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Deep neural networks have advanced the perception and decision-making functions of smart embedded
systems, such as car-borne driver assistance. Deploying these embedded neural networks often faces two
challenges: (i) security vulnerabilities to adversarial examples that can be deployed in the perceived physical
environment; (ii) limited computational resources coupled with dynamic conditions that necessitate real-time
adaptation of model execution. However, these two challenges are often addressed separately in existing
research. This paper presents LeapNet, which aims to address both challenges simultaneously. It comprises
two versions: LeapNet-1 and LeapNet-2. LeapNet-1 employs dynamic layer routing to counteract adaptive
adversarial-example attacks and reduce computational redundancy. Building upon LeapNet-1, LeapNet-2
further adapts its layer routing configurations in real time to meet the frame processing rate requirements
under dynamic conditions while maintaining defense performance. Extensive experiments on various repre-
sentative datasets, neural network models, and adaptive attacks demonstrate the superiority of LeapNet over
existing defense methods. On-road tests with a real-time car-borne traffic sign recognition system validate its
effectiveness in maintaining frame processing rate under dynamic conditions.

CCS Concepts: « Computer systems organization — Embedded software; « Security and privacy —
Domain-specific security and privacy architectures.

Additional Key Words and Phrases: Deep neural network, adversarial attack, dynamic inference routes,
embedded computing

1 Introduction

Deep neural networks (DNNs) have shown good performance in various computer vision tasks,
such as image classification, object detection, and tracking [1-3]. Their uses in embedded and
mobile applications, such as unmanned terrestrial and aerial vehicles, have attracted increasing
attention [4-6]. However, despite these interests, two challenges remain in deploying them on
embedded systems. First, the adoption of DNNs raises security and reliability concerns due to their

“Currently with Southeast University, Nanjing, Jiangsu, China.

This research/project is supported by the National Research Foundation, Singapore, under its Al Singapore Programme
(AISG Award No: AISG4-GC-2023-006-1B).

This article appears as part of the ESWEEK-TECS special issue and was presented in the International Conference on
Embedded Software (EMSOFT), 2025.

Authors’ Contact Information: Zimo Ma, zimo001@e.ntu.edu.sg, College of Computing and Data Science, Nanyang Techno-
logical University, Singapore; Xiangzhong Luo, College of Computing and Data Science, Nanyang Technological University,
Singapore, xiangzho001@e.ntu.edu.sg; Qun Song, qunsong@cityu.edu.hk, Department of Electrical Engineering, City
University of Hong Kong, Hong Kong, China; Rui Tan, tanrui@ntu.edu.sg, College of Computing and Data Science, Nanyang
Technological University, Singapore.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 1558-3465/2025/7-ARTXXX

https://doi.org/10.1145/XXXXXXXXX

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: July 2025.


https://orcid.org/0000-0002-5045-1075
https://orcid.org/0000-0002-0758-2248
https://orcid.org/0000-0002-3611-9404
https://orcid.org/0000-0001-8441-9973
https://orcid.org/0000-0002-5045-1075
https://orcid.org/0000-0002-0758-2248
https://orcid.org/0000-0002-3611-9404
https://orcid.org/0000-0001-8441-9973
https://doi.org/10.1145/xxxxxxxxx

XXX:2 Zimo Ma, Xiangzhong Luo, Qun Song, and Rui Tan

known vulnerability to adversarial-example attacks [7-9]. Second, the deployment of the DNNs on
embedded systems is challenged by both the constrained computational resources and the complex
dynamic conditions that require real-time adaptation of model execution. These two challenges are
explained in detail as follows.

Security challenge: DNN-based embedded perception systems are vulnerable to adaptive adversarial
attacks. Embedded perception is a key component of various systems such as driving assistance
agents [10, 11]. However, recent accidents related to these agents point to safety concerns stem-
ming from perception errors, including misses in detecting articulated buses or pedestrians [12].
According to the 2023 annual disengagement reports from the California Department of Motor
Vehicles, 40% of disengagements were attributed to errors in the perception module, the highest
proportion among all contributing factors [13]. Such potential unsafety undermines confidence
in the core machine learning technologies that underpin modern embedded perception. Further-
more, recent studies have demonstrated the fragility of DNN-based computer vision systems under
hostile settings. For instance, with adversarial perturbations resembling natural noises, computer
vision models misclassify stop signs as speed limit signs [14]. The robustness of the safety-critical
embedded perception against the crafted adversarial perturbations needs to be enhanced.

A plethora of defense mechanisms have been developed to harden DNNs against threats, such
as adversarial training, input transformations, and gradient obfuscation [15-17]. However, these
defenses are deterministic, in that the same input leads to the same processing path with no
variability or stochasticity. Such determinism makes them vulnerable to the more advanced adaptive
attacks, where the attackers iteratively probe the system, analyze its responses, and refine attack
strategies to bypass defenses and maximize attack impacts [2]. To address adaptive attacks, dynamic
defense approaches have recently gained research interest [18, 19]. A dynamic defense changes its
mechanism for each inference so as to challenge the adversaries to craft effective attacks. Following
this approach, existing studies apply randomized transformations to the inputs [18] and generate
time-varying model ensembles [2] to enhance robustness. However, these studies do not consider
embedded vision systems’ main constraint of limited computation resources and the dynamic
environments that these systems often operate in. For instance, the dynamic ensemble approach
in [2] leads to multiplied computational overhead due to the simultaneous inferences with multiple
models, making it unsuitable for resource-constrained embedded systems.

Efficiency and adaptability challenge: Resource constraints and dynamic conditions impede the
deployment of DNN-based functions in embedded systems. DNNs’ complex architectures and massive
parameters pose challenges to the deployment on embedded systems with limited computation and
memory resources. As DNNs often have inherent redundancy, prior studies have proposed various
model tailoring techniques to facilitate DNNs’ efficient deployment. To decrease the model size for
less computational and memory cost, the pruning technique [20] directly reduces parameters by
sparsifying the network, while quantization [21] casts floating-point values into lower-precision
representations. Other approaches, such as early exit [22], layer routing [23], and width scaling [24],
focus on reducing model structures. However, these approaches fall short of addressing dynamic
conditions, such as changeable frame processing rate requirements and varying environments (e.g.,
power modes, the number of objects) [25, 26]. For instance, the speed of a vehicle dictates the upper
bound of the inference latency. At higher speeds, vehicles require significantly longer distances to
stop safely. For instance, the typical braking distance is approximately 9 meters at 40 km/h, but
increases to around 67 meters at 110 km/h [27]. Therefore, it is necessary for autonomous vehicles to
adjust their perception’s inference latency according to the speed to ensure sufficient safe stopping
distances [25]. In such dynamic scenarios, one-time model tailoring approaches often sacrifice
accuracy to address the worst case, such as maintaining safe braking distances corresponding to
the maximum possible speed. This results in a fixed trade-off that restricts their effectiveness across
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Fig. 1. lllustration of two representative adversarial attacks: PGD attack [15] and Patch attack [14].

lower speed scenarios. As a relevant solution, neural architecture search (NAS) can find the optimal
architectures to meet specific requirements [26, 28]. However, recent NAS-based approaches such
as AdaptiveNet [26] incur long update latencies of up to minutes, making them unsuitable for
real-time adaptation.

In this work, we aim to jointly address the above two challenges. To this end, we follow the
progressive system development methodology to design two versions of a system called LeapNet, for
resource-constrained embedded vision. The first version, LeapNet-1, focuses on both the security
challenge and computational inefficiency. The second version, LeapNet-2, further incorporates
real-time adaptation to dynamic conditions.

LeapNet-1 is a dynamic defense design based on layer routing. First, it learns the optimal layer
routing distribution. Then, at runtime, it dynamically samples a route from the input-specific
distribution to drop certain layers. Specifically, we introduce a lightweight decision network for
routing, which is trained with reinforcement learning. LeapNet-1 reduces the number of layers
for less computational redundancy and introduces stochasticity to limit the attackers’ ability in
constructing effective perturbations because achieving so requires the inference route. Moreover,
LeapNet-1 promotes efficiency in terms of both inference latency and memory usage.

LeapNet-2 further integrates a latency-aware component to adapt the layer routing for maintain-
ing the required frame processing rate under dynamic conditions. Specifically, we build a latency
predictor for the target embedded vision system, which can predict the inference latency of different
layer routing configurations. This facilitates the training of the decision network to develop latency
awareness when learning the layer routing distributions. With LeapNet-2, the average latency of all
sample routes from these routing distributions can adhere to the required frame processing rate in
the continual processing of frames, and still maintain stochasticity to counteract adaptive attacks.

To summarize, this paper makes the following technical contributions:

e We design LeapNet to simultaneously address the two challenges faced by embedded vision:
ensuring security against adaptive adversarial attacks while managing the embedded de-
ployments given limited computational resources and achieving real-time adaptability under
dynamic conditions.

e We design two versions of LeapNet. LeapNet-1 leverages a decision network to generate
dynamic layer routes for counteracting adaptive attacks. It improves computational efficiency,
and maintains an attainable accuracy simultaneously. LeapNet-2 can further maintain the
required frame processing rate under dynamic conditions at the expense of some of the
randomness used to improve adversarial robustness.

e We evaluate LeapNet on collected datasets and in real-world outdoor experiments. The
experimental results demonstrate its superior defense performance against various attacks
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Table 1. Adversarial accuracy comparisons under diverse attacks and defense settings, in which the determin-
istic defense corresponds to BlockDrop [23] and the dynamic defense corresponds to the proposed LeapNet-1.

Dataset Defense Method Static Attack | Adaptive Attack
w/o Defense (Baseline) 29.1% 29.1%
CIFAR-10 | w/ Deterministic Defense 61.7% 35.8%
w/ Dynamic Defense 61.0% 57.7%
w/o Defense (Baseline) 37.2% 37.2%
GTSRB w/ Deterministic Defense 85.6% 22.3%
w/ Dynamic Defense 79.2% 71.6%

compared with recent defense methods. Additionally, LeapNet-2 achieves real-time adaptation
to varying conditions across different devices and target DNN models.

The remainder of the paper is organized as follows. Section 2 introduces the preliminaries and
discusses the key observations and motivations. Section 3 and Section 4 describe LeapNet-1 and
LeapNet-2, respectively. Section 5 presents the experimental settings and results. Section 6 presents
our system implementation. Section 7 reviews related work. Section 8 discusses several related
issues. Finally, Section 9 concludes the paper.

2 Background and Motivation

This section introduces the preliminaries on attacks and defenses, followed by our key observations
and motivations behind the proposed LeapNet.

2.1 Preliminaries

B Adversarial Examples. Adversarial examples refer to crafted inputs modified with small
perturbations to mislead DNNs with incorrect predictions [15]. Let f(x; ) denote the classifier
with weights 6 and input x associated with label y. An adversarial example x” = x + § is tailored
to mislead the classifier, such that f(x’; 0) # y, where § is the perturbation. Fig. 1 illustrates the
impact of adversarial examples on pre-trained DNN models. In Fig. 1 (a), a digital perturbation
generated using PGD algorithm [15] causes a “tiger cat” picture to be misclassified as a “lens cap”.
In the physical world, where pixel-level adjustments are impractical, adversaries can use patch
attacks [14] to mislead classifiers into recognizing a “stop” sign as “yield”, as shown in Fig. 1 (b).

B Static Attacks vs. Adaptive Attacks. A static attack refers to an attack that is designed and
executed once, remaining unchanged throughout its deployment. Specifically, once launched, a
static attack does not leverage any further interaction or feedback from the target model or its
defense mechanisms. In contrast, an adaptive attack represents a more advanced and iterative
threat model. Adaptive attackers can repeatedly interact with the target model, observe the model’s
defense mechanism, and iteratively adjust their attack strategy. Such adaptability enables attackers
to continuously refine their strategies so as to circumvent defenses by dynamically evolving attacks.

M Deterministic Defense vs. Dynamic Defense. A deterministic defense against adversarial
examples refers to employing a fixed strategy to mitigate adversarial attacks. Deterministic defense
always responds in the same way given a particular input, which introduces no randomness or
variability. Deterministic defenses can be vulnerable to adaptive attacks due to their predictable
behavior. In contrast, since a dynamic defense introduces randomness or variability to each inference,
it becomes difficult for attackers to anticipate or exploit the defense behavior for each inference
process. Thus, dynamic defenses are more resilient to adaptive attacks, which rely on detailed
knowledge of the defense strategy.
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Fig. 2. Impact of dynamic conditions for embedded vision scenarios on the inference latencies of three tasks.

2.2 Observations and Performance Preview of LeapNet

B Observation 1. Existing deterministic defense mechanisms exhibit inferior defense performance
compared with their dynamic counterparts, especially when confronting adaptive attacks. Beyond
static attacks, adaptive attacks are increasingly adopted for evaluating defense performance [2].
These attacks degrade model accuracy by circumventing deterministic defenses. To demonstrate
this, we conduct an experiment that uses ResNet-18 as the target model and employs FGSM
attack algorithm [7] to generate static attack and adaptive attack, on the CIFAR-10 [29] and
GTSRB [30] datasets. The two datasets cover 10-class general image classification and 43-class traffic
sign classification, respectively. The difference in attack effectiveness arises from the attacker’s
knowledge of the target model, despite using the same attack algorithm. Table 1 presents the
adversarial accuracy (i.e., the accuracy under attack), before security enhancement and with
enhancement by deterministic or dynamic defense. Deterministic defense refers to BlockDrop [23],
a representative layer routing network that can generate a fixed inference route per input across
different inputs. Although it performs reasonably under static attacks, its effectiveness drops
remarkably under adaptive attacks. The dynamic defense in Table 1 refers to LeapNet-1 proposed
in this paper, which introduces stochasticity to the layer routing network. It achieves better defense
performance against both static and adaptive attacks, compared with the deterministic defense.

B Observation 2. Embedded devices often operate under various dynamic conditions, where the
available resources and requirements may change over time. There are existing research efforts toward
efficient DNN deployment on embedded systems. However, these studies may not be sufficient to
address the dynamics from the embedded environments [26]. We identify two types of dynamics:

(1) Varying Embedded Environments. Embedded systems may operate under changing
environments, such as fluctuating scene complexity and computational resources. These
dynamic environmental conditions can affect task processing speed, which challenges the
performance of DNN models, especially for time-series tasks.

Scene complexity refers to variations in the number and complexity of objects in input
images or videos, which directly influence the inference speed of DNN models. Fig. 2 (a) and
Fig. 2 (b) illustrate how an increase in the number of objects changes the runtimes of the
object detector and tracker on a server with an RTX 2080Ti GPU. DeepSORT [31] is used as
the tracker, while YOLO-ResNet represents a system combining YOLO for detection with
ResNet-18 for further classification [2]. These results demonstrate that runtime latency for
each frame processing grows with the number of detected objects. This poses a challenge to
the real-time performance of time-series processing.

Fluctuations in available computing resources, such as power supply mode, also affect
the operation of embedded tasks. For example, an insufficient power supply may force an
embedded device to switch to a low-power mode, such as the automatic low-power battery
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Fig. 3. Visualization of the runtime latency measured on NVIDIA Jetson Orin under different power modes.

switch of a drone for returning home safely [32]. When the system switches to a low-power
mode, inference latency can increase. As a result, the requirements of embedded vision tasks
may be potentially violated. Fig. 2 (c) shows the inference latency distributions of ResNet-
18 [33] under different power modes. We can see an approximately 50% inference latency
increase when the power mode is switched from 50 W (watt) to 15 W. This highlights that
limited power supply in embedded systems can impair the timely execution of vision tasks,
potentially leading to performance violations.

(2) Varying Performance Requirements. Embedded systems often have diverse and evolving
performance requirements, such as varying frame processing rates [26]. These systems need
to dynamically adjust computational resources or models to maintain real-time responsive-
ness under different requirements. For instance, in autonomous vehicles (AVs), inference
latency largely decides certain safety measures, such as safe stopping distance. Considering
an AV traveling at 7 m/s, if the object detector EDet2 with a relatively shorter frame pro-
cessing latency is used, a safe stopping distance of 7.66 meters is required [25]. Differently,
if EDet6 with a relatively longer frame processing latency is used, a safe stopping distance
of 11.14 meters is required [25]. This variation underscores the necessity for AVs to scale
the complexity of vision models in response to real-time speed and braking constraints.
Achieving such adaptive control is essential for balancing accuracy and latency requirements
in embedded applications.

B Observation 3. Existing deterministic and dynamic defense mechanisms cannot adapt themselves
to dynamic conditions. Effective deployment on embedded systems needs to consider limited
computational resources and complex dynamic conditions. However, existing defense approaches,
including both deterministic and dynamic defenses, often overlook these specific constraints of the
practical deployment on embedded systems. Many defense methods, such as ensemble learning,
enhance the security of DNNs at the expense of increased computational load. The adversarial
training defense is not subjected to additional inference-time costs. However, it falls short of
accommodating the dynamic operational conditions encountered during embedded deployment.
One direct strategy for adapting to dynamic conditions is deploying multiple security-enhanced
model variants for coarse adjustment. However, this results in frequent model switching and causes
overhead due to the paging-in/paging-out of entire models [26]. Thus, there is a need for a unified
DNN-based framework capable of simultaneously addressing security concerns and efficiently
managing computational limitations and dynamic conditions in embedded environments.

To demonstrate the above, we conduct a preliminary latency measurement experiment that eval-
uates the performance of various defense methods on an embedded device, Jetson Orin. Fig. 3 shows
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the runtime latency traces of these defense methods applied to ResNet-18 under dynamic power
conditions. Compared with adversarial training, our proposed dynamic layer routing approach,
LeapNet-1, shows reduced inference latency. However, both adversarial training and LeapNet-1
exhibit clear latency increases when the system switches to a lower power mode, as shown by the
blue and orange lines. In contrast, LeapNet-2 (depicted by the green line in Fig. 3) maintains latency
closely aligned with the required value (depicted by the red line in Fig. 3) under different settings,
which demonstrates LeapNet-2’s capability to stabilize latency performance.

2.3 Motivations

On the one hand, as discussed in Observation 1, the weakness of deterministic defenses against
adaptive attacks motivates the design of effective dynamic defense methods. To this end, we propose
LeapNet-1 that features dynamic layer routing. It leverages a decision network to learn the optimal
layer routing distribution for the given input (see Fig. 4 (fop)). At runtime, LeapNet-1 dynamically
samples layer routes from the layer routing distribution produced by the decision network, based
on the inference input. LeapNet-1 maintains superior accuracy and exhibits stochasticity desired
for counteracting adaptive attacks. To the best of our knowledge, LeapNet-1 is the first defense
approach to enable dynamic layer routes.

On the other hand, as discussed in Observation 2, beyond resource constraints, dynamic condi-
tions such as varying runtime environments and changing performance requirements challenge
the embedded deployment of security-critical scenarios. Existing security-enhanced DNNs cannot
adapt to real-world dynamic embedded conditions, especially those time-series embedded vision
tasks (e.g., video processing). To this end, we draw insights from LeapNet-1 and further introduce
LeapNet-2 (see Fig. 4 (bottom)). Specifically, LeapNet-2 features a latency predictor that enables the
decision network to further learn the latency of different layer routes. Then, this latency-aware
decision network decides the optimal layer routing distribution that satisfies the specified, ad-
justable latency constraint. Furthermore, dynamically sampled layer routes operate near the latency
constraint. It allows the average latency to adapt to the latency constraint in real time.

Taking the above together, the proposed LeapNet can effectively counteract adaptive attacks
while reducing computation redundancy. Furthermore, LeapNet can adapt to dynamic conditions
in real time for embedded vision systems with a slight sacrifice of defense capability.

3 LeapNet-1

In this section, we present LeapNet-1, which employs a decision network to learn the optimal layer
routing distribution for the given input. Furthermore, LeapNet-1 samples the layer routes from
the resulting distribution for the processing of that input. This process introduces randomness
that obscures the exact execution path and thereby impedes adaptive attacks that require precise
structural knowledge of the network.

3.1 Preliminaries on Target Model

As shown in Fig. 4, LeapNet leverages a decision network to generate dynamic layer routes for
the target model. Following recent conventions [23, 26], we take ResNet [33] as the default target
model. It is a widely adopted basis model for vision tasks due to its effectiveness and simplicity.
ResNet utilizes shortcut connections to add the input to the output of the residual block. Although
each residual block is composed of multiple layers, for simplicity, we treat each residual block as
a single layer and thus use the term layer instead of block when describing the routing process.
Similar layer routing mechanisms can be extended to other DNN architectures through gating
mechanisms with minor revisions [34].
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Fig. 4. Overview of LeapNet, where (i) LeapNet-1 focuses on learning the optimal layer routing distribution
toward robust defense performance against adaptive attacks and computational efficiency, and (ii) LeapNet-2
focuses on learning the optimal layer routing distribution that satisfies the specified latency constraint under
dynamic conditions while maintaining defense performance.

We use x and y to denote the input image and its ground-truth label, and consider a target
DNN model fo(-) with N layers. Finally, we can formulate the forward propagation of fc(-)
as y' = fo(x;Pc), where ¢c denotes the weights of fo(-) and y’ denotes the predicted result.
Furthermore, the training process optimizes ¢¢ to minimize the cross-entropy loss on the training
dataset: minimizeg. Jo = Lo (fo(x; ¢c), y), where L(-, -) denotes the cross-entropy loss.

3.2 Decision Network

As discussed in [23], DNNs allow some layers to be dropped with minimal accuracy loss due to
their redundancy. However, randomly dropping layers may degrade accuracy. To demonstrate
this, we conduct a preliminary experiment using ResNet-34 on the KUL dataset [35]. As shown in
Fig. 5, applying a random layer dropping strategy yields only 7.0%~10.1% accuracy on clean inputs
and 3.0%~3.9% accuracy on PGD-attacked inputs. In contrast, ResNet-34 without layer dropping
can have a 97.7% clean accuracy and 88.1% to 12.7% accuracy under PGD attacks as the maximum
perturbation bound increases from 0.01 to 0.06 (relative to the maximum input pixel value).

Despite the acknowledged redundancy, determining which layers are redundant remains chal-
lenging. Given a target DNN with N layers, the number of possible layer routes grows exponentially
(i.e., 2N), making exhaustive exploration impractical. To address this issue, we propose a reinforce-
ment learning-based decision network capable of simultaneously deriving layer routings across
all layers. Instead of deterministically deciding which layers to drop, the decision network can
learn the optimal layer routing distribution for the specific input, and then randomly sample the
actual dropping decisions from this distribution. Since adaptive attacks typically rely on precise
knowledge of the model’s structure and deterministic behavior to craft effective perturbations,
this stochastic design obscures the exact execution path. This makes it difficult for adversaries
to anticipate or exploit specific routes. As a result, adversaries are unable to reliably compute
accurate gradients for attack generation. Consequently, crafting effective adversarial examples
becomes more difficult. Even if an attacker manages to breach the system and observe the real-time
layer routes, the immediate execution of inference upon route sampling leaves insufficient time to
construct and deploy an effective attack.
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The decision network features a lightweight DNN model that comprises two convolutional and
three fully-connected layers. Specifically, the decision network outputs a layer routing distribution,
p = [p1, - Pns - pN], Where p, € [0, 1] is the probability of executing the n-th layer. Then, the
inference routes are sampled based on this vector. In this case, the decision for the target network
with N layers that is dropped or executed would follow the Bernoulli distribution:

N
mp(alx) = [ | (1= pa) =, st p = fio (x; ¢), (1)
n=1

where fp(-) denotes the decision network and ¢p denotes its weights. The a = [ay, ..., an, ..., an ]
represents the action obtained through Bernoulli sampling according to probability p. The a, €
{0, 1} represents the action of either dropping (a, = 0) or executing (a, = 1) the n-th layer.

The optimization objectives of LeapNet-1 are three-fold, including (i) maximizing the accuracy
on clean inputs, (ii) maximizing the number of dropped layers for less computation, and (iii)
maximizing the stochasticity against adaptive attacks. To this end, we design the reward function
R(+) and introduce a decision loss to optimize the objectives (i) and (ii). Note that an entropy loss is
further added to optimize the objective (iii) as shown in Eq. (4). Specifically, the reward function
R(-) is formulated as follows:

(o) = 1 (Ze) i e sge(@) =y
R(a, ¢c, x,y) = N N ’ ’ ’ )
-, otherwise,
where % quantifies the number of activated layers. || - ||; is the Manhattan I; norm. The

fo(x; ¢c(a)) is the classification model with layer route action a. The y is used to penalize the
decision that produces incorrect predictions, which can trade off between accuracy and the number
of activated layers. Finally, we formulate the decision loss as the negative objective of the reward
function R(+) and minimize the decision loss to maximize the reward as follows:

]1 _R(a’ (ISC, X, y) log”¢l)(a|x)

®)

N
—R(a,$c,x,y) D (anlogpn + (1 - an) log(1 = pn)) .

Moreover, the entropy loss to maximize the decision stochasticity to counteract adaptive attacks is:

N
J2 = —Z(pn log pn + (1 = pn) log(1 = pn)). “)

n=1
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18 on KUL dataset before and after fine-tuning. different attacks on GTSRB dataset.

The above two losses in Eq. (3) and Eq. (4) will be used to steer the training and fine-tuning processes,
as presented shortly.

3.3 Training & Fine-tuning

LeapNet-1 involves two separate stages, i.e., training and fine-tuning. Specifically, the training
stage only optimizes the decision network, while the fine-tuning stage optimizes both the decision
network and the target model.

Stage 1: Training. During training, we aim to increase the decision stochasticity, the number of
dropped layers, and the classification accuracy simultaneously. Specifically, the decision network is
trained with the following loss function:

Jp, = EBgpxyl1(¢c, ¢p, %, y)| + a - Egp, x[J2($D, )], 5)

where « is a constant to control the level of stochasticity. Note that this stage only optimizes the
decision network’s weights ¢p, while the pre-trained target model’s weights ¢¢ are frozen.
Stage 2: Fine-tuning. The above layer-routing scheme inevitably suffers from inferior accuracy
compared with the default target model [23], primarily due to the unavoidable omission of certain
contributing layers. To mitigate this performance degradation, we further adapt the target model to
the layer routing behaviors learned from the decision network. Specifically, as shown in Fig. 6, we
fine-tune both the target model and the decision network to optimize the following loss function:

Jp, = Egpxyl/i(dc, ¢p, x, )| + & - By, x[J2 (D, X)| + B+ B ppxy[J3 (b, dp. X, )], (6)

where « and f are the coefficients to control the trade-off magnitude between Ji, J2, and J5. Here,
J5 corresponds to the classification loss for the target model based on the routes generated from
the decision network, which can be described as follows:

Js = Le(fe(x; ¢c(a), y). (7)

Results. (i) Accuracy: We conduct an experiment on the KUL dataset [35] to demonstrate the
effectiveness of fine-tuning. The results in Fig. 7 depict the relationship between accuracy and ratio
of target model ResNet-18’s executed layers before fine-tuning to that after fine-tuning. The results
show that the joint fine-tuning stage can improve the accuracy across all executed routes of the
target model. Besides, during fine-tuning, the decision network is also optimized to learn the layer
routes with better accuracy. This joint optimization of both the target model and decision model
enables LeapNet-1 to achieve good accuracy. (ii) Adversarial Performance: We compare LeapNet-1,
BlockDrop [23], and adversarial training with FGSM [7] (denoted as Adv_training) in terms of
adversarial robustness against adaptive attacks, based on PGD [15] and AutoAttack [36]. The results
on the GTSRB dataset are shown in Fig. 8. LeapNet-1 consistently outperforms both Adv_training
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and BlockDrop across varying levels of adversarial perturbation, which demonstrates superior
robustness under adaptive attack settings.

4 LeapNet-2

In this section, we present LeapNet-2, an enhanced version that incorporates latency awareness
into the decision-making process. Specifically, LeapNet-2 first builds a latency predictor to estimate
the inference latency of the target model across different layer routes. With this latency predictor,
LeapNet-2 trains a latency-aware decision network to produce the optimal layer routing distribution
that satisfies the specified latency constraint. Consequently, the layer routes sampled from the
resulting distribution consistently operate around the given latency setpoint. As a result, the average
latency of sampled routes rapidly converges toward the setpoint. Note that the latency setpoint
can be adjusted at run time.

4.1

First, we construct a latency predictor tailored for input layer routes of the target model. We train
the predictor with collected data by measuring the inference latency of these different layer routes
on the target hardware, as explained by Fig. 9. For a small target model, we measure the latency for
all possible layer routes multiple times to construct the dataset. However, for a large target model
(such as ResNet-101 with 34 blocks), the routing space is large (e.g., 23* decisions). To deal with
this, we use stratified sampling and random sampling techniques to select representative routes
from this large routing space. Then, we build a latency predictor to model the relationship between
inference latency and layer routes, described as [, = fp(a; ¢r), where [, denotes the predicted
latency, fp(-) denotes the latency predictor, and ¢; denotes its weights.

We consider five representative prediction methods from the scikit-learn library [37], including
MLP regression, linear regression, SVM regression, SGD regression, and kernel regression. Taking
RTX 2080Ti as an example target device, we visualize the latency prediction results of ResNet-18 in
Fig. 11. Among the above five prediction methods, we observe that the MLP regression algorithm
can achieve the lowest root mean squared error (RMSE). This demonstrates its superior latency
prediction performance across various layer routes of ResNet-18.

To develop latency awareness, LeapNet-2’s decision network needs to learn the latency infor-
mation of the target model across different layer routes from the latency predictor. Since the
decision network learns the layer routing distribution, a straightforward approach is to input the
sampled routes from the learned layer routing distribution to the pre-trained predictor to estimate
the latencies of these sampled routes and then compute the average latency during LeapNet-2’s

Latency Predictor
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Fig. 12. Latency prediction performance of different regression algorithms (trained with input layer routes)
under layer routing distributions. “Predicted” and “Measure” refer to the average latency of all sampled routes
from the distribution.

training stage, as shown by prediction way 1 in Fig. 10 (top). However, the sampling process is non-
differentiable, which disrupts gradient flow and prevents the decision network from converging.
As aresult, prediction way 1 (shown in Fig. 10 (top)) becomes infeasible.

Therefore, the only feasible approach for LeapNet-2’s training is to use a latency predictor that
directly estimates the average inference latency of all sampled routes by taking the layer routing
distribution as input, as shown by prediction way 2 in Fig. 10 (bottom). However, directly training
such a latency predictor is infeasible due to the need to consider all possible sampled routes when
computing the latency of this distribution during the training phase. Performing this computation
for each layer routing distribution is impractical since it incurs substantial computational overhead.

We anticipate that the pre-trained latency predictor designed for input layer routes can be
extended to handle layer routing distributions (prediction way 2 in Fig. 10 (bottom)). It avoids the
computationally intensive process of directly learning from these distributions. The observation
that linear regression performs well in latency prediction proves this extension’s feasibility, since
there exists an inherent near-linear relationship between routing decisions and inference latencies,
from the results in Fig. 11. According to Jensen’s inequality, in a linear relationship, the predicted
average inference latency fp(p; ¢1) under a layer routing distribution p is equal to the weighted
sum of the predicted latencies of all sampled routes fp(a; ¢r) from this routing distribution.

We conducted an experiment to evaluate whether pre-trained latency predictors designed for
input layer routes remain effective when applied to layer routing distributions. Specifically, we
input the routing distributions p into the predictor to derive the predicted average inference latency
fp(p; ¢r). Next, we input all possible sampled routes a from the distribution into the predictor
to derive the latency for each route fp(a; ¢r). Then, we compare the predicted average inference
latency with the weighted average of all possible routes. The detailed results are shown in Fig. 12,
where the linear regression-based latency predictor achieves the best performance. When inputting
layer routes into the pre-trained predictors, the MLP regression method achieves a smaller RMSE.
However, when inputting layer routing distributions, the MLP regression introduces an additional
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error due to its non-linear characteristics, as suggested by Jensen’s inequality. In contrast, the linear
regression method avoids this additional error, as it lacks non-linear complexity. Thus, we choose
the linear regression algorithm as the latency predictor under stochastic routing decisions.

Note that the predictor includes only 3000 parameters, which uses 0.01 MB memory. Thus, the
predictor introduces low overhead, in comparison with the target models that have millions of
parameters or even more. For instance, a small ResNet, ResNet-18, has 11.2 million parameters. The
training cost and inference cost of the predictor are only 1.98 s and 0.15 ms on a server with an
RTX 2080Ti GPU, respectively.

4.2 Latency-Aware Decision Network

To enable latency awareness in the decision network of LeapNet-2, latency information of layer-
routing must be explicitly incorporated into the decision network. To this end, we first integrate a
latency branch within the decision network to receive the latency requirements as input. Directly
incorporating latency into the input challenges the decision network to learn latency requirements,
as the input image is far more complex than a single latency value. To address this, we integrate
latency information before multiple fully connected layers to enlarge its significance. Furthermore,
we leverage a pre-trained latency predictor to facilitate the training of the decision network: the
output layer routing distributions from the decision network are sent to the latency predictor
to estimate the predicted average latency during the forward stage of training. This allows the
decision network to adjust its parameters accordingly through backpropagation based on the
required latency and estimated latency, as shown in Fig. 6. Note that the latency predictor is only
required in the training process.

LeapNet-2 should be capable of generating layer-routing distributions conditioned on the latency
requirements. In particular, it needs to ensure that the expected inference latency—computed as the
weighted average of predicted latencies over sampled routing paths—matches the given constraint.
To achieve this, compared with LeapNet-1, LeapNet-2 introduces an additional latency objective,
i.e,, to minimize the difference between the estimated average latency of the sampled routes from
resulting layer routing distributions and the target latency requirements. Moreover, a latency loss
function designed based on the mean squared error (MSE) is employed for capturing this objective:

Ja = Luse(fr(ps 1)3 1g). 8)

where I, denotes the given latency requirements. Based on this loss function, the latency-aware
decision network can learn the optimal layer routing distributions that closely align with the
target latency requirements. Given the predictor’s effectiveness in matching predicted latency with
measured latency, this decision network can enable real-time adjustments of layer routes of the
target model to meet the dynamic conditions of embedded deployment.

Note that multiple layer routing paths can satisfy the same latency constraints. The reinforcement
learning-based decision network is trained to select routes that yield high accuracy. During inference,
the routing path is stochastically sampled from the probability distribution generated by the decision
network. This enables diverse execution paths even across the same inputs. As explained earlier,
this stochasticity is a key factor for counteracting adaptive attacks.

4.3 Latency-Aware Training & Fine-tuning

As shown in Fig. 6, the training phase of LeapNet-2, similar to LeapNet-1, consists of two stages:
first, training the decision network with the target model’s weights fixed, and second, jointly
fine-tuning both the decision network and the target model. Note that the latency predictor is
pre-trained, and its weights remain fixed during both training and fine-tuning stages.
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Fig. 13. Illustration of the relationship between the required latency and the predicted inference latency for
LeapNet-2 across different target models on RTX 2080Ti, including ResNet-18 and ResNet-101.

The first training stage consists of two update steps. First, similar to LeapNet-1, we train the main
branch of the decision model to minimize the loss Ey, x4 [J1(dc, #p. X, y)| + @ - Eg, [ (¢p, 2)],
for defense objectives without compromising its accuracy. In the second step, we train only the
latency branch to minimize the latency loss Jy. During this process, the weights before the latency
input of the decision network are frozen. This second step can be repeated multiple times to balance
performance between the latency objective and other objectives.

Finally, we jointly fine-tune the target model with the decision network to improve the accuracy
performance while maintaining other objectives by adapting the target model to the learned latency-
aware layer routing behavior. Note that the latency requirements are randomly generated based on
the measured range of the target model with different possible routes so that LeapNet-2 can adapt
to variable latency requirements without any manual adjustment.

In summary, building upon LeapNet-1, LeapNet-2 explicitly incorporates the dynamic conditions
in practical embedded scenarios. It first employs a latency predictor to estimate the execution
latency of dynamically sampled routing paths. Then, a latency-aware decision network adjusts the
layer routing distributions flexibly to adapt to varying latency requirements. By sampling execution
paths from this adaptive distribution, LeapNet-2 effectively meets the latency requirements of
time-series processing under dynamic conditions, while simultaneously increasing the difficulty of
constructing effective adversarial attacks.

Results. Fig. 13 shows the predicted latency of the layer routes generated by the proposed
latency-aware decision network, compared with given latency requirements for target models
ResNet-18 and ResNet-101 on an edge device with RTX 2080Ti GPU. We can see that the predicted
latency can match the given latency requirements closely for all target models. Furthermore, given
the effectiveness of the latency predictor in aligning predicted latency with measured latency
(shown in Fig. 11), the final average inference latency closely adheres to the latency requirements.

5 Experiments

In this section, we evaluate LeapNet to demonstrate its adversarial robustness and adaptability to
dynamic conditions.

5.1 Experiment Setup

Environments. We implement our method using Python with PyTorch and conduct experiments
on an edge server with NVIDIA RTX 2080Ti GPU with 11 GB memory, and two embedded devices,
a Jetson Orin with 64 GB memory and a Jetson Xavier with 16 GB memory, which are commonly
used in various embedded systems [3, 38] due to their balanced trade-off between computational
capability and power efficiency.
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Fig. 14. Comparisons of adversarial accuracy under different adaptive attacks with different target models
on GTSRB dataset.

Datasets and Models. We evaluate LeapNet on three datasets: German Traffic Sign Recognition
Benchmark (GTSRB) dataset [30], KUL Belgium Traffic Signs (KUL) dataset [35], and Tiny-ImageNet
dataset [39]. We experiment with four ResNets with different sizes as the target model: ResNet-18,
ResNet-34, ResNet-101, and ResNet-152. To show the generalizability of LeapNet across different
network architectures, we conduct experiments using MobileNetV1 [40] as the target model.

Attacks. We consider five typical attack algorithms to construct adaptive attacks in evaluating
defense mechanisms: FGSM [7], PGD [15], BIM [41], Square attack [42], AutoAttack [36]. We use
adversarial accuracy as the metric, defined as the classification accuracy on adversarial examples.

Baselines. We evaluate the performance of LeapNet with multiple baselines, including no
defense, two deterministic defense methods, and two dynamic defense methods. Base_model is the
target model of LeapNet with no defense by default. BlockDrop [23] is a representative layer routing
mechanism that can switch different inference paths for different inputs, which can be seen as a
deterministic defense. Adv_training [15], a common and effective static defense method, adopts
both real data and data generated by a simulated adversary to improve its robustness. Specifically,
it employs the FGSM-based adversarial examples in the training stage. BaRT [18] is a dynamic
defense method that randomly leverages a combination of input transformation methods as a
robust defense. Since many transformations are non-differentiable, we choose to directly tamper
with the transformed images to form adversarial examples, rather than performing gradient-based
attacks through these transformations. Sardino [2], a recent dynamic defense method, adopts a
HyperNet [43] to generate an ensemble of classification models with high-rate ensemble renewal.

5.2 Performance on Adversarial Defense

On the GTSRB dataset, we evaluate the defense performance of LeapNet with multiple baselines
under various adaptive attacks. We use ResNet-18 and MobileNetV1 as the target models. The
results are shown in Fig. 14. LeapNet-1 and LeapNet-2 achieve higher accuracy than unhardened
Base_model across different perturbation settings. This shows their enhanced defense ability across
different attacks. Compared with BlockDrop, a representative layer routing method, LeapNet-1
and LeapNet-2 demonstrate superior adversarial accuracy under all attacks with a maximum 37.7%
accuracy improvement. This demonstrates that the introduction of randomness in layer routing
decisions can complicate attack construction. Although Adv_training surpasses LeapNet models
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Fig. 15. Comparisons of adversarial accuracy under different adaptive attacks on KUL dataset using ResNet-
34 as the target model and Tiny-ImageNet dataset using ResNet-152 as the target model.

under the FGSM attack due to using the same attack during training, it lacks generalizability to
unknown attack types common in real-world applications. In contrast, LeapNet offers general
defense performance across different attacks, and thus outperforms Adv_training in counteracting
the attacks that the Adv_training is not adversarially trained upon.

LeapNet-1 outperforms Sardino in counteracting most attacks. This advantage primarily stems
from Sardino’s design limitations, which restrict its applicability to small DNNs. Specifically,
Sardino dynamically regenerates network weights to enhance robustness. However, its effective-
ness on deeper architectures like ResNet-18 is limited due to the exponentially increasing overhead
with network complexity. For a fair evaluation, we adopt Sardino’s original setup using a smaller
three-layer baseline network. However, as smaller networks inherently provide weaker adversarial
defenses, it weakens Sardino’s effectiveness against strong adaptive attacks. In addition, LeapNet
outperforms BaRT under most attack scenarios and configurations, except that they achieve similar
accuracy under AutoAttack. This advantage arises because BaRT’s randomness is limited to a fixed
number of input transformation methods, whereas LeapNet introduces greater diversity through its
design. Moreover, BaRT and LeapNet optimize different and independent components of the DNN
architecture, making them compatible and potentially complementary for enhancing robustness.

Besides, LeapNet-2 shows similar or lower accuracy compared with LeapNet-1 (0.4%~10.9%),
because of sacrificing some stochasticity in exchange for adaptability to dynamic conditions. We
further investigate this performance degradation using ResNet-18 as the target model, as illustrated
in Fig. 16. Specifically, Fig. 16 (a) shows the classification accuracy of LeapNet under clean conditions
as well as under FGSM and PGD attacks, across varying latency constraints. Fig. 16 (b) shows the
corresponding layer routing behaviors of LeapNet, including the average usage ratio of executed
layers and the variance of layer dropping. As observed, a significant drop in accuracy occurs when
the latency constraint is under 1.0 ms, for both clean and adversarial settings, which notably reduces
the average robustness of LeapNet-2. This accuracy degradation can be attributed to aggressive layer
dropping under tight latency budgets, as evidenced by the substantial decrease in the executed layer
ratio shown in Fig.16 (b). Moreover, LeapNet-2 exhibits reduced defense effectiveness compared
with LeapNet-1, partially due to its limited routing randomness. As shown in Fig.16 (b), the variance
in layer selection is noticeably lower for LeapNet-2. This stems from the latency constraint imposed
on LeapNet-2, which restricts feasible routing paths and thereby limits stochastic variability.
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with LeapNet-1. different power settings on Jetson Orin.

We further analyze the performance differences of LeapNet under FGSM and PGD attacks.
As shown in Fig.16 (a) and Fig.16 (b), the classification accuracy under PGD attack follows the
trend of routing variance, highlighting the role of the stochasticity in enhancing robustness. The
improved accuracy of LeapNet compared with the Base_model further supports the effectiveness
of randomized routing against PGD attacks. In contrast, under the FGSM attack, the accuracy
appears to correlate more with the number of executed layers. However, this does not imply that
randomness plays no role in defending against FGSM attacks. For instance, when the latency
constraint is set to 1.2 ms, LeapNet-1 achieves higher adversarial accuracy than LeapNet-2, despite
having a similar layer execution ratio but higher routing variance. This observation confirms
that stochastic routing contributes to robustness against the FGSM attack. Nevertheless, this
improvement is less pronounced for FGSM rather than PGD. Specifically, LeapNet-1 only shows
a 3.5% improvement over Base_model under FGSM attack, but achieves a 33.9% improvement
under PGD attack. These findings suggest that different types of adversarial attacks exploit model
vulnerabilities in distinct ways, and that the efficacy of randomness-based defense mechanisms
varies depending on the attack strategy.

We extend the evaluation of LeapNet’s defense performance across other datasets and use
different target models, as shown in Fig. 15. In Fig. 14, Adv_training shows improved robustness
against the FGSM attack, which matches the method used during training. To demonstrate the
compatibility of LeapNet with current defense methods for better robustness, we evaluate LeapNet’s
performance when combined with adversarial training on the KUL dataset using ResNet-34 as the
target model, as shown in Fig. 15 (a) to Fig. 15 (e). Specifically, we apply FGSM-based adversarial
training to the Base_model and all baseline models to ensure a fair comparison. Compared with
Base_model, LeapNet-1 achieves superior adversarial accuracy under various attacks. For example,
LeapNet-1 can provide up to 40.6% accuracy improvement over Base_model under the Square
attack. The superior performance of LeapNet-1 over other baselines shows its better compatibility
with existing defense methods. To demonstrate the generalizability of LeapNet to larger models and
more complex datasets, we evaluate the defense performance of LeapNet on the Tiny-ImageNet
dataset using ResNet-152 as the target model, as shown in Fig. 15 (f) to Fig. 15 (j). The results show
that LeapNet outperforms existing defense methods across various attacks under most settings.

5.3 Performance on Clean Accuracy

We test the clean accuracy delivered by our methods and the baselines, as shown in Fig. 14. When
the maximum adversarial perturbation is set to 0, it indicates that no adversarial perturbation is
applied. This allows us to assess the models’ performance on clean data. The original ResNet-18
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Fig. 18. Runtime and average latency of continuous frames for LeapNet-2 under different settings.

on the GTSRB dataset achieves a test accuracy of 98.5%. In comparison, LeapNet-1 and LeapNet-2
attain 97.3% and 96.2% accuracy, respectively, which reflects only a marginal decrease relative to
the original ResNet-18. This slight drop can be attributed to the model’s emphasis on learning more
generalized features, rather than solely optimizing for performance on clean data. A similar trend
is observed in BlockDrop and Adv_training with 96.4% and 95.8% accuracy. It also supports the
notion of the minor trade-off in clean accuracy for robustness-enhancing techniques.

We also evaluate the accuracy of LeapNet-2 with ResNet-18 as the target model on the GTSRB
dataset under various latency requirements, as shown in Fig. 16. When the latency constraint is
stringent, such as 0.4 ms, almost all selectable layers are dropped. In this case, the accuracy drops
to 60%, representing severe performance degradation. However, some relaxation of the latency
constraint results in accuracy improvements. Specifically, executing only 20% of the layers boosts
the accuracy to nearly 90%. To maintain an acceptable level of accuracy in embedded systems, a
minimum latency requirement can be enforced. This requirement can be adjusted based on the
system’s needs to ensure that a sufficient number of layers remain active for reliable performance.

5.4 Performance on Adaptability

Varying Embedded Environments. We evaluate LeapNet-2’s adaptability to dynamic embedded
environments with varying computing resources by altering the power mode on Jetson Orin. The
power supply transitions through three stages: (i) initially operating at 50 W, (ii) then reducing to 30
W after processing 100 frames, and (iii) further dropping to 15 W after processing 250 frames. Fig. 17
depicts the measured, predicted, and target latency per frame (shown as in Fig. 17 (top)) and their
corresponding average latencies (shown as in Fig. 17 (bottom)), computed after each latency change.
The alignment between measured latency with the predicted latency shows the effectiveness of
the latency predictor. Although individual frame latencies fluctuate around the target, LeapNet-
2 consistently maintains an average latency close to the target, even under significant power
reduction. This shows LeapNet-2’s stable performance in the presence of resource variations. The
frame-wise fluctuation is inevitable due to the inherent stochasticity in layer routing to deal with
adversarial attacks.

Varying Performance Requirements. We also test the inference latency of LeapNet-2 when
processing continuous frames under varying latency requirements, as shown in Fig. 18. To test
the generalizability, we consider three different scenarios: ResNet-101 as the target model on RTX
2080T1i, ResNet-18 as the target model on RTX 2080Ti, and ResNet-18 as the target model on Jetson
Orin. The measured latency closely matches the predicted latency across various model sizes and
embedded devices under different latency constraints. This demonstrates the effectiveness of the
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Table 2. Comparisons of inference cost on Jetson Orin.

Model Runtime (ms) | Static Memory (MB) | Runtime Max Memory (MB)
ResNet-18 10.6 42.7 186.4
Decision Model 1.3 0.7 47.6
LeapNet 6.8 43.4 185.6

Table 3. Comparisons of training cost on one single RTX 2080Ti GPU.

Method ‘ Phase Runtime Max Memory (MB) | Runtime (s)/Epoch | Epoch Number | Total Runtime (s)
Adversarial Training 951 57.7 20 1154
ResNet-18 Training 677 22.9 16
LeapNet | Decision Training 492 12.6 10 817.9
Fine-tuning 732 21.7 15

latency predictor. When the given latency requirement changes, the average measured latency
quickly adapts to the new target. This result shows the real-time adaptability of LeapNet-2.

We further evaluate the adjustable latency range of LeapNet-2 across different target models and
embedded edge devices, as illustrated in Fig. 19. Specifically, we deploy LeapNet-2 with ResNet-18,
ResNet-34, and ResNet-101 as target models on an edge server with an RTX 2080Ti, as well as on
Jetson Orin and Jetson Xavier, which exhibit progressively lower computational capabilities. The
results show that the inference latency spans from as low as 0.5 ms to nearly 80 ms. This highlights
LeapNet-2’s adaptability in dynamically adjusting computational complexity to accommodate
diverse hardware constraints.

5.5 Inference Latency and Memory Usage

The cost of LeapNet comprises two components: inference cost and training cost.

Inference Cost. The proposed decision network contains 0.17 million parameters, much lower
than the smallest target model, ResNet-18, which has 11.2 million parameters. This corresponds to
a static memory footprint of merely 0.67 MB for the decision network, compared with 42.7 MB
for the target model ResNet-18. LeapNet-2 further includes a latency predictor module to guide
the routing decision during training. However, this module is used only during the training phase
and is discarded at inference time. It comprises approximately 3,000 parameters, corresponding to
just 0.01 MB memory, and introduces negligible computational overhead. We adopt the runtime
cost of LeapNet-1 to represent both variants (named as LeapNet in Table 2) and Table 3 during
inference-time evaluation.

We benchmark the inference latency and memory usage of ResNet-18 and LeapNet on a Jetson
Orin device in processing 100 continuous image frames, as shown in Table 2. The decision model
incurs an additional latency of approximately 12.3% relative to ResNet-18. This is attributed to
the kernel launch overhead on Jetson Orin, which becomes more significant for small models
with low GPU utilization. Despite this, LeapNet achieves a 35.8% reduction in average inference
latency. Although the decision model consumes additional memory during inference, the overall
runtime memory of LeapNet remains comparable to that of ResNet-18. This is primarily because
the dominant contributor to inference-time memory usage in convolutional neural networks is the
storage of intermediate feature maps. By selectively dropping certain layers, LeapNet effectively
reduces both the computation and memory footprint associated with these feature maps. For
reference, when all selectable layers in ResNet-18 are bypassed, the peak runtime memory usage
can be reduced to 47.1 MB.
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Training Cost: We also compare the training time and peak memory usage of LeapNet and
adversarial training (with FGSM attack) on a server equipped with an RTX 2080Ti GPU, as shown
in Table 3. The training process of LeapNet consists of three phases: (i) training the target model
ResNet-18, (ii) training the decision model, and (iii) joint fine-tuning. Despite the three-stage
training process, LeapNet demonstrates lower training time and memory usage compared with the
adversarial training baseline. This is primarily because adversarial training requires the generation
of perturbed inputs based on model parameters in each iteration, which introduces additional
computational overhead. These results highlight the training efficiency of LeapNet.

In summary, LeapNet-1 can provide robust and universal defense performance under various
adaptive attacks while maintaining superior accuracy. LeapNet-2 further introduces the capability
to adapt to varying embedded conditions across different edge devices and target DNN models. By
effectively considering computational efficiency and model robustness, LeapNet-2 is suitable for
security-critical embedded applications that operate under dynamic conditions.

6 Real-Time On-Vehicle Traffic Sign Recognition

In this section, we apply LeapNet to a traffic sign recognition system and evaluate its adaptability
to dynamic embedded conditions.

6.1 System Implementation

We apply LeapNet to a traffic sign recognition (TSR) system [44], as illustrated in Fig. 20. While
deep neural network (DNN)-based object detection models are capable of directly classifying traffic
sign types, their scalability is often limited when dealing with a large number of sign categories.
To address this challenge, a two-stage TSR approach—comprising a sign detection phase followed
by a fine-grained classification stage—has been shown to support a broader range of traffic sign
classes [2, 45]. In a two-stage TSR, images captured by the onboard camera are buffered and passed
to the detector. Then, detected traffic signs are cropped, resized, and sent to a classifier to determine
their type. The results are provided to the driving agent for real-time decision-making. Given a
latency constraint ¢, if detection takes t; seconds for a frame containing n signs, the soft deadline
for classifying each sign is tc:ltd seconds. We implemented and tested this system on a vehicle
equipped with an Alvium G1-510c camera and a Jetson Orin. The latter is commonly adopted in
modern Al-enabled vehicles [38].

In this system, we utilize YOLO and YOLO-tiny [46] as traffic sign detectors and LeapNet-2 as
the classifier. YOLO is a representative DNN-based object detection network that achieves good
accuracy and latency performance on embedded systems. YOLO-tiny is a lightweight version of
YOLO with less computational cost. The detector model is trained based on the publicly available
COCO dataset [47] and KUL Belgium Traffic Signs Detection dataset [35], with the “stop sign” class
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Fig. 21. True FPS and selected layers’ ratio for Fig.22. FPS under different traffic signs’ number settings.
LeapNet-2 under different FPS settings. 30 FPS for YOLO-tiny (a) and 10 FPS for YOLO (b).

relabeled as “traffic sign” to enhance the ability to detect traffic signs. Besides, we train LeapNet as
the classifier model with the KUL Belgium Traffic Signs Classification dataset.

Compared with the original YOLO and YOLO-tiny with mAP@0.5 scores of 57.9 and 33.1 [46],
the retrained YOLO and YOLO-tiny achieve improved mAP@0.5 scores of 58.9 and 33.7. Note
that the mAP@0.5 refers to the mean average precision computed using a fixed intersection over
union (IoU) threshold of 0.5, where a predicted bounding box is considered correct if its IoU with a
ground-truth box is at least 0.5. The LeapNet-based classifier achieves a clean accuracy of 96.3%,
comparable to the accuracy of 97.0% reported in [35]. Latency performance: On Jetson Orin, YOLO
achieves throughputs of 23 frames per second (FPS) and 15 FPS at input frame sizes of 544x608 and
704x832, respectively. LeapNet, using ResNet-18 as the target model, achieves inference latency
ranging from 4.5 ms to 10.8 ms.

6.2 Performance Evaluation

In this pipeline system, the dynamics arise from two key factors: (i) varying FPS requirements and
(ii) the fluctuating number of traffic signs in each frame. The first factor demands that the system
adapts to flexible processing speed requirements, while the second necessitates maintaining a stable
processing speed under changing conditions. Note that FPS is a variant of latency requirements.
Therefore, we conduct outdoor experiments to evaluate LeapNet-2’s ability to adapt to the dynamic
conditions to satisfy the system requirements.

First, we test LeapNet-2 under different FPS settings with a real-world video consisting of 200
continuous frames. We utilize YOLO-tiny as the detector model and ResNet-18 as LeapNet-2’s
target model. The image frames are resized to 608 x 544 before feeding into the detector model.
Fig. 21 illustrates the measured FPS and the number of selected layers for LeapNet-2 under different
FPS settings. In Fig. 21 (a), the measured FPS closely aligns with the required FPS. Specifically, it
reaches the system’s minimum (i.e., 24 FPS) and maximum (i.e., 47 FPS) achievable performance
when the required FPS is set to 20 and 50, respectively. Fig. 21 (b) further supports this observation.
When the required FPS is set to 20, LeapNet-2 retains all the layers of ResNet-18 to maximize the
inference latency of the classifier. Conversely, when the required FPS is set to 50, LeapNet-2 drops
all the selectable layers of ResNet-18 to minimize inference latency, retaining only a convolutional
layer and a fully connected layer to ensure baseline performance.

Furthermore, we evaluate the impact of the number of objects per frame on the actual FPS. To
assess system limits, we send a fixed number of objects per frame to the classifier. This serves as a
stress test for LeapNet to process objects beyond just traffic signs. Fig. 22 shows the measured FPS
and the layer retention ratio for LeapNet-2 across different average object counts. Fig. 22 (a) employs
settings identical to Fig. 21, while Fig. 22 (b) uses YOLO with an input size of 832 X 704. The target
FPS is set at 30 in Fig. 22 (a) and 10 in Fig. 22 (b). Note that these settings are adjustable based on
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Table 4. Comparisons with existing defense methods.
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the specified embedded system requirements. The results show that the FPS decreases significantly
as the average number of objects increases. For instance, when there are five objects on average
in each frame, the FPS drops to 13.8, less than half of the required FPS. In contrast, LeapNet-2
maintains stable FPS across varying object counts as required. Besides, LeapNet-2 achieves slightly
lower FPS performance than ResNet-18 when the object count is low, due to a minor overhead
(<3%) introduced by its decision network.

7 Related Work

In this section, we first review related work about adversarial defense, including deterministic and
dynamic defense. Next, we discuss the adaptation of DNNs for embedded devices.

M Deterministic Defense. Several strategies have been proposed to address security concerns
regarding adversarial examples that can mislead DNN models. Adversarial training [15] includes
adversarial examples with correct labels in the training dataset. By iteratively training the DNN
on these examples, the model enhances its robustness against adversarial attacks. Several image
processing methods also mitigate the influence of adversarial attacks, like lossy compression [48]
and feature-squeezing [16], by disrupting or removing subtle perturbations introduced by adver-
saries. For example, lossy compression introduces quantization that eliminates small, imperceptible
changes, while feature-squeezing reduces the dimensionality of the input image and applies spatial
smoothing to constrain the adversary’s search space. Besides, static ensemble [49] uses an ensemble
of models to make joint decisions with improved robustness. Gradient masking [17] alters the
gradients of the target DNN to obstruct the effectiveness of gradient-based attacks. However, as
the above mechanisms are deterministic, they are vulnerable to adaptive attacks where adversaries
can learn the defense strategies and develop new attack iterations.

B Dynamic Defense. Dynamic defense strategies challenge the adaptive attacker in constructing
effective attacks. Stochastic pre-processing defenses [18] apply randomized input transformations
to the input. A “random resizing and padding layer” [50] is incorporated at the beginning of the
DNN architecture to proactively defend against attacks. BaRT [18] builds a robust defense by
stochastically combining numerous individual transformations into a randomized barrage. Besides,
SAP [19] introduces randomness into the activation function. However, as these methods rely on
weak stochasticity, they are vulnerable to attacks targeting the entire set of random functions [51, 52].
Dynamic ensembles capture broader variability by leveraging predictions from multiple models [2].
However, combining multiple models incurs extra computational overheads, which are impractical
for resource-constrained embedded devices. Our proposed LeapNet counteracts adaptive attacks by
dynamically adapting the layer routes while reducing computational redundancy.

B DNNs Adaption for Embedded Systems. Recent studies focus on efficient model deployment
for embedded scenarios to satisfy resource constraints, as most DNN models are computationally
heavy. Model compression methods, including pruning [20] and quantization [21], shrink model
sizes for lower storage and computation costs. Other model scaling methods, like early exit [22],
layer routing [23], and width scaling [24], simplify model structures without compromising their
accuracy. However, these methods are, in general, not designed to address dynamic resource and
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latency budgets. An automated model adaptation has also received research attention. NAS [26, 28],
as a relevant model generation solution, attempts to discover architectures that meet specific
requirements. However, even recent methods like AdaptiveNet [26] require minutes to update the
model, making real-time adaptation infeasible. Besides, Sadino [2] introduces a real-time dynamic
adaptation method by adjusting the ensemble size. However, on resource-constrained devices,
Sadino is only suitable for small DNN models because of the use of multiple models for inference.

8 Discussion

While LeapNet is designed for CNN-based architectures, particularly in the vision domain, the core
idea of stochastic layer routing holds potential for broader applications, like Transformer-based
models. Vision transformers (ViTs) have gained popularity due to their strong representational
capabilities. Several works, such as AdaViT [53] have shown that dynamically selecting transformer
layers or tokens based on input characteristics is feasible for reducing computation. Inspired by
this, our method could be extended to apply stochasticity in selecting encoder layers or attention
blocks to enhance robustness. However, such extensions introduce challenges due to the global
and interdependent nature of transformer computations. Randomly dropping layers may disrupt
this aggregation process and result in unstable representations. Additionally, training stability and
convergence issues may become more pronounced due to the deeper and more interdependent
structure of transformers. Despite these challenges, applying stochastic routing to transformers is
interesting for future work.

LeapNet produces a layer routing distribution that results in an average inference time meeting
a relatively stable latency requirement. However, this design may fall short under highly dynamic
latency requirements, where strict per-frame latency bounds are necessary. To address this, fu-
ture work could explore adaptive mechanisms such as Proportional-Integral (PI) control, which
dynamically adjusts execution paths based on recent latency deviations. For instance, if one frame
exceeds the target budget, subsequent frames could drop less critical layers to compensate. Enabling
such real-time adaptation may require reinforcement learning-based routing decision networks to
learn the relationship between latency and each layer while preserving randomness for adversarial
robustness.

9 Conclusion

In this paper, we propose LeapNet, comprising two variants (i.e., LeapNet-1 and LeapNet-2), for
resource-constrained embedded vision systems to maintain robustness against adversarial adaptive
attacks and real-time adaptation for embedded deployment. Specifically, LeapNet-1 learns the
optimal layer routing distribution and dynamically samples layer routes for inference to enhance
robust accuracy while preserving clean accuracy and reducing computational redundancy. LeapNet-
2 further optimizes the learned optimal layer routing to adapt to the dynamic embedded environment
under time-series settings. We conduct extensive experiments on various popular datasets and
real-world outdoor scenarios to evaluate LeapNet. The effectiveness of LeapNet-1 and LeapNet-2
is demonstrated in comparison with recent state-of-the-art static and dynamic defense methods.
Moreover, LeapNet-2 can flexibly adapt the layer routes to meet the evolving demands of the
time-series embedded vision system, achieving real-time adjustments.

References

[1] Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. Bringing ai to edge: From deep learning’s
perspective. Neurocomputing, 485:297-320, 2022.

[2] Qun Song, Zhenyu Yan, Wenjie Luo, and Rui Tan. Sardino: Ultra-fast dynamic ensemble for secure visual sensing at
mobile edge. In Proceedings of the 2022 International Conference on Embedded Wireless Systems and Networks (EWSN),

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: July 2025.



XXX:24 Zimo Ma, Xiangzhong Luo, Qun Song, and Rui Tan

pages 24-35, 2022.

[3] Donghwa Kang, Seunghoon Lee, Cheol-Ho Hong, Jinkyu Lee, and Hyeongboo Baek. Batch-mot: Batch-enabled
real-time scheduling for multi-object tracking tasks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2024. Presented at The ACM SIGBED International Conference on Embedded Software (EMSOFT).

[4] Jiaming Qiu, Ruiqi Wang, Ayan Chakrabarti, Roch Guérin, and Chenyang Lu. Adaptive edge offloading for im-
age classification under rate limit. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(11):3886-3897, 2022. Presented at The ACM SIGBED International Conference on Embedded Software (EMSOFT).

[5] Xisheng Li, Ye Ma, Yuting Chen, Jinghao Sun, Wanli Chang, Nan Guan, Liming Chen, and Qingxu Deng. Priority
optimization for autonomous driving systems to meet end-to-end latency constraints. In 2024 IEEE Real-Time Systems
Symposium (RTSS), pages 402-414. IEEE, 2024.

[6] Bashima Islam and Shahriar Nirjon. Zygarde: Time-sensitive on-device deep inference and adaptation on intermittently-
powered systems. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3):1-29,
2020.

[7] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In
Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2015.

[8] Meng Shen, Zelin Liao, Liehuang Zhu, Ke Xu, and Xiaojiang Du. Vla: A practical visible light-based attack on
face recognition systems in physical world. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 3(3):1-19, 2019.

[9] Brian Testa, Yi Xiao, Harshit Sharma, Avery Gump, and Asif Salekin. Privacy against real-time speech emotion
detection via acoustic adversarial evasion of machine learning. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 7(3):1-30, 2023.

[10] Ahmet Soyyigit, Shuochao Yao, and Heechul Yun. Valo: A versatile anytime framework for lidar-based object detection
deep neural networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 43(11):4045-4056,
2024. Presented at The ACM SIGBED International Conference on Embedded Software (EMSOFT).

[11] Yuhang Xu, Zixuan Liu, Xinzhe Fu, Shengzhong Liu, Fan Wu, and Guihai Chen. Flex: Adaptive task batch scheduling
with elastic fusion in multi-modal multi-view machine perception. In 2024 IEEE Real-Time Systems Symposium (RTSS),
pages 294-307. IEEE, 2024.

[12] The evolving safety and policy challenges of self-driving cars, 2024. https://www.brookings.edu/articles/the-evolving-
safety-and-policy-challenges-of-self-driving-cars/.

[13] Tyler Ward. Areas of improvement for autonomous vehicles: A machine learning analysis of disengagement reports.
In 2024 4th Interdisciplinary Conference on Electrics and Computer (INTCEC), pages 1-6. IEEE, 2024.

[14] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno,
and Dawn Song. Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1625-1634, 2018.

[15] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[16] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural networks.

In Proceedings 2018 Network and Distributed System Security Symposium. Internet Society, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing

defenses to adversarial examples. In International conference on machine learning, pages 274-283. PMLR, 2018.

[18] Edward Raff, Jared Sylvester, Steven Forsyth, and Mark McLean. Barrage of random transforms for adversarially robust
defense. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6528—6537, 2019.

[19] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy D Bernstein, Jean Kossaifi, Aran Khanna, and
Animashree Anandkumar. Stochastic activation pruning for robust adversarial defense. In International Conference on
Learning Representations, 2018.

[20] Aojun Zhou, Yang Li, Zipeng Qin, Jianbo Liu, Junting Pan, Renrui Zhang, Rui Zhao, Peng Gao, and Hongsheng Li.
Sparsemae: Sparse training meets masked autoencoders. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16176-16186, 2023.

[21] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1972-1981, 2023.

[22] Nafiul Rashid, Berken Utku Demirel, Mohanad Odema, and Mohammad Abdullah Al Faruque. Template matching
based early exit cnn for energy-efficient myocardial infarction detection on low-power wearable devices. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(2):1-22, 2022.

[23] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 8817-8826, 2018.

(17

—

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: July 2025.



Dynamic Layer Routing Defense for Real-Time Embedded Vision XXX:25

[24]

[25]

[26]

[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]
[41]
[42]
[43]

[44
[45]

=

[46]
[47]
[48]
[49]
[50]

[51]

Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma, Zachary Tatlock, and Yida Wang.
Nimble: Efficiently compiling dynamic neural networks for model inference. Proceedings of Machine Learning and
Systems, 3:208-222, 2021.

Ionel Gog, Sukrit Kalra, Peter Schathalter, Joseph E Gonzalez, and Ion Stoica. D3: a dynamic deadline-driven approach
for building autonomous vehicles. In Proceedings of the Seventeenth European Conference on Computer Systems, pages
453-471, 2022.

Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang, Yaqin Zhang, and Yunxin Liu. Adap-
tivenet: Post-deployment neural architecture adaptation for diverse edge environments. In Proceedings of the 29th
Annual International Conference on Mobile Computing and Networking, pages 1-17, 2023.

Stopping  distances: =~ Vehicle  speed, crash  risk, thinking and  braking time,  2016.
https://www.qgld.gov.au/transport/safety/road-safety/driving-safely/stopping-distances.

Qinsi Wang and Sihai Zhang. Dgl: device generic latency model for neural architecture search on mobile devices. IEEE
Transactions on Mobile Computing, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign recognition benchmark:
a multi-class classification competition. In The 2011 international joint conference on neural networks, pages 1453-1460.
IEEE, 2011.

Nicolai Wojke and Alex Bewley. Deep cosine metric learning for person re-identification. In 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 748-756. IEEE, 2018.

Dji mavic air 2 user manual, 2020.05. https://dl.djicdn.com/downloads/Mavic_Air_2/20200511/
Mavic_Air_2_User_Manual_v1.0_en.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In Proceedings of the European conference on computer vision (ECCV), pages 409-424, 2018.
Radu Timofte, Karel Zimmermann, and Luc Van Gool. Multi-view traffic sign detection, recognition, and 3d localisation.
Machine vision and applications, 25:633-647, 2014.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pages 2206-2216. PMLR, 2020.

scikit-learn, 2024. https://scikit-learn.org/stable/.

Li auto inc. announces the adoption of nvidia’s next generation autonomous driving smart chip orin., 2020.
https://irlixiang.com/news-releases/news-release-details/li-auto-inc-announces-adoption-nvidias-next-generation/.
Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world. In Artificial
intelligence safety and security, pages 99-112. Chapman and Hall/CRC, 2018.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In European Conference on Computer Vision, pages 484-501, 2020.
Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural networks. In International
Conference on Machine Learning, pages 5361-5369. PMLR, 2019.

The intelligence driving technogy of lixiang 9., 2025. https://driveevgh.com/cars/li-xiang-19/.

Takami Sato, Sri Hrushikesh Varma Bhupathiraju, Michael Clifford, Takeshi Sugawara, Qi Alfred Chen, and Sara
Rampazzi. Invisible reflections: Leveraging infrared laser reflections to target traffic sign perception.

Yolo: Real-time object detection. https://pjreddie.com/darknet/yolo/.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Computer Vision—-ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740-755. Springer, 2014.

Gintare Karolina Dziugaite, Zoubin Ghahramani, and Daniel M Roy. A study of the effect of jpg compression on
adversarial images. arXiv preprint arXiv:1608.00853, 2016.

Thilo Strauss, Markus Hanselmann, Andrej Junginger, and Holger Ulmer. Ensemble methods as a defense to adversarial
perturbations against deep neural networks. arXiv preprint arXiv:1709.03423, 2017.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating adversarial effects through
randomization. In International Conference on Learning Representations, 2018.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to adversarial example
defenses. Advances in neural information processing systems, 33:1633-1645, 2020.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: July 2025.



XXX:26 Zimo Ma, Xiangzhong Luo, Qun Song, and Rui Tan

[52] Chawin Sitawarin, Zachary ] Golan-Strieb, and David Wagner. Demystifying the adversarial robustness of random
transformation defenses. In International Conference on Machine Learning, pages 20232-20252. PMLR, 2022.

[53] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam Lim. Adavit:
Adaptive vision transformers for efficient image recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12309-12318, 2022.

ACM Trans. Embedd. Comput. Syst., Vol. XX, No. X, Article XXX. Publication date: July 2025.



	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Preliminaries
	2.2 Observations and Performance Preview of LeapNet
	2.3 Motivations

	3 LeapNet-1
	3.1 Preliminaries on Target Model
	3.2 Decision Network
	3.3 Training & Fine-tuning

	4 LeapNet-2
	4.1 Latency Predictor
	4.2 Latency-Aware Decision Network
	4.3 Latency-Aware Training & Fine-tuning

	5 Experiments
	5.1 Experiment Setup
	5.2 Performance on Adversarial Defense
	5.3 Performance on Clean Accuracy
	5.4 Performance on Adaptability
	5.5 Inference Latency and Memory Usage

	6 Real-Time On-Vehicle Traffic Sign Recognition
	6.1 System Implementation
	6.2 Performance Evaluation

	7 Related Work
	8 Discussion
	9 Conclusion
	References

