation

A sensing DNN model pre-trained on the standard dataset suffers
a performance drop after deployment due to the run-time domain
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shift. PIDA considers the applications where the domain shifts are
governed by certain physical laws. It applies the following four
steps to address the data scarcity problem in the target domain.
First, we identify the physical law governing the domain shift for a
specific application, which contains unknown parameters. Second,
we use a small amount of real data collected in both the source and
target domain to fit the physical law. Third, we use the fitted law to
augment the source-domain data to the target domain. Lastly, we
transfer the DNN model to the target domain using the augmented
dataset, through re-training or fine-tuning.

We use two voice-sensing case studies to demonstrate the bene-
fits of PIDA. The case studies differ in terms of the complexity of
the physical laws. In the first case study where the physical law
can be parameterized, we use a small amount of real data from the
target domain to estimate the unknown parameters. In the second
case study where the physical law cannot be parameterized, we
train a neural network as the surrogate model of the physical law
and use it to generate augmented training data for model transfer.

3.2.1 Case study 1: Addressing microphone heterogeneity for speech
recognition. Human voice recognition is a key component of smart
building technology. DNN-powered virtual assistants such as Ama-
zon Echo and Google Nest have become an integral part of our
daily routines, providing smooth human-machine interaction. How-
ever, the commonly used low-cost IoT microphones for voice sens-
ing have varying quality and can result in domain shifts between
recorded data and the standard datasets used for model training.
This can affect the accuracy of pre-trained DNN models. We identify
the domain shift is caused by the microphone’s frequency response
curve (FRC) and propose a microphone profiling method to esti-
mate different microphones’ FRCs. Then, we apply PIDA to generate
augmented target microphone data for model adaptation.

In the experiment where the microphone hardware heterogene-
ity causes word error rate (WER) increase for a pre-trained auto-
mated speech recognition model, PIDA can reduce the WER in-
crease from 50% to 70% on evaluated microphones. This result
outperforms the baseline approaches that are based on conven-
tional data augmentation or data calibration. A detailed evaluation
can be found in our previous published work [8].

3.2.2 Case study 2: Adapting audio sensing model in new environ-
ments. In addition to the device hardware heterogeneity, a voice-
sensing device’s ambient environment can affect its voice recogni-
tion performance. The impact of the environment is a result of the
room’s acoustic response to the sound source, which is measured
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by the room impulse response (RIR). Thus, each deployment envi-
ronment forms a target domain. In practice, RIRs can be collected
to adapt a standard voice-sensing model to a target room. However,
the collection of RIRs requires specialized equipment and can in-
volve significant manual effort. As a result, only a limited number
of public RIRs datasets [2] are available. Several acoustic simula-
tors have been created to produce realistic RIRs based on room
parameters. However, the simulators require pre-defined parame-
ters and exceptional computational resources for RIRs generation.
They are not configurable for a real target room. Therefore, we
propose using a DNN model to generate RIRs in a target room. The
DNN model acts as a substitute for the physical law governing the
RIRs generation. The DNN model also provides the flexibility to be
configured for a target room if a small amount of data are given. In
what follows, we apply this approach to adapt a keyword spotting
(KWS) model to new environments.

We train a KWS model using Google Speech Commands dataset
[19] to recognize 10 keywords. The pre-trained model achieves an
oracle recognition accuracy of 90% on the standard testing dataset.
We collect new voice command data in a simulated room to evaluate
the KWS model’s performance. Fig. 6 shows the data collection pro-
cess. We deploy a microphone near the left wall of a 5mx 10 mx3 m
room to record the voice commands triggered at random locations
within the room. The received microphone data is a convolutional
result of the voice command and the room’s RIR at a specific loca-
tion. Fig. 7 and Fig. 8 show the spectrograms of the original and
the recorded voice command. There are salient differences between
the data samples. When we apply the pre-trained KWS model to
the recorded voice commands. The bar labeled “Unmodified” in
Fig. 9c shows the result, where the recognition accuracy drops to
73%. Thus, the data collected in the room form a new target domain
and the voice-sensing DNN model needs to be adapted.

PIDA for KWS model adaptation in a room consists of four steps.
First, we identify that the domain shift is governed by a room’s RIRs.
As the conventional acoustic simulators lack reconfigurability, we
opt to use a DNN to model the physical law for RIRs generation.
We adopted the adversarial training methods described in [14] to
train a DNN-based RIR generator with the guidance of the room
acoustic simulator. As illustrated in the upper part of Fig. 5, given a
set of parameters, e.g., room dimension, speaker and microphone
location, both the room acoustic simulator and the RIR generator
network generate RIR samples that are then discriminated by a
discriminator network. At end of the adversarial training process,
the RIR generator is capable of producing RIRs that closely resemble
those produced by the room acoustic simulator. Third, as shown in
the lower part of Fig. 5, we use RIRs collected at limited locations
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from the target room to finetune the RIR generator. As such, the
finetuned RIR generator is used to produce augmented RIRs at
unknown locations in the target room. Fig. 9a and Fig. 9b show the
ground truth and the generated RIRs in a simulated target room.
The data samples exhibit a cosine similarity of 0.9. Lastly, we use
the finetuned RIR generator to produce large amounts of synthetic
RIRs in the target room for KWS model adaptation. The bar labeled
“PIDA” shows the new result, the recognition accuracy increases
to 87%. It outperforms the baseline approaches that are based on
conventional data augmentation (CDA) and few-shot adversarial
domain adaptation (FADA) [11]. Their recognition accuracies are
82.5% and 83%, respectively.

4 Challenges

We discuss several challenges when applying physics-informed ma-
chine learning model generalization in AloT sensing applications.

Identifying the physical laws is challenging. The proposed
PICA and PIDA rely on the identified physical knowledge to gen-
erate augmented data for DNN model generalization. However, in
many AloT sensing applications, the sensed data is often governed
by intricate physical processes, making it difficult to determine
the physical laws. When physical laws are elusive, we may turn to
traditional data-driven methods to train DNN models.

The amount of data needed for physical law fitting re-
mains unresolved. The ability to accurately fit physical laws is
crucial for the generalization of physics-informed machine learning
models. The effectiveness of the models depends on the quality of
the augmented data generated by the fitted laws. Unfortunately,
there is currently no theoretical analysis available to guide the de-
termination of the required data for fitting physical laws. Intuitively,
systems with simple physical laws require less data, while systems
with complex physical laws will require more data for law fitting.

The evaluation of systems with multiple physical laws is
lacking. The used three case studies consider the system governed
by a single physical law. In many AloT sensing applications, the data
generation or domain shifts can be governed by multiple physical
laws. A possible approach is through the separation of physical
laws. However, it may require additional genuine data to fit the
separated laws.

Considering the potential benefits brought by physics-informed
machine learning generalization, the above challenges should not
discourage us from pursuing more efficient approaches in incor-
porating physical knowledge in machine learning algorithms for
AJoT sensing applications.

5 Conclusion

This paper discusses the potential of generalizing physics-informed
machine learning models in AloT sensing applications. We propose
physics-informed class augmentation and physics-informed domain
adaptation to address the scarcity of labeled training data and run-
time domain shifts problems. The benefits of the physics-informed
machine learning model generalization are illustrated using three
distinct case studies. We also discuss the challenges when applying
these methods to specific AloT applications. We aim to spark more
investigation into utilizing physical knowledge to enhance machine
learning algorithms in cyber-physical systems.
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