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Computational fluid dynamics (CFD) models have been widely used for prototyping data centers. Evolving
them into high-fidelity and real-time digital twins is desirable for online operations of data centers. However,
CFD models often have unsatisfactory accuracy and high computation overhead. Manually calibrating the CFD
model parameters is tedious and labor-intensive. Existing automatic calibration approaches apply heuristics
to search the model configurations. However, each search step requires a long-lasting process of repeatedly
solving the CFD model, rendering them impractical especially for complex CFD models. This paper presents
Kalibre, a knowledge-based neural surrogate approach that calibrates a CFD model by iterating four steps of i)
training a neural surrogate model, ii) finding the optimal parameters through neural surrogate retraining, iii)
configuring the found parameters back to the CFD model, and iv) validating the CFD model using sensor-
measured data. Thus, the parameter search is offloaded to the lightweight neural surrogate. To speed up
Kalibre’s convergence, we incorporate prior knowledge in training data initialization and surrogate architecture
design. With about ten hours computation on a 64-core processor, Kalibre achieves mean absolute errors
(MAEs) of 0.57°C and 0.88°C in calibrating the CFD models of two production data halls hosting thousands of
servers. To accelerate CFD-based simulation, we further propose Kalibreduce that incorporates the energy
balance principle to reduce the order of the calibrated CFD model. Evaluation shows the model reduction only
introduces 0.1°C to 0.27°C extra errors, while accelerating the CFD-based simulations by thousand times.
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1 INTRODUCTION
The scale of the data center (DC) industry has been rapidly growing in response to the ever-
increasing cloud computing and storage demands [3]. Such growth bring substantial challenges for
DC operations, particularly in avoiding operational risks and reducing energy costs of the mission-
critical infrastructure. Currently, DCs are mostly operated in a reactive way by the data center
infrastructure management (DCIM) system with feedback controllers [2, 42]. The DCIM provides
the operators with deployed sensor measurements for proper responses in case of abnormalities
and failures. However, traditional DCIM does not provide accurate prediction capabilities that are
desired by proactive DC management. These capabilities enable the operators to perform various
what-if analyses, such as whether the increase of certain temperature setpoints can improve the
energy efficiency without causing server overheating.

We consider predictive digital twins for the desired capability extension [33]. The computational
fluid dynamics (CFD) modeling is a primary technique to characterize the thermodynamics in data
halls [27]. CFD model can estimate the air velocity and temperature distributions in a given space
by solving the Navier-Stokes (NS) and energy balance equations [4]. It has been adopted in the
offline optimization for DC energy cost reduction and thermal risk management [28]. However,
the accuracy and simulation speed of CFD models in general do not meet the online analysis
requirements for two reasons [30]. First, the assumptions or simplifications made in the offline
phase may lead to online result distortions. Second, the solving process of the governing NS
equations may need lengthy computing time from hours to days.

The accuracy of a CFD model is mainly determined by the accuracy and completeness of the given
boundary conditions. A model with incomplete boundary conditions may diverge from the ground
truth. For example, as reported in [34, 41], an uncalibrated CFD model can yield temperature
prediction errors up to 5°C. The low accuracy impedes the use of CFD model for the desired
operational adjustment to pursue energy efficiency without causing thermal risk. Unfortunately,
obtaining the complete and accurate boundary conditions often faces substantial challenges due to
1) the large number of parameters in the boundary spaces and 2) the labor-intensive and error-prone
manual calibration process for these parameters. For instance, each server in a data hall may have
its own characteristics of the passing-through air flow rate due to its internal fan control logic.
Such information is often not available in the server hardware’s specification and can only be
empirically estimated or manually collected via in situ measurement. As a result, the rough settings
of the server air flow rates can significantly downgrade the CFD prediction capability. The existing
heuristic approaches [10, 29] (e.g., evolution strategies, genetic algorithms, simulated annealing,
etc.) can be applied to calibrate these boundary conditions. However, these approaches in general
require many search iterations, e.g., hundreds as shown in §5, to find accurate settings for the
system configuration parameters. In each iteration, a CFD model solving is performed with the
candidate parameters. When the CFD is built for a large-scale data hall with millions of mesh
cells, the iterative search process may incur unacceptable computation times. As such, the existing
search-based approaches scale poorly with the granularity of the CFD model.

To advance automatic calibration, we propose Kalibre, a neural surrogate-assisted approach to
calibrate data hall CFD models with increasing scales and complexities. Kalibre avoids directly
solving the CFD model for parameter search with the help of a trainable neural net by iterating
four key steps. First, the "coarse" surrogate is trained to align with the "fine" CFD model in the
current system state locality by updating its internal weights based on CFD-generated data. Second,
the trained surrogate is re-optimized by updating the system configuration, which is also a part
of trainable variables of the neural net, to maximize the consistency between the surrogate’s
predictions and the ground-truth sensor measurements. Third, the updated system configuration
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is set back to the CFD model for refining. Finally, the ground-truth sensor measurements are
used to validate the refined CFD model. Therefore, Kalibre offloads the fine-grained parameter
configuration search to the surrogate. Vis-à-vis the existing heuristic approaches that solve the
CFD model every configuration search step, Kalibre solves the CFD model much less frequently for
merely providing feedback to the surrogate.

The implementation of Kalibre faces two challenges. First, the training data for the neural
surrogate is limited since generating such data using the CFD model is compute-intensive. Second,
the design of the surrogate to capture the high-dimensional feature space of a data hall is challenging.
Piecemeal solutions to address the above two challenges separately tend to contradictory, i.e., a
deeper neural surrogate to better capture the complex feature space may require a large amount of
CFD-generated training data. Without proper consideration, the computational cost of training an
accurate surrogate might be higher than that of directly calibrating the CFD model. To address
the challenges, we incorporate prior knowledge and sensor measurements to adaptively generate
training data in each Kalibre’s iteration. With this adaptive design, the surrogate update is guided
toward searching better configurations in the locality rather than toward ensuring global optimality.
Compared with the random training data sampling adopted by the vanilla approach, the adaptive
sampling enabled by the introduction of prior knowledge improves the efficiency in using data
generated by the CFD simulations. To approximate the temperatures at locations with sensors, we
design a knowledge-based neural surrogate to capture the spatial thermal relations that a considered
sensor measurement is mostly affected by the settings of the nearby facilities. We implement Kalibre
and apply it to calibrate the CFD models of two production data halls sized hundreds of square
meters that host thousands of servers. The calibrated CFD models achieve mean absolute errors
(MAEs) of 0.57°C and 0.88°C in predicting the temperatures at tens of cold/hot aisle positions
in each hall, respectively. In contrast, the heuristic configuration search and the vanilla neural
net-based surrogate approach achieve MAEs of around 1.46∼2.2°C with the same computation time
for calibration as Kalibre. We also invite a domain expert to manually fine-calibrate the two CFD
models, yielding MAEs of 0.98°C and 1.16°C, respectively. As previous research [20] has shown that
increasing the air temperature is a common practice to reduce cooling energy, the high prediction
accuracy achieved by Kalibre is beneficial for data center energy optimization while ensuring
thermal safety constraint. For example, according to the ASHERE standard [5], the server inlet
temperature is not allowed to exceed 27°C to prevent overheating. Therefore, an accurate predictive
model with can be used to explore a less conservative policy that achieves more energy saving.

Although the calibrated CFD models achieve high-fidelity temperature prediction, the high
computation overhead still presents challenges for their online usage. During the online usage, the
prediction should be affordable to low-end computing devices with short response time, such that
the potential thermal alarms can be properly prevented ahead of time. A possible workaround is
to adopt the Kalibre’s neural surrogate model for real-time temperature prediction. However, the
neural surrogate does not provide a full-fledged temperature field approximation. For example, it is
incapable to predict the temperatures at locations without sensors. To address the high computation
overhead, we extend Kalibre to Kalibreduce by integrating a model reduction technique developed
based on the proper orthogonal decomposition (POD) [11]. The POD method aims to describe a full
field profile with a linear combination of a set of spatial basis functions, i.e., the POD modes and
corresponding coefficients. While the previous studies have investigated the POD for low-order
data hall modelings [25, 32], they assume that the boundary conditions from the CFD are well
calibrated. Thus, the POD prediction results are only compared with the original CFD predictions
instead of the sensor-measured data. Based on the calibrated CFD models, we further evaluate the
reduced POD’s performance with sensor data. With the calibrated CFD models, the reduced POD
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Table 1. Summary of the existing studies relevant to DC thermal modeling.

Modeling Ref. Hall Model Calibration Reduction Error (°C)
category scale* Original Reduced

White box

[37] Mid

CFD

–
FFD – RMSE: 0.7

[9] Small HRM – MAE: <3
[23] Mid Manual – Max: 1.9 –
[7] Small Linear RMSE: 0.7 RMSE: <1

Ours Large Automated POD MAE: 0.57 MAE: 0.84
MAE: 0.88 MAE: 0.98

Black box [19] Mid MLP – – MSE: 0.87 –
[43] Small LSTM RMSE: 1.24 –

Grey box [17] Small ThermoCast – – MSE: 0.1 –
*Small scale: <200 m2, Mid scale: 200∼800 m2, Large scale: > 800 m2

models achieve comparable MAEs of 0.84°C and 0.98°C, respectively, while only taking 0.53 and
0.76 seconds in reconstructing the temperature field.

In summary, this paper develops a systematic framework to evolve the data hall CFD models
into high-fidelity and real-time digital twins. We incorporate prior knowledge to address the CFD
accuracy and speed problems through surrogate-assisted model calibration and POD-based model
reduction, respectively. The contributions of this paper are summarized as follows:
• We formulate the model calibration and reduction problems and propose a systematic solution

to solve the problems.
• We develop a surrogate-assisted approach that incorporates prior knowledge to solve the

model calibration problem. The calibration is implemented with less human effort compared
with manual baseline and fewer CFD simulations compared with search-based algorithm.
• Based on the calibrated CFD models, we further reduce the order of the calibrated model

using the POD method and energy balance principle to accelerate the simulation speed.
• We conduct extensive evaluations for two industry-grade data halls hosing thousands of

servers. The calibrated CFD models achieve MAE of 0.57°C and 0.88°C, respectively. The
reduced-order models achieve comparable performance with MAE of 0.84°C and 0.98°C,
respectively, while only taking 0.53 and 0.76 seconds in reconstructing the temperature field.

Paper organization: The rest of this paper is structured as follows. §2 reviews the related work. §3
formulates the calibration and reduction problems. §4 presents our proposed approach. §5 evaluates
the calibration and reduction performances. §6 discusses several issues. §7 concludes this paper.

2 RELATEDWORK
This section reviews the relevant studies in DC thermal modeling, CFD model calibration, CFD
model reduction, and knowledge-based methods. Table 1 categorizes the existing thermal models,
model calibration, model reduction and their temperature prediction errors, respectively. In what
follows, we discuss the details of these existing studies.
■ DC thermal modeling. A variety of modeling techniques have been proposed for thermal

management in data halls. They can be broadly categorized into white box [7, 9, 23, 37, 40], black
box [19, 43] and grey box [17] methods. The CFD models are representative white box models,
in that they capture the thermodynamic laws followed by the physical processes. However, the
CFD models are computationally expensive due to their internal recursive execution. To reduce
computation overhead, the reduced-order models are often used as alternatives. For example,
the fast fluid dynamics (FFD) is proposed to accelerate the solving process in [37] and the heat
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recirculation matrix (HRM) is fitted to predict server inlet/outlet temperatures in [9]. Another
alternative is to use black-box data-driven models to learn a thermal map in the data hall. For
example, the Weatherman system [19] predicts the steady-state temperatures of certain server
blocks using a neural net consisting of two hidden layers. In [43], a long short-term memory (LSTM)
network is designed for predicting server CPU temperature. Although these data-driven models are
fast and suitable for real-time prediction, they often perform poorly in the cases that are not covered
by the training data. For instance, these models cannot well capture the thermal processes in case
of cooling system failures, because the training data for such failure scenarios is generally lacking.
Grey box models integrate physical laws and sensor data for temperature forecasting. For instance,
in [17], the grey box model named ThermoCast is proposed based on simplified thermodynamics
and fitted with historical data. However, such grey box method often relies on specific assumptions
of the system dynamics, and may not be transferable to other data halls.
■ CFD model calibration. A variety of modeling techniques have been proposed for thermal

management in data halls. They can be broadly categorized into white-box [7, 9, 23, 37, 40], black-
box [19, 43] and grey-box [17] methods. The CFD models are representative white-box models, in
that they capture the thermodynamic laws followed by the physical processes. To ensure fidelity,
the CFD models are often manually calibrated by human experts through trial-and-error process.
For example, the CFD models in [7, 23] is manually fine-calibrated by a human expert. As such, the
manual approach is labor-intensive and only suitable for small-size testbed. The heuristic search
methods [10, 29] can be adopted for automatic calibration, but they often require many iterations.
As the mesh complexity increases for the modeled data hall, the CFD model’s solving time may
increase from hours to days. Surrogate-assisted calibration [15] speeds up the parametric search of
those compute-intensive and non-differentiable models. It builds a lightweight surrogate of the
original model and then uses the surrogate to guide the parameter search. The surrogate design is
application-specific [21, 22, 26, 41]. For example, response surface methodology based on radial
basis function is studied for CFD model [26]. Among these studies, data-driven surrogates are
advantageous in fast forwarding. However, the design of surrogate-assisted optimization faces a
general challenge in balancing the surrogate fidelity and the computation overhead of generating
training data for surrogate via executing the original compute-intensive model. A possible solution
is to improve the local approximation of the data-driven surrogate via proper training data selection.
Unfortunately, few studies are dedicated to investigating this in the context of CFD modeling for
large-scale data halls.
■ CFDmodel reduction. To accelerate the thermal simulation of a data hall, several approaches

have been proposed to reduce the computational complexity of the CFD model. They can be
classified into partial-reserved and full-reserved approaches. The partial-reserved approaches
simulate the effects of certain parameters on temperature only at certain discrete points, such
as the server inlets/outlets [9] or the cold/hot aisles [40]. To maintain the spatial resolution, the
full-reserved reductions are desirable for a complete temperature field approximation. The POD-
based method is a representative full-reserved approach. It approximates the temperature field
with a set of orthogonal base functions and corresponding coefficients. Existing studies [25, 32]
have shown that the POD-based methods exhibit good approximation performance for the original
CFD models built for data halls in small scale. However, they assume the boundary conditions
of the CFD models are calibrated and only evaluate the POD’s accuracy with the CFD simulated
results. As such, evaluation of POD’s performance against real sensor measurements has not been
systematically investigated.
■ Knowledge-based methods. Knowledge-based modeling incorporates empirical methods or

first principles to improve model approximation with less data. For neural nets, the knowledge can
be any extra information about the modeled function beyond the function’s inputs/outputs used
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Containment

Sensor
RackCold aisle 

IT load

Hot aisle 

CRAC
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Fig. 1. The layout of a typical data hall. Sensors are installed at the cold and hot aisles for cooling evaluation.
Sensor measurements are mostly affected by the nearby CRACs.

as training samples [6]. Several studies have shown that the knowledge-based neural nets exhibit
better extrapolation capabilities while requiring less training data, compared with vanilla neural
nets. In [35], the neural net is trained by learning a loss function capturing a physical constraint
expressed in closed form. This method is also applied in neural surrogate modeling for fluid flows
without using any simulator-generated data [36]. For POD-based reduction, the knowledge can
be used to develop equations for solving the POD coefficients with new boundary conditions.
The knowledge-based methods include the Galerkin projection [25] and the heat flux matching
process [32]. In this paper, we will adopt the principle of energy balance to build a linear equation
system at the locally specified regions to solve the POD coefficients.

Our prior work [40] proposed the knowledge-based neural surrogate calibration method and
evaluated its effectiveness on two CFD models built for industry-grade data halls. In this paper,
we further reduce the order of the calibrated CFD models to accelerate their simulation speed and
evaluate the performance of the reduced-order models using physical sensor measurements. The
reduced-order model is developed based on the POD technique and can be efficiently solved by
adopting the energy balance principle of the modeled data hall.

3 BACKGROUND AND PROBLEM FORMULATION
In this section, we first introduce the related background. Then, we formulate the model calibration
and reduction problem, respectively.

3.1 Background
Fig. 1 illustrates the layout of a typical data hall, where racks hosting servers are assigned into
multiple rows that separate aisles. These aisles alternate between cold and hot aisles. The computer
room air conditioning units (CRACs) supply cold air, denoted by 𝑇supply, to the servers through the
cold aisles and draw hot air, denoted by 𝑇return, from the hot aisles. To reduce air recirculation,
containments are often constructed for the hot aisles. To evaluate the thermal condition in a
data hall, the inlet and outlet temperatures of servers are often used as the key thermal variables.
Therefore, temperature sensors are deployed in the cold and hot aisles to monitor such thermal
variables. The inlet temperature of a server, denoted by 𝑇in is often required to be in the range
of 15°C to 27°C [5]. The outlet temperature, denoted by 𝑇out, is related to the heat generated by
the server and the passing-through air flow rate. We assume that the energy dissipated from the
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Table 2. Summary of notations.

Sym. Definition Sym. Definition

∥·∥2 ℓ2-norm Tc vector of CRAC setpoints
⟨·, ·⟩ inner product V vector of CRAC volume air flow rates
⊗ element-wise product P vector of server powers
𝑙 number of CRACs α vector of server volume air flow rates
𝑚 number of servers e one-hot vector of cold/hot aisle sensors
𝑛 number of sensors Ts vector of sensor measurements
𝑇in, 𝑇out server inlet/outlet temperature T̃ vector of CFD results at sensor locations
𝑇supply, 𝑇return CRAC supply/return temperature T̃s vector of full field CFD results
L1,L2 loss functions T̂s vector of neural surrogate predictions
β vector of POD coefficients Wcs adjacency matrix of CRAC to sensor
ϕ vector of POD modes Wss adjacency matrix of server to sensor

server in the forms of electromagnetic radiation and mechanical movements is negligible compared
with that in the form of heat. Thus, in a steady state, the temperature difference between a server
inlet/outlet and a CRAC supply/return can be derived from the energy balance principle [13] as:

𝑇out −𝑇in = 𝑃
𝑐p𝜌𝛼

, · · · server side
𝑇return −𝑇supply =

∑
𝑖 𝑃𝑖

𝑐p𝜌𝑉
, · · ·CRAC side (1)

where 𝑃 is the power usage of a server,
∑

𝑖 𝑃𝑖 is the total power usage of servers within a CRAC air
loop, 𝛼 is the server passing-through volume flow rate, 𝑉 is the CRAC supply volume flow rate, 𝑐p
and 𝜌 is the heat capacity and density of air, respectively.

The servers in general have different characteristics in passing the cooling air through them.
The characteristic highly depends on the server form factor and the control logics of the server’s
internal fans. Owing to the distinct characteristics, the servers in a data hall often have different
passing-through air flow rates. The server air flow rates are part of the CFD boundary configurations
that greatly affect the predicted temperature distributions of the data hall. Therefore, to achieve
high CFD accuracy, the server air flow rates should be correctly configured before CFD simulation.
Unfortunately, they are often unknown and hard to obtain. The current manual in situ measurement
using an air volume flow rate meter for each server is labor intensive, especially for a large-scale
data hall that hosts many types of servers. As a result, the server air flow rates are often empirically
estimated by human expert. For a CFD model with many (e.g., thousands) servers, the rough settings
of the server air flow rates could significantly downgrade the temperature prediction capability of
the CFD model. The low accuracy will impede the use of CFD model for the desired fine-grained
operational adjustment to pursue energy efficiency without causing thermal risk.

In this paper, we focus on devising an automatic approach to calibrate the server air flow
rates configuration for data hall CFD models on a steady system state. The approach can be also
extended to include other parameters (e.g., by-pass air flow rates and recirculated air flow rates) into
calibration. The system state consists of the following measurements: the setpoints and fan speeds
of CRAC units, server powers and the temperatures measured in the hot and cold aisles. With the
calibrated server air flow rates, the CFD model will yield more accurate temperature prediction
results. Although the CFD model can predict the temperature at any location, we focus on the
locations that are deployed with temperature sensors and thus have ground-truth temperature
measurements for accuracy evaluation. After model calibration, we will further investigate the
POD-based model reduction technique to accelerate the CFD simulation speed. The reduced-order
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model is expected to achieve real-time temperature prediction without losing spatial resolution
and maintain satisfactory temperature prediction accuracy.

3.2 Problem Formulation
To formulate the model calibration and reduction problem, we first define the relevant parameters
and variables. Unless particularly specified, the notations used in this paper are summarized in
Table 2. We consider a data hall hosting 𝑙 CRACs,𝑚 servers, and 𝑛 temperature sensors deployed
in the cold and hot aisles, respectively.

Definition 1 (Input). The input data for solving a CFD model is a vector consisting of all boundary
conditions. Formally, the input x = (Tc,V, P,α), where Tc = (𝑇c1,𝑇c2, . . . ,𝑇c𝑙 ), V = (𝑉1,𝑉2, . . . ,𝑉𝑙 ),
P = (𝑃1, 𝑃2, . . . , 𝑃𝑚), and α = (𝛼1, 𝛼2, . . . , 𝛼𝑚) are the vectors of CRAC setpoints, CRAC volume
flow rates, server powers, and server air flow rates, respectively.

Definition 2 (Output). The output of CFD is a steady-state temperature distribution field T̃(x) =
(𝑇1,𝑇2, . . . ,𝑇𝑁 ). For CFD model calibration, we focus on a subset of results within the field at 𝑛
locations (𝑛 ≪ 𝑁 ) installed with temperature sensors, which is denoted by T̃s = (𝑇s1,𝑇s2, . . . ,𝑇s𝑛).
Definition 3 (Measurement). The measurement is a vector of real temperature values recorded by
the physical sensors, which is denoted by Ts = (𝑇s1,𝑇s2, . . . ,𝑇s𝑛).
3.2.1 Model calibration problem. Let ∥·∥2 denote the ℓ2-norm of a vector. With the above definitions,
the CFD model calibration aims to find the server air flow rate configurations that minimize the
ℓ2-norm of the error vector between the model outputs and the measurements:

α∗ ≜ arg min
α

1
𝑀

𝑀∑︁
𝑖=1

T̃s (x𝑖 ) − Ts𝑖

2

2
,

s.t. 𝛼l ≤ 𝛼𝑖 ≤ 𝛼u, 𝑖 = 1, 2, . . . ,𝑚,

𝑚∑︁
𝑖=0

𝛼𝑖 ≤
𝑙∑︁
𝑗=0

𝑉𝑗 ,

(2)

where 𝑀 is number of the collected samples and α∗ is the vector of calibrated air flow rates. Each
element in α should be within an empirically estimated range [𝛼l, 𝛼u] and the total volume of
server air flow rate should be less than the total CRAC supply. We assume that the servers of the
same type have the same volume air flow rate.

We now use an example in a real production data hall to illustrate the discrepancy of an uncali-
brated CFD model and the actual sensor measurements. We first show a summary of the working
conditions of the data hall. Fig. 2(a) shows a sample distribution of the servers’ power consumption
at a time instant. Fig. 2(b) is the CRAC setpoints and the corresponding fan speed ratios. Fig. 2(c)
shows the temperature values measured by a number of sensors and uncalibrated CFD predictions
on the locations of these sensors. For the sensor measurements, the cold aisle temperatures range
from 20°C to 24°C, which are related to the CRAC setpoints and fan speed ratios. The hot aisle
temperatures range from 30°C to 36°C, which are affected by the generated heat from the servers.
The air flow rate of each server is empirically determined for the raw CFD model. With these initial
configurations, the CFD model has temperature prediction errors from 2°C to 6°C. Such large errors
disqualify the raw CFD model as a high-fidelity digital twin.

3.2.2 Model reduction problem. The model reduction assumes the temperature field can be ap-
proximated by 𝐻 orthogonal basis vectors 𝚽 = (ϕ1,ϕ2, . . . ,ϕ𝐻 ) by T̃(x) = ∑𝐻

𝑖=1 𝛽𝑖 (x)ϕ𝑖 , where
𝛽𝑖 , 𝑖 = 1, 2, . . . , 𝐻 is the boundary-specific coefficients. Let ⟨·, ·⟩ denote the inner product of two
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Fig. 2. Collected data from a data hall at a time instant. (a) Server power consumption distribution, (b) CRAC
setpoints and flow rates, (c) Sensor measurements and raw CFD temperature outputs at corresponding sensor
locations.

vectors. With the above assumption and definitions, the model reduction first aims to find the 𝐻
orthogonal basis vectors that minimize the ℓ2-norm of the error between the CFD model output
and its projection onto the vector bases as:

𝚽
∗ ≜ arg min

𝚽

1
�̃�

�̃�∑︁
𝑖=1

T̃(x𝑖 ) − 𝐻∑︁
𝑗=1
⟨T̃(x𝑖 ),ϕ𝑗 ⟩ϕ𝑗

2

2

,

s.t. ϕ⊺
𝑖
ϕ𝑗 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝐻,

(3)

where �̃� is the number of CFD generated samples and 𝚽
∗ is the set of optimal basis vectors. The

constraint ensures that the basis vectors are orthogonal and normalized with a unit length of 1.
The above problem is equivalent to maximizing the projection of the model output onto the vector
bases. Thus, we can write the Lagrange function as: 𝐿(𝚽, 𝜆) = 1

�̃�

∑�̃�
𝑖=1 (

∑𝐻
𝑗=1⟨T̃(x𝑖 ),ϕ𝑗 ⟩

2

2
) −∑𝐻

𝑖,𝑗=1 𝜆𝑖 𝑗 (
ϕ𝑗

2
2 − 1), where 𝜆 is the Lagrange multiplier. Then, the optimal solution of 𝚽 can

be derived by using the Karush-Kuhn-Tucker (KKT) conditions as 1
�̃�

∑�̃�
𝑖=1 T̃(x𝑖 ) (T̃(x𝑖 )⊺ϕ𝑗 ) =

𝜆 𝑗 𝑗ϕ𝑗 , 𝑗 = 1, 2 . . . , 𝐻 . The optimization problem is then converted to solving the eigenvectors of
the correlation matrix C = 1

�̃�
T̃T̃⊺ ∈ R𝑁×𝑁 . Once the optimal modes are determined, we need to

solve the boundary-specific coefficients to reconstruct the temperature field. We next present the
knowledge-based approach to solve the coefficients.
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Fig. 3. System workflow that consists of two major blocks of CFD calibration and reduction. We first build
the raw CFD model based on the meta-data of a physical DC. Then, we implement CFD model calibration
based on real sensor data in four iterative steps. After the CFD model is calibrated, we further reduce the
order of the calibrated model to accelerate its computation in four consecutive steps.

4 MODEL CALIBRATION AND REDUCTION APPROACH
In this section, we first present the overview of our approach. Then, we introduce the proposed
knowledge-based model calibration and reduction methods, respectively.

4.1 Approach Overview
Fig. 3 illustrates the workflow of our proposed approach that consists of two major blocks of CFD
calibration and reduction. We first build the CFD model using the meta-data of the target DC,
such as the data hall geometric layout and the facility locations. Then, we conduct CFD model
calibration based on real sensor measurements to improve its temperature prediction fidelity. The
calibration is implemented in four iterative steps. After CFD calibration, we reduce the order of the
calibrated model in four consecutive steps to achieve real-time temperature prediction without
losing spatial resolutions. In what follows, we describe the details of the model calibration and
reduction, respectively.
■Model calibration approach. Due to the high computational cost of CFD model, directly

solving the optimization problem in Eq. (2) using the traditional search-based algorithms incur
unacceptable computation overhead. To address this issue, we design a surrogate of the CFD model.
Let T̂s ∈ R1×𝑛 denote the temperature output vector of the surrogate. Then, the problem in Eq. (2)
is converted to a surrogate-assisted optimization that can be solved by iterating four consecutive
steps as shown in the CFD calibration of Fig. 3. Specifically, in the first step marked by 1 , the
surrogate model is trained to be locally aligned with the CFD model by minimizing the discrepancy
between the surrogate’s and the CFD’s outputs as W∗ ≜ arg minW

1
𝑀

∑𝑀
𝑖=1

T̃s (x𝑖 ) − T̂s𝑖 (W, x𝑖 )
2

2
,

where W is a set of trainable weights of the surrogate and W∗ is the result of the surrogate training.
In the second step marked by 2 , with W∗, the surrogate is re-optimized through re-training
such that the discrepancy between the surrogate’s output and the measurement is minimized
as α∗ ≜ arg minα

1
𝑀

∑𝑀
𝑖=1

T̂s𝑖 (W∗, x𝑖 ) − Ts𝑖

2

2
. In the third step marked by 3 , the finded α∗ is

configured into the CFD model for a steady-state simulation. In the forth step marked by 4 , the
CFD is validated based on physical sensor measurements. If the surrogate approaches to the CFD
model, the α∗ after the convergence of the four-step iterations will approach to the one given by
Eq. (2). We will present the details of the surrogate modeling in §4.2.
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■Model reduction approach. After the CFD model is calibrated, it is desirable to reduce its
order to accelerate the simulation speed. From §3.2.2, the model reduction first requires to solve the
eigenvectors of the correlation matrix C ∈ R𝑁×𝑁 derived from Eq. (3). However, directly solving
C is computationally intensive when the mesh points 𝑁 of a CFD model is large. For example, 𝑁
can be larger than 107 for a large-scale data hall in §5.1.1. To address this challenge, we adopt the
snapshot method [11] to build another correlation matrix C̃ = 1

�̃�
T̃⊺T̃ ∈ R�̃�×�̃� , where �̃� is the

number of CFD generated samples, i.e., the snapshots. Then, the POD modes are derived by 𝚽 = T̃𝚿,
where each column of 𝚿 is the eigenvector of C̃. Thus, the original 𝑁 × 𝑁 eigenvector problem is
reduced to �̃� × �̃� , where �̃� ≪ �̃� . The model reduction consists of four steps as illustrated in the
CFD reduction of Fig. 3. Specifically, in the first step marked by 1 , we generate �̃� snapshots by
running the CFD model with different boundary conditions. In the second step marked by 2 , the
POD modes are obtained by solving Eq. (3) using the snapshot method. In the third step marked
by 3 , with new boundary conditions as input, the POD coefficients are determined based on the
energy balance principle. We will present the details of this step in §4.3. In the forth step marked
by 4 , the temperature field is obtained by the linear combination of the derived POD modes and
corresponding coefficients.

4.2 Knowledge-based Neural Surrogate Calibration
4.2.1 Incorporated prior knowledge. As discussed in §1, to address the challenges of the surro-
gate’s complexity versus the needed volume of CFD-generated training data, we incorporate prior
knowledge for initial training data selection and surrogate architecture design. We now illustrate
three pieces of incorporated knowledge. First, we model the server air flow rate as a linear function
of the server power. Specifically, according to [8], the server’s internal fan speed is related to the
CPU utilization and the inlet temperature. These two factors jointly affect the server power usage.
Therefore, we model the server air flow rate as a linear function of the server power usage, i.e.,
𝛼 = 𝛼𝑃 , where 𝛼 is a constant in volume per second per Watt (m3/s/W). Second, we initialize the
server air flow rate based on the closest sensor measurements and the energy balance principle
to generate the initial training data. Specifically, from Eq. (1), the 𝑖th server’s air flow rate can be
initialized as 𝛼𝑖 = 𝑃𝑖

(Δ𝑇𝑖+𝛿)𝑐p𝜌
, where 𝛿 is a uniform random variable and Δ𝑇𝑖 is approximated by the

difference between the closest server sensor measurements at the hot and cold aisles, respectively.
Third, we build a knowledge-based neural surrogate that can capture the physical layout and
thermal relations among a number of key variables of the considered data hall. Specifically, we
model a set of facilites (i.e., CRACs, servers, and sensors) in the considered hall as nodes and their
connections as edges into a directed graph. The direction of an edge characterizes the thermal
causality between the two end nodes of the edge. For example, an edge points from a CRAC node to
a sensor node, because the supply air temperature of the CRAC affects the measured temperature
of the sensor. The normalized reciprocal spatial distance between any two facilities will be used
as the weight of the edge connecting the corresponding two nodes in the graph. This modeling
approach follows the fact that the temperature measured by a sensor is mostly affected by the
facilities in its neighborhood [16]. We will present the detailed architecture design in §4.2.2.

4.2.2 Neural surrogate architecture. The neural surrogate aims to approximate the complex ther-
mophysics encompassed in the CFD model. In particular, its efficient training with a small amount
of data generated from the CFD model is desirable, since the data generation requires intensive
computation. Fig. 4 shows the proposed neural surrogate architecture. It consists of a cooling block
and a heating block. The cooling block models the impact of the CRACs on the temperatures at all
sensor locations; the heating block models the impact of the servers on the temperatures at the
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Fig. 4. The architecture of the knowledge-based neural surrogate for temperature prediction. The structure
consists of a cooling block and a heating block. The weight between any two facilities is initialized using their
normalized reciprocal spatial distance. Two linear hidden layers are used to predict the cold aisle temperatures
and temperature rises induced by servers.

hot aisle sensor locations. Thus, the summation of the two blocks captures the effects from both
CRACs and servers. The input of the model consists of the free variables of the data hall’s steady
state at a time instant, including CRAC temperature setpoints and fan speeds, and server powers.
The server air flow rates are designated as trainable variables of the neural surrogate and initialized
with rough estimates. Note that, as the neural surrogate is differentiable, the server air flow rates
can be updated efficiently by backpropagation-based neural net training algorithms for the purpose
of calibration. The output of the neural surrogate is a vector of 𝑛 predicted temperatures at the
sensor locations. In what follows, we present the designs of the cooling and heating blocks of the
neural surrogate to capture prior knowledge of the thermal relations among the key variables.
Lastly, we present the settings of the constants used by the neural surrogates, which are also based
on the prior knowledge on the layout of the modeled data hall.
■ Cooling block. This block models the impact of the CRAC temperature setpoints Tc and fan

speeds V on the temperatures at all sensor locations. First, we encode the two free variables (i.e.,
Tc and V) into a hidden-layer variable for the 𝑘 th sensor as 𝑋 cold

𝑘
=
∑𝑙

𝑖=1𝑇c𝑖 · 𝑐𝑖𝑘 , where 𝑇c𝑖 is the
setpoint of the 𝑖th CRAC and 𝑐𝑖𝑘 is a cooling coefficient characterizing the impact of the 𝑖th CRAC
on the 𝑘 th sensor. We design 𝑐𝑖𝑘 to be positively related to the CRAC fan speed. Specifically, we
use softmax activation to compute the cooling coefficient matrix as 𝑐𝑖𝑘 = 𝑒𝑧𝑖𝑘∑𝑙

𝑎=1 𝑒
𝑧𝑎𝑘

, where 𝑧𝑖𝑘 is an
intermediate variable defined by 𝑧𝑖𝑘 = 𝑉𝑖 ·𝑊 cs

𝑖𝑘
, 𝑉𝑖 is the fan speed of the 𝑖th CRAC, and𝑊 𝑐𝑠

𝑖𝑘
is a

weight characterizing the thermal impact of the 𝑖th CRAC on the 𝑘 th sensor. The CRAC-to-sensor
matrix Wcs ∈ R𝑛×𝑙 consisting of𝑊 𝑐𝑠

𝑖𝑘
for 𝑖 = 1, . . . , 𝑙 and 𝑘 = 1, . . . , 𝑛 is an adjacency matrix. The

weights in this matrix can be fixed or trainable. If they are fixed, their settings are important and
will be discussed in §4.2.2. §5 will compare the performance of the neural surrogates with Wcs

fixed or trainable. Lastly, we use a linear layer to project the hidden-layer variable to temperature
as 𝑇 cold

𝑘
= 𝑎𝑘𝑋

cold
𝑘
+ 𝑏𝑘 , where 𝑎𝑘 and 𝑏𝑘 are two trainable weights.

■ Heating block. This block models the impact of the servers on the temperatures at the hot
aisle sensor locations. Based on this energy balance principle, we use server powers and air flow
rates to predict the server-induced temperature increase Δ𝑇𝑘 at the 𝑘 th hot aisle sensor location.
Specifically, Δ𝑇𝑘 = 𝑐𝑘𝑋

hot
𝑘
+𝑑𝑘 , where 𝑐𝑘 and 𝑑𝑘 are two trainable weights, and𝑋 hot

𝑘
is a hidden-layer

variable. The 𝑋 hot
𝑘

is defined by 𝑋 hot
𝑘

=
∑𝑚

𝑗=1
𝑃 𝑗

𝛼 𝑗
·𝑊 ss

𝑗𝑘
, where 𝑃 𝑗 is the 𝑗 th server power, 𝛼 𝑗 is the 𝑗 th

server air flow rate, and𝑊 𝑠𝑠
𝑖 𝑗 is the weight characterizing the thermal impact of the 𝑗 th server on the

𝑘 th sensor. We define the server-to-sensor adjacency matrix Wss consisting of𝑊 ss
𝑗𝑘

for 𝑗 = 1, . . . ,𝑚
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and 𝑘 = 1, . . . , 𝑛. Similar to Wcs, Wss can be fixed or trainable. For the former case, its setting is
discussed in §4.2.2. Note that the heating block outputs Δ𝑇𝑘 for all sensor locations (denoted by
ΔT); but only the outputs at hot aisle sensor locations will be used when combing the results of
the cooling and heating blocks. This design simplifies the vectorized implementation of the neural
surrogate using PyTorch (cf. §5.1.4).
■ Joining two blocks and adjacency matrices settings. With hot-aisle containment and

blanket, heat recirculation is negligible. Thus, the temperatures at cold aisle sensor locations are
mainly affected by the CRACs; the temperatures at hot aisle sensor locations are jointly affected
by the CRACs and servers. To combine the outputs of the cooling and heating blocks, we define a
one-hot vector e ∈ {0, 1}𝑛 , where its element 𝑒𝑘 = 1 or 0 represents that the 𝑘 th sensor location
is in hot or cold aisle, respectively. Therefore, the final output of the neural surrogate, i.e., the
temperatures at all sensor locations, can be expressed by T̂s = Tcold⊗ (1−e)+Tcold⊗e+ΔT⊗ (1−e),
where ⊗ represents element-wise product, Tcold ⊗ (1 − e) gives the temperatures at the cold aisle
sensor locations, and Tcold ⊗ e+ΔT⊗ (1−e) gives the temperatures at the hot aisle sensor locations.

If Wcs and Wss are fixed, the weights of the neural surrogate are W = {𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘 |𝑘 = 1, . . . , 𝑛};
otherwise, W additionally include Wcs and Wss. Each of their elements represents the thermal
impact of a facility (CRAC or server) on a sensor location. Since the thermal impact decreases
with spatial distance, in this paper, we set it to be a normalized reciprocal of the spatial distance
between the facility and the sensor location. When it is lower than a threshold, it is forced to be
zero, indicating that the corresponding thermal impact is negligible. Thus, to set these two matrices,
the layout of the data hall and the sensor locations will be needed, which are available to the DC
operator in general.

4.2.3 Four-step iterations for CFD calibration. Let 𝑇s𝑘 , 𝑇s𝑘 , 𝑇s𝑘 denote the surrogate-predicted
temperature, CFD-predicted temperature, and the measured temperature at the location of the 𝑘 th

sensor, respectively. Algorithm 1 shows the pseudocode of the four-step iterations. We now explain
it in detail.

Neural surrogate training (Line 4-6): The training data is generated by solving the CFD model
with collected system input (including CRAC temperature setpoints and fan speeds, server powers)
and the initial α or calibrated α by the previous iterations to yield the predicted temperatures
at sensor locations. The detailed training data generation is described in §5.2.1. Note that each
element of α should be within [𝛼𝑙 , 𝛼𝑢]. The system input, the α, and the predicted temperatures
form a new training data sample that is added to the training dataset accumulated from the first
iteration. With the training dataset, the neural surrogate is updated to minimize the errors between
its predicted temperatures and the CFD-predicted temperatures of the training samples. Thus, the
weights of the neural surrogate are updated using the gradient of the least squares loss function of
L1 =

1
𝑀

∑𝑀
𝑖=1

(T̂s𝑖 (W, x𝑖 ) − T̃s𝑖 (x𝑖 ))
2

2
. As a result, the surrogate is trained to align with the CFD

model. At the end of this step, W is frozen.
Surrogate-assisted calibration (Line 7-8): The surrogate is re-optimized to minimize the

errors between its predicted temperatures and the measured temperatures by updating α. In this
step, α is set trainable. An empirical regularization term is added to penalize the loss function
if the temperature difference between the hot and cold aisle, i.e., Δ𝑇 , is out of the empirical
range [Δ𝑇l,Δ𝑇u]. The penalty term is expressed using the rectified linear units (ReLU) as ℎ(𝑇 ) =∑𝑚

𝑗=1 (ReLU(Δ𝑇l − Δ𝑇 ) + ReLU(Δ𝑇 − Δ𝑇u)) × 𝑃 𝑗 , where 𝑃 𝑗 is the 𝑗 th server power usage. The term
means that, if the server power is higher, the penalty should be more significant. Thus, the second
loss function is expressed by L2 = 1

𝑀

∑𝑀
𝑖=1

T̂s𝑖 (W∗, x𝑖 ) − Ts𝑖

2

2
+ 𝜆ℎ(Δ𝑇 ). In our experiments,

we set Δ𝑇l and Δ𝑇u to be 5°C and 15°C, based on the operator’s experience. To accelerate the
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Algorithm 1 CFD model calibration.
Input: Measurements collected from a data hall, including CRAC setpoints Tc, CRAC flow rates

V, server powers P, and sensor measurements Ts. Initial server air flow rates α. Adjacency
matrix Wcs and Wss.

Output: Calibrated server air flow rates α∗.
1: Initialize 𝛼 and adjacency matrix;
2: Assign initial configurations to the surrogate graph G;
3: for 𝑖 = 1 : Max iteration do
4: Solve CFD model to obtain T̃s;
5: Aggregate CFD solving results as training data;
6: Train surrogate by performing gradient descent that minimizes L1;
7: Search α by performing differential evolution that minimizes L2;
8: Search α by performing gradient descent that minimizes L2;
9: Configure α to the CFD model;

10: if 1
𝑛

∑𝑛
𝑖 |𝑇s𝑖 −𝑇s𝑖 | < 𝜖 then

11: 𝜖 ← 1
𝑛

∑𝑛
𝑖 |𝑇s𝑖 −𝑇s𝑖 |; α∗ ← α;

12: end if
13: end for

Algorithm 2 CFD model reduction
Input: Calibrated server air flow ratesα∗ and other boundary conditions, including CRAC setpoints

Tc, CRAC flow rates V and server powers P.
Output: A set of POD modes 𝚽, vector of coefficients β and reconstructed temperature field.

1: Generate training samples by running CFD simulation and calculate their mean average
temperature T̃mean;

2: Solve the eigenvector problem of Eq. (3) to derive 𝚽;
3: Observe new boundary conditions;
4: Construct the linear equation system of Eq. (4) via energy balance principle;
5: Solve the least square of Eq. (4) to derive β;
6: Reconstruct the temperature field by T̃mean +

∑𝐻
𝑖=1 𝛽𝑖ϕ𝑖

re-optimization, we implement a hybrid approach of combining differential evolution algorithm
with gradient backpropagation to minimize the loss function L2. This hybrid approach has been
shown effective in accelerating neural net training [39]. We will also evaluate its effectiveness for
our specific problem in §5.2.1.
CFD configuration (Line 9): Once the α is recommended by the surrogate, the updated value

is configured back to solve the CFD model. The refined boundary conditions are then used for
initializing the next calibration iteration.

CFDvalidation (Line 10-12): For each calibration iteration, the CFD model’s accuracy is validated
against the ground-truth sensor measurements. During the process, only better α is recorded for
final output candidate.

Through the adaptive sampling and iterative optimization of the two loss functions L1 and L2,
the surrogate will be updated toward finding better α that can improve the CFD model’s accuracy.
We will evaluate the effectiveness of this approach in §5.2.
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4.3 Knowledge-based CFD Model Reduction
4.3.1 Determination of POD coefficients. As presented in §4.1, the POD modes can be derived by
solving the eigenvector problem given a set of snapshots. To obtain the temperature field with a
new set of boundary conditions, we need to find the corresponding POD coefficients such that
the error between the reconstructed temperature and the original CFD output is minimized as
β∗ ≜ arg minβ

∑𝐻
𝑖=1 𝛽𝑖 (x)ϕ∗𝑖 − T̃(x)

2

2
. One approach to solve this problem is to project the derived

POD modes onto the CFD governing equations by the Galerkin’s method [25] and solve a set of
algebraic equations for a steady state. In this paper, we focus on locally specified regions where
the energy balance equations can be established, such as the server inlet/outlet and the CRAC
supply/return surfaces. For a data hall equipped with multiple CRACs, we consider the global
energy balance across these CRACs as

∑𝑙
𝑘=1 𝑐p𝜌𝑉𝑘 (𝑇𝑘

return −𝑇𝑘
supply) =

∑𝑚
𝑗=1 𝑃 𝑗 . Then, the equation

system in terms of specific boundary conditions is written as:



∑𝐻
𝑖=1 𝛽𝑖 (x) (ϕ𝑖1

out −ϕ𝑖1
in) =

𝑃1
𝑐p𝜌𝛼1

,∑𝐻
𝑖=1 𝛽𝑖 (x) (ϕ𝑖2

out −ϕ𝑖2
in) =

𝑃2
𝑐p𝜌𝛼2

,

. . .∑𝐻
𝑖=1 𝛽𝑖 (x) (ϕ𝑖𝑚

out −ϕ𝑖𝑚
in ) =

𝑃𝑚
𝑐p𝜌𝛼𝑚

,∑𝑙
𝑘=1

∑𝐻
𝑖=1𝑉𝑘𝛽𝑖 (x) (ϕ𝑖𝑘

return −ϕ𝑖𝑘
supply) =

∑𝑚
𝑗=1 𝑃 𝑗

𝑐p𝜌
,

(4)

where ϕ𝑖𝑚
in , ϕ𝑖𝑚

out and ϕ𝑖𝑘
return are the values of the 𝑖th POD mode close to the center of the 𝑚th

server inlet/outlet and the 𝑘 th CRAC return, respectively. If the summation of servers is greater
equal than the number of POD modes, i.e., 𝑚 ≥ 𝐻 , the equation system is overdetermined and can
be solved using the least-square method. Thus, the computational overhead of solving a CFD model
with the governing partial derivative equations is reduced to solving the least-square problem.

4.3.2 Four-step procedures for CFD reduction. After CFD calibration, we use the calibrated server
air flow rate α∗ as the default boundary conditions to reduce the order of CFD model. Algorithm 2
shows the pseudocode of the CFD model reduction. We now explain it in detail.
Generate training samples (Line 1): We first generate a set of training samples based on the

calibrated α∗ and other boundary conditions. These boundary conditions can be selected from
historical measurements or proper experimental designs. We also calculate the mean average
temperature across these training samples.
POD modes solving and selection (Line 2): With the generated CFD samples, we derive the

POD modes 𝚽 by solving the problem in Eq. (3) using the snapshot method. We then select a finite
number of derived modes with dominant energy percentage of the temperature field.

POD coefficients solving (Line 3-Line 5): To calculate the temperature field of a new case using
the reduced-order model, we solve the corresponding POD coefficients based on the physics-based
linear equation system in Eq. (4) by the least-square method.
Temperature prediction (Line 6): With the derived POD modes and the boundary-specific

coefficients, the full temperature field can be reconstructed by the their linear combination for
different number of selected POD modes. To increase the accuracy of the approximation, we use
the summation of the mean average temperature over snapshots and their fluctuating values from
the linear combination to reconstruct the temperature field as T̃mean +

∑𝐻
𝑖=1 𝛽𝑖 (x)ϕ𝑖 .
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Fig. 5. Geometric layout of the target data halls. The red points are the positions installed with temperature
sensors. (a) Hall A; (b) Hall B.

Table 3. Experimental settings.

Parameter Setting Parameter Setting

server flow rate bound [𝛼l, 𝛼u] (m3/s) [0.005, 0.1] noise bound for initialization [𝛿l, 𝛿u] (°C) [6, 12]
CFD solving iterations 1000 surrogate training epoch 150
cases for calibration 10 cases for test 5
calibration iterations 10 differential search iterations 100
initial learning rate 0.1 crossover rate 0.6
learning rate decay 0.9 cases for POD training 15
population size 10 selected POD modes 10

5 PERFORMANCE EVALUATION
In this section, we apply the proposed Kalibre and Kalibreduce to CFD models built for two
production data halls and present their evaluation results.

5.1 Experiment Methodology and Settings
5.1.1 Data halls and CFD models. Our targets are two production data halls (referred to as Hall A
and Hall B) as shown in Fig. 5. Hall A is equipped with one-side CRACs and Hall B is equipped
with bilateral CRACs. These two halls are in operation for e-commerce applications. Both of them
occupy hundreds of square meters and host thousands of servers 1. Their CFD models were built
by a domain expert using OpenFOAM [12]. Specifically, first, the geometry of the data hall and its
hosted facilities is built with Salome [31]. Then, OpenFOAM is used to discretize the fluid domain
with hexahedral grid for solving. The numbers of the grids of the two CFD models are 7 and 10
million, respectively. After the grids are created, the NS and energy balance equations are solved in
OpenFOAM to derive the air flow and temperature distribution, where the air is assumed to be
incompressible and the turbulence is modeled using the k-epsilon method [18].

5.1.2 Evaluation metrics and experimental settings. To evaluate the model accuracy, we use the mean
absolute error (MAE) to measure the differences of temperature prediction at locations installed with
sensors. Specifically, 𝑀𝐴𝐸 = 1

𝑀
1
𝑁

∑𝑀
𝑖=1

∑𝑁
𝑖=1 |𝑦𝑖 −𝑦𝑖 |, where 𝑁 is the number of deployed sensors, 𝑀

is the number of test cases, 𝑦𝑖 and 𝑦𝑖 are the 𝑖th sensor measurement and the prediction made by the
CFD, respectively. To evaluate the computation overhead, we compare the simulation time of the
original and the reduced-order model on the same machine. Table 3 shows the experimental settings.
1The detailed configurations of their hosted facilities are omitted here due to confidentiality requirement.
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Fig. 6. CFD MAE over calibration iterations with different approaches. (a) Hall A; (b) Hall B.

These settings include the experimental settings, empirical bounds, the surrogate hyperparameters
and the POD modes. They are selected based on advice from the domain expert or extensive
experimental tests.

5.1.3 Compared approaches. We compare Kalibre in CFD model calibration with three baselines
discussed in §1:
■Manual calibration involves extensive tuning of the server air flow rates by a CFD expert

with years of experience as conducted by [7]. Specifically, if the CFD-predicted temperature at a
sensor location is higher than the ground-truth temperature, the expert empirically increases the
flow rates of nearby servers and vice versa.
■Heuristic parameter search uses the covariance matrix adaptation evolution strategy (CMA-

ES) to search good α. It solves the CFD model every search iteration. CMA-ES is a gradient-free
numerical optimization method. It applies the (1+1) strategy to generate one candidate solution per
iteration. If the MAE of the new offspring is smaller, it becomes the parent. The mutation rate is set
to 𝜎 = 5 and updated for each iteration by following the 1/5 successful evolution rule described in
[29].
■ Vanilla neural surrogate uses a black-box neural surrogate with three fully-connected layers

consisting of 518, 128, and 32 neurons, respectively. It also follows Kalibre’s four-step iterations to
perform the model calibration. The difference is that it does not incorporate the prior knowledge
mentioned in §4.2.1 for initial training data selection.

We also consider two variants of Kalibreduce that incorporates different level of knowledge to
reduce the CFD model:
■ Local reduction only considers the energy balance on individual server side. It constructs the

linear equation system based on the temperature difference between each server’s outlet and inlet.
■ Global reduction jointly considers the energy balance across multiple CRACs and servers. It

constructs the linear equation system using both server-level and CRAC-level knowledge.

5.1.4 Implementation. We implement the model calibration and reduction with Python 3.8 and
PyTorch 1.9 [24], where the latter is a library widely used for building machine learning applications.
When we use PyTorch to build the neural surrogate’s computational graph, the server air flow rates
α are set as a vector of trainable variables. This allows us to control their updating by choosing to
freeze the gradients or not. We choose Adam [14] as the optimizer, which is a method for efficient
stochastic optimization that only requires first-order gradients and little memory space. The linear
equation system in Eq. (4) is solved by the least-square solver in SciPy [38]. The OpenFOAM can
load the boundary conditions from a configuration file. In our implementation, the Python program
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(a) (b)

Fig. 7. Average loss over Kalibre’s iterations. (a) With differential evolution; (b) Without differential evolution,
note that the 𝑦-axis scale is not uniform.

writes the boundary conditions to a configuration file, invokes an OpenFOAM session to solve the
CFD model, and collects results by parsing the OpenFOAM’s output.

5.2 Evaluation of Kalibre
5.2.1 Convergence and effectiveness of Kalibre. In this set of experiments, we evaluate the conver-
gence speed and the effectiveness of different calibration approaches. To initiate Kalibre’s four-step
iterations, we first solve the CFD model to generate five training data samples by setting each
element of α as described in §4.2.1. In the following four-step iterations, a new training data sample
is generated by solving the CFD model configured with the latest α∗ found by the neural surrogate.
This new training data sample is added to the training dataset. In this set of experiment, the calibra-
tion terminates after ten CFD simulations. Fig. 6 shows the MAEs of the two CFD models over the
ten iterations. We observe that the MAE under Kalibre converges faster than both the heuristic and
vanilla approaches. After around three to four iterations, the MAEs of the CFD models are lower
than that calibrated by human expert. We also note that the CFD models under Kalibre achieve
lower errors at the first calibration iteration. This is benefited from the incorporated knowledge to
sample training data at the initialization phase. In the following iterations, Kalibre’s surrogate is
updated toward finding better configurations of α∗ from that initialization.

As presented in §4.2.3, Kalibre adopts a hybrid approach combining the gradient backpropagation
widely used for neural net training and the differential evolution to find α∗. Fig. 7(a) shows the
average loss over the four-step iterations. In the first iteration, the average loss is very large, reaching
around 105. A closer examination shows that the regularization penalty of the loss function L2 is
large in the very early iterations. However, in the subsequent iterations, the average loss sharply
decreases and converges to zero in the tenth iteration. For comparison, we adopt a baseline of using
the Adam optimizer only to find α∗. Fig. 7(b) shows the results of this baseline. We can see that the
convergence is slow and the average loss remains large (about 0.5 × 105) after ten iterations. The
results show that the differential evolution effectively accelerates the convergence of Kalibre.

5.2.2 Performance of calibrated model. Then, we show the effectiveness of the model calibration.
After ten calibration iterations, we choose the α with the lowest error as default settings to evaluate
the CFD models on test cases with different boundary conditions. Figs. 8(a) and 9(a) show the
two halls’ thermal planes computed based on the uncalibrated CFD models presented for one test
case. We can see that the temperature distribution is uneven in both the cold and hot aisles. The
uncalibrated CFD models’ prediction errors are from 3°C to 6°C as shown in Fig. 2(c). Such large
errors are due to the inaccurate estimation of the server air flow rates. Figs. 8(b) and 9 (b) show
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Fig. 8. Hall A temperature distribution. (a) Thermal plane produced by the original CFD model; (b) Thermal
plane produced by the calibrated CFD model; (c) Thermal plane produced by reduced-order CFD model; (d)
Temperature predictions versus ground-truth temperatures at the sensor locations.

the thermal planes computed based on the CFD models with the calibrated server air flow rates.
Figs. 8(d) and 9(d) show the temperatures predicted by the two halls’ calibrated CFD models at
the sensor locations and the ground-truth values measured by the sensors. We can see that the
temperature distributions become more uniform, compared with the results shown in Figs. 8(a) and
9(a). From Figs. 8(d) and 9(d), the temperatures predicted by the calibrated CFD models well match
the ground-truth values, with MAEs of 0.51°C and 0.86°C for the two halls, respectively. The above
results show the effectiveness of Kalibre for large-scale data halls.

5.2.3 Comparison with baseline approaches. We next compare the performance of Kalibre with
other baselines mentioned in §5.1.3. Table 4 shows the MAEs of five independent cases achieved by
different approaches after ten calibration iterations. With ten calibration iterations, Kalibre achieves
lower MAEs compared with the baseline approaches for both halls. After about 10 calibration
iterations, Kalibre achieves MAEs of 0.57°C and 0.88°C for the two halls, respectively. As shown
in §5.2.1, the convergence speed of the vanilla neural surrogate is slow without better initialization.
It thus requires more calibration iterations to generate more training data samples to well represent
the CFD model. Thus, with ten calibration iterations, its calibrated CFDs still yield MAEs higher
than manual approach. The heuristic parameter search cannot find good configurations with the
same CFD iteration times. Its MAEs remain at high levels of 1.52°C and 2.20°C, respectively. Even
after one hundred of CFD model solving processes, their MAEs still saturate at 1.42°C and 1.96°C
for the two halls, respectively. Thus, we can see that the heuristic parameter search and vanilla
neural surrogate are inefficient to find the optimal configuration under the same computation
time. Although the manual calibration reduces the MAE to 0.98°C to 1.16°C, it is labor-intensive. In
addition, its MAEs are higher than Kalibre’s. The lower MAEs achieved by Kalibre further improves
the fidelity of the CFD results. If such results are used to guide the DC operations, the risks caused
by the errors can be further reduced. In sum, systematic approaches to improve the fidelity of data
hall digital twin are always desirable.
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Fig. 9. Hall B temperature distribution. (a) Thermal plane produced by uncalibrated CFD model; (b) Thermal
plane produced by calibrated CFD model; (c) Thermal plane produced by reduced-order CFD model; (d)
Temperature predictions versus ground-truth temperatures at the sensor locations.

Table 4. MAE achieved over test cases after ten calibration iterations

Data hall
Calibration (°C) Reduction (°C)

Manual Heuristic Vanilla Kalibre Kalibreduce Kalibreduce
local global

Hall A 0.98 1.52 1.46 0.57 0.89 0.84
Hall B 1.16 2.20 1.91 0.88 1.02 0.98

5.2.4 Compute time. Table 5 shows the online inference time for solving the CFD models when
the number of used CPU cores varies. Note that the OpenFOAM software package supports parallel
computing with multiple CPU cores on the same computer. The evaluation shows that a single CFD
model solving takes up to several hours and the solving time decreases with the number of used
CPU cores. However, the model solving speed (i.e., the reciprocal of the solving time) is sub-linear
to the number of used CPU cores. This suggests that the CFD computation is not completely
divisible and the communications among the paralleled units matter. Thus, even if the 64-core
limit is lifted, the attempt to use more CPU cores across multiple computers may face performance
bottlenecks due to the cross-computer communication overheads. With 64 CPU cores, the CFD
model solving time is about one hour. This solving time still renders the heuristic search-based
model calibration approaches impractical, since they generally need a large number of iterations
(e.g., hundreds as shown shortly). Note that GPU acceleration has been introduced to another
commercial CFD software package [1]. However, it brings 3.7x acceleration only, which does not
change the impracticality of the heuristic search-based model calibration approaches. From the
results in Table 4, Kalibre achieves sub-1°C MAEs with 10 calibration iterations. The compute
time breakdown of each iteration is as follows: about 200 seconds for surrogate training, about
100 seconds for configuration search, about one hour for CFD model solving with 64 CPU cores.
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Table 5. Average online inference time of the two CFD and reduced-order models with varying CPU cores.

Model CFD model Reduced-order model
CPU cores* (#) 4 8 16 32 64 1
Solving Hall A 77400 38880 25200 10440 3240 0.53
time (s) Hall B 75960 39240 23400 12960 4320 0.76
*Intel(R) Xeon(R) CPU E7-8880 v4 @ 2.20GHz
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Fig. 10. Impact of POD mode numbers. (a) Cumulative energy percentage; (b) POD coefficients; (c) MAE of
the full reconstructed temperature fields. The error bars are the standard deviation.

Kalibre’s compute time for calibrating the two hall’s CFD models in 10 iterations are about 12 and
9 hours, respectively.

5.3 Evaluation of Kalibreduce
5.3.1 Impact of the POD mode numbers. We first generate the training samples for solving the
POD modes. Specifically, we generate 15 samples by running the calibrated CFD models with
different boundary conditions from historical input measurements and the calibrated server air
flow rates. These samples are then used to calculate the POD modes by solving the eigenvector
problem of Eq. (3). The captured energy of each POD mode is proportional to the corresponding
eigenvalue. Fig. 10(a) shows the POD captured cumulative energy percentage versus the number
of modes for the two data hall models. From the figure, we observe that the first ten modes take
97.8% and 92.7% of the total energy, respectively, indicating the temperature field information is
mainly captured by a first few dominant POD modes. In this study, we use the first ten modes to
reconstruct the temperature field. Fig. 10(b) shows the POD coefficients β versus the mode index
for two cases. We observe that the absolute values of the first coefficients are high for both two
cases, reaching around 104. The values then decrease dramatically when the mode index increases,
indicating the first few terms of

∑𝐻
𝑖=1 𝛽𝑖 (x)ϕ𝑖 are dominant in reconstructing the temperature field.

We also evaluate the accuracy of the reconstructed temperature field with the full CFD simulation.
Fig. 10(c) shows the temperature MAE versus the number of modes for two cases. The error bar
represents the standard deviation. From the figure, we observe that the error converges with the
increase number of used POD modes. The standard deviation is high with only a few used modes.
This is because the reconstruction only focuses on energy balance at local boundaries, i.e., it only
aims to satisfy the linear equation system in Eq. (4). Therefore, the errors could be high for regions
far away from those boundaries.
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5.3.2 Performance of reduced-order model. Next, we show the effectiveness of the model reduction
based on the derived POD modes and corresponding coefficients. From Fig. 10(c), with ten used
modes, we observe that the reduced-order models achieve MAE of 0.23°C and 0.61°C and standard
deviation of 0.45°C and 1.09°C compared with the full CFD simulated temperature field. Figs. 8(c)
and 9(c) show the thermal planes reconstructed by the reduced-order models. The thermal planes
show close matches to the thermal planes of Figs. 8(b) and 9(b), indicating the POD-based reduction
can well approximate the CFD generated temperature fields. Figs. 8(d) and 9(d) show the temperature
predictions of the reduced-order models at locations installed with sensors. Table 4 shows the MAEs
of the reduced-order models. Compared with the ground-truth values, the predictions with global
energy balance produce MAEs of 0.84°C and 0.98°C for the two data halls, respectively. Although
the MAEs of the reduced-order models are slightly higher than the calibrated CFD models, the
simulation only takes 0.53 and 0.76 seconds, respectively, for reconstructing the temperature fields
as shown in Table 5, which is thousand times faster than solving the original CFD models.

6 DISCUSSIONS
We now discuss several worth-noting issues. First, the primary purpose of the Kalibre’s surrogate
is to improve the efficiency of parameter search. The surrogate does not provide a full-fledged
approximation of the CFD model. For instance, it does not model the temperatures at the locations
without sensors, which are modeled by the CFD model in contrast. Thus, only the calibrated CFD
model or the reduced-order model shall be used as a digital twin for the run-time temperature
evaluation of the modeled data hall. Second, the surrogate’s architecture described in this paper is for
data halls installed with hot-aisle containments and server blanking panels. Thus, heat recirculation
is not considered. To address the data halls without hot-aisle containments, heat recirculation
and temperature mixing effects should be added to the neural surrogate’s design. Third, due to
the computation overhead, the training data used to solve the POD modes are generated using
boundary conditions from only a subset of historical measurements. To extrapolate the reduced-
order model to other cases, it is important to generate extra CFD samples under various boundary
configurations. Forth, this paper mainly focuses on temperature prediction. For other types of
prediction, the proposed approach can be extended to address their calibration and reduction
problems with proper surrogate designs. For instance, if air flow rate sensors are deployed, Kalibre
and Kalibreduce can be extended to calibrate the CFD for predicting air velocity distribution.

7 CONCLUSION
This paper first presents Kalibre, an automatic surrogate-based approach to calibrating data hall CFD
models. The design of Kalibre’s neural surrogate integrates prior knowledge, including the energy
balance principle and thermal relations among the key variables of the physical infrastructure. The
incorporated knowledge improves the approximation capability of the neural surrogate to the CFD
model in the locality for calibration. We demonstrate its effectiveness on two CFD models built for
two production data halls that host thousands of servers. The CFD models calibrated by Kalibre
achieve temperature prediction MAEs of 0.57°C and 0.88°C, respectively. Compared with manual
calibration, Kalibre’s improvement of up to 0.3∼0.4°C is significant in CFD modeling due to the
sharply increased difficulty in improving accuracy when the errors are already low (i.e., at around
1°C). With the calibrated CFD models, this paper further presents Kalibreduce to accelerate the
simulation speed of the CFD models. Kalibreduce adopts the POD techniques and energy balance
principle to reduce the order of the calibrated CFD models. The reduced CFD models achieve
satisfactory MAEs of 0.84°C and 0.98°C, respectively, while accelerating CFD-based simulations for
temperature prediction by thousand times. Kalibre and Kalibreduce shed lights in transforming the
CFD models built for large-scale data halls into high-fidelity and low-overhead digital twins.
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