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NNFacet: Splitting Neural Network for
Concurrent Smart Sensors
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Abstract—Various deep neural networks (DNNs) including convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) have shown appealing performance in various classification tasks. However, due to their large sizes, a single DNN often cannot
fit into the memory of resource-constrained smart IoT sensors. This paper presents a DNN splitting framework called NNFacet that
aims to run a DNN-based classification task on a total of N concurrent battery-based sensors observing the same physical process.
We begin with determining the importance of all CNN filters or RNN units in learning each class. Then, an optimization problem divides
the class set into N subsets and assigns them to the sensors, where the important CNN filters or RNN units associated with a class
subset form a small model that is deployed to a sensor. Lastly, a multilayer perceptron is trained and deployed to a cloud or edge server,
which yields the final classification result based on the low-dimensional features extracted by the sensors using their small models for
the same observation. We apply NNFacet to three case studies of voice sensing, vibration sensing, and visual sensing. Extensive
evaluation shows that NNFacet outperforms four baseline approaches in terms of system lifetime, latency, and classification accuracy.

Index Terms—Internet of Things, distributed DNN inference, speech recognition, vibration analysis, video analytics
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1 INTRODUCTION

Off-the-shelf deep neural network (DNN) models such as
VGGNet [1], ResNet [2], and DeepSpeech [3] have been
increasingly employed in Internet of Things (IoT) systems
for achieving satisfactory performance in many applications
such as the speech recognition, image classification and
segmentation. However, due to their heavy weights, the
execution of such advanced DNN models often incurs high
computing overhead and memory usage. For instance, the
VGG-19 consists of more than 21 million parameters and
requires about 241 MB memory. While offloading the execu-
tions of advanced DNN models to a cloud or edge server is
possible, it introduces several issues including high latency
and communication bandwidth usage in transmitting the
raw sensor data, privacy concerns, and poor scalability,
especially when wireless communication is adopted.

Running the DNNs at the smart IoT sensors is desirable
to enable the real-time and privacy-preserving data analyt-
ics [4]. Recent studies [5]–[11] have proposed various DNN
compression techniques to reduce the memory usage and
computation overhead. However, there exists a fundamental
trade-off between the inference accuracy and model size.
Compressing a large DNN model into one that can fit
into the limited memory of a smart sensor or meet the
computation overhead constraint may lead to poor infer-
ence accuracy. This paper considers a scenario of concurrent
smart sensors that simultaneously observe the same phys-
ical process. This scenario provides a different dimension
to address the memory and computation constraints by
letting each sensor executes a portion of the DNN model.
The considered concurrent sensors setting can be found
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in reality. For instance, in a smart home, the microphones
embedded in appliances and smartphones form concurrent
sensors. As another example, to transcribe a meeting, the
attendants’ smartphones form concurrent sensors. Similarly,
in the industrial environment, multiple concurrent vibration
sensors can be deployed to monitor the status of a machine.

To develop a solution perpendicular to model compres-
sion and for the setting of concurrent sensors, this paper pro-
poses a DNN model splitting framework, called NNFacet,
that decomposes a large multi-class DNN into multiple
small models. Each of these small models is responsible for
learning a subset of the classes and deployed on a resource-
constrained concurrent smart sensor. The smart sensors col-
laboratively perform distributed inference by running their
models and fuse the results to generate a final inference
result. The distributed inference enables in situ advanced
data analytics with low latency and sharing of inference
workload to reduce the energy usage of each sensor.

To realize NNFacet, we formulate an optimization prob-
lem that divides the multi-class DNN into multiple size-
constrained class-specific models, while maximizing the
system lifetime subject to the requirement on classifica-
tion accuracy achieved by the class-specific models. This
problem consists of two coupled sub-problems with com-
binatorial complexities: 1) how to assign the classes to the
concurrent sensors, and 2) how to assign the CNN filters
or RNN units to the class-specific models. Specifically, as
the number of filters or RNN units is often in the order of
thousands and much larger than the numbers of classes and
sensors, the filter/unit assignment sub-problem introduces
dominating complexity. To solve this sub-problem, NNFacet
begins with determining the importance of all filters or
RNN units for learning each class. The filters or RNN
units with importance indexes higher than a pre-defined
threshold are assigned to form each class-specific model.
Then, given the filter/unit assignment solution, the original
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model splitting problem is reduced to the class assignment
problem which can be solved using existing optimization
tools within acceptable time. We also propose a greedy
algorithm to efficiently find the class assignment solution,
especially when the number of classes and sensors is large.
Lastly, NNFacet employs a multilayer perceptron that runs
on a cloud or edge server and fuses the results of the class-
specific models to generate the final classification result.
NNFacet is periodically executed to update the class-specific
models running on the sensors to adapt to their battery
residuals for maximizing system lifetime.

We conduct experiments using real edge devices based
on six public datasets to evaluate the effectiveness of NN-
Facet for three sensing tasks, i.e., speech recognition, vi-
bration analysis, and low-power video analytics. The first
two are based on real concurrent sensors, while the last
one applies virtual concurrent sensors running on the same
real wireless camera to process consecutive image frames
with similar contents in parallel. The evaluation results for
these three case studies show that NNFacet always achieves
longer system lifetimes and higher memory reductions,
while maintaining the classification accuracy and latency,
compared with four baseline approaches proposed in our
prior work [12] and two existing works [9], [10]. More-
over, compared with the original multi-class DNN, NNFacet
significantly reduces per-sensor memory requirement and
execution latency.

Our preliminary work [12] designed a heuristic algo-
rithm to split a multi-class CNN with the main objective
of satisfying the memory constraint of the smart sensors.
Based on [12], this paper makes the following contributions:

• We formulate the model splitting problem and iden-
tify challenges in decomposing the multi-class DNN
into multiple class-specific models for concurrent
smart sensors.

• We propose NNFacet that leverages the DNN filter
pruning and optimization techniques to efficiently
address the formulated problem. We design NNFacet
for the two major forms of DNNs, i.e., CNNs and
RNNs.

• We conduct extensive experiments with six public
datasets in three sensing modalities to evaluate the
effectiveness of NNFacet and show the performance
gains compared with four baseline approaches.

The remainder of this paper is organized as follows.
§2 reviews related work. §3 presents the background and
problem formulation. §4 describes the design of NNFacet.
§5 presents evaluation results. §6 concludes this paper.

2 RELATED WORK

In this section, we review the related works on the DNN
compression and splitting.

� DNN compression: A number of studies [5]–[11]
have proposed various DNN compression approaches that
allow running DNN models on embedded devices with
limited computing resources. The studies in [5]–[8] focused
on general methods of pruning the model parameters (e.g.,
weights) to reduce the memory and computation resources
required to store and run the DNN models. For instance,

Denton et al. [5] applied singular value decomposition to
compress convolutional layers in a CNN, and then fine-
tuned the approximated layers to restore the accuracy.
Han et al. [6] compressed a CNN model by removing
the redundant connections with small weights. Then, the
remaining weights are quantized to enforce weight sharing
among multiple connections, and reduce the number of bits
representing each connection. They can reduce the memory
sizes of AlexNet and VGGNet by 53x and 49x, respectively.
Shi et al. [7] developed a fine-grained compressed structured
block pruning technique that can compress various RNNs
with a higher pruning rate up to 25× without accuracy loss,
compared with the baseline RNN compression techniques.
Chatzikonstantinou et al. [8] proposed an RNN pruning
approach that considers the weight matrices as a collection
of time-evolving signals and iteratively prunes the weights
with similar temporal dynamics to reduce the model size.
These parameter pruning approaches can reduce the re-
quired memory size of CNNs and RNNs by pruning the
number of model parameters. However, these approaches
do not reduce the number of filters in the convolutional
layers, which, however, are the most computation-intensive
part of a CNN.

The studies in [9]–[11] focused pruning the filters that
play the role of the feature extractors in the convolutional
layers. Pruning these filters significantly reduces the size
and computation overhead. For instance, Fang et al. [11] pro-
posed a framework called NestDNN that includes a triplet
response residual method to rank the importance of filters
across the convolutional layers. Then, the NestDNN itera-
tively prunes the unimportant filters and retrains the pruned
model to compensate pruning-induced accuracy loss. The
iteration stops when the pruned CNN cannot provide the
minimum accuracy required by the designer. Yao et al. [9]
proposed the DeepIoT framework that keeps the minimum
number of non-redundant filters while maintaining the
same accuracy as that of the original CNN. Alippi et al. [10]
pruned a CNN model by keeping a few front convolutional
layers only, and replaced the fully connected and softmax
layers with a trained classifier (e.g., decision tree). Moreover,
they further reduced the CNN’s computation overhead by
removing unimportant filters.

The above studies focused on compressing the large
DNN model into one model with reduced memory size and
computation overhead. However, the compression in gen-
eral results in inference accuracy loss when the compression
ratio exceeds a certain limit. Thus, applying them to meet
the smart sensors’ memory constraints may result in unac-
ceptable accuracy reduction. Differently, our work focuses
on splitting the multi-class DNN into multiple class-specific
models that can fit into the smart sensors. The proposed
NNFacet only prunes unimportant filters from the class-
specific model whose memory and energy usages exceed the
sensor’s capacities. In §5, we compare the total model size
and inference accuracy achieved by NNFacet with those of
the two approaches in [9], [10]. The evaluation results show
that NNFacet achieves a better trade-off between model size
and accuracy for resource-constrained smart sensors.

� DNN splitting: The study [13] has shown the feasibil-
ity of decomposing a multi-class DNN model into multiple
binary models, each of which is sensitive to the samples in
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a single class. Different from [13], we consider the task of
decomposing a multi-class model into an appropriate num-
ber of the class-specific models to meet the smart sensors’
computing resource constraints and maximize the system
lifetime, based on detailed modeling of DNN memory and
energy usages. Each class-specific model given by NNFacet
is sensitive to the samples of multiple classes. We also
employ late fusion to fuse the outputs of the class-specific
models to yield the final inference result. Moreover, the
studies in [14], [15] proposed various collaborative inference
approaches, in which a complex DNN model is partitioned
into multiple sequential parts to be deployed on the edge,
fog, and cloud computing nodes. Each computing node
executes a DNN partition that captures all data classes.
Differently, in our work, each node executes a small model
that captures a subset of classes.

Our preliminary work [12] has presented the design of
a heuristic algorithm that splits a multi-class DNN with the
main objective of reducing the memory sizes of the class-
specific models. It does not consider the energy constraint of
the smart sensors, which, however, is important for battery-
based smart sensors. In this paper, we make the following
new contributions. First, we analyze DNN memory/energy
usages and formulate a problem that aims at maximizing the
system lifetime, subject to accuracy requirement, memory
and energy constraints of the smart sensors. The solution to
the formulated problem is different from the solution in [12]
that addresses memory constraint only. Second, we conduct
new experiments to compare the prior approaches includ-
ing [12] and NNFacet proposed in this paper. The evaluation
results show that NNFacet achieves more memory and
energy savings while maintaining inference accuracy and
latency. Third, this paper addresses both CNNs and RNNs,
while our prior work [12] only considers CNNs.

3 BACKGROUND AND PROBLEM FORMULATION

In this section, we describe three applications that involve
concurrent sensors as illustrated in Fig. 1. Then, we present
the problem statement and assumptions of this study. Next,
we present the DNN memory and energy models that
are used in the problem formulation. Lastly, we formulate
the DNN splitting problem and discuss the challenges in
solving the problem.

3.1 Applications with Concurrent Sensors

3.1.1 Voice recognition
DNNs have been widely adopted for voice recognition
applications including keyword spotting [16] and automatic
speech recognition [3], [17]. The IoT applications based on
human voice interactions often require real-time response
for good user experience. Thus, the approach of transmitting
the audio data to the cloud for speech recognition is not
desirable due to the uncertain and possibly long commu-
nication latency. On the other hand, the speech recognition
DNNs like DeepSpeech [3] are of large sizes and may not fit
into a single IoT device. NNFacet is a promising approach to
address this tussle for the scenarios with concurrent smart
microphones. In an application of automatic transcription,
the attendants of a meeting can use their smartphones as

(a) Concurrent microphones. (b) Concurrent vibration sensors.
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Fig. 1. Three applications with concurrent sensors. (a) Concurrent mi-
crophones in a smart home environment to perform keyword spotting
or automatic speech recognition collaboratively. (b) Concurrent vibration
sensors deployed to monitor the condition of a machine in factory. (c)
The full deep model that cannot fit into the limited RAM of the wireless
camera can be decomposed into multiple small class-specific models.
These small models, which are loaded to the camera RAM sequentially
to process the consecutive image frames with similar content, form
virtual concurrent sensors.

the concurrent sensors to share the workload of automatic
speech recognition, achieve good timeliness, and save bat-
tery energy. In smart homes, microphones are increasingly
integrated into home appliances, e.g., television sets, set-top
boxes, smart fridges, smart speakers, and etc. As the smart
home appliance interoperability advances, the microphones
on the home appliances may form concurrent sensors to
capture the same user’s voice and collaboratively perform
keyword spotting or automatic speech recognition.

3.1.2 Vibration analysis
Vibration is an important sensing modality in various
monitoring applications. The vibration signals of industrial
machines (e.g., motors, assemblers, and conveyors) and
structures reflect their internal states. Malfunction of the
vibrating objects and structural changes usually result in
variations in the vibration amplitude and frequency [18].
Thus, vibration analysis is important to machine/structure
condition monitoring and predictive maintenance. Vibration
signals have also been exploited for activity recognition [19],
because structural vibration signals contain information of
human activities. Meanwhile, DNNs have been used for
vibration analysis. For instance, in [20], [21], VGG-19 and
LetNet-5 are trained to detect and classify faults of rotating
machines. LetNet-5 achieves 99.79% accuracy in detecting
machine faults. In [22], RNNs achieve an error rate of
0.56% in detecting the faults of electrical transformers. These
systems deploy multiple vibration sensors to increase the
information about the monitored process.

The existing DNN-based detectors and classifiers are
often executed on a centralized resourceful node. However,
when wireless vibration sensors are adopted, collecting the
high-rate vibration measurement data from the sensors to
the centralized node is challenging. The industrial spaces
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typically have noisy and time-varying wireless conditions
due to the moving parts of the production lines and elec-
tromagnetic noises from the working machines. Thus, it is
desirable to perform the fault detection and classification
locally at the sensors without transmitting the raw vibration
data. NNFacet can be employed for the concurrent vibration
sensors deployed on the same machine. The in situ dis-
tributed inference can avoid the energy-intensive raw data
transmissions and achieve low-latency detection.

3.1.3 In situ video analytics on low-power smart camera
Today, wireless smart cameras have been widely deployed
for visual sensing applications, including traffic control and
industrial activity monitoring. Without replying on cables
for power supply and network connectivity, the wireless
cameras can be deployed in an ad hoc fashion when de-
manded. In addition, smart camera has been adopted for
navigation of small-size autonomous drones [23] and insect-
scale robots [24]. Due to the limited power supply, these
smart cameras in general have limited computation re-
sources. For instance, the ESP32-CAM as shown in Fig. 1(c),
which is a wireless camera platform supporting the Ten-
sorFlow Lite Micro, has only 512 kB static random access
memory (RAM). Thus, a complex DNN may not fit into the
smart camera’s limited RAM. Based on the observation that
the consecutive image frames in a video trace captured by
the camera have similar contents, one possible way to deal
with the limited RAM problem is to decompose the complex
DNN into multiple class-specific small models and load
them sequentially into the RAM to process the consecutive
image frames respectively. The results of the small models
are fused to generate the video analytics result. In this
method as illustrated in Fig. 1(c), the perception processes
based on the small models form virtual concurrent sensors
running on the same smart camera.

3.2 Approach Overview and Assumptions

We consider a large DNN model for a classification task
with multiple learning classes. The main goal of the pro-
posed NNFacet is to split this multi-class DNN model
into multiple class-specific models which can fit into the
memory-constrained concurrent sensors while maximizing
the system lifetime subject to the classification accuracy
requirement. Moreover, we aim to design NNFacet for the
two major forms of DNNs which are CNNs and RNNs.

Specifically, a CNN model generally consists of four
types of layers, i.e., convolutional, pooling, activation, and
fully connected (FC) layers. Among these types, the con-
volutional layers are the most computation-intensive. A
convolutional layer contains a set of three-dimensional (3D)
filters, which extract invariant local 2D features. An FC layer
contains a set of neurons connected to each input. Pruning
the filters and neurons helps reduce both the overheads for
storing the model parameters in RAM and executing the
layer. Moreover, a filter has unique impact on learning each
data class [13]. Thus, NNFacet aims to form the class-specific
CNN models, each of which only contains the filters and
neurons important to its responsible classes. Different from
CNNs, RNNs do not use the 3D convolutional filters for
feature extraction. An RNN is often formed by a chain of

TABLE 1
Effects of distance on voice classification accuracy.

Distance (meter) 0.02 0.5 1 1.5
Accuracy (%) 80 78 61 49

repeating RNN units, each of which has a chunk of multiple
neural network layers. Each layer often contains multiple
neurons which are the most compute-intensive elements in
the RNNs. For example, a long short term memory (LSTM)
network unit generally has three sigmoid layers and one
tanh layer. Therefore, NNFacet keeps the important neurons
of these neural network layers to form the class-specific
RNN models.

In this study, we assume that the input data of the class-
specific models collected by the concurrent sensors have the
same/similar contents. The real deployments may deviate
from this assumption due to sensor characteristics and/or
the dynamics of the monitored process. For instance, in the
speech recognition systems, the recordings of the concur-
rent microphones may have different voice qualities caused
by the heterogeneities in their hardware and surrounding
environments. As a result, the class-specific DNN models
on these microphones can yield reduced and varied perfor-
mance. Transfer learning [25] and data augmentation [26]
techniques have been applied to mitigate the impact of these
issues.

Furthermore, the distance between the microphone and
the voice source may also affect the accuracy achieved by the
DNN models [27]. We conduct an experiment to evaluate
such effect in terms of the accuracy of the VGG-19 [1] on
the LibriSpeech [28] dataset. The details of the implemented
VGG-19 model and dataset are described in §5.1. Specif-
ically, we select 20 speech samples of two words “from”
and “have” from the dataset, and use a Huawei P30 Pro
mobile phone as a speaker to replay each sample ten times.
Meanwhile, a Maono AU-A04TR microphone is used to
record a total of 200 speech samples from the mobile phone
at a certain distance. The recorded samples are fed into
the VGG-19 model which is pre-trained using the original
LibriSpeech dataset. Table 1 presents the voice recognition
accuracy of the VGG-19 over 200 testing samples under
various distances from 0.02 to 1.5 meters. From Table 1, we
can see that the accuracy decreases with the distance. The
distance-aware DNNs proposed in [27] can be used to miti-
gate the impact of the distance. Our proposed NNFacet can
be applied to split such advanced DNNs to multiple class-
specifical models. Another feasible solution is to deploy
the microphones within a pre-determined distance (e.g.,
0.5 meters in our experiment) from the voice source such
that their recordings are strong enough and have similar
contents to achieve desired accuracy.

The above solutions to address the microphone and
environment inconsistency issues can be also adopted for
the acoustic-based vibration analysis. Moreover, the concur-
rent vibration sensors are often attached on the monitored
object. Thus, they can likely record similar vibration signals,
especially when monitoring the solid objects. For the video
analytics based on the virtual concurrent sensors, the class-
specific models are used to process the consecutive image
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frames captured by the same camera. The video profiling
method proposed in [29] can be used to evaluate the tem-
poral correlation between the consecutive frames. Then, the
camera’s frame rate is set to an appropriate value such that
the input frames of the class-specific models have the similar
contents, i.e., the high temporal correlation.

3.3 DNN Memory and Energy Models
This section models the memory and energy usages of a
CNN and discusses how these models can be varied to
address RNN. We assume that the classi-specific model i
to be deployed on sensor i consists of subsets of filters Fi

and FC neurons Ri from the original model. It also includes
all the pooling, activation of the original model.

Letmi and ei denote the amounts of memory and energy
usage to run the model i and to complete the inference per
sample, respectively. We adopt the modeling method in [30]
that considers the mi as the total number of bytes required
to store all parameters of the convolutional and FC layers
of the model i. Note that the pooling and activation layers
do not have learnable parameters that need RAM space. Let
sf and If denote the kernel size and the number of input
channels of a filter f ∈ Fi. Then, the number of parameters
of the filter f is If (s2f + 1). The number of parameters of an
FC neuron is equal to the number of inputs of this neuron,
denoted by Ir . Given the model i’s sets of filters Fi and
neurons Ri, the mi is calculated as

mi = b
(∑

f∈Fi
If (s2f + 1) +

∑
r∈Ri

Ir
)
, (1)

where b denotes the number of bytes required to store a
parameter.

We follow the CNN energy modeling method in [31] to
model the per-sample energy usage ei as the sum of the en-
ergy used for the inference computation and memory access,
denoted by ec,i and em,i, respectively, i.e., ei = ec,i + em,i.
Specifically, the ec,i is estimated based on the number of
multiply-accumulate operations (MACs) for executing the
filters and FC neurons of the model i to predict the label of
an input sample. The number of MACs required to execute
a filter with the kernel size of sf is calculated as s2fIfhfwf ,
where hf and wf are the height and width of the filter’s
output feature map, respectively. The number of MACs for
executing an FC neuron is also equal to the number of the
neuron inputs Ir . Then, the ec,i is expressed as

ec,i = emac

(
s2f
∑

f∈Fi
Ifhfwf +

∑
r∈Ri

Ir
)
, (2)

where emac denotes the energy usage per MAC. Note that
the value of emac depends on the processor. It is often
estimated as emac = 2/nflopsw [32], where nflopsw is the
number of floating point operations per second per watt
(FLOPS/W) of the processor. For instance, for the Rasp-
berry Pi-4B single-board computer equipped with an ARM
Cortex-A72 processor, the nflopsw is 1.35 GFLOPS/W [33].
Thus, for the Raspberry Pi-4B, we set emac = 1.48 nJ.

The memory access energy usage em,i of the model i
is the total energy used for loading the model i with a
memory size of mi to into RAM, and accessing the model
i’s activations of convolutional and FC layers from RAM.
Specifically, the em,i can be estimated as [34]:

em,i = emem (mi + b|Fi|hfwf + b|Ri|) , (3)

where emem is the amount of energy used for accessing a
data bit in RAM; ememmi is the total energy used for loading
the model into RAM; ememb(|Fi|hfwf + |Ri|) is the total
energy used for accessing the model from RAM. The emem
is often modeled as 139× emac [34].

By setting F = ∅ and letting R denote the set of RNN
units, the above modeling in Eqs. (1)-(3) addresses RNN.

3.4 Problem Formulation

Let C and S denote the sets of the data classes and the con-
current sensors, respectively, where the number of sensors
is not greater than the number of classes, i.e., |S| ≤ |C|.
Let the F and R denote the sets of filters and FC neurons
of the original CNN models. The main goal is to split the
original CNN model into at most |S| class-specific models.
Thus, NNFacet’s model splitting problem consists of two
aspects. First, to identify Ci ⊂ C and assign it to sensor i.
Second, to identify Fi ⊂ F , Ri ⊂ R and assign them to
sensor i. The model i can classify the input sample into
|Ci| + 1 classes, where the |Ci| classes are from Ci and
the remaining one class is a null class that represents all
classes in C \ Ci. The main objective is to maximize the
lifetime of the system consisting of the concurrent sensors
S by assigning the classes and filters/neurons subject to the
energy and memory constraints of every sensor as well as
the inference accuracy requirement.

The model splitting problem, denoted by OPT-1, is
solved periodically to adapt the system to the sensors’
latest battery residual levels. Each sensor i ∈ S has cer-
tain amounts of available memory and residual energy,
denoted by Mi and Ei, respectively, at the beginning of
each assignment period. We assume that a total of L inference
samples are processed by the system in each assignment
period. Then, the sensor i’s residual energy after the next
assignment period is calculated as Ei − L · (ec,i + em,i),
where ec,i and em,i are the per-sample energy usages for
the inference computation execution and memory access,
respectively. We define the system lifetime as the operational
time of the system until the first sensor runs out of energy.
Then, the objective function of OPT-1 is to maximize the
minimum among the remaining energies of the sensors after
the next assignment period, i.e., min

i∈S
{Ei −L · (ec,i + em,i)},

where the min{.} represents the minimum operator.
Moreover, the OPT-1 has the following four constraints.

First, the total energy required to run the class-specific
model i, i.e., L · (ec,i + em,i), should be less than or equal
to the sensor i’s remaining energy level of Ei. Second,
the total memory usage mi should not be more than the
sensor’s available memory Mi. Third, the accuracy, denoted
by aL, for the fusion result of all class-specific models over
L inference samples should be equal to or higher than the
inference accuracy requirement, denoted by Areq. Finally,
each class j ∈ C should not be assigned to more than one
model.

We define a binary decision variable xij as follows. If the
model i deployed to sensor i is sensitive to the class j ∈ C ,
xij = 1; otherwise, xij = 0. Similarly, a binary variable
yik is defined to represent whether the model i contains
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Fig. 2. Workflow of NNFacet to decompose a DNN model into multiple class-specific models for concurrent smart sensors.

the filter/neuron k ∈ F ∪ R. Then, the OPT-1 is formally
formulated as follows:

x∗ij , y
∗
ik = arg max

xij ,yik,i∈S,j∈C,k∈F∪R
min
i∈S
{Ei − L · (ec,i + em,i)},

(4)
s.t. L · (ec,i + em,i) ≤ Ei, ∀i ∈ S, (5)

mi ≤Mi, ∀i ∈ S, (6)
aL ≥ Areq, (7)∑|S|

i=1 xij = 1, ∀j ∈ C, (8)

where mi, ec,i, and em,i are given by Eqs. (1), (2), and
(3), respectively. Eqs. (5), (6) and (7) ensure the energy
and memory constraints as well as accuracy requirement,
respectively. The constraint in Eq. (8) ensures that each class
j ∈ C is assigned to one model only.

Note that for the virtual concurrent sensors case dis-
cussed in §3.1.3, since all energy usages of the virtual con-
current sensors attribute to the smart camera, the objective
function mini∈S{Ei−L · (ec,i +em,i)} should be updated to
E−

∑
i∈S L · (ec,i + em,i), where E is the current remaining

energy of the smart camera. The constraint Eq. (5) should
be updated to

∑
i∈S L · (ec,i + em,i) ≤ E. In addition, Mi

represents the smart camera’s available RAM.
Solving OPT-1 faces the following practical challenges.

First, although the inference accuracy aL for any candidate
solution may be measured with a validation dataset, the
search process to solve OPT-1 may generate massive can-
didate models for all sensors, leading to extremely high
computation overhead for the validation. Second, OPT-1
is an integer min-max optimization problem with an ex-
tremely large solution space. Considering the CNNs, just for
the second dimension of the decision variable yik (i.e., k),
the representative CNNs usually have thousands of filters
and neurons. For instance, the VGG-19 variant used in the
performance evaluation of this paper has a total of 5,504
convolutional filters and 2,048 FC neurons. Thus, the size of
the search space of OPT-1 for just assigning filters/neurons
to a certain sensor i sensitive to class j is 27552. Thus, OPT-1
must be reduced for tractability.

4 DESIGN OF NNFACET

In this section, we describe the main workflow of the
proposed NNFacet to solve the OPT-1 problem for splitting
CNN. Then, we present the details of three main steps of
NNFacet. Finally, we extend NNFacet to address RNN.

4.1 Design Overview
To understand the complexity in solving OPT-1, we first
describe a baseline method that solves OPT-1 without en-
forcing the accuracy constraint in Eq. (7). Specifically, we
use MATLAB’s genetic algorithm (GA) solver to solve OPT-
1 without the accuracy constraint. Although GA is a generic
method to solve complex optimization problems, due to the
large number of filters and neurons, as shown shortly, the
computation overhead of this baseline method is very high.
Thus, this method is ill-suited for a resource-dynamic sensor
system that requires a short assignment period.

To further reduce the computation overhead in solving
OPT-1, we propose NNFacet that focuses on pruning the
convolutional filters, as they are the most computation-
intensive and account for most RAM usage. Under NN-
Facet, each class-specific model contains all the FC neurons
of the original model. NNFacet reduces the solution search
space by selecting the filters based on a heuristic but ef-
fective metric. Then, OPT-1 is reduced to an optimization
problem with fewer decision variables, which can be solved
in acceptable times.

Fig. 2 overviews the workflow of NNFacet, which con-
sists of three main steps: filter ranking, model assignment, and
results fusion. In the filter ranking step, NNFacet determines
the importance of each filter in recognizing the input sam-
ples of a given class. Given the important filter sets of all
classes, the solution search space of OPT-1 is significantly
reduced. In the model assignment step, NNFacet finds the
optimal class assignment. The class assignment problem
is a complex optimization problem. Its solution space size
exponentially increases with the numbers of classes and
sensors. Beyond the generic GA solver, we also propose a
greedy method to efficiently find the class assignment solu-
tion. With the class assignment, each class-specific model is
formed by pruning the unimportant filters from the original
CNN model and then retrained to compensate the accuracy
loss caused by the pruning. In the last step, the results
yielded by all class-specific models are fused by an MLP
to generate the final inference result. In what follows, we
describe the detailed designs of the above three steps.

4.2 Filter Ranking
This step aims to measure the importance of each filter of the
original CNN to the learning classes using a ranking metric,
called the average percentage of zero (APOZ). Specifically,
in the CNNs, each convolutional layer is often followed by
an activation layer that generates the activation map for the
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output of each fitter. The APOZ was proposed in [35] based
on the observation that the activation map of a filter may
consist of zeros activations which do not provide useful
feature information to learn the output label of the model
inputs. Thus, the filter with more zero activations is less
important to the model learning accuracy. The experiments
in [35] showed that the APOZ-based CNN compression
approach can significantly reduce the size of two representa-
tive CNN models (i.e., LeNet and VGG-16) while maintain-
ing the same accuracy, compared with the original models.
Thus, in this study, we adopt this approach to form the class-
specific models by pruning the less important filters in the
original CNN.

To end this, we train the original CNN with a training
dataset consisting of samples in all classes. Then, we sequen-
tially determine the importance of the filters for recognizing
every class. In particular, for a class j, we feed all training
data samples of this class to the CNN and calculate the
APOZ of all filters. Let Ol

f,j denote the feature maps of the
filter f in the convolutional layer l. Then, the APOZ value
of the filter f in the layer l, denoted by APOZl

f,j is

APOZl
f,j =

∑m
q=0

∑howo

p=0 Π(Ol
f,j(q, p) = 0)

mhowo
, (9)

wherem is the number of input images; ho and wo represent
the height and width of the activation map. Π(x) = 1 if x is
true and Π(x) = 0 otherwise. The filter with a smaller APOZ
value (i.e., fewer zeros in its output feature map) is more
important in recognizing the class j. A filter is considered
important for a class if its APOZ is lower than a threshold,
denoted by ζapoz. The threshold ζapoz can be set to balance
the trade-off between the model size and accuracy. A lower
value of ζapoz leads to a smaller size of the class-specific
model, but more accuracy loss caused by the filter pruning.

4.3 Model Assignment

Given an APOZ threshold ζapoz, we can obtain the important
filters assigned to the class-specific model for learning the
class subset Ci. We will discuss the setting for ζapoz shortly.
Thus, the model splitting problem OPT-1 can be reduced to
the class assignment problem which focuses on assigning
the classes to the class-specific models. In what follows, we
present the optimization formulation of the class assignment
problem and then a greedy algorithm to find the solution.

4.3.1 Optimization formulation
Given the filter assignment solution achieved in the filter
ranking step, the OPT-1 is reduced to a class assignment
problem, denoted by OPT-2, without the need of the deci-
sion variables yik. The OPT-2 is formulated as follows:

x∗ij = arg max
xij ,i∈S,j∈C

min
i∈S
{Ei − L · (ec,i + em,i)},

s.t. Eqs. (5), (6) and (8).

OPT-2 does not include the inference accuracy requirement.
It relies on the heuristic approach of APOZ-based filter
selection to address the accuracy requirement. This relax-
ation exempts NNFacet from measuring the accuracy of the
massive candidate class-specific models during the search
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Fig. 3. Latencies of solving reduced OPT-1 and OPT-2 using MATLAB’s
genetic algorithm (GA) solver and the curve fittings (y-axis is in log
scale).
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Fig. 4. Performance of model assignment solution in terms of (a) class-
specific model size, (b) total energy usage of all class-specific models,
(c) objective function value, (d) inference accuracy. The energy usage
and accuracy results are determined based on 10,000 testing samples.

process of OPT-2. Compared to OPT-1, the number of deci-
sion variables of OPT-2 is reduced from |S|× (|C|+ |F ∪R|)
to |S| × |C|. However, OPT-2 is NP-hard. A proof sketch
is as follows. We consider a further relaxed problem where
the residual energy Ei of all sensors is enough to process L
samples and thus, the energy constraint (5) can be omitted.
Then, OPT-2 can be mapped to a max-min 0-1 Knapsack
(MMK) problem [36] that assigns a subsetCi of a set of items
C (i.e., set of data classes) to a knapsack under |S| scenarios
(i.e., S sensors). The Mi is considered as the capacity of the
knapsack under a scenario i ∈ S. Since the MMK problem
is NP-hard [36] and OPT-2 is a more constrained problem,
OPT-2 is also NP-hard.

Now, we analyze and evaluate the computation over-
heads for solving the relaxed OPT-1 (i.e., the baseline
method in §4.1) and OPT-2 to split a representative CNN
model called VGG-19 [1] into multiple class-specific models
for learning CIFAR-10 [37] images. The numbers of sensors
|S| and data classes |C| vary from 2 to 10. The residual
energyEi in Joule (J) and available memoryMi in megabyte
(MB) of each sensor i are randomly selected from the ranges
of [16, 80] MB and [105, 1.8×105] J, respectively. The settings
for Ei and Mi will be explained in §5.1. For OPT-2, ζapoz is
set to 80%. Both problems are solved using MATLAB’s GA
solver on a workstation computer with a 2.2GHz CPU and
32GB RAM. Fig. 3 shows the latency in solving the relaxed
OPT-1 and OPT-2 under various settings of |S| and |C|. The
solving latencies of the two problems exponentially increase
with |C| and |S|. Moreover, due to OPT-2’s fewer decision
variables, the latencies in solving OPT-2 are significantly
lower than those of OPT-1. For instance, from Fig. 3(b), when
|C| = 10 and |S| = 10, the latency of the relaxed OPT-1 is
about 1.6 hours, which is 104× longer than that of OPT-2.
Fig. 4 shows the model size with standard deviation, total
energy usage of running all class-specific models obtained
by the feasible solutions of the relaxed OPT-1 and OPT-2,
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Algorithm 1 A greedy algorithm for model assignment.
1: Inputs: CNN0 is the original model; F is the set of filters

in CNN0; Ei and Mi are the remaining energy and
available memory of sensor i; ζ int

apoz is the initial value
of the APOZ threshold ζapoz; ∆ζapoz is the AOPZ step
size; Φ is the training dataset.

2: ζapoz = ζ int
apoz; Υ = True;

3: while Υ == True do
4: S = {1, . . . , |S|};C = {1, . . . , |C|};
5: F class

j = filRanking(DNN0,Φ, ζapoz), ∀j ∈ C;
. important filters for class j.

6: Fi = ∅,∀i ∈ S; . filters assigned to model i.
7: while C 6= ∅ do
8: i = arg max

∀i∈S
Ei;

9: if Fi == ∅ then
10: j = arg max

∀j∈C
|F class

j |;
11: else
12: j = arg max

∀j∈C
|F class

j ∩ Fi|;
13: end if
14: if mi(Fi ∪ F class

j ) ≤Mi then
15: Fi = Fi ∪ F class

j ; C = C \ {j};
16: Ei = Ei − ei(Fi ∪ F class

j );
17: else
18: S = S \ {i};
19: if S == ∅ then Break;
20: end if
21: end if
22: end while
23: if C == ∅ then . all classes in C are assigned.
24: CNNi = filPrune(CNN0, Fi),∀i ∈ S;
25: CNNi = retrain(CNNi,Φ),∀i ∈ S;
26: Υ = False;
27: else
28: ζapoz = ζapoz −∆ζapoz;
29: end if
30: end while
31: Return: CNN1, . . . ,CNN|S| are class-specific models.

the objective function value, and the inference accuracy. The
total energy usage and the accuracy achieved by fusing the
results of the class-specific models are determined based on
10,000 testing images. The design of our fusion approach
will be detailed in §4.4. From Figs. 3 and 4, NNFacet that
solves OPT-2 can achieve better performance.

4.3.2 Greedy algorithm
From Fig. 3, the latency of solving OPT-2 using the GA
solver increases exponentially with the numbers of sensors
and data classes. To improve the scalability of NNFacet,
we design a greedy algorithm as an alternative of the GA
solver. Algorithm 1 presents the procedure of the greedy
algorithm. Specifically, given sets of important filters, F class

j

(j = 1, . . . , |C|) determined by the filter ranking step, the
algorithm in lines 7-22 assigns the |C| classes to at most |S|
models. To maximize the system lifetime, we first choose
the sensor i with the highest residual energy Ei (i.e., i =
arg max

∀i∈S
Ei) and assign it with the class j that has the highest

number of important filters. Then, we assign the remaining

classes to |S| sensors in multiple iterations. In each iteration,
the sensor with the highest Ei is chosen. If the sensor i has
been assigned with some classes in previous iterations (i.e.,
Fi 6= ∅), among the remaining classes, we assign the class
j that shares the maximum number of the same filters with
the model i (i.e., j = arg max

∀j∈C
(|F class

j ∩ Fi|)) to the model

i. The class j is assigned to the model i only when the size
of model i with class j, denoted by mi(Fi ∪ F class

j ), is no
greater than the sensor i’s residual memory Mi. Then, the
Ei is updated, i.e., Ei = Ei − ei(Fi ∪ F class

j ), where the
ei(Fi ∪ F class

j ) denotes the per-sample energy usage of the
model i assigned with the class j. Otherwise, the sensor
i is considered memory-exhausted and excluded from the
sensor set S in next assignment iterations. The iteration
stops when all classes are assigned or there is no more
available sensor, i.e., S = ∅.

A higher APOZ threshold ζapoz generally leads to higher
inference accuracy but more memory and energy usages,
because more filters are kept in the class-specific models.
Thus, given a high ζapoz, the baseline method to solve the
reduced OPT-1 and the greedy algorithm to solve OPT-2
may not find a feasible solution. Thus, we apply a greedy
strategy to set ζapoz. Specifically, we initialize ζapoz to a high
enough value denoted by ζ int

apoz such that no feasible solution
can be found and then gradually reduce ζapoz by a step size
denoted by ∆ζapoz until a feasible solution is found. The
greedy algorithm implements this strategy by line 28.

When a feasible solution is found, we perform filter
pruning denoted by filPrune(CNN0, Fi) that removes all
unimportant filters not in Fi from the CNN0 to form the
class-specific models CNNi. The class-specific models are
then retrained to compensate the accuracy loss caused by
the pruning. To avoid the unbalanced training data problem,
we pick the training samples of all classes assigned to the
model CNNi to form the first half of the retraining dataset.
The second half with the same null-class label consists of the
training samples from the remaining classes.

4.4 Results fusion

The results fusion step adopts a late fusion approach that ag-
gregates the outputs from the penultimate layers before the
classification layers of the class-specific models to yield the
classification result. Specifically, we concatenate the output
vectors of the penultimate layers of the class-specific models
and feed the concatenated vector to an MLP to generate the
final result. With a training dataset, this MLP can be trained
once all the class-specific models are given.

4.5 NNFacet for Splitting RNNs

The detailed design presented in §4.2 and §4.3 is mainly
for CNNs. As mentioned earlier, an RNN is often formed
by multiple RNN units, in which the neurons of the neural
networks are the most compute-intensive elements. Thus,
for RNNs, NNFacet focuses on determining and retaining
the important neurons of these neural network layers in
the class-specific models, without considering filters. §5 will
evaluate the effectiveness of NNFacet for RNNs.
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TABLE 2
Description of datasets used in evaluation.

Application Dataset Description

Speech
recognition

Google Speech
Command [38]

105,000 one-second audio
utterances of 35 keywords

LibriSpeech [28] 1,000 hours of English speech
corpus sampled at 16ksps

Vibration
analysis MaFaulDa [39] 1,951 5-second traces sampled

by 8 vibration sensors at 50kHz

Video
analytics1

CIFAR-10 [37] 60,000 color images of
10 object classess

Caltech256 [40] 30,607 color images of
256 object classes

MNIST [41] 70,000 grayscale images of
handwritten digits

1We use series of static images to simulate the video traces.

5 PERFORMANCE EVALUATION

This section evaluates the effectiveness of NNFacet and the
baseline approaches for the three applications discussed
in §3.1. In what follows, we first present the experiment
settings. Then, we present the evaluation results.

5.1 Evaluation Settings

For all three applications, we adopt VGG-19 [1] that consists
of 16 convolutional layers with a total of 5,504 filters, 2 FC
layers and 5 pooling layers. For each application, we apply
NNFacet to decompose the VGG-19 into multiple class-
specific models. To evaluate the applicability of NNFacet
to RNNs, for the speech recognition application, we also de-
sign a bidirectional LSTM model that consists of two LSTM
layers and a FC layer. The first and second LSTM layers
have 1,024 and 128 neurons, respectively, while the FC layer
has 128 rectified linear units (ReLUs). For LSTM, NNFacet
assigns the important recurrent units in the LSTM layers to
the class-specific LSTM models. For both the decomposed
VGG-19 and LSTM models, we adopt a results fusion MLP
that consists of an input layer, two hidden layers with 512
and 246 ReLUs respectively, and a softmax output layer.

We use TensorFlow 2.1 to build the above VGG-19
and LSTM models, and apply NNFacet implemented in
Python 3.7 to decompose the models. In our performance
evaluation, we mainly consider the Raspberry Pi-4B as
the smart sensor platform. Note that we also consider the
ESP32-CAM platform for the in situ video analytics ap-
plication. For the Raspberry Pi platform, the setting of b
in Eq. (1) for storing a 32-bit floating-point parameter is
b = 4 bytes. For the computing and memory access energy
usage models in Eqs. (2) and (3), we set emac = 1.48 nJ
and emem = 139 × emac = 205.72 nJ, respectively, according
to the measurements in [32]–[34]. The residual energy Ei

of each sensor i is randomly selected within a range from
105 J to 1.8 × 105 J, where the latter is the total energy
of a Lithium battery with a capacity of 1000 mAh at 5 V.
Similarly, the sensor’s remaining memory capacity Mi is
randomly selected from a range of [Mmin,Mmax]. For the
speech recognition application, we set Mmin = 10 MB and
Mmax = 20 MB. For the other two applications, we set
Mmin = 20 MB and Mmax = 40 MB. For all applications,
the number of inference samples L is set to be 100. The
initial APOZ thresholds ζ int

apoz for the three applications are

set to be 30%, 71%, and 81%, respectively. The decreasing
step ∆ζapoz of the APOZ threshold is set to 5%.

We employ five performance metrics: (1) Remaining mem-
ory is given by the sensor’s memory capacity Mi minus
the memory size of its class-specific model; (2) Remaining
energy is the available energy of the sensor after running
its class-specific model to process 100 data samples in one
assignment period; (3) System lifetime is the time duration
until the sensor with the minimum remaining energy runs
out of its energy based on the assumption that the sensor
remains in the active state and uses 5 W baseline power;
(4) Latency is the execution time of a class-specific model on
a Raspberry Pi-4B for processing a sample; (5) Accuracy is
the inference accuracy ratio of the testing samples.

We evaluate two variants of NNFacet called NNFacet-
GA and NNFacet-greedy, which use MATLAB’s GA solver
and Algorithm 1 to solve OPT-2. We employ two baseline
approaches:

� Cost-aware approach minimizes the required number
of sensors for the collaborative inference. To this end, the
sensor with the maximum memory size is first selected
and assigned with the maximum number of classes and
the corresponding important filters to form a class-specific
model that can fit into the sensor’s memory. This process
is repeated for the remaining sensors until all classes are
assigned. Finally, the class-specific models are retrained to
compensate the accuracy loss caused by the filter pruning.

� Memory-aware approach proposed in our prior work [12]
splits the original DNN model into multiple class-specific
models such that the memory size of these models can
be minimized. Specifically, the classes are assigned to the
sensors in multiple iterations. In the first iteration, every
sensor is assigned with at most one class. The sensor with
the maximum memory size is assigned first with the class
having the highest number of filters, and so on. Note that
different classes may share some important filters. Thus, in
the next iterations, the sensor is assigned with a remaining
class that shares the maximum number of the same impor-
tant filters with its current classes if its memory is not full.
As such, the additional filters of each class-specific model
(i.e., the model size) is minimized. The iteration stops when
all classes are assigned.

We compare NNFacet with the above two baseline ap-
proaches for all three applications. For the video analytics,
we also compare NNFacet with two CNN compression
approaches proposed in [9], [10]. Moreover, we use six
public datasets as summarized in Table 2 to evaluate the
effectiveness of NNFacet and baseline approaches. The de-
tailed description of each dataset is in next sections.

5.2 Application 1: Speech Recognition

We use the Google Speech Command V2 [38] and Lib-
riSpeech [28] datasets to design DNNs for keyword spotting
and automatic speech recognition, respectively. The Google
Speech Command dataset consists of 105,000 one-second
audio utterances of 35 keywords (e.g., “yes”, “no”, “one”,
and “two”). LibriSpeech contains about 1,000 hours of En-
glish speech corpus sampled at 16 ksps. For each audio
sample, we compute the 40-dimensional Mel-Frequency
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Fig. 5. Performance metrics of class-specific VGG-19 models on Google Speech Command dataset. Notes: In (a) and (b), error bar represents
standard deviation of the metric over all class-specific models. In (d), error bar represents standard deviation of a class-specific model’s execution
times in 10 experiments. In (d) and (e), the solid and dotted lines represent the latency and accuracy of the original VGG-19 model, respectively.
The above notes are also applicable to Figs. 6-12.
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Fig. 6. Performance metrics of the class-specific VGG-19 models on LibriSpeech dataset.
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Fig. 7. Performance metrics of the class-specific LSTM models on Google Speech Command dataset.
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Fig. 8. Performance metrics of the class-specific LSTM models on LibriSpeech dataset.

Cepstral Coefficients (MFCC) frames. Eventually, a sample
is converted to 40 × 44 × 1 and 40 × 50 × 1 MFCC tensors
for the two datasets, respectively. For the experiments with
these two datasets, we consider all classes, i.e., |C| = 10.

� Results for CNN-based speech recognition. Figs. 5 and
6 show the remaining memory and energy, system lifetime,
latency and accuracy of the VGG-19 class-specific models
given by NNFacet-greedy and NNFacet-GA, as well as
the baseline approaches on test samples of Google Speech
Command and LibriSpeech datasets, respectively. We vary
the number of sensors |S| from 1 to 10. Note that when
|S| = 1, the approaches only perform model compression by
pruning filters and do not decompose the model. Absence of
result in the figures means that no solution is found to meet
the memory size constraint. The results show that, all the
four performance metrics under any approach become bet-
ter when |S| increases. This is because, with more sensors,
the class-specific model hosted by a single sensor generally
needs to deal with fewer classes. As a result, the class-
specific model can include more important filters/neurons
for each class and achieve higher accuracy. From the results

on remaining memory and energy, the class-specific models
generated by NNFacet use less resources than those given
by the baseline approaches. As a result, NNFacet extends
the system lifetime. The class-specific models generated by
the different approaches have similar latency and compara-
ble/higher accuracy, compared with the models generated
by the baseline approaches. Moreover, when |S| ≥ 2, NN-
Facet achieves significantly lower latency while maintaining
similar or even higher accuracy, compared with the original
VGG-19 model. Compared with NNFacet-greedy, NNFacet-
GA achieves better performance in terms of the memory,
energy, system lifetime and latency while maintaining the
similar accuracy. The main reason is that GA generally finds
a solution closer to the optimal.

Table 3 shows the size of the original model and the total
size of all class-specific models with |S| = 5. NNFacet-GA
reduces the size by up to 13× compared with the original
model and generates smaller models compared with the
baseline approaches. This means that, even if we deploy all
class-specific models on the same sensor, the memory and
energy usages will be lower than those of the original model.
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Fig. 9. Performance metrics of the class-specific VGG-19 models on microphone measurements of MaFaulDa dataset.
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Fig. 10. Performance metrics of the class-specific VGG-19 models on tachometer measurements of MaFaulDa dataset.

TABLE 3
Size of the original model and total size of the class-specific

VGG-19/LSTM models with |S| = 5.

Approach

Model Size (MB)
Speech Vibration

recognition analysis
VGG-19 LSTM VGG-19

Goo1 Lib2 Goo1 Lib2 Mic3 Tac3
Original 241 261 128 142 864 841

Cost-aware 30.8 23.4 90.6 104 126 119
Memory-aware 29.6 21.4 84.5 96 100 97
NNFacet-GA 22.8 19.5 77.0 83 77 65

1Google Speech Command dataset for keyword spotting.
2LibriSpeech dataset for automatic speech recognition.
3Microphone & Tachometer data subsets of the MaFaulDa dataset.

However, from the result in Fig. 5(d), if these class-specific
models are executed sequentially on the same sensor, the
total latency will be higher than the latency of the original
model. This is because the overhead of loading the model
can outweigh the overhead of executing the model. How-
ever, for this application, the parallel execution of the class-
specific models on the concurrent sensors ensures that the
latency is shorter than that of the original VGG-19 model.

� Results for RNN-based speech recognition. Figs. 7
and 8 present the performance metrics of all approaches
for splitting the LSTM model into multiple class-specific
models on the two datasets, respectively. The observations
obtained for the CNN-based speech recognition are still
applicable to the RNN-based speech recognition. Table 3
also shows the model size results when |S| = 5. NNFacet-
GA achieves about 1.7× size reduction compared with the
original model. All these results show that NNFacet remains
effective for RNNs.

5.3 Application 2: Vibration Analysis
For the vibration analysis application, we use a machin-
ery fault database (MaFaulDa) [39] that consists of 1,951
samples captured by eight vibration sensors, including six
accelerometers, a tachometer, and a microphone attached
on a machinery fault simulator. The eight sensors concur-
rently measure the vibration signals under six machinery
states, i.e., normal function, inner and outer bearing faults,

imbalance fault, horizontal and vertical misalignment faults.
For each machinery state, each sensor captures eight traces,
each of which is sampled at a rate of 50 kHz for five
seconds. In our experiments, we use the microphone and
tachometer data to classify the machinery state, respectively.
We down-sample each sensor trace and arrange the result
into a 224× 224× 1 tensor, which is fed to the CNN model
for classifying the machinery state. We divide the available
samples to the training and testing sets by a ratio of 9:1.

Figs. 9 and 10 present the performance metrics of NN-
Facet and the baseline approaches on the microphone and
tachometer datasets, respectively. Table 3 also includes the
total size of all the class-specific models. The main observa-
tions from the results are: (1) NNFacet reduces the total size
of all the class-specific models up to 13× compared with
the original model; (2) NNFacet extends system lifetime
by at least 35% compared with the baseline approaches;
(3) NNFacet shortens the latency by 47% compared with
the single-sensor system while achieving inference accuracy
similar to the original model.

5.4 Application 3: In Situ Video Analytics
We use the CIFAR-10 [37], Caltech256 [40], and MNIST [41]
image datasets to drive the evaluation. CIFAR-10 consists
of 60,000 32 × 32 color images in 10 classes. We use 50,000
and 10,000 images for training and testing, respectively. Cal-
tech256 consists of 30,607 images in 256 classes. The number
of images in a class ranges from 80 to 827. We select a total
of 3,706 images from 10 classes with the highest number of
images for our evaluation. We use 2,964 and 742 images as
the training and testing samples, respectively. We also select
a total of 2,964 images from 3 classes to form another subset.
These two data subsets are referred to as Cal10 and Cal3.
MNIST is a handwritten digit dataset consisting of 70,000
28× 28 grayscale images. We use 60,000 and 10,000 MNIST
samples for training and testing. Note that as the three
datasets consisting of static images can support evaluating
the resource usages of the various approaches, we do not
employ video traces to drive the evaluation.

In what follows, we first present the evaluation re-
sults of the class-specific models obtained by various ap-
proaches when deployed on Raspberry Pi-4B. Then, we
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Fig. 11. Performance metrics of the class-specific VGG-19 models on CIFAR-10 dataset.
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Fig. 12. Performance metrics of the class-specific VGG-19 models on Cal10 dataset.

TABLE 4
Comparison between NNFacet and baseline approaches including

recent CNN compression techniques. (CIF refers to CIFAR-10)

Category Approach Model size (MB) Accuracy (%)
CIF Cal10 Cal3 CIF Cal10 Cal3

Original VGG-19 model 241 241 240 83 82 97.7

Model
splitting

Cost-aware 19.0 26 17.8 83.3 82 86
Memory-aware 16.4 18.7 11.5 84.7 85.6 83.5
NNFacet-GA 14.1 13.1 9 85.5 84.6 83

Model
compression

DeepIoT [9] 2.9 – – 40 – –
AppCNN [10] – – 50 – – 98

evaluate NNFacet-GA on the more memory-constrained
ESP32-CAM.

5.4.1 Evaluation on Raspberry Pi-4B
Figs. 11 and 12 show the performance metrics of NNFacet
variants and the baseline approaches with the VGG-19
model on the Cal10 and CIFAR-10 testing images. In this
video analytics application, we measure the image pro-
cessing throughput in terms of frames per second (fps),
which is more meaningful than the latency as measured in
previous applications. From the results, NNFacet variants
extend the system lifetime, compared with the two baseline
approaches. Moreover, the class-specific models obtained
by all approaches have higher processing throughput and
accuracy than the original VGG-19 model, when |S| ≥ 2.
We also observe that, when |S| ≥ 2, the left memory/energy
and system lifetime decrease with |S|. The reasons are two-
fold. First, in this application, all virtual concurrent sensors’
class-specific models run on the same sensor. Second, the
total size of all class-specific models increases with |S|.
Nevertheless, on the CIFAR-10 dataset, the system lifetime
under NNFacet when 2 ≤ |S| ≤ 5 is longer than that when
|S| = 1. On the Cal10 dataset, the system lifetime under
NNFacet when 2 ≤ |S| ≤ 10 is longer than that when
|S| = 1.

We also compare NNFacet-GA with several existing
CNN compression approaches as follows. First, DeepIoT [9]
adopts the dropout operations to prune a maximum num-
ber of redundant filters in the convolutional layers while
maintaining the same accuracy as that of the original CNN.
Second, AppCNN [10] generates an approximated CNN of

TABLE 5
Performance of NNFacet-GA with MNIST on ESP32-CAM.

|S| Max model
size (KB)

Per-model
latency (s)

Per-sample
latency (s)

Accuracy1

(%)
5 63 1.19 5.95 80.4
10 53 1.18 11.8 90.2
1Accuracy of the original VGG-19 model on MNIST is 98.3%.

the original CNN by keeping a few front convolutional
layers only. It also replaces the FC and softmax layers by
a trained non-neuron network classifier. Table 4 shows the
total model memory size and accuracy achieved by the orig-
inal VGG-19 model and all approaches on the CIFAR-10 and
Cal10 datasets. Compared with the cost-aware and memory-
aware model splitting approaches, NNFacet-GA achieves
the smallest total model size and the highest accuracy on the
CIFAR-10 dataset. On the Cal10 dataset, NNFacet-GA out-
performs the cost-aware approach in terms of both model
size and accuracy. Although the accuracy of NNFacet-GA
is 1% lower than that of the memory-aware approach, the
total model size of NNFacet is about 30% smaller than
that of the memory-aware approach. As reported in [9],
although DeepIoT can compress the model for CIFAR-10
to 2.9 MB, the compressed model can only achieve 40%
accuracy. Differently, NNFacet-GA achieves 85.5% accuracy
with 14.1 MB total model size. For AppCNN, Table 4 in-
cludes the result from [10] where AppCNN achieves the
minimum model size. From Table 4, we can see that the
AppCNN can achieve higher accuracy than the proposed
NNFacet. However, the size of the compressed VGG-19
model obtained by the AppCNN is 3x higher than that of
the NNFacet-GA. In contrast, our NNFacet-GA approach
always achieves the satisfactory trade-off between the mode
size reduction and the accuracy.

5.4.2 Evaluation on ESP32-CAM

ESP32-CAM has only 512 KB static RAM. This memory is
further divided to two parts, 200 KB for instructions and
320 KB for data. The DNN and its activation need to fit into
the 320 KB RAM. Different from the Raspberry Pi-4B that
has large enough RAM to store all the class-specific models,
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on ESP32-CAM, the models need to be loaded to RAM
sequentially to process consecutive image frames. NNFacet-
GA can find feasible solutions when |S| ≥ 5. As shown in
Table 5, the model size of a single class-specific model is
53KB and 63KB, when |S| is 5 and 10, respectively. The time
needed to run a single model on ESP32-CAM is 1.18 to 1.19
seconds. As a result, when |S| is 5 and 10, the total time
needed to classify a sample is 5.95 s and 11.8 s, respectively.
On MNIST, the accuracy on the testing samples is 80.4%
and 90.2% when |S| is 5 and 10, respectively. Note that the
original VGG-19 model achieves an accuracy of 98.3% but
cannot fit into the RAM of ESP32-CAM. From the results
shown in Table 5, NNFacet enables running a DNN on a
single highly RAM-constrained smart sensor and provides
a knob for the system designer to trade off the latency and
accuracy in inferring a sample.

6 CONCLUSION AND FUTURE WORK

This paper designed NNFacet, a DNN model splitting
approach that allows executing the DNN-based advanced
data analytics on concurrent resource-constrained sensors.
We formulated an optimization problem with the objective
of splitting the large DNN into multiple lightweight class-
specific models that maximize the system lifetime and accu-
racy while satisfying the sensor’ memory and energy con-
straints. We developed solutions to the formulated problem.
Extensive evaluation on three case studies and comparisons
with four baseline approaches show the superior effective-
ness of NNFacet. Specifically, NNFacet achieves longer sys-
tem lifetime and more energy and memory savings, while
maintaining accuracy and latency, compared to the baseline
approaches.

As future work, it is interesting to extend NNFacet to
address other DNN-based tasks such as semantic image seg-
mentation which aims to classify each pixel of an input im-
age into a particular class of an object. Specifically, NNFacet
can be used to split a large multi-object segmentation DNN
model into multiple object-specific models, each of which is
responsible for generating a pixel mask that segments out
areas of a subset of objects from the image input. Filter
ranking and object assignment methods similar to those
presented in this paper can be applied to form the object-
specific models. Finally, instead of using MLP to perform
late fusion, the output masks of the object-specific models
can be simply merged to yield the final image segmentation
mask.
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