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Abstract—Increasing supply air temperatures is a rule-of-
thumb approach to reduce cooling energy usage of data centers
(DCs). However, colocation DCs are short of incentive programs
to move tenants from the current over-cooling strategy despite the
expanding allowable temperature ranges of the computing equip-
ment. This paper considers an essential incentive mechanism,
in which the DC operator offers monetary incentives to offset
tenants’ electricity payments. We propose an encoder-embedded
multi-agent reinforcement learning solution to let the operator
agent and tenant agents collaboratively find their policies for
deciding the incentives and supply air temperatures, respectively,
which are coupled in determining the DC’s total cooling power
usage. The solution does not require the cooling power model,
which is complex and in general unavailable in practice. More-
over, as each tenant agent learns in the other tenants’ latent
state spaces defined by their pre-trained variational autoencoders,
only encoded tenants’ states are exchanged, thereby mitigating
information leakage concerns. Extensive trace-driven evaluation
and comparison with three baselines show that our solution
effectively incentivizes tenants to move from the over-cooling
strategy and achieves substantial cooling power savings.

Index Terms—Colocation Data Centers, Temperature Control,
Incentive, Multi-Agent Learning, Reinforcement Learning

I. INTRODUCTION

The data center (DC) industry provides the infrastructures
for cloud computing and has been growing. As the DC sector
uses significant energy (2% [1] to 7% [2] of a country’s
total electricity usage), increasing DC energy efficiency is
crucial to the carbon emission management and sustainability
goals. DCs have two broad business models of enterprise and
colocation. An enterprise DC is a system entirely owned and
operated by a single entity. Differently, a colocation DC hosts
the information technology (IT) systems of multiple tenants
through quality of service (QoS) agreements on the space,
power, cooling, and communication supplies. In the endeavors
of improving energy efficiency, compared with enterprise DCs,
colocation DCs involve one extra but intricate factor, i.e., the
engagement with the tenants. To make sense, the endeavor
needs to be beneficial to both the colocation DC operator and
the tenants with different objective functions.

Following the above principle, the existing studies [3], [4]
have proposed incentive programs to encourage tenants to
reduce IT power usage. However, in air-cooled colocation
DCs, how to incentivize the tenants to control their supply
air temperatures in a collaborative effort to reduce the power
usage of the complex cooling infrastructure still remains as

an open problem. In today’s practices, air-cooled DCs often
adopt low supply air temperatures for large thermal safety
margins, which, however, lead to high energy overheads (e.g.,
around 40% of DC energy used for cooling [5]). At the
same time, the American Society of Heating, Refrigeration
and Air-Conditioning Engineers (ASHRAE) has been working
on extending the recommended allowable temperature ranges
of IT equipment in its published de facto industry standard
[6]. Pilot trials [7] in enterprise DCs have also suggested
the feasibility of adopting higher supply air temperatures
and the resulted cooling energy saving potential of up to
37%. Therefore, effective incentive programs to encourage the
tenants to move from the current over-cooling strategy are
desirable for greening colocation DCs.

In this paper, we consider an essential incentive mechanism,
in which the colocation DC operator offers monetary incen-
tives to offset the electricity payments of a tenant. Each tenant
aims at minimizing the expected net payment by choosing
its supply air temperature periodically based on its latest IT
load. The operator, while being driven to reduce the DC’s
total power usage due to say the imposed carbon tax or
social responsibility, aims at maximizing the expected revenue
by choosing the giveaway incentives based on the tenants’
IT loads and their chosen supply air temperatures. If the
operator gives positive incentives for temperatures higher than
the original over-cooling temperatures, the DC’s total cooling
power usage will reduce.

However, the design of the operator’s and tenants’ decision-
making policies in the above incentive mechanism faces
two major challenges. First, the operator and the tenants
are coupled through a complex cooling infrastructure, which
usually involves two stages of individual computer room air
conditioners (CRACs) as the front stage and the shared chilled
water system as the back stage. The IT loads and supply air
temperatures of all tenants jointly affect the DC’s total cooling
power usage and there is no simple split for attributing to
the tenants [8]. As such, the design of a tenant’s policy on a
sole basis is unlikely effective. Moreover, deriving analytical
solutions to a game-theoretic formulation of the problem is
not promising, due primarily to the unavailability of holistic
and accurate models of DCs’ cooling systems in practice.
Second, intuitively, information transparency among the ten-
ants coupled through the cooling system is beneficial for each
tenant to make informed decision and can contribute to the



efficiency of the incentive mechanism. However, the sharing
of tenants’ local states (i.e., IT loads) for the transparency
may leak critical information, e.g., type of computation and
vulnerable time for further attacks such as power attack [9].

This paper proposes an encoder-embedded multi-agent re-
inforcement learning (MARL) solution to address the above
two challenges collectively. Specifically, the MARL system
consists of an operator agent (OA) and multiple tenant agents
(TAs) which interact with each other and the environment
(i.e., the cooling system) iteratively over time to learn their
optimal policies. The OA runs the deep deterministic policy
gradient (DDPG) learner and the TAs run their respective
encoder-embedded multi-agent DDPG (MADDPG) learners.
As MARL is model-free (i.e., it does not require the holistic
and accurate model of the environment), it is suitable for the
colocation DCs’ adoption. To address the information leakage
concern, each TA builds a variational autoencoder (VAE) for
its IT load data and uses the VAE’s encoder to mask its
local state before sharing with other TAs. As such, each TA’s
MADDPG learner operates in the latent state spaces of all
other TAs and can still capture the near-optimal policies.

We conduct extensive real-trace-driven simulations in En-
ergyPlus [10] to evaluate the effectiveness of our proposed
incentive mechanism in comparison with three baselines. The
simulation results show that our proposed incentive mecha-
nism can effectively move the tenants from the over-cooling
strategy and achieve about 35% saving in total cooling power.

II. RELATED WORK

Incentive Colocation DCs: The existing incentive programs
designed for colocation DCs mainly focus on the demand re-
sponse (DR). The study in [11] proposes an incentive approach
for a hierarchical DR problem, where the relationship between
the operator and tenants is formulated as a Stackelberg game.
In [4], a market-oriented incentive program is proposed to
encourage tenants to share their idle servers and form a public
resource pool. The work of [12] proposes the MesPP program
to maximize energy reduction considering the incentive budget
constraint of the operator. Different from these studies that
focus on incentivizing the tenants to reduce IT loads, this
work incentivizes the tenants to raise supply air temperatures
to reduce the cooling power usage.

MARL for DC Control: MARL-based DC control em-
ploys multiple agents to make decisions and improve the
DC performance. In [13], to improve energy efficiency, two
DDPG agents learn to cooperatively control IT and cooling
systems, respectively. In [14], MARL is applied to address
the renewable energy demand-supply matching problem for a
set of geo-distributed DCs. The work in [15] applies MARL
for distributed cooling control, where each agent learns the
optimal cooling policy to minimize the cooling power of a
CRAC unit. In [16], the multi-agent Q-learning is applied for
task scheduling. In the above MARL approaches, the agents
are trained to optimize a global objective function and share
information for coordination. Differently, we consider a multi-
agent system where each agent optimizes its specific objective.

Fig. 1. Colocation DC system model.

Moreover, the tenant agents apply the VAEs to mask their
local states before shared to other tenant agents. It is more
challenging for the agents to learn from the masked data.

III. SYSTEM MODEL & PROBLEM FORMULATION

A. Colocation DC System

Fig. 1 illustrates a colocation DC that serves multiple tenants
by leasing a server room to each tenant to house IT equip-
ment. The DC operator purchases electricity from the utility
company and manages the DC facility. Let N = {1, ..., N}
denotes the set of N tenants. A tenant i ∈ N decides the
supply air temperature setpoint Ti of the CRAC unit in the
room. The operator controls a two-stage cooling system [17].
The first stage consists of CRAC units in all rooms and
each unit transfers the heat from the IT equipment to the
shared cooling system. In the second stage, the shared cooling
system dissipates the heat collected from all server rooms
to the atmosphere. The operator charges each tenant based
on the IT power usage measured by the power meter in
its room. Generally, the cooling power usage decreases with
the supply air temperature setpoints of the server rooms. To
improve the DC energy efficiency, the operator can encourage
the tenants to raise their temperature setpoints by offering
monetary incentives. Meanwhile, each tenant considers its
technical constraints in determining the temperature setpoint
for its room.

B. Problem Formulation

Time is divided into identical intervals referred to as the
control period. The beginning time instant of a time interval
is called a time step. At every time step, each tenant decides
its temperature setpoint. Then, the operator gives tenants mon-
etary incentives. We formulate the following two optimization



problems specifying the objectives and constraints of tenants
and the operator, respectively.

Tenant’s Payment Minimization: Let Li,k denote the IT
power usage of tenant i at the time step k. The operator charges
tenant i by ηρkLi,k, where η is the constant electricity unit
price applied by the operator, and ρk is the real-time power
usage effectiveness (PUE) of the DC. The value of ρk is mea-
sured and published by the operator. By participating in the
incentive program, tenant i receives the non-negative monetary
incentive bi,k from the operator for adopting the temperature
setpoint Ti,k in the next control period. Then, the net payment
of tenant i is calculated by ui,k = ηρkLi,k − bi,k. The tenant
aims to decide the temperature setpoints to minimize its long-
term average net payment subject to the temperature constraint
of its IT equipment. This tenant’s payment minimization
problem, denoted by OPT-T, is formulated as:

min
Ti,k,∀k

lim
K→∞

1

K

K∑
k=1

ui,k, s.t. Tmin,i ≤ Ti,k ≤ Tmax,i, (1)

where Tmin,i and Tmax,i are the minimum and maximum
allowable supply air temperature setpoints of tenant i’s IT
equipment, respectively.

Operator’s Revenue Maximization: The operator controls
the cooling system to maintain the temperature setpoints
required by all tenants. Let Tk = [T1,k, ..., TN,k] and Lk =
[L1,k, ..., LN,k] denote the temperature and IT power vectors
at the time step k, respectively. We model the total DC power
usage by PDC

k = f(Tk,Lk), where f(·) is a non-linear
function of Tk and Lk. The problem formulation does not
require a specific model for f(·). We adopt the model from
[8] to generate the ground truth for the evaluation experiments
in this paper. Let bk = [b1,k, ..., bN,k] denote the vector of
monetary incentives that the operator gives the tenants based
on their IT power usages and temperature setpoints at the
time step k. Then, the revenue of the operator for running
the colocation DC is calculated by vk =

∑N
i=1 ui,k − µPDC

k ,
where µ is the constant electricity unit price from the utility
company. The operator’s objective is to decide the incentives
which maximize its long-term expected revenue. This oper-
ator’s revenue maximization problem, denoted by OTP-O, is
formulated as:

max
bk,∀k

lim
K→∞

1

K

K∑
k=1

vk, s.t. bi,k ≥ 0, i = 1, . . . , N. (2)

C. Challenges

Solving OPT-T and OPT-O analytically is challenging due
to the complex combined impact of the tenants’ temperature
setpoints and IT power usages on the DC power usage.
Specifically, the operator gives a higher incentive to a tenant
if this tenant adopts a higher temperature, while each tenant
adopts the highest allowable temperature according to its IT
equipment’s thermal specification. However, the server power
in general increases with the temperature [18]. Thus, adopting
the highest allowable temperatures may not be the tenants’
best policy since it may lead to higher net payment. In this

Fig. 2. Structure of proposed MARL framework.

paper, we design an MARL-based incentive mechanism to let
the operator and the tenants learn their respective policies for
determining the tenants’ incentives and temperature setpoints
to solve the OPT-T and OPT-O optimization problems.

IV. MARL-BASED INCENTIVE MECHANISM

A. Markov Game

We formulate a Markov game (MG) [19] consisting of N
tenant agents and one operator agent. The learning processes
of agents are modeled as Markov decision processes (MDPs).

1) Tenant Agents (TAs): The state, action, and reward
functions of the TA are defined as follows.

State: At the time step k, the state of TA i is a vector of IT
loads of all server rooms denoted by sTAi,k = [L1,k, . . . , LN,k].
Under this formulation, all TAs exchange IT load information.

Action: Based on the observed state sTAi,k , the TA i decides
an action aTAi,k which is the supply air temperature setpoint Ti,k

selected from the range of [Tmin,i, Tmax,i] for its server room
in the next control period. In practice, due to the granularity
of CRAC’s temperature control (e.g., 1°C), the TA can only
choose discrete values for aTAi,k .

Reward: Upon receiving the actions of all TAs at the time
step k, the operator decides an incentive bi,k for each tenant
and controls the cooling system to maintain the required
temperature setpoints in server rooms for the next control
period. Given sTAi,k and aTAi,k , the reward of TA i is rTAi,k =
−ηρkLi,k + bi,k, which is the negative of its net payment.

2) Operator Agent (OA): The state, action, and reward
formulations of the OA are presented as follows.

State: At time step k, the operator state sOA
k is a vector

consisting of IT loads and temperature setpoints of all TAs,
and is denoted by sOA

k = [L1,k, . . . , LN,k, T1,k, . . . , TN,k].
Action: The operator action aOA

k is the monetary incentives
given to all tenants, which is given by aOA

k = [b1,k, ..., bN,k].
Each component bi,k is selected from a range of [0, bmax],
where bmax is the upper-bound value of the incentive.



Fig. 3. Structure of encoder-embedded MADDPG.

Reward: The reward rOA
k is the operator revenue and is

given by rOA
k =

∑N
i=1(ηρkLi,k − bi,k) − µPDC

k , where∑N
i=1(ηρkLi,k − bi,k) is the total payment of all TAs, and

µPDC
k is the DC power consumption payment.

B. Design of MARL-based Incentive Mechanism

We propose an MARL-based incentive mechanism to solve
the above MG between OA and TAs. Specifically, as illustrated
in Fig. 2, the OA adopts DDPG [20] to learn the incentive
policy, while the TAs use MADDPG [21] to learn their
temperature setpoint management policies.

1) DDPG Design of OA: The OA is formulated in the
actor-critic framework. At the time step k, the actor net-
work parameterized by ΦOA takes the state sOA

k to make
the action aOA

k using the policy πOA(sOA
k |ΦOA). The critic

network with parameters ΘOA provides the Q-value estimation
QOA(sOA

k ,aOA
k |ΘOA). While interacting with the environ-

ment, the experience (sOA
k ,aOA

k , rOA
k , sOA

k+1) is stored into
a replay buffer DOA. To stabilize the training process, the
target actor and target critic are used, which are parameterized
by Φ′OA and Θ′OA, respectively. The detailed design of the
DDPG’s actor and critic networks can be found in [20].

2) MADDPG Design of TAs: The MADDPG framework
enables multiple DDPG agents to make decisions and interact
within the environment. Specifically, each TA i has an actor
and a critic with ΦTA

i and ΘTA
i as the model parameters,

respectively, as well as their target network copies parame-
terized by Φ′TA

i and Θ′TA
i , respectively. At the time step k,

the TA i observes the state sTAi,k and takes the action aTAi,k using
the policy πTA

i (sTAi,k |ΦTA
i ). The Q-value estimation from the

critic is given by QTA
i (sTAi,k , a

TA
i,k |ΘTA

i ). The replay buffer DTA
i

stores the experience (sTAi,k , a
TA
i,k , r

TA
i,k , s

TA
i,k+1). Using the mini-

batch samples from DTA
i , the policy gradient and loss function

of TA i are calculated following the MADDPG algorithm
[21] to update network parameters. Moreover, the Gumbel-
Softmax estimator [22] is applied for each TA to address the
non-differentiable issue due to its discrete action space.

3) Training Process: At the beginning, each TA i gets the
state sTAi,k from the environment and takes the action aTAi,k based
on the policy πTA

i (sTAi,k |ΦTA
i ). After all TAs execute actions

aTA1,k , . . . , a
TA
N,k, the OA obtains the state sOA

k and executes the
action aOA

k given by the policy πOA(sOA
k |ΦOA). Then, TAs are

rewarded by rTA1,k , . . . , r
TA
N,k, respectively. The OA receives the

reward rOA
k . The environment then moves to the next decision-

making step and gives the states sTA1,k+1, . . . , s
TA
N,k+1 and sOA

k+1.
By collecting the transitions, replay buffers are built for each
TA i as DTA

i and the OA as DOA for training.

C. MARL with Data Masking

In §IV-B, each tenant reveals its IT load to all other tenants,
which may raise information leakage concerns. Specifically,
a tenant may be compromised unconsciously by an external
adversary. As a result, the external adversary may exfiltrate the
IT load data of all tenants. A server room’s continuous high
IT load may indicate critical services and imply a high-value
target of cyber attacks. Moreover, the adversary can analyze
the IT load data to infer the type of running applications, which
may be the privacy of the tenant.

We propose VAE-based data masking to mitigate the ten-
ants’ information leakage concern. VAE is a neural network
consisting of two parts: an encoder and a decoder, which
are connected through the latent space representation. In our
approach, each TA i trains a VAE using its own IT load data
and then uses the encoder of the trained VAE, denoted by ΨTA

ei
to mask its IT load data before sharing with other TAs.

After TA i receives the masked data from other TAs,
which is denoted by z−i,k = [z1,k, ..., zi−1,k, zi+1,k, ..., zN,k],
this TA takes the action âTAi,k based on the state ŝTAi,k =
[Li,k, z−i,k]. By interacting with the environment, the expe-
rience (̂sTAi,k , â

TA
i,k , r̂

TA
i,k , ŝ

TA
i,k+1) is stored in the replay buffer

D̂TA
i for training. Fig. 3 illustrates the structure of the encoder-

embedded MADDPG.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We use EnergyPlus 9.5 [10] to simulate the physical pro-
cesses of a colocation DC with six server rooms (i.e., N = 6).
The cooling system configuration follows the implementations
in [8]. We use the IT power traces of the Blue Waters
dataset [23] to simulate the tenants’ IT power usages with
diverse usage patterns. In the simulations, we set Tmin,i =
20°C and Tmax,i = 30°C for all tenants i ∈ N . The control
period is 10 minutes. The electricity unit prices charged by the
power grid and the DC operator are set to µ = 1 and η = 1.8,
respectively. The maximum incentive bmax is 15.

The latent dimension of each VAE is 10 and the encoder has
two hidden layers with 64 and 32 ReLU neurons, respectively.
The actor and critic networks of the OA and TAs have the
same architecture with three hidden layers, each consisting
of 128 ReLU neurons. We use the Adam optimizer with a
learning rate of 0.001. The discount factor and the soft update
parameter are 0.99 and 0.01, respectively. The mini-batch size
is 64, and the replay buffer size is 50,000.

B. Training Performance

First, we evaluate the training performance of the following
two variants of our proposed approach. (1) Masked: Each TA
uses a trained VAE’s encoder to mask its IT power state before
sharing it with other TAs for decision-making. (2) Unmasked:
Each TA reveals its IT power state to all other TAs without data



Fig. 4. The net payments of the six tenant agents during the training.

Fig. 5. Training performance of the operator agent.

masking. We also compare with a baseline approach, called
Local, where each TA makes the decision solely based on its
local IT power state.

Fig. 4 shows the net payment traces of six TAs during
training. With three approaches, the net payments of all
TAs decrease in the first 3,000 time steps and then become
flat. Moreover, the Masked and Unmasked approaches mostly
have lower payments than those of the Local approach. This
indicates that the IT load information exchange helps TAs in
learning optimal temperature management policies to reduce
the net payments. In addition, the Masked and Unmasked
approaches generate mostly similar tenant payments after the
training period of 3,000 time steps. This implies that the data
masking by the VAE’s encoders does not prevent the TAs from
learning the near-optimal temperature management policies.

Fig. 5 presents the operator revenue and the DC power
usage during training. With three approaches, the operator
revenue and the DC power usage decrease over training and
become flat after 3,000 time steps. Moreover, compared with
the other two approaches, the Local approach overall has
higher operator revenue and DC power usage. This is because
the tenants under the Local approach give more payments for
taking lower temperature setpoints. Moreover, the Masked and
Unmasked approaches generate similar operator revenues and
DC power usages. The reason is that TAs can learn the near-

Fig. 6. Execution performance of 1 day. The bar, upper cap, and lower cap
represent the average, maximum, and minimum values, respectively.

Fig. 7. Traces of the IT load, incentive, temperature setpoint, and net payment
of the tenant 3 over an execution period of 1 day.

optimal temperature management policies with masked data.
Therefore, the TAs select similar temperature setpoints and the
OA offers similar incentives under these two approaches.

C. Execution Performance

We compare the execution performance of three MARL-
based incentive approaches with the following two baseline
approaches. (1) Hottest: All tenants always select the highest
temperature setpoint of 30°C and the operator offers the
maximum incentive of bmax to tenants. (2) Over-cooling: The
tenants always select the lowest temperature setpoint of 20°C
and receive no incentives from the operator. There is no IT load
information exchange among TAs in both baseline approaches.

Fig. 6 shows the 1-day execution results of the average
tenant net payments, operator revenue, and DC power usage
of various approaches. According to Fig. 6(a), the Masked
and Unmasked approaches generate similar tenant payments,
operator revenue, and DC power usage, which are lower than
those with the Local approach. Specifically, the average net
payments of six tenants with the Local approach are higher
than those of the Ummasked approach by 8.75%, 7.33%,
5.74%, 9.89%, 9.04%, and 8.68%, respectively. Similarly, as
shown in Figs. 6(b) and (c), compared with the Unmasked
approach, the Local approach leads to 7.52% and 8.06%



Fig. 8. Traces of the operator revenue and DC power usage over 1 day.

Fig. 9. Comparison with the baseline approaches over a 10-days’ period.

higher operator revenue and DC power usage, respectively.
Moreover, the Over-cooling approach generates the highest
tenant payment, operator revenue, and DC power usage.

Fig. 7 shows the IT power usage, incentive, temperature
setpoint, and net payment traces of 1-day execution of tenant
3. With the Local, Masked, and Unmasked approaches, tenant
3 is incentivized to change temperature setpoints in response
to IT load dynamics for higher incentives. Fig. 8 shows the
corresponding operator revenue and DC power usage.

We further compare the performance of all approaches over
a longer period of 10 days. From Fig. 9(a), the Masked and
Unmasked approaches reduce the average tenant payment by
up to 30% from the Over-cooling approach. Moreover, the
Local, Masked, and Unmasked approaches move the tenants
from the over-cooling strategy and reduce the DC power usage
by 8.83%, 13.32%, and 14.26%, respectively. Particularly, the
Masked and Unmasked approaches have more reductions in
tenant payment and DC power usage than the Local approach
and achieve about 35% cooling power reduction from the
Baseline-Hot approach. From Fig. 9(b), three MARL-based
approaches generate higher tenant payments, operator revenue,
and DC power usage than the Hottest approach. Specifically,
they increase the average tenant payment, operator revenue,
and DC power usage by up to 11%, 15%, and 9%, respectively.

VI. CONCLUSION

In this paper, we propose an incentive mechanism to effec-
tively incentivize the tenants in the colocation DC to raise the
supply air temperature setpoints of their server rooms, aiming
at maximizing all participants’ financial benefits. The proposed
mechanism adopts an MARL framework where the operator

learns a policy to determine the monetary incentives offered
to the tenants, and the tenants learn policies to set the supply
air temperatures. Moreover, our data masking method helps
alleviate the information leakage concern due to IT load data
exchange among tenants. Extensive trace-driven evaluation
shows that our proposed approach enables tenants to reduce
net payments and the colocation DC to reduce power usage.
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