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Joint IT-Facility Optimization for Green Data
Centers via Deep Reinforcement Learning

Xin Zhou, Ruihang Wang, Yonggang Wen, Rui Tan

Abstract—The data center market grows rapidly with the
increase of data and its corresponding applications (e.g., machine
learning, cloud storage, internet of things, etc.). The growth
is boosted recently due to the shift of activities online in the
COVID-19 pandemic. Reducing the energy consumption of data
centers faces various challenges that are further aggravated by
the tropical conditions with high temperature and humidity
in the tropics like Singapore. The prevailing siloed approach
of operating the information technology (IT) and the facility
systems separately has resulted in wasteful over-provisioning.
The recently proposed approaches for energy usage minimization
under various constraints including thermal safety scale poorly
with the data center size and often result in non-optimal solutions.
To advance the state of the art, we apply deep reinforcement
learning (DRL) to address the scalability problem and achieve
optimality over a long time horizon in reducing data center
energy usage. In particular, we deploy the data-driven deep model
and physical rule based model in lieu of the physical data center
during the training and validation phases to manage the thermal
safety risks caused by DRL’s strategy of learning from errors.

Index Terms—Data center, energy efficiency, deep reinforce-
ment learning, optimization

I. INTRODUCTION

The data center market grows rapidly with the endless in-
crease of data. Singapore is a data center hub of the Southeast
Asia, accounting for more than 60% of the region’s data center
market with an annual growth rate of 10% [1]. However, dense
data centers operating in the tropical condition aggravates the
city state’s energy demand. In 2015, data centers accounted
for 9% of Singapore’s electricity sales [2]. According to the
Green Data Center Technology Roadmap [3], Singapore has
the potential to significantly increase the energy efficiency of
its data centers, projecting to a cumulative saving of about
US$5 million in energy costs by 2030.

A data center provides various services for the users via
many servers that are usually called nodes. These networked
nodes are mutually coupled in thermodynamics, rendering
the data center a cyber-physical system (CPS). The aim of
optimizing the data center’s energy efficiency is a sophisticated
CPS problem that needs to respect to various constraints
and requirements from both the cyber and physical aspects,
including the overall computing throughput, serviceability, and
hotspot prevention. As highlighted in the Roadmap [3], the
prevailing siloed approach of operating information technol-
ogy (IT) and facility subsystems has resulted in wasteful over-
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Fig. 1. Heat as a coupling factor between IT and facility subsystems. The IT
subsystem in a data center generates heat in the computation tasks and the
cooling subsystem dissipates the generated heat.

provisioning in data center design and operation. Heat is the
crucial factor that couples the two subsystems in a data center
as illustrated in Figure 1. Specifically, the IT subsystem in
a data center generates heat in its computation efforts and
the cooling subsystem moves the heat generated by the IT
subsystem out of the data center building. However, both
subsystems have complicated system dynamics in their heat
generation and dissipation. Moreover, the regulation of both
subsystems faces a key challenge caused by their distinct
time constants. The IT subsystem tends to respond within
seconds, while the cooling subsystem’s response often takes
effect in minutes. The time constant mismatch renders the
control of the two subsystems challenging, particularly given
the current practice that they are managed by two indepen-
dent departments in the same organization for enterprise data
centers or two entities for co-location data centers. Should
they both perform the optimization in their own metrics, their
optimization measures could even counter-affect each other.
For example, when noticing a hot spot in the data center, the
IT manager might decide to shift the load to another rack
and the thermal manager might decide to send more cold air
to that row. Without proper IT-facility coordination, the load
may be migrated to another rack, whereas the added cooling
is directed to the original rack that now has lower utilization.
As a result, the same hot spot remains unsolved and simply
moves to another location in the data center.

To advance the data center operation beyond the siloed
scheme, prior research has investigated joint IT-facility op-
timization to increase energy efficiency for enterprise data
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Fig. 2. Workflow of the proposed DRL-based approach. Our DRL-based approach consists of four main modules including data collection, physical modeling,
operation management, and testbed validation.

centers [4]. Most existing joint IT-facility optimization ap-
proaches often assume some static or dynamic models for
the target system. Based on constrained optimization formu-
lations, heuristic algorithms have been proposed to decide the
online control actions [5]. Owing to the development of the
machine learning techniques, the learning-based techniques
are recently used to predict the computing resources, tem-
perature, and power consumption in advance to obtain more
proactive control actions via heuristic algorithms. However,
due to the complexity of the dynamics of the data center,
the constrained optimization problems are hard in general and
the heuristic algorithms often result in non-optimal solutions.
Furthermore, since the modern data centers are being equipped
with massive heterogeneous devices, the online optimization
approach generally needs extensive search and scales poorly
with the size of the data center and the time horizon for the
optimization [6]. Google has announced that their trial with
machine learning for data center management has resulted in
cooling cost saving [7]. They have also automated machine
learning-based management [8]. However, no detail of their
approach is mentioned in the two technical posts [7], [8].

In this article, we present our research of applying deep
reinforcement learning (DRL) for joint IT-facility optimiza-
tion to address the aforementioned scalability challenge of
modern data centers. Different from the online optimization
approaches, our DRL-based approach iteratively interacts with
the target system (i.e., the physical data center) by observing
its real-time state and exerting the control action on the
system. The global optimal control policy is derived from
the iterative interaction, which generates the control actions
for the operation optimization of the data center, including
allocating the tasks to the servers, adjusting the airflow of the

air conditioner, etc. Unlike the online optimization approach,
trained DRL-based controllers do not need to solve any
computation-intensive optimization problem at run time.

However, applying the control policy determined by the
DRL may result in various risks including breaches of ser-
vice requirements and even thermal unsafety. To address this
challenge, our approach builds the data-driven deep model,
energy model, and computational fluid dynamics (CFD) model
based on real data collected from the data center to derive the
training of the DRL-based controllers and verify the control
policies. Specifically, we apply DRL to develop (1) load-aware
target cooling that proactively manipulates cooling capacity
and dispatching in response to dynamic IT workload and (2)
thermal-aware task scheduling that optimizes the IT workload
allocation in the presence of thermal dynamics. To deal with
the different time constants of the IT and facility subsystems,
we further develop (3) iterative IT-facility control optimization
that proceeds iteratively between the IT side and the facility
side to achieve a global optimal solution while satisfying
various operational requirements. From the preliminary ex-
perimental results, our proposed load-aware target cooling
approach achieves power consumption saving up to 15% and
30% for air cooling and water cooling systems, respectively.

II. SYSTEM OVERVIEW

This section overviews our DRL-based joint IT-facility con-
trol approach. Figure 2 overviews our approach consisting of
four main modules such as data collection, physical modeling,
operation management, and testbed validation.
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A. Data collection

The data collection module collects real-time operational
information from the physical data center, including IT-related
performance counters (e.g., CPU, I/O, etc.) and ambient con-
dition measurements (e.g., temperature, humidity, and airflow,
etc.). Static information including the location, layout, equip-
ment configuration, and structure of the data center is also
collected.

B. Physical modeling

The physical modeling module extracts the underlying be-
haviors of the real-world system to build the digital twin
which presents the digitalized model of the physical system
and imitates system dynamics according to certain inputs.
Such models are employed as the environment in the DRL.
The DRL gradually learns the control policy by iteratively
probing and interacting with the environment. The control
actions generated by the control policy before its convergence
are unpredictable and can be unsafe. Should the unpredictable
control actions be applied to the physical data center, chances
are that the unsafe control actions could result in large ser-
vice requirement breaches and even physical damages in the
data center. In our approach, the training of the DRL-based
controllers is based on three types of computational models.
The first type is a deep model that captures the complex
interplay between IT and facility subsystems in the data center.
The deep model is trained based on massive operational data
collected from the physical system. The second type is a 3D
CFD model for thermal analysis of the data hall, which is
built with only standard information of the infrastructure (e.g.,
the layout of the data center, the server specification sheet,
the air conditioner configuration, etc.). The third type is an
energy model that focuses on power analysis of both the data
hall and chiller plant. These models are used to (i) generate
training data in extreme conditions that are not covered by
the real data collected from the physical system, (ii) validate
the control policies determined by the trained DRL-based
controllers before being applied in the physical data center.
Moreover, the physical rule based CFD and energy models can
replace the data-driven deep model to conduct the training of
the DRL-based controllers in the situation of data shortage.

C. Operation management

The operation management module applies the DRL-based
controllers to solve the joint optimization problem and derive
the optimal control policies for the IT and facility subsystems.
It reduces the energy cost while ensuring thermal safety and
business continuity. In particular, we propose three technolo-
gies including the thermal-aware task scheduling, load-aware
target cooling, and iterative IT-facility optimization, which
work synergistically to optimize the energy efficiency of the
data center.

D. Testbed validation

The testbed validation step tests the control policies in
Singapore’s National Supercomputing Center to validate our

proposed approaches while all the generated control actions
will be verified by the human experts and physical models in
advance. As illustrated in Figure 2, we collect massive data
from the physical data center to build computational models in
the forms of a deep model, an energy model, and a CFD model
and then apply the DRL to seek a global optimal control policy.
Consequently, the generated control policies are applied in the
data center to gain energy savings. This cycle can proceed
iteratively to improve the energy efficiency of data centers
with a managed risk exposure.

Heuristic
algorithms

Resources
QoS

Requirement

Constraints

Minimize power

Minimize cost
Maximize profit

Objectives

Input

IT workload

SLASLA

Layout

Temperature

…

Control policy

Solution of the 
constrained 
optimization 
formulations

(a)

3K\VLFDO�5XOH 'DWD�GULYHQ

$JHQW��OHDUQ�WKH�SROLF\� (QYLURQPHQW

2EVHUYDWLRQ

$FWLRQ

6WDWH

5HZDUG

(b)

Fig. 3. The workflows of a) existing approaches and b) DRL-based approach.
(SLA: Service Level Agreement; QoS: Quality of Service.) The existing
approaches assume some static models for the system but often cannot solve
the extremely complicated constrained optimization problems due to the
complexity of the models. Meanwhile, Our proposed DRL-based approach
iteratively interacts with the target system and automatically learns the optimal
control policies without solving the complicated constrained optimization
formulations explicitly.

III. DATA ANALYTICS AND MODELING

A. Existing approaches versus our DRL-based approach

The IT and facility subsystems in the data center have
complex system dynamics in heat generation and dissipation.
Moreover, the increasing demands of computation power have
resulted in scaling up (i.e., upgrading existing servers) and
scaling out (i.e., adding more servers) of the data center. The
existing approaches often formulate constrained optimization
problems that aim at maximizing the profits or minimizing
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the energy cost of the data center. Figure 3(a) illustrates
the workflow of these existing approaches. However, due
to the complexity of the system dynamics, the existing ap-
proaches often cannot even find objective function or solve
the extremely complicated constrained optimization problems.
Consequently, most of the existing approaches achieve local
optimum only and cannot scale well with the size of the
data center if the constrained optimization problem is solved
in an online manner. To address these challenges, we apply
DRL for joint IT-facility optimization [9]–[11]. In the DRL-
based approach, the constraints are introduced into the reward
function which guides the training process. The violation of
constraints results in the penalty decreasing the reward. As
a result, the violation will eventually reduce the probability
of violating again to gain more reward. The control policy
is optimized automatically in a trial-and-error manner under
the guidance of these constraints without solving the com-
plicated constrained optimization formulations explicitly. The
workflow of our DRL-based approach is shown in Figure 3(b).
Since DRL-based approach needs to explore the action space
holistically, the control policies are unpredictable before the
training completes. As a result, applying the control policies
determined by the DRL before its convergence incurs various
risks including breaches of service requirements and even
physical damages. To avoid this risk, our approach builds the
data-driven deep model, energy model, and the CFD model
based on real data collected from the data center to drive the
training of the DRL-based controllers and to verify the control
policies determined by the controllers at run time.

B. Data-driven deep model

Given the data collected from the physical data center, we
build a deep model to capture the sophisticated relationship
between IT and facility subsystems. In our development,
we adopt the long short-term memory (LSTM) model [12],
which is a neural network architecture designed for short-
term memory that can last for a long period of time. Thus,
the LSTM network is well-suited to address the time series
prediction problems. In our approach, we train the LSTM
network based on the collected data to construct a model that
can predict the future state of the data center (e.g., CPU utiliza-
tion, ambient temperature, IT and facility power consumption,
etc.) with the historical states. Owing to a large amount of
operational data from the physical data center, the model is
iteratively calibrated until it delivers accurate results. Driven
by the calibrated model, the DRL agent explores the action
space to find a global optimal control policy. Compared with
the first-principle and analytical models adopted by existing
approaches, our data-driven deep model can well scale with
the size of the data center.

C. Physical rule based model

In addition to the data-driven deep model, the CFD model
and energy model are also built for the data hall and chiller
plant based on the basic information of the infrastructure
(e.g., the layout, the server specification sheet, cooling facility
configuration, etc.). With a commercial CFD software and the

opensource platform EnergyPlus, we build and calibrate these
two models that can be used to simulate the thermal dynamics
and power consumption of the data center. As an example,
Figure 4 shows the simulation result based on a constructed
CFD model. The physical rule based models can simulate the
operations of the data center over a long period with fine time
granularity. Several detailed examples are as follows.

• We use the physical models to generate simulated train-
ing data that mainly covers the extreme conditions not
included by the real data collected from the physical
data center. The generated data is then used to calibrate
the deep model to cover the extreme conditions during
the DRL process. With these simulated training data, we
can achieve higher prediction accuracy and better risk
management.

• We use the physical models to validate the control poli-
cies determined by the trained DRL-based controllers be-
fore being applied in the physical data center. Sometimes
even the trained DRL-based controllers cannot cover all
the possible situations due to the complicated dynamics
of the data center or absence of real operational data.
This leads to the safety concern when applying the control
policy directly to the data center. To address this concern,
we apply the control policies on the physical models to
validate the generated control actions by observing the
simulation results of these models.

• We use the physical models to generate training data for
uninstrumented variables. Specifically, it is often difficult
to collect some operational data (e.g., workload trace,
power consumption, etc.) from the data center due to
resource constraints and confidential requirements. Ap-
plying the physical models to supplement the collected
real data traces can improve the training of the DRL-
based controllers.

Fig. 4. The CFD model and simulation results of National Supercomputing
Center Singapore (plotted with 6Sigma). Since the control policies are
unpredictable before the training completes, our approach uses the CFD model
to drive the training of the DRL-based controllers and to verify the generated
control actions at run time.

IV. DRL-BASED OPERATION OPTIMIZATION

This section presents the design of the DRL-based ap-
proach for data center and its application to solve the joint



IEEE NETWORK 5

IT-facility optimization problem. Our DRL-based approach
iteratively interacts with the environment (i.e., data-driven
deep model, energy model and CFD model) in lieu of the
physical data center to avoid the potential thermal safety risk
if the DRL agent interacts directly with the physical system.
Once the DRL training completes, we apply the trained DRL-
based controllers to address (1) load-aware target cooling,
(2) thermal-aware task scheduling, and (3) iterative IT-facility
optimization.

In practice, the operation optimization is not only critical
for designing data centers, but also for operating them. For
the former, our iterative IT-facility optimization approach that
jointly controls both IT and facility subsystems can be easily
applied to the data centers in the planning phase. The physical
sensors and Data Center Infrastructure Management (DCIM)
software package can be easily installed on the data center
in the planning phase, resulting in convenient data collection.
Moreover, most of the latest facility subsystems provide auto-
matic control mechanisms compared with the manual control
mechanisms of the older ones. These features render our
iterative IT-facility optimization an available approach for ma-
nipulating both IT and facility subsystems in a unified manner.
For the latter, the shortage of physical sensor in IT subsystem
and automatic control mechanisms of the facility subsystem
makes it difficult to apply the iterative IT-facility optimization
approach to the operating data center. Data center upgrades are
essential, but challenging and costly for data center managers.
However, our load-aware target cooling and thermal-aware
task scheduling are still readily viable for the operating data
centers. The thermal-aware task scheduling that only controls
the IT subsystem is suitable for the operating data centers
equipped with facility subsystems with no automatic control
mechanisms. On the contrary, the load-aware target cooling
that only controls the facility subsystem can be used in the
data centers with strong confidentiality requirements for the
IT subsystems (e.g., data centers supporting banks).

A. DRL for data center operation optimization

Traditional reinforcement learning algorithms such as Q-
learning evaluates the value of the state in which an action is
taken. This value can be assessed by the effectiveness of taking
action at this state. Given values of sufficient state-action pairs,
taking the action with the largest effectiveness often leads to
optimal policy and high efficiency. Therefore, a look-up table
to store the values of state-action pairs plays a critical role in
reinforcement learning. However, in the context of data center
operations, the massive possible state-action pairs will result
in a huge Q-table that is difficult to store and query. Thus, the
tabular Q-learning approach is not suitable for a complicated
environment.

To tackle the above challenge, the Deep Q-Network (DQN)
approach employs a neural network to replace the Q-table [9],
where this network is trained to approximate the Q-table and
can deal with the large volume of state-action pairs. In DQN,
the states are further mapped to Q values of different actions
via a linear transform. With this feature, DQN is suitable for
the control problem with a discrete action space. Therefore, we

use DQN to address the problem of computing task scheduling
that assigns the tasks to a finite number of servers, where the
assignment, i.e., the action, is discrete.

However, the original DQN cannot deal with cooling con-
trol, because the cooling control inputs are continuous values.
To address this issue, we apply the Deep Deterministic Policy
Gradient (DDPG) [11], which extends the DQN algorithm.
Specifically, we employ two neural networks, that is, the actor-
network computes the action predictions (e.g., continuous
values that represent the control factors of the cooling facility)
for the current state, whereas the critic-network evaluates the
value of the current state and the action given by the actor. This
feature renders DDPG a suitable solution for load-aware target
cooling since DDPG computes and evaluates the continuous
action directly.

B. Applications of DRL to specific tasks

In most data centers, the IT managers focus on task
scheduling to satisfy the service-level agreement and guarantee
the quality of experience with less or no concern on the
temperature and the power consumption of the facilities, which
may lead to hot spots and wastage of energy. On the contrary,
the facility managers adapt actions to the cooling facilities
according to the temperature with less or no concern on the
workload, which may cause cooling over-provisioning. To
jointly address these problems, we propose three advanced
operation optimization technologies.

1) Load-aware target cooling: Developed mainly for fa-
cility managers, this technology dispatches cooling capacity
in response to IT workload. We adopt the DDPG algorithm
and take the workload and the power consumption of IT
subsystem into account for the cooling optimization as shown
in Figure 5(a). Note that the power consumption of the IT
system closely relates to the workload. Moreover, the changes
in workload incur the fluctuations of power consumption
within a few seconds and then the temperature changes with
respect to the power consumption within a few minutes. Our
method proactively dispatches the cooling capacity according
to the workload, which differs from most existing approaches
that adjust the cooling facility passively with respect to tem-
perature [13].

The target system of this research (i.e., Singapore’s Na-
tional Supercomputing Center) has both air cooling and water
cooling that run independently. The air cooling system blows
the cold air through the corridor and racks to remove the
heat, whereas the water cooling system pumps the water
directly into the heat sinks of CPUs to reduce the core
temperature. We focus on optimizing the adjustments of the
airflow rate and the pump flow rate, which are the actions
in our proposed DRL-based approach. On the other hand, we
use the workload and the power consumption of IT subsystem,
the power consumption of facility subsystems and the ambient
temperature to represent the state since they all affect the
cooling load. By setting a proper reward which is a function
of the power consumption of the target cooling facilities and
the ambient temperature, our DRL-based approach starts from
a certain state and iteratively adjusts the action iteratively
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Fig. 5. Three applications of our proposed DRL-based approach: a) load-aware target cooling; b) thermal-aware task scheduling; c) iterative IT-facility
optimization. The load-aware target cooling regulates cooling subsystem in response to IT workload. The thermal-aware task scheduling allocates the computing
tasks to the IT subsystem in response to the thermal dynamics in the data center. The iterative IT-facility optimization is to jointly optimize the IT and facility
subsystems simultaneously.

according to the reward. This iterative training automatically
learns a global optimal control policy that achieves the desired
trade-off among the workload of IT subsystem, the ambient
temperature, and the energy cost of facility subsystem.

2) Thermal-aware task scheduling: The DRL can be also
used to schedule the computing tasks in the IT subsystem
in response to the thermal dynamics in the data center,
subject to various constraints including the temperatures of
the IT subsystem, and the power consumption of IT and
facility subsystems. As one scenario of our joint optimization,
we introduce the thermal-aware task scheduling [14] in this
subsection. Figure 5(b) overviews our approach.

The traditional task scheduling approaches focus on op-
timizing the resource utilization and reducing the waiting
time of the tasks. They rarely take the temperature or power
consumption into account. Thus, they often result in over-
provisioning and wastage of cooling energy. The thermal-
unaware scheduling may assign the computing tasks to the
servers in the already hot areas, creating hot spots. Conse-
quently, under the prevailing cooling scheme, once a certain
server exceeds a specified temperature upper bound, the fa-
cility manager can only increase the overall power of the
cooling facilities to remove the hot spot, resulting in energy
wastage. Our approach employs a DQN-based task scheduling
approach to allocate computing tasks in a thermal-aware man-
ner, which aims to reduce the overall power consumption of
IT and facility subsystems while maintaining the temperature
of the servers without significantly reducing the computing
throughput.

3) Iterative IT-facility optimization: The proposed load-
aware target cooling and thermal-aware task scheduling ap-
proaches control the facility and IT subsystems, respectively.
To jointly optimize the IT and facility subsystems, there are
several challenges. First, two subsystems have two time con-
stants as the IT subsystem responds within seconds whereas
the facility subsystem responds within minutes. The optimiza-
tion measures of them may counter-affect each other when
they optimize their own metrics. Second, to jointly control

both subsystems, it is essential to observe the state of both
subsystems and generate two kinds of control actions simul-
taneously. Consequently, the regulation of both subsystems
based on DRL leads to larger state and action spaces compared
with the regulation of one subsystem. Third, it is difficult to
apply the traditional DRL algorithms such as DQN and DDPG
to learn a global optimal control policy that generates two
control actions laying on discrete space and continuous space,
respectively.

To address these challenges, we have developed a two-
time scale IT-facility optimization approach based on a Pa-
rameterized action space based Deep Q-Network (PADQN)
algorithm [15]. The iterative IT-facility optimization approach
derives the optimized policy to jointly control the IT and fa-
cility subsystems to bring them to an ideal balance that results
in the reduction of energy consumption and improvement of
energy efficiency as shown in Figure 5(c).

V. EVALUATION

We have evaluated the proposed DRL-based operation opti-
mization approaches on Singapore’s National Supercomputing
Center. We collected a wide range of operational data from the
target data center, including temperature and power consump-
tions of IT and cooling facilities, server specifications, cooling
configurations, etc. Based on these data, we applied the deep
learning based approach, CFD software, and energy platform
to model the sophisticated relationship between the IT and
cooling facilities to build the data-driven model, CFD model,
and energy model, respectively. Subsequently, the load-aware
target cooling, thermal-aware task scheduling, and iterative IT-
facility optimization algorithms are trained on the physical rule
based and data-driven digital twins. The evaluation results are
shown in Figure 6.

Compared with the baseline approach with manually de-
signed control settings based on expert domain knowledge,
the load-aware target cooling dynamically and proactively
regulates cooling facilities according to changes on the IT
load, which saves about 15% cooling power of the data center



IEEE NETWORK 7

while guaranteeing the rack inlet temperatures not exceeding
a predefined threshold [13]. In contrast, the thermal-aware
task scheduling controls job allocations of the IT subsystem
based on observations of ambient temperatures inside the data
hall, which results in saving more than 9% power of the IT
subsystem in comparison with the baseline using heuristic
algorithms. Moreover, this approach reduces the processor
temperature significantly [14]. Alternatively, different from the
siloed baseline approaches controlling the IT and cooling fa-
cility separately, the iterative IT-facility optimization approach
jointly operates the IT and cooling subsystems and saves up
to 15% total power consumption of the data center [15]. In
the real-world data center, the control optimization often has a
specific target or is limited by special conditions. For instance,
a co-location data center that rents its space and cooling
capacity to the customer and ensures the system running within
the range of SLA (Service-Level Agreement). The co-location
provider can only optimize the control of the cooling facilities
to save power since he does not have access to the IT system.
On the contrary, the tenants want to optimize the scheduling of
intensive tasks and computing resources to improve efficiency
and reduce the task waiting time while they do not care about
how the cooling system works. Joint control optimization can
be carried out only when access to both IT and cooling systems
is available. Therefore, we proposed these three DRL-based
approaches because they can be flexibly employed in different
scenarios to improve system operation and management of the
data center for better business continuity and energy efficiency.
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Fig. 6. Experimental results of the DRL-based optimization approaches. The
load-aware target cooling optimizes the cooling facility control for improving
energy efficiency of the data center. The thermal-aware task scheduling
focuses on IT subsystem control optimization by proactively exploring thermal
dynamics of the data hall to improve the computing energy efficiency of
servers. The iterative IT-facility jointly regulates both IT and cooling facilities
to improve the operation of the holistic data center system.

VI. CONCLUSIONS

We have proposed a joint IT-facility solution of digital
twins and AI technologies for green data centers. Specifically,
the proposed DRL-based approaches including the load-aware

target cooling, thermal-aware task scheduling, and iterative
IT-facility optimization aim to improve the energy efficiency
while ensuring the thermal safety of the data center. In
the proposed solution, the digital twins are used to provide
massive training data and validate the control policy from the
DRL-based approaches. Compared with the existing online
optimization approaches, our solution applies a black-box
approach as well as the digital twin to address the system
dynamics in a complicated and evolving data center, relieving
us from tedious, detailed modeling of system dynamics. Fur-
thermore, it is a self-learning system that minimizes human
intervention, reducing the potential of human errors in judg-
ment and execution. As the data center becomes a mission-
critical infrastructure, our DRL-based approach that interacts
with the trained computational model can be effectively used
to learn a global optimal control policy for improving the
energy efficiency of the data center without affecting the oper-
ations of the physical data center. Currently, we are validating
the effectiveness of the joint IT-facility optimization. In the
future, real-world applications of our proposed solution will
be conducted for technology validation and commercialization.
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Fig. 1. Heat as a coupling factor between IT and facility subsystems. The IT subsystem in a data center generates heat in the computation tasks and the
cooling subsystem dissipates the generated heat.
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Fig. 2. Workflow of the proposed DRL-based approach. Our DRL-based approach consists of four main modules including data collection, physical modeling,
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Fig. 3. The workflows of a) existing approaches and b) DRL-based approach. (SLA: Service Level Agreement; QoS: Quality of Service.) The existing
approaches assume some static models for the system but often cannot solve the extremely complicated constrained optimization problems due to the
complexity of the models. Meanwhile, Our proposed DRL-based approach iteratively interacts with the target system and automatically learns the optimal
control policies without solving the complicated constrained optimization formulations explicitly.
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Fig. 4. The CFD model and simulation results of National Supercomputing Center Singapore (plotted with 6Sigma). Since the control policies are unpredictable
before the training completes, our approach uses the CFD model to drive the training of the DRL-based controllers and to verify the generated control actions
at run time.
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Fig. 5. Three applications of our proposed DRL-based approach: a) load-aware target cooling; b) thermal-aware task scheduling; c) iterative IT-facility
optimization. The load-aware target cooling regulates cooling subsystem in response to IT workload. The thermal-aware task scheduling allocates the computing
tasks to the IT subsystem in response to the thermal dynamics in the data center. The iterative IT-facility optimization is to jointly optimize the IT and facility
subsystems simultaneously.
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Fig. 6. Experimental results of the DRL-based optimization approaches. The load-aware target cooling optimizes the cooling facility control for improving
energy efficiency of the data center. The thermal-aware task scheduling focuses on IT subsystem control optimization by proactively exploring thermal dynamics
of the data hall to improve the computing energy efficiency of servers. The iterative IT-facility jointly regulates both IT and cooling facilities to improve the
operation of the holistic data center system.


