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Abstract—Due to recent cyber attacks on various cyber-
physical systems (CPSes), traditional isolation based security
schemes in the critical systems are insufficient to deal with
the smart adversaries in CPSes with advanced information and
communication technologies (ICTs). In this paper, we develop
real-time assessment and mitigation of an attack’s impact as a
system’s built-in mechanisms. We study a general class of attacks,
which we call time delay attack, that delays the transmissions
of control data packets in the CPS control loops. Based on
a joint stability-safety criterion, we propose the attack impact
assessment consisting of (i) a machine learning (ML) based safety
classification, and (ii) a tandem stability-safety classification that
exploits a basic relationship between stability and safety, namely
that an unstable system must be unsafe whereas a stable system
may not be safe. In this assessment approach, the ML addresses
a state explosion problem in the safety classification, whereas the
tandem structure reduces false negatives in detecting unsafety
arising from imperfect ML. We apply our approach to assess the
impact of the attack on power grid automatic generation control,
and accordingly develop a two-tiered mitigation that tunes the
control gain automatically to restore safety where necessary and
shed load only if the tuning is insufficient. We also apply our
attack impact assessment approach to a thermal power plant
control system consisting of two PID control loops. A mitigation
approach by tuning the PID controller is also proposed. Extensive
simulations based on a 37-bus system model and a thermal power
plant control system are conducted to evaluate the effectiveness
of our assessment and mitigation approaches.

Index Terms—Power Grid Control, Cyber-physical system,
Delay attack, Stability, Safety, Machine learning

I. INTRODUCTION

By integrating modern information and communication
technologies (ICTs), critical systems (e.g., power grids and
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advanced manufacturing facilities) are transforming into cyber-
physical systems (CPSes). However, whereas ICTs can im-
prove system performance, it also incurs cybersecurity risks.
To date, the security of these systems has largely relied on
isolation from public networks through air gaps and firewalls.
However, the isolation is questionable, due to insiders [1] and
stepping stone attacks [2]. For instance, the Dragonfly attack
against power grids [3] compromised a third-party virtual
private network (VPN) software vendor, and then used the
result as a stepping stone for intruding into the grids. Once
attackers breach the isolation, they can launch powerful data
integrity attacks similar to Stuxnet [4].

Motivated by the above security incidents, this paper studies
the assessment and mitigation of the impact of an important
and general class of attacks, which we call the delay attack,
on a CPS that employs closed-loop control [5], [6], [7]. The
attack maliciously delays transmissions of control packets
without tampering with the data content. Since CPS control
often has stringent timeliness requirements, the attack can
undermine system performance severely and even cause catas-
trophic safety incidents. Compared with data tampering that
needs to break non-trivial cryptographic protection, the delay
attack can be implemented more simply using compromised
routers to increase the communication latency. Hence, it is an
important threat that requires immediate attention. However,
whereas the attack can be readily detected by trustworthy
synchronization of the clocks of coordinating CPS devices [1],
[8] and subsequent verification of packet timestamps, assessing
and mitigating its impact in real time are challenging due
to the complexity of typical real-world cyber-physical control
systems.

In this paper, we propose a joint stability-safety criterion
for assessing and mitigating an attack’s impact using a data-
driven method. Stability and safety concern a system’s ability
to keep its state fluctuations bounded and within a prescribed
range, respectively, in the presence of exogenous disturbances
that have bounded magnitudes. As disturbances (e.g., sensor
noises and system input changes) are inevitable, stability is a
basic requirement that must be met by any CPS. Otherwise, the
system may experience unacceptable state divergence follow-
ing a disturbance. Besides stability, however, CPS must further
operate within its engineered safety limits. For instance, a
60Hz power grid must maintain its frequency within a range of
about 59.5Hz to 60.5Hz; otherwise, generators/loads may trip
automatically causing blackouts. Thus, real-time knowledge
of the system’s stability and safety is critical. Based on this
knowledge, if a delay attack is assessed to destabilize the



system or push it into an unsafe region, attack mitigation must
be initiated to regain the system’s stability and safety.

This paper considers linear time-invariant (LTI) systems that
can characterize a wide range of real-world cyber-physical sys-
tems. From control theory, an LTI system’s stability depends
on the system model only. Accordingly, analytical solutions
for LTI system stability have been proposed [9], [10], [11].
As the stability analysis must be carried out continually, its
real-time performance is a concern. However, some latest
analytical methods [11], [10] are only effective for small-
scale systems, e.g., load frequency control limited to one or
two areas [11]. In contrast, the safety of a system depend-
s on its future transient trajectory, which presents various
challenges. Simulating the transient trajectory of a complex
system may be too slow for detecting and reacting to its
impending unsafety. An alternative approach is to run offline
simulations comprehensively to understand the system’s safety
proactively [12], ahead of actual operations. However, as the
trajectory depends on the initial system state, enumerating all
the possible states in a continuous value domain is generally
impossible. For instance, for an n-bus power system, whose
system state dimension is n, its total number of discretized
states is mn, where m is the number of quantization steps
for the state variable corresponding to each bus. The value of
n for practical systems can be in the hundreds, making the
enumeration computationally infeasible.

To address the above challenges, we propose a novel delay-
attack impact assessment that features (i) a machine learning
(ML) based safety classification, and (ii) a tandem stability-
safety classification structure. First, to avoid the exponential
complexity of enumerating all the system states, we adopt
a Monte Carlo method to randomly sample the state space
and run offline transient simulations to generate safety labels
for the samples. These samples and their labels are used
to train an ML model that can classify the safety of a
live system based on its real-time conditions. The ML-based
online safety classification is made fast enough to ensure the
timeliness of the impact assessment. Second, we leverage a
basic relationship between stability and safety to design the
tandem structure, so that it classifies the system’s stability
first and then its safety only if stability is indicated. As the
stability classification is simpler, faster, and more accurate than
the safety assessment, the tandem structure can reduce (i) false
negatives in the unsafety detection due to the ML’s inaccuracy,
and (ii) overall execution time for the attack impact assessment
since the safety classification can be skipped for a system
determined to be unstable.

This paper applies the proposed assessment approach to two
real-world CPSes: power grid automatic generation control
(AGC) [13] and power plant control (PPC). The goal of AGC
is to maintain the grid frequency at a standard nominal value
(e.g., 60Hz) in the presence of load changes as primary
exogenous disturbances. As the AGC’s control signals are
transmitted over communication networks, the delay attack is
an important concern. We report extensive simulations using
PowerWorld [14], an industry-strength power system simulator
used by actual grid operators. The results show that the
AGC’s stability depends on the delay and the total load only,

whereas its safety additionally depends on the load changes
and detailed distribution of the load among the load buses.
The boundary of the stable region can be obtained easily via
a small set of offline simulations, while a joint application of
the Monte Carlo method and the extreme learning machine
(ELM) [15] is used to learn the safety boundary to manage
the aforementioned state explosion problem with respect to the
number of buses and possible load distributions. Furthermore,
we use the achieved stability-safety classification to develop
a two-tier mitigation of the attack’s impact. The mitigation
regains the stability and safety of the AGC whenever needed,
by tuning the AGC gain whenever possible and resorting
to shedding load whenever the gain tuning is insufficient.
Moreover, we also apply our assessment approach to a PPC
system, which consists of two proportional-integral-derivative
(PID) control loops, where the PID controller is a feedback
control loop mechanism widely used in the industrial control
systems. This PPC system simulates a thermo power plant in
the power grid. To verify the stability-safety classification and
the mitigation approach, we generate offline training data using
the PPC model to learn the stability and safety boundaries
by ELM and also evaluate the accuracy of the trained ELM
model. Moreover, we also propose the mitigation approach by
tuning the controller in the PPC to mitigate the impact of the
attack.

Our prior work [16] presented the case study of our assess-
ment and mitigation approaches in AGC. Based on the work
in [16], we make the following new contributions: 1) we add
simulations in Section VII to study how the trajectory of the
load change may affect the system’s stability and safety. In
practice, the load change may take time. For instance, the
customers’ solar power generation may change due to the
movement of clouds and the ensuing load changes may take
tens of seconds. Thus, we conduct new simulations to under-
stand the impact of load change trajectories on stability and
safety of AGC of power grid. 2) we add section Section VIII
to present the second case study of applying our assessment
and mitigation approaches to PPC. We propose the ELM-
based stability and safety assessment approach as well as the
mitigation approach by tuning the PID controller in PPC. We
add new simulations using Modelica simulator to investigate
the performance of our approaches. 3) we add new diagrams,
redraw some of the diagrams and improve the presentation of
several sections to make the paper clearer.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents preliminaries and
a motivating example. Section IV overviews our approach.
Section V and Section VI present the attack impact assess-
ment and mitigation approaches, respectively. Section VII and
Section VIII present the extensive evaluation results for AGC
and PPC. Section IX concludes this paper.

II. RELATED WORK

Power system stability and safety classifications are often
studied separately in the literature. In [9], Lyapunov stability
theory and linear matrix inequalities are used to estimate
delay margins. In [17], the stability of a system is classified



based on its energy accumulated during a certain time period.
Traditional safety classification methods often analyze post-
contingency power flows [18]. They use active power [18],
[19] or composite indices based on various physical parameter-
s [19] to classify the safety. However, the high computational
overhead of these approaches makes them unsuitable for real-
time classification [20], [21].

To reduce the computational overhead of real-time classifi-
cation, recent studies apply ML (e.g., decision tree [22], sup-
port vector machine (SVM) [21], and artificial neural network
(ANN) [20], [23]) to classify a power system’s stability [21],
[22] and safety with respect to certain contingencies [23],
based on measured physical conditions of the system. In [21],
a trained SVM classifies the power system’s stability by using
phasor measurement unit data. The SVM must be retrained
if the system condition has changed significantly. The ANN
model in [23] takes the system loading as input to rank the
severity of the contingency in question, in terms of a composite
performance index. However, all these studies do not address
the emergent concern of cybersecurity.

Power grid cybersecurity has received increasing research.
Chen et al. [5] study the impact on voltage and angle transient
stability of data tampering attacks against voltage support
devices. They do not address attack mitigation. An analytical
solution has been proposed [11] for computing delay margins
for the stability of a load frequency control system. However,
their approach can only deal with small (e.g., one- or two-area)
systems. Zhang et al. [10] propose closed-form expressions for
evaluating delay-dependent stability in power grids for the load
frequency control. Similarly, this approach is limited to small
systems (e.g., less than three generation units in each control
area) due to the limitations of current solvers.

Existing research on the cybersecurity of AGC has mainly
focused on false data injection (FDI) attacks [24], [25], [26],
where the attacker tampers with sensor and/or control data in
the AGC control loop. Specifically, reachability analysis has
been used [24], [25] to analyze the safety impacts of cyber-
attacks against a two-area system. Rather than qualitative
reachability analysis, a quantitative analysis of the minimum
time until the system is unsafe has also been applied [26]. FDI
attacks rely on an adversary’s non-trivial ability to corrupt
data. In contrast, this paper considers the easier and thus
arguably more important attack of maliciously delaying data
packets between communicating system components. In [27],
[28], the authors show how the delay attack can impact the
AGC’s stability. In [29] and the reference therein, different
schemes are proposed to characterize and eliminate the in-
stability caused by delay attacks in load frequency control.
However, they do not consider the more subtle but equally
critical property of safety.

III. STABILITY AND SAFETY UNDER DELAY ATTACK

This section defines stability and safety, as well as our threat
model. Then, we use a simple control system to illustrate the
impacts of the delay attack on the stability and safety.

A. System Model and Definitions of Stability and Safety

We consider a discrete-time CPS control system. Time is
divided into slots. It can be any time unit according to the
physical system settings. A controller collects measurements
by the sensors in a plant ( i.e., the physical system) and sends
control commands to the actuators, which may change the
state of the plant to maintain it at a given setpoint. The system
is subjected to various disturbances, such as measurement
noises, actuation biases, setpoint changes, etc. We adopt a
bounded-input, bounded-output (BIBO) stability criterion:

Definition 1: A system is BIBO-stable if its state remains
bounded while it experiences bounded disturbances.

We note that there are other stability definitions, e.g.,
asymptotic stability [30]. A system is asymptotically stable
if for any positive ϵ, there exists a positive δ such that for
any initial state of the system x(0), the system’s asymptotic
equilibrium limt→∞ x(t) satisfies ||x(t)− limt→∞ x(t)|| < ϵ,
∀t ≥ 0, where ||x(0)− limt→∞ x(t)|| < δ. An asymptotically
stable system is also BIBO-stable. Thus, BIBO stability is
more basic and it is widely adopted in research on CPS
control. For instance, the IEEE/CIGRE joint task force defines
power system stability based on the BIBO concept [31]. In this
paper, by stability we mean BIBO stability unless otherwise
stated. Stability is a mandatory property for CPS design and
operations. We adopt the following safety definition.

Definition 2: A system is safe if its state remains within
a specified range while it experiences disturbances of magni-
tudes no larger than specified values.
Safety is naturally a key concern of system operators, because
devices are designed to function properly only within specified
ranges. Crossing these ranges may damage the devices or
cause system failures. From Definitions 1 and 2, note that
stability describes a qualitative “bounded” nature of the system
state, whereas safety additionally imposes a quantitative range
of the bounds. Thus, stability is a more basic requirement in
that an unstable system must be unsafe, but a stable system
may not be safe. This relationship between the two different
properties of a system will be exploited in Section V to
improve the performance (e.g., accuracy and timeliness) of
the attack impact assessment for both the properties.

B. Threat Model

The delay attack is formally described as follows. Let w[t]
denote packetized control data generated and transmitted by
the controller in the tth time slot. The transmissions of the
packets are maliciously delayed by τ time slots. Thus, in the
[t + τ ]th time slot, the data w[t] arrives at the actuator. Note
that τ is an integer since the actuator operates in discrete time.
The delay attack does not tamper with the content of the
transmitted data. As Section I discusses, it can be launched
through a compromised router. Note that the delay τ can
also include the natural communication latency. Different from
the well-known distributed denial-of-service (DDoS) attack,
where the target is to overload the system with superfluous
requests, delay attack is not to overload the system but using
the outdated command to degrade the system performance and
even cause damage to the system. Actually if we consider the
extreme case of delay attack, i.e., the delay is infinite, delay



attack becomes DDoS attack. Note that DDoS attack can be
easily detected. Differently, the delay attack is stealthy. In this
paper, we assume that τ is a constant during the attack process.
The results of this paper provide a baseline for understanding
the more complicated situation where the attacker introduces
time-varying delays. The extension of our study to address
time-varying delay is left to future work.

In this paper, we assume that the clocks of the controller
and the actuator are synchronized. Thus, if the controller adds
a timestamp t to the transmitted data w[t], the actuator can
easily measure the delay τ introduced by the attack. The
measured τ is used as an input to the attack impact assessment
and mitigation. We note that secure clock synchronization
techniques [1] can be used to ensure trustworthy measurements
of τ . The scenario in which τ is unknown to the actuator (e.g.,
due to disrupted clock synchronization between the controller
and actuator) is left to future work.

K P

d[k]
++

−

e[k]r[k] y[k]
Delay

u[k]

τ

Fig. 1. A closed-loop control system.

C. Illustration of Stability and Safety with a Simple Control
System under Delay Attack

We use the feedback control system in Fig. 1 to illustrate
impacts of the attack on stability and safety. The results
provide important observations that motivate the design of the
attack impact assessment and mitigation approaches. In the
absence of the attack, the system dynamics is

x[t+ 1] = Ax[t] +B(u[t] + d[t]), (1)
y[t] = Cx[t], u[t] = Ke[t], e[t] = r[t]− y[t],

where x, y, d, r, u and e are the system state, sensor
measurement, disturbance, setpoint, control signal, and error
signal, respectively; A, B, and C are system-specific matrices;
K is a matrix characterizing the control law. Thus, the system
employs proportional control. Note that the attack impact
assessment and mitigation developed later in this paper do
not depend on the control law. In particular, the AGC case
study presented in this paper employs proportional-integral
(PI) control. In another case study of power plant control,
PID control is employed. We consider the delay attack on
u, as illustrated in Fig. 1. Because of the attack, the u in
Eq. (1) will be a delayed version u[t− τ ], which is given by
u[t− τ ] = K(r[t− τ ]− y[t− τ ] = K(r[t− τ ]−Cx[t− τ ]).
Thus, Eq. (1) becomes

x[t+1] = Ax[t]−BKCx[t− τ ]+BKr[t− τ ]+Bd[t]. (2)

By the result in [32], a necessary and sufficient condition
for the stability of the discrete time-delay system is that
the eigenvalue of the maximal left solvent of M(X), where
M(X) = Xτ+1 −XτA − B̃, X ∈ Cn×n and B̃ = −BKC,

i.e., the eigenvalue of the solution for M(X) = 0, is less
than 1. From the expression of M(X), the eigenvalue of the
maximal left solvent only corresponds to the delay length τ
and the system specific matrices. In the following, we will use
one numerical example in Matlab [33] to explore the system
stability and safety. The numeric results in the rest of this sec-
tion are based on the following settings: A = [−1 −3; 3 −5],
B = [2 −1; 1 0], C = [0.8 2.4; 1.6 0.8], K = 2. Moreover,
we measure time in units of slot, which can be translated to
actual time in a real system.

1) Impacts of delay on stability and safety: We run time-
domain simulations to understand the system’s stability and
safety under different delays. The system output y over time
under different settings is shown in Fig. 2. Both the delay
against u and the step-change disturbance d of magnitude of
1.5 are introduced at t = 50. In Figs. 2(a) and 2(b), where
τ = 2 and τ = 3, the system is convergent and divergent,
respectively. The system becomes unstable when we increase
the delay to 3 time slots. The safety classification depends on
the safe range definition. For example, if we define the safe
deviation range of y’s components to be [−1, 1], the system
in Fig. 2(a) is safe. However, if the safe range is defined to be
[−0.4, 0.4], the system is unsafe. Thus, even if the system is
stable, it can be either safe or unsafe, depending on the given
safety conditions and the system’s state trajectory.

2) Impacts of disturbance on stability and safety: Since
stability is determined by the eigenvalue of the maximal left
solvent of M(X) only, it is not affected by the disturbance
d, so that A and B̃ do not include d. In contrast, as safety
depends on the trajectory of y, which depends on d, the
magnitude of d can significantly affect the safety. We now
illustrate this observation using Fig. 2(c) that has the same
setting as Fig. 2(a) except that the disturbances in Fig. 2(a) and
Fig. 2(c) are 1.5 and 30, respectively. Fig. 2(c) shows larger
output deviations, which may violate the safety requirement.

3) Impacts of initial state on stability and safety: As the
eigenvalue of the maximal left solvent of M(X) does not
depend on the initial system state, the stability does not depend
on the initial state. In contrast, since the initial state affects the
system trajectory, it affects the system’s safety. For instance,
Fig. 2(d) has the same setting as Fig. 2(a) except that they have
different initial states. The system remains convergent in this
case, which generally implies a stable system. However, the
output deviation is doubled compared with that of Fig. 2(a),
and the larger deviation may violate safety.

In summary, we have these two observations: (i) the delay τ
affects both stability and safety, (ii) the safety depends on the
disturbance and the system’s initial state, while the stability
does not. These observations will guide the design of the
proposed tandem stability-safety assessment method.

IV. OBJECTIVE AND APPROACH OVERVIEW

A. Objective and Challenges

We aim to develop delay attack impact assessment and
mitigation for CPS control. The input for the assessment
includes the measured delay τ and the measurements of
sensors monitoring the system state. If the system is classified
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Fig. 2. The system output y under different settings.

unsafe (i.e., it will enter an unsafe region), mitigation actions
should be initiated to regain safety.

We face the following main challenges. First, although we
can obtain an analytic stability condition for the simple system
in Fig. 1(a), it is challenging to obtain similar conditions for
real-world complex systems. Second, the safety classification
needs the system’s trajectory such as those shown in Fig. 2.
Although we can use a high-fidelity simulator to predict the
trajectory, the transient simulations for complex systems can
be too slow for real-time online prediction and control. For
instance, a transient simulation for the 37-bus power grid
shown in Fig. V-A (see Section V-A) takes 138 s on a 28-
core computing server, while the grid under attack takes less
than two minutes to cross its safe range (cf. Table II in
Section V-B2). Thus, the system will have well entered the
unsafe region by the time the transient simulation completes.
Third, as locating and removing an ongoing cyber-attack often
takes significant time, before the attack is removed, it is critical
to tolerate the attack and mitigate its impact by adapting
tunable system parameters and settings. However, a model that
characterizes the effects of the new parameters and settings on
the safety will be needed to determine their suitable values.
It is similarly challenging to obtain this model for complex
systems.

B. Approach Overview

This section overviews our approach. In every time slot,
if the measured total delay τ in transmitting sensor measure-
ments and control commands exceeds a threshold (e.g., the
typical communication delay), we execute the attack impact
assessment and mitigation pipeline shown in Fig. 3. First, we
classify the system’s stability. If the system is unstable, which
implies that it is unsafe, we initiate mitigation to restore safety;
otherwise, we classify the system’s safety. If and only if the
system is classified unsafe, we initiate mitigation. We now

Stability classification

Safety classification

MitigationStable

Delay detected

Unsafe

Unstable

End

Fig. 3. Attack impact assessment and mitigation pipeline.

discuss the design of the stability and safety classification, as
well as the mitigation, that addresses the challenges described
in Section IV-A.

First, since it is difficult to analyze the stability and safety
of complex systems, we use a simulation-based approach.
We assume that a high-fidelity simulator that can accurately
characterize the system dynamics is available. This assumption
agrees with practice. For instance, power grid operators gener-
ally maintain high-fidelity simulators of their systems to guide
design and operations. Using the simulator, we can explore key
factors that affect the system’s stability and safety.

Second, since the transient simulations, though accurate,
are generally too slow for online use, we conduct offline
simulations to generate extensive data with appropriate sta-
bility and safety labels. The labeled data will be used to
characterize the stability and safety boundaries. However, the
dependence of safety on the system’s initial state, as illustrated
in Section III-C3, leads to state explosion if we were to
enumerate all the initial states during the generation phase of
training data. To deal with this issue, we apply a Monte Carlo
method to generate the training data and train an ML model
to characterize the safety boundary. The ML model can also
be used to guide the search for suitable mitigation actions.

Third, the ML model may introduce the error occasionally
in the safety classification. On the other hand, as observed
from the case studies in Section III-C and Section V, the
stability classification is simpler, faster, and more accurate.
Thus, we apply the stability classification first in the overall
assessment, so that we can condition the safety classification
on the more reliable and faster stability classification result.
This conditional sequential strategy reduces the overall clas-
sification errors and runtime overheads.

We note that the detailed design of the components shown
in Fig. 3 is system specific. However, we believe that the basic
design paradigm is applicable to a wide range of CPSes, e.g.,
the process control in the chemical system and the train control
system. In the rest of this paper, we will apply it to two power
grid control systems, i.e., automatic generation control (AGC)
and power plant control (PPC), and design the domain-specific
components. AGC is a fundamental networked control system
used in real-world power grids; PPC is a critical control system
for power plants.



V. STABILITY-SAFETY ASSESSMENT FOR AGC

Since AGC involves long-range communications and its
malfunction can cause grid-wide failures and infrastructure
damage, it can be an attractive target for attackers. In Sec-
tion V-A, we present necessary background of the AGC for
our discussions. Section V-B presents extensive simulations
to understand the AGC’s stability and safety under the delay
attack. Section V-C applies the proposed tandem stability-
safety assessment to the AGC.

A. Background of AGC

AGC maintains the grid frequency at a nominal value
(e.g., 60Hz) by adjusting setpoints of generators. It also
maintains the net power interchanges among neighboring areas
at scheduled values [13]. Here, an area is a part of the grid
and it is usually operated by a utility. Two areas are connected
by tie-lines. Fig. V-A illustrates a three-area 37-bus system1,
where dotted lines represent the tie-lines. As illustrated in
Fig. 5, the AGC, located in the grid control center, receives
over a communication network measurements of the deviations
of the grid frequency (from the standard frequency) and the
ith area’s power export from their respective setpoints (which
are denoted by ∆ωi and ∆PEi), and it computes the area
control error (ACE). The control center sends ACEi to the
area’s power plants over the communication network. Each
plant applies a PI controller with a gain of k to generate a
reference signal for its generator. Specifically, the reference
signal is −k

∫
ACEi(t)dt. The above process is repeated

every AGC cycle, which is often two to four seconds. The
sensor measurements and ACE are transmitted in long-range
communication networks that are susceptible to cybersecurity
threats. In this paper, we focus on the delay attack against
transmissions of ACE signals. However, our approach can be
readily applied to delay attacks on sensor measurements, or
both ACE signals and sensor measurements. Note that we
do not consider the deadband effect in this work, i.e., there
is a deadband around the frequency nominal value. However,
according to several power system control papers on AGC,
e.g., [35] and [36]. the non-linear effect of the deadband can
be mitigated with proper design of the AGC controller. Thus,
we can extend our work to such kind of AGC controllers to
mitigate the deadband effect.

B. AGC’s Stability and Safety under Delay Attack

This section presents two extensive simulation studies to
investigate how the following factors may affect the AGC’s
stability and safety: (i) the grid’s total load, (ii) the distribution
of the load among the load buses, (iii) the change of load,
and (iv) the communication delay. We note that the load
distribution determines the power system’s state, which is
often defined as the union of all the buses’ voltage phasors.

1We use the 37-bus system as a case study throughout this paper. It
is a test system [34]. Its scale corresponds to a small-/mid-scale grid in
real life. According to our rough count based on a grid topology database
(http://bit.ly/2vRH5Nd), a major fraction of 130 national grids consist of fewer
than 37 buses.
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Thus, the total load can be considered a statistic of the sys-
tem’s initial state. The load change is the primary exogenous
disturbance to the AGC. The simulations are conducted using
PowerWorld, an industry-strength high-fidelity power system
simulator, based on the system model in Fig. V-A. The main
simulation settings are: the length of a time slot is 1 s2; the
length of an AGC cycle is 4 s (see Chapter 11 of [13]); each
simulation lasts for 300 s; the delay attack on the ACE signal
is launched at t = 120 s; the load change occurs at t = 140 s.

1) AGC’s stability: The stability is assessed by checking
the system’s convergence, i.e., whether the power system
frequency will be convergent in the AGC control. We have
the following observations.
AGC’s stability depends on the total load: Fig. 6 shows
the AGC’s stability boundary under different total loads and
delays. Each point in the curve represents the maximum
delay the system can keep stable under corresponding total
load, i.e., for a total load from X-axis, if the delay is larger
than the maximum delay in the curve, the system will be
unstable. Thus, all these points in the curve form the boundary
to separate the stable and unstable regions. In our simulation,
a total of 7,900 combinations of the total load and delay are
tested. We can see that the total load affects the maximum
delay that the system can tolerate to keep stable. For instance,
when the total load is 600MW, the maximum tolerable delay
is 6 s. When the total load is 1000MW, the maximum tolerable
delay is 2 s only. Fig. 6 also shows a clear cut boundary

2 This setting well balances the simulation computation overhead and the
fidelity.
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TABLE I
MAX TOLERABLE DELAY.

Load Total load
change 715 795 874
−10% 5 3 3
−5% 5 3 3

0 5 3 3
5% 5 3 3
10% 5 3 3
aThe delays are in seconds.
bTotal Loads are in MW.

between the stable and unstable regions.
AGC’s stability is independent of the detailed load dis-
tribution: We fix the total load at 795MW and distribute
it among the load buses randomly. Simulations using 1,000
random load distributions show that the maximum tolerable
delay is always 2 s. Under other settings of the total load, the
maximum tolerable delay is also a constant over the different
load distributions. This gives strong empirical evidence that
the AGC’s stability is independent of the load distribution.
The observation is consistent with the standard practice of
analytical modeling of AGC, which considers the total load
only but not the load distribution [13].
AGC’s stability is independent of load change: Table I
shows the maximum tolerable delay under different settings
of the total load and the load change as percentage of the total
load. The load change consists of step changes at all the load
buses at t = 140 s. The step change is realistic given increasing
adoption of demand response and distributed renewable energy
sources that can trigger sudden changes in load. From the
table, for each tested total load setting, the AGC’s stability is
unaffected by the change. This result is consistent with our
discussions in Section III-C2. Moreover, with less total load,
the system can tolerate longer delays, which is consistent with
the results in Fig. 6.

2) AGC’s safety: We impose the following two safety
requirements. First, the grid frequency deviation must be
within [−0.5Hz, 0.5Hz]. In real systems, if the deviation
exceeds this safe range, disruptive remedial actions such as
load shedding will be automatically initiated to protect the
grid from infrastructural damage [13]. Second, the power flows
must be within capacities of the transmission lines. Otherwise,
the lines will trip due to overheating. In our simulations, we
adopt the default line capacities of the 37-bus system.

TABLE II
TIME TO CROSS THE SAFE RANGE VS. DELAY AND LOAD CHANGE.

Delay (s)
0 1 2 3

L
oa

d
ch

an
ge

(M
W

)

-80 105.45 105.45 105.7 105.8
-40 ∞ ∞ ∞ 276.1
0 ∞ ∞ ∞ 944.3
40 148.6 148.6 148.6 148.6
80 146.1 146.1 146.1 146.1

∗The time values are in seconds; ∞ means the system is safe.

AGC’s safety depends on load change: The total load is
800MW. Table II shows the time from the launch of the delay
attack to the breach of the safety requirement under different

otal load (MW) 600
700

10

Loa

%)

D
e
la

y
 (

s
)

0

1

2

3

4

5

6

Fig. 7. The minimum delay leading to unsafety vs. total load and load change.

delays and load changes. The symbol ∞ means that the safety
limits are never crossed, i.e., the system is safe. From the table,
the AGC’s safety is affected by the load change, which is
consistent with our discussion in Section III-C2. For instance,
when the load change is 5% of the total load (i.e., 40MW),
the system will be unsafe, regardless of the delay. When the
load change is small, the system will be safe if the delay is
also small. Thus, the load change and delay jointly affect the
safety.
AGC’s safety depends on total load: Fig. 7 shows the
minimum delays that lead to unsafety under different total
loads and load changes. Each grid point represents such a
minimum delay obtained by running a set of simulations under
different delays. Note that, to simplify the illustration, we
relax the transmission line capacities to infinite, such that
the load distribution does not affect the safety. The next set
of experiments will show the impact of the load distribution
on the safety under finite line capacities. In Fig. 7, the
surface formed by the grid points that represent the obtained
minimum delays leading to unsafety divides the space into safe
and unsafe regions, which are below and above the surface,
respectively. The result shows that the total load, the load
change, and the delay jointly affect the AGC’s safety.
AGC’s safety depends on load distribution: We fix the
total load at 800MW and distribute it among the load buses
randomly. Fig. 8(a) and Fig. 8(b) show the classification of
the AGC’s safety given different delays in 30 cases of the
load distributions, when the line capacities are set to be
infinite and finite, respectively. Although the line capacities
are finite in practice, we present the infinite case to help
understand the affecting factors of the AGC’s safety. Under
infinite line capacities, the AGC’s safety depends on the
frequency deviation only. The deviation depends on the total
load, rather than the load distribution. Thus, in Fig. 8(a), the
safety is independent of the load distribution. In contrast, since
power flows depend on the load distribution, under finite line
capacities, the load distribution will affect the AGC’s safety.
In Fig. 8(b), for a given delay, the system may be safe or
unsafe depending on the load distribution.

3) Summary: The above experiments show that the AGC’s
stability depends on the total load and the delay, while its
safety additionally depends on the load change and the load
distribution. This observation is mostly consistent with that for
the barebone control system in Section III-C, except that the
AGC’s stability depends on the total load, a statistics of the
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Fig. 8. AGC’s safety under different load distributions. (a) Infinite line
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system state. This can be explained from the fact that AGC is
a nonlinear system, although its control-theoretic analysis is
often based on a linearization at the system’s current condition
as characterized by the total load [13]. Thus, the AGC’s
stability condition is also affected by the total load. However,
this minor deviation will not impede the application of the
tandem stability-safety assessment, since the scalar total load
will not lead to a state explosion problem.

C. Stability-Safety Assessment for AGC under Delay Attack

This section applies the proposed tandem stability-safety
assessment to AGC. From Fig. 6, since the AGC’s stability has
a clear cut boundary in the two-dimensional space formed by
the total load and the delay, it can be classified quickly at run
time based on the boundary a priori obtained through exten-
sive offline transient simulations. We call this classification ap-
proach boundary-based stability classification. Specifically, if
the system’s current operating point (i.e., total load and delay)
is below the boundary, such as that shown in Fig. 6, the system
is stable; otherwise, it is unstable. This classification avoids
running a time-consuming online transient simulation based
on the system’s current operating point. In particular, due to
the limited dimension of the stability space (i.e., two), we can
achieve any granularity in enumerating operating points within
any specified range. As a result, the boundary-based approach
achieves perfect classification accuracy asymptotically as the
enumerating granularity goes to zero.

In contrast, AGC’s safety additionally depends on the load
distribution vector, which has exponential complexity with
respect to the number of load buses that is often tens to
hundreds. To avoid the exponential complexity, we use a
Monte Carlo method to randomly sample the operating points
in a discretized state space and generate extensive offline
simulation results with determined safety labels to train an
ELM [15] to characterize the AGC’s safety. The ELM is
a single hidden layer feedforward neural network with a
training algorithm much faster than conventional gradient-
based learning algorithms. At run time, the trained ELM
classifies the AGC’s safety based on the current operating point
(i.e., total load, load change, load distribution, and delay). We
summarize the algorithm for safety assessment in Fig. 9. In
Section VII, we will compare the performance of the ELM
with a baseline approach that also uses the training data to
classify safety.
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Fig. 9. Algorithm overview for safety assessment.
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We present the following numeric results to show the effec-
tiveness of the ELM-based safety assessment. The training and
testing data sets consist of 11,000 and 7,000 operating points
and their safety labels, respectively. We use the false positive
(FP) and false negative (FN) rates as the accuracy metrics,
which are the percentages of safe (resp., unsafe) cases that are
wrongly classified to be unsafe (resp., safe). The green and red
curves in Fig. 10(a) show the ELM’s FP and FN rates versus
the number of hidden nodes in the ELM. The two rates are
generally below 5%. In Section VII-C, we will discuss how to
deal with the FPs and FNs. When the number of hidden nodes
is 300, both the two rates reach their knee points. Thus, 300 is
a satisfactory setting, since using more hidden nodes does not
improve the accuracy much, but it increases the testing time as
shown by the red curve in Fig. 10(b). Under the setting of 300,
the testing time is around 0.03ms only on an Intel i7 2.2GHz
CPU. This time is short compared with the time horizon of
a power grid’s fault clearing (e.g., 200ms for lightning strike
overcurrent clearing). The testing time can be further reduced
significantly by using hardware acceleration.

Lastly, we show the benefits of the tandem stability-safety
assessment. First, as the boundary-based stability classification
gives asymptotically perfect accuracy, it helps reduce FNs
of the ELM-based safety classification. The blue and black
curves in Fig. 10(a) show the FP and FN rates of the tandem
stability-safety assessment. FN rate is reduced by up to 1%.
Second, the blue curve in Fig. 10(b) shows the testing time
of the boundary-based stability classification, which is 11
microseconds only, 3 times shorter than that of the ELM’s
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Fig. 11. System stability and safety boundaries under different k settings,
where k is the gain of the PI controller to produce a reference signal for the
plant’s generator as introduced in Section V-A.

testing time with 300 hidden nodes. Thus, under the tandem
approach, any instability will be detected by the fast stability
classification, which improves the timeliness of the needed
mitigation (cf. Section VI). In Section VII-C, we will evaluate
the impact of an FP and describe an approach to further reduce
the FN rate.

VI. MITIGATING IMPACT OF ATTACK AGAINST AGC
This section presents an approach to mitigating the delay

attack impact on AGC. As the total load is an important
determining factor for both stability and safety, a feasible
approach is to shed load to restore safety. However, clearly,
load shedding will affect customers adversely, sometimes
severely. Hence, it should be avoided if possible. This section
proposes a two-tier approach that firstly tunes the AGC gain as
a first-line defense, and resorts to shedding load only when the
gain tuning is insufficient. This section studies the impact of
the gain on the AGC’s stability and safety first in Section VI-A.
Then, it presents the two-tier approach in Section VI-B.

A. Impact of AGC Gain on Stability and Safety
As discussed in Section V-A, each power plant applies a PI

controller with a gain of k to the received ACE to produce
a reference signal for the plant’s generator. We conduct sim-
ulations based on the 37-bus system model to investigate the
impact of k on the AGC’s stability and safety. The curves
and surfaces in Figs. 11(a) and (b) show the stability and
safety boundaries, respectively, under different settings of k.
By reducing k, we can expand the stable and safe regions.
However, from control theory, a smaller k will result in slower
convergence when there is a load change. Hence, we have a
trade-off between (i) AGC’s tolerance to the delay in terms
of stability and safety, and (ii) AGC’s convergence speed in
response to a load change. As AGC generally also needs to
meet some required convergence speed, there exists in practice
a minimum allowable setting for k [13], which is denoted as
kmin. Multiple ELMs are trained to characterize the safety
boundaries under different settings of k. This ELM bank will
be used in Section VI-B to find a k to restore safety where
needed.

B. Two-Tier Delay Attack Impact Mitigation
Fig. 12 illustrates the integrated stability-safety assessment

and attack impact mitigation. When a system is classified
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Fig. 12. Two-tier delay attack impact mitigation.

unstable or unsafe, the two-tier mitigation is activated. No
mitigation is needed only when the system is classified safe.
The two-tier mitigation works as follows. First, within the
range from kmin to the current setting of k, we search for
the maximum setting of k that can restore safety using the
ELM bank discussed in Section VI-A. If such a k setting
is found, it is piggybacked onto the next ACE signal that
will be sent to generators. Otherwise, load shedding should be
applied. We use the ELM bank to find the minimum amount
of load that needs to be shed to restore safety under the setting
kmin. This minimum amount is denoted by ∆Lmin. The grid
operator sheds ∆Lmin load and piggybacks the kmin to the
next ACE signal that will be sent to generators. The shedding
amount can be shared among load buses equally or using
existing scheduling algorithms addressing other grid operation
optimization objectives and constraints [37]. Once a generator
receives the new AGC gain, it updates its setting accordingly.

In our mitigation approach, we use the classical frequency
restoration techniques to mitigate the impact of the delay
attack. This is different from the techniques like time stamping
or watchdog, where they are used for the attack detection as
mentioned in Section III-B but not for mitigating the impact of
delay attack before it is removed from the system. There can
be other techniques that is capable of managing the delays in
the control system, e.g., software-defined networking (SDN).
However, managing the delays using SDN is a non-trivial task.
We have a recent work in [38] to study this problem.

VII. PERFORMANCE EVALUATION

This section evaluates several key aspects of our attack
impact assessment and mitigation designed for the AGC of
the 37-bus system shown in Fig. V-A.

A. Effectiveness of ELM-Based Safety Classification

We compare the proposed ELM-based approach with a data-
driven baseline approach. Specifically, the baseline finds a
system operating point within the ELM’s training data that
has the smallest Euclidean distance to the system’s current
operating point, and yields the found operating point’s safety
label. Fig. 13 shows the classification error rates of our ELM-
based and the baseline approaches under different settings of
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training data volume. Consistent with intuition, the error rate
decreases with the volume of training data. The ELM-based
approach gives lower error rates. Moreover, the running time
for the ELM-based approach is up to 6,000 times shorter than
that of the baseline approach.

B. Effectiveness of Attack Impact Mitigation

We conduct two simulations to show the effectiveness of our
two-tier attack mitigation. The system’s total load is 1000MW.
The initial setting for k is 10. The safety requirement for
the grid frequency deviation is [−0.5Hz, 0.5Hz]. The attacker
delays the ACE signal by 4 s from t = 120 s. The attack impact
assessment classifies the system safe until a step load change is
introduced at t = 140 s. In Fig. 14(a), the load change is 5% of
the total load. At this moment, the system is classified unsafe.
The red curve in Fig. 14(a) shows the system’s trajectory if
no mitigation is applied. It confirms the assessment result. The
mitigation approach starts searching for a k setting to regain
safety. By decreasing k from 10 to kmin = 5, the system
is classified safe under the attack. The thick green curve in
Fig. 14(a) shows the system’s trajectory after the new setting
k = 5 is applied. We can see that the system becomes safe
after the mitigation. In Fig. 14(b), the load change is 8% of the
total load. Because of the increased load change, tuning k to
kmin = 5 is insufficient and shedding 10% of load is needed
to restore safety. The thick green curve in Fig. 14(b) shows
the system’s trajectory after load shedding and reconfiguring
k. The system is safe after the mitigation. The effects of
different mitigation approaches on the customers are different.
In Fig. 14(b), as tuning k to kmin still cannot mitigate the
attack impact, we have to shed some of the customer loads,
which results in lower utility to the owners. In Fig. 14(a), as
the mitigation is achieved by adjusting the AGC parameters
only, no customers will be affected.
C. False Positives and Negatives in Safety Classification

While the ML deals with the state explosion problem,
it results in FPs and FNs. An FP will trigger the attack
mitigation. Fig. 15(a) shows the system’s trajectory after the
mitigation wrongly triggered by a safety classification FP
caused by a load change that is 0.5% of the total load, where
the ACE signal is delayed by 2 s from t = 120 s. As the
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Fig. 14. Attack impact mitigation examples. (a) Tuning k only; (b) Tuning
k and shedding load.

mitigation applies a small adjustment only (i.e., decrease k
from 10 to 8), the frequency deviation has a slightly longer
settling time. Moreover, Fig. 15(b) shows another scenario of
the system’s trajectory after the mitigation wrongly triggered
by a safety classification FP caused by a load change that is
0.5% of the total load, where the ACE signal is delayed by 5 s
from t = 120 s. The mitigation sheds 8% of the total load after
decreasing k from 10 to 5; the frequency deviation can even
have a shorter settling time. This is because the mitigation
speeds up the system to diminish the small fluctuations due
to the delay. Therefore, as FPs mostly occur for marginally
safe operating conditions, the triggered mitigation is generally
of small strength. The weak mitigation can lead to a slight
settling time increase. Sometimes, it can even help decrease
the settling time, which mitigates the concern for FPs.
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In contrast, the system may become unsafe due to FNs. We
discuss a sliding window approach as illustrated in Fig. 16(a)
to reduce the FNs. In this approach, the load change is defined
as the difference between the current load and the load in the
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Fig. 16. (a) Sliding window approach. The time window is set as two time
slots and the step load change will be assessed twice at t = t3 and t = t4. (b)
FN rate vs. window size. The window size is increased from 1 to 5 and the
standard deviations of three different random load fluctuations are illustrated.
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Fig. 17. Trajectories of load changes. (a) Trajectories of load increasing. The
load starts to change from t = 450 s and lasts 600 s. The total load increases
by 50 MW in all three randomly generated trajectories. (b) The load starts to
change from t = 450 s and lasts 600 s. The total load decreases by 50 MW
in all three randomly generated trajectories.

previous time window. As a result, a step load change will
be assessed for multiple times. For instance, in Fig. 16(a), the
time window is two time slots and the step load change will be
assessed twice at t = t3 and t = t4. Due to random temporal
fluctuations of the load, the probability that an unsafety can
be detected in at least one of the multiple assessments will
increase, thus reducing the FN rate. By increasing the window
size, a load change will be assessed for more times. Fig. 16(b)
shows the FN rate versus the window size under different
random load fluctuations’ standard deviations (σ). The FN
rate decreases with the window size. Thus, this approach can
effectively reduce the FN rate. The concern for increased FP
rate due to this approach is minor since the FPs cause little
impact on the system as illustrated earlier.

D. Impact of Gradual Load Changes

In the above, we have considered the sudden change of the
load, i.e., the disturbance. We now discuss a more complicated
case where the load varies gradually. In the following, we
will show how the different trajectories of the load change
affects the system stability and safety using the three-area 37-
bus system as shown in Fig. V-A. Instead of mimicking the
sudden change of the load, we now randomly generate the load
profiles that vary differently within the same period. Fig. 17(a)
and Fig. 17(b) show different trajectories of the increasing
and decreasing load, respectively. In each figure, we randomly
generate three different loads trajectories. Fig. 18 shows the
system frequency deviation for increasing load trajectories in
Fig. 17 under 3 s and 6 s delays. Figs. 18(a) and (b) show that
the system stability is not affected by the load trajectories. This
result is consistent with our analysis. Specifically, in Fig. 18(a),
even under the 3 s delay, the system can still converge to
the nominal value. In Fig. 18(b), although the system suffers
small oscillations around the nominal value due to the delay,
the system is still stable for different load trajectories. For the
system safety, it can be relevant to the load trajectories, i.e.,
the frequency deviation increases with the change of load.
For example, at around t = 900 s both Case 2 and Case
3 have large load changes, and the corresponding frequency
deviations are also high. For Case 2, it can even violate our
safety range, i.e., violate the lower bound. We can obtain
similar results in Fig. 19 too.

From these observations, we can see that the system stability
is independent of the load change, which is the same as our
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Fig. 18. System output for different load increasing trajectories in Fig. 17(a)
under different delay. (a) Delay by 3 s (b) Delay by 6 s.
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Fig. 19. System output for different load decreasing trajectories in Fig. 17(b)
under different delay. (a) Delay by 2 s (b) Delay by 4 s.

observation in Section V-B1. For safety, as the load trajectory
keeps changing, the safety can also be affected, which is also
the same as our summary in Section V-B2.

VIII. STABILITY-SAFETY ASSESSMENT FOR PPC

In this section, similar to the assessment in AGC, we first
present extensive simulations to understand PPC’s stability and
safety under the delay attack. Then we apply the stability-
safety assessment approach to a PPC system. In the end, the
mitigation approach is used to mitigate the attack impact.

A. Stability and Safety in PPC under the Delay Attack

We use a PPC model in ThermoPower [39], an open-source
library based on Modelica, to under simulate the PPC system.
Note that Modelica is an object-oriented complex physical
system modeling language [40]. The signal flow graph of the
system is shown in Fig. 20. The controlled power plant admits
two inputs, the power control signal and the void fraction
control signal. The void fraction is also known as porosity,
which is an important parameter characterizing two-phase fluid
flow, especially gas-liquid flow. The two control signals are
determined respectively by two PID controllers. The power
controller’s feedback signal is corrupted by additive zero-mean
Gaussian noises acting as disturbances to the system. The
adversary delays the power controller’s output signal.

Similar to the discussion in Section V-B, we consider
total load and disturbance as the factors that can affect the
system stability and safety. In the PPC system, the power
setpoint corresponds to the total load in the connected power
grid. The noise is introduced to represent the disturbance
in the system, while we use load changes to represent the
disturbance in discussing AGC. Different from the AGC, since
the transmission and distribution systems are transparent to the
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Fig. 20. A PPC system. The system has two inputs, the power control signal
and the void fraction control signal.

power plant, the load distribution is not a factor related to the
assessment.

Fig. 21 shows the minimum delays that lead to unstable
(a) and unsafe (b) under different total loads (i.e., power
setpoint in per unit (pu)) and disturbance cases. Each grid
point represents such a minimum delay obtained by running a
set of simulations under different delays. In Fig. 21, the surface
formed by the grid points that represent the obtained minimum
delays leading to instability (a) or unsafety (b) divides the
space into unstable and stable regions in (a) or unsafe and
safe regions in (b), which are above and below the surface,
respectively.

1) PPC’s stability: The stability is assessed by checking
the system’s convergence, i.e., whether the system state signal,
e.g., gas flow pressure, converges after the attack is launched.
In the worst case, the system can halt automatically due to the
system state divergence.

PPC’s stability depends on the total load: The result in
Fig. 21(a) shows that, when the total load is increased, the PPC
has the trend to be more unstable, i.e., shorter delay can cause
the system unstable. For example, for the disturbance case 1,
when we increase the total load, i.e., the power setpoint, from
5.2 to 5.6, the minimum delay to make PPC unstable decreases
from 35 s to 11 s, which means that a shorter delay can make
the system unstable.

PPC’s stability depends on the disturbance: In Fig. 21(a),
the result also shows that, under different disturbances, the
minimum delay leading to system unstable is quite different
even under the same power setpoint. For example, when power
setpoint is 5.6, the minimum delay to make PPC unstable can
change from 12 s to 17 s. This is different from the case in
AGC where the disturbance does not affect the stability.

2) PPC’s safety: The safety is assessed by imposing the
safety requirement, i.e., in our case, we require the gas flow
pressure deviation must be within [−0.02, 0.02]× 1e5 Pa. Note
that, this range is defined by our observations in thousands
of simulations that gas flow pressure signal is mostly in this
range under our system settings. As we discussed the definition
for safety in Section III-A, the safety range can be other
specified ranges based on the system setting and the operator’s
requirements.
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Fig. 21. The minimum delay leading to instability (a) and unsafety (b) vs.
load setpoint and disturbance. For each load setpoint, we consider 5 different
disturbance cases.

PPC’s safety depends on the total load: The result
in Fig. 21(b) shows that, generally, when the total load is
increased, the PPC generally has the trend to be unsafe, i.e.,
shorter delay can cause the system unstable. But this is not
always true. For example, for the disturbance case 3, when we
increase the total load, i.e., the power setpoint, from 5.2 to 5.3,
the minimum delay to make PPC unsafe is deceased from 27
s to 12 s. But, if we keep increasing the power setpoint from
5.3 to 5.5, the minimum delay increases to 15 s first when
the power setpoint is 5.4 and goes down to 14 s when power
setpoint is 5.5, which means the safety boundary is not strictly
decreasing when we increase the load. This is consistent with
the case in AGC as introduced in Section V-B2.

PPC’s safety depends on the disturbance: In Fig. 21(b),
the result also shows that, under different disturbances, the
minimum delay leading to system unsafe is quite different
even under the same power setpoint. For example, when power
setpoint is 5.3, the minimum delay to make PPC unstable can
change from 12 s to 25 s. This is also similar to the case in
AGC that the disturbance affects the safety.

3) Summary: The above experiments show that both PPC’s
stability and safety depend on total load, disturbances and
the delay. This observation is still partly consistent with the
results for the barebone control system in Section III-C,
except that the PPC’s stability also depends the total load
and the disturbance. Similar to the case in AGC, this can
be explained from the fact that PPC is a non-linear system,
although the control-theoretic analysis in Section III-C is
based on the linearization at the system’s current condition
as characterized by both the total load and the disturbance.
Since both stability and safety depend on the disturbance,
which can have exponential complexity with different settings,
there are no clear boundaries for both stability and safety.
Therefore, similar to the safety case in AGC, we use the ELM-
based machine learning approach to classify both stability and
safety.

B. Effectiveness of ELM-Based Stability-Safety Classification

Due to the highly complexity in the power plant, the clear
stability boundary is not available in PPC. Thus, we use
offline simulations together with ML to model the system’s
stability and safety. Specifically, we use OpenModelica [41],
a Modelica-based simulator, to run massive offline simulations
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Fig. 22. FN rates of stability (a) and safety (b) assessment vs. window size.
The s is the noise generator sampling period. A smaller s value means a
larger level of disturbance to the system.
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Fig. 23. The diagram of mitigation in PPC.

under a wide range of settings to generate training data. Then,
we train the ELMs to model the stability and safety. Inputs
to the ELMs include the sampling period and variance of
the Gaussian noise as well as the delay. The output is the
stability or safety assessment result. We apply the sliding
window approach illustrated in Fig. 16 to improve the FN
rate. The training and testing data sets consist of 10,000 and
3,500 operating points, respectively.

Figs. 22(a) and 22(b) show the FN rates of the stability and
safety assessments, respectively, under various settings of the
sliding window size. The different curves are the results under
different settings of the Gaussian noise generator’s sampling
period in seconds, i.e., the s values in the legends. We note
that different from the simple control loop in Section III-C
the AGC, which are discrete-time systems, the PPC is a
hybrid system with discrete-time sensing but continuous-time
control and actuation. Thus, the Gaussian noise generation,
which belongs to the sensing part, is in discrete time. As a
result, the frequency at which we update the noise affects
the level of the disturbance to the system. Specifically, a
smaller noise sampling period causes a higher disturbance.
From Figs. 22(a) and 22(b), similar to the results for the AGC,
the FN rate increases with the window size and decreases with
the disturbance level.

C. Effectiveness of Attack Impact Mitigation

For attack mitigation, similar to the mitigation approach
presented in Section VI, we can build ELMs for a range
of PID configurations and then tune the PID configuration.
Since there are two PID controllers, we can tune either of
them. In our approach, we choose the PID controller with the
power setpoint as the input, which corresponds to the total
load in the power system, to tune. We use Fig. 23 to illustrate
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Fig. 24. Attack mitigation examples in PPC. The attack is launched at t =
300s s by delaying the PID control command by 6 s and 15 s, respectively.
We consider the effect of applying and without applying mitigation to the
system.

the mitigation approach in the PPC system. Once we know
the system will be either unstable or unsafe by running the
ELM algorithm, we decease the power setpoint, i.e., decrease
the total load in the power system. This is motivated by the
observations in Fig. 21 that when the system power setpoint is
lower, the system is generally more stable and resilient. After
that, by applying our optimal load scheduling strategy in [37],
the load in the power system can be balanced. In Fig. 24, we
show that the attack is launched at t = 300 s. The 6 s and
15 s delay attacks are respectively applied to the PPC system.
In Fig. 24(a), the 6 s delay attack makes the system unsafe,
i.e., the peak point of the fluctuation is larger than the safety
threshold defined by our setting. Moreover, in Fig. 24(b), the
15 s delay attack makes the system unstable, i.e., the system
is crashed without mitigation under the attack. But if we apply
the mitigation approach as shown in Fig. 23, we can greatly
shrink the fluctuation when the attack is launched and ensure
the system is safe and stable in both figures in Fig. 24.

IX. CONCLUSION AND FUTURE WORK

This paper presented an efficient delay attack impact as-
sessment approach that applies a stability classifier and an
ML-based safety classifier sequentially. The ML addresses the
state explosion problem in the safety classification due to the
dependence of the system’s safety on the multi-dimensional
system state. The tandem stability-safety design improves
the accuracy of the unsafety detection and speeds up the
overall assessment. We applied our approach to power grid
AGC, and developed a two-tier attack impact mitigation that
tunes the control gain as a first-line defense and resorts
to shedding load only if the gain tuning is insufficient to
regain safety. Simulations based on a 37-bus system model
verified and illustrated the effectiveness of our assessment and
mitigation approaches. We also applied our approach to assess
the stability and safety of a PPC system and proposed the
mitigation approach. We presented the evaluation results based
on Modelica simulations. Although we have evaluated the
impact of load changes on safety, considering the trajectories
details can make the evaluation of the system safety becomes
even more complicated, as it is relevant to the dynamics of the
system load. Other advanced machine learning techniques, for
example, the recurrent neural network [42], may be needed
to capture the relationship among the time series. This is an
open issue for future research.
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