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ABSTRACT
Tracking interpersonal distances is essential for real-time social dis-
tancing management and ex-post contact tracing to prevent spreads
of contagious diseases. Bluetooth neighbor discovery has been em-
ployed for such purposes in combating COVID-19, but does not
provide satisfactory spatiotemporal resolutions. This paper presents
ImmTrack, a system that uses a millimeter wave radar and exploits
the inertial measurement data from user-carried smartphones or
wearables to track interpersonal distances. By matching the move-
ment traces reconstructed from the radar and inertial data, the
pseudo identities of the inertial data can be transferred to the radar
sensing results in the global coordinate system. The re-identified,
radar-sensed movement trajectories are then used to track interper-
sonal distances. In a broader sense, ImmTrack is the first system that
fuses data from millimeter wave radar and inertial measurement
units for simultaneous user tracking and re-identification. Evalua-
tion with up to 27 people in various indoor/outdoor environments
shows ImmTrack’s decimeters-seconds spatiotemporal accuracy
in contact tracing, which is similar to that of the privacy-intrusive
camera surveillance and significantly outperforms the Bluetooth
neighbor discovery approach.
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1 INTRODUCTION
Retrospective studies have shown that infectious control measures
including wearing masks, hand hygiene, and interpersonal distanc-
ing contribute to the prevention of COVID-19 and also to the decline
of influenza, enterovirus, and all-cause pneumonia [6]. When the
mask-on requirement is gradually lifted during the current stage of
the COVID-19 pandemic, interpersonal distancing is important to
reducing personal health risks and societal costs in healthcare.

This paper aims to design a system for interpersonal distance
tracking for moving people in relatively enclosed environments that
require extra attention to airborne transmissions of pathogens via
respiratory droplets. The tracking results can be used to detect un-
safe contacts and generate real-time or ex-post alerts to the engaged
individuals. COVID-19 contact tracing often adopts a spatiotem-
poral definition of contact, i.e., whether a questioned person spent
more than 𝜏 seconds within 𝑥 meters from an infectious source,
where the thresholds 𝜏 and 𝑥 can be updated according to the evolv-
ing understanding on virus transmissions. It has been commonly

Fig. 1: ImmTrack for interpersonal distance tracking.

accepted that risk of transmission is greatest within one meter dis-
tance. In addition, SARS-CoV-2 has been found transmissible via a
fleeting encounter [24]. The above suggest that effective contact
tracing requires decimeters-seconds spatiotemporal accuracy.

Bluetooth neighbor discovery (BND) is the prevailing solution
for smartphone- or wearable-based contact tracing [16, 30]. How-
ever, as analyzed in [16], BND suffers 1) poor temporal resolution
due to long discovery latency and 2) inaccurate distance estimation
due to multipath and attenuation effects. As such, the BND-based
Google/Apple Exposure Notifications System [1] cannot reliably
detect contacts shorter than five minutes [16]. The existing indoor
localization techniques are in general incompetent for contact trac-
ing. As summarized in [43], device-free approaches, in which the
user does not carry a device, face the anonymity problem in tracking
multiple users, i.e., the approaches cannot identify individual users.
Without (pseudo) identities, the tracking results cannot be used for
contact tracing. On the other hand, smartphone-based approaches
have respective limitations, e.g., requiring dense Bluetooth bea-
cons, privacy-intrusive due to visual sensing [44], and insufficient
accuracy of WiFi- or geomagnetism-based localization [12, 17].

Recently, millimeter wave (mmWave) radars emerged as a low-
cost sensing modality and have been adopted for human detection
and tracking [38, 42]. The following features of mmWave radars
form a good basis for achieving accurate interpersonal distance
tracking. First, mmWave radars directly provide the velocity and
depth information of the targets, which facilitate tracking the tar-
gets’ absolute positions. Second, an mmWave radar can cover a
large area with good sensitivity. For instance, the Texas Instru-
ments AWR1843 mmWave radar gives a 0.23m sensing resolution
within a 118° circular sector area with a radius of 40m, covering
a total area of more than 1,600m2. Third, compared with cameras,
mmWave radars output coarse-grained point clouds, which are less
privacy-sensitive, making the deployment less intrusive.
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However, mmWave radars also face the anonymity problem.
Although research has attempted to apply supervised learning to
identify the human subjects from mmWave radar data based on
gaits [46], training data from each user is needed, incurring unde-
sirable deployment overhead. The key idea of this paper, which
is illustrated in Fig. 1, is to exploit the inertial measurement units
(IMUs) carried by the users to address the mmWave radar sensing’s
anonymity problem. This is based on the observations that (i) IMU
data from the users inherently carry pseudo identities (PIDs), and
(ii) both IMU and mmWave radar data contain rich information
about the users’ movements. While using IMU data only is insuffi-
cient for accurate tracking due to the error accumulation problem,
by matching IMU data and mmWave radar data in terms of the
consistency between their captured velocities and movements, the
IMUs’ PIDs can be transferred to mmWave radar’s accurate track-
ing results. The re-identified, radar-sensed user trajectories can
then be used for interpersonal distance tracking. Since IMUs are
pervasively available on portable and wearable smart devices, the
only requirement to enable the tracking is to share a summary of
the IMU data regarding the user’s movements.

Based on the above idea, we design a system called ImmTrack
that employs one or more mmWave radar(s) and exploits the IMUs
on the user-carried smartphones or wearables to achieve accurate
interpersonal distance tracking. The design of ImmTrack needs to
address the following two challenges. First, the point cloud from the
radar is usually sparse and noisy [38], making it difficult to separate
and track multiple users during their close contacts. Second, as
radar and IMU capture different aspects of movements, the cross-
modality matching is non-trivial. Specifically, the radar’s point
cloud indicates user’s space occupancy and radial movement of
torso, while the IMU time series data captures linear acceleration
and angular speed of the IMU-carrying limb. As a result, a common
representation of the movement inferred from the two modalities
is needed for robust cross-modality matching.

To address the first challenge, ImmTrack clusters the point cloud
in a single frame from the radar with initial centroids predicted by
Kalman filters that capture the users’ motions. The motion-aware
clustering effectively prevents the wrong merge of the clusters
of two users when they move close to each other. Moreover, we
design a deep neural network called mmClusterNet to extract each
cluster’s feature capturing both shape and motion information.
Then, the Hungarian algorithm associates the same user’s clusters
in two consecutive frames based on feature similarity, achieving
multi-user inter-frame tracking. To address the second challenge,
we employ a novel representation of the user’s movement, called
trace map, which is inferred from either the radar’s tracking or
the IMU’s dead reckoning. We devise a Siamese neural network
to extract a comparative feature from the trace map, such that the
cosine similarity between two comparative features from the two
modalities indicates whether they are from the same user.

We conduct experiments with up to 27 people to evaluate Imm-
Track in various environments, including sports hall, lab space, and
playground. Compared with the camera-based system, ImmTrack
achieves similar user tracking accuracy but only incurs 1/4 to 1/2
computation overhead to process sensor data. For interpersonal
distance estimation, ImmTrack achieves an average error of 22 cm.
For pinpointing contacts within one meter over two seconds or

AWR1843
radar

A2M8
lidar

Dimension 3D 3D
Range 40m 12m
Resolution 5cm 1cm
Noise 3.2db 15db

Table 1: Comparison be-
tweenAWR1843mmWave
radar and A2M8 lidar.

Fig. 2: Radar/lidar’s point
cloud density versus target
range.

more, ImmTrack achieves 90% precision and 94% recall. Compared
with BND, ImmTrack reduces detection latency by up to 80 seconds.
In sum, ImmTrack is suitable for hotspot venues that require extra
care in preventing virus transmissions over close contacts.

The contributions of this paper are summarized as follows.
• We design a motion-aware mmWave radar point cloud clus-
tering algorithm and mmClusterNet neural network for ex-
tracting cluster feature, which work together to achieve ro-
bust multi-user inter-frame tracking.

• We propose trace map, a new modality-agnostic represen-
tation of human movement, and devise a Siamese neural
network to extract feature from the trace map for effective
mmWave-IMU matching.

• The above two designs make ImmTrack the first system that
fuses data from mmWave radar and IMUs for simultaneous
user tracking and re-identification. From extensive evalu-
ation with up to 27 people in various environments, Imm-
Track achieves decimeters-seconds spatiotemporal accuracy
in contact tracing.

Paper organization: §2 presents the background and related work.
§3 states the problem. §4 and §5 present the designs of mmWave
tracking and cross-modality matching, respectively. §6 presents the
evaluation results. §7 concludes this paper.

2 BACKGROUND AND RELATEDWORK
2.1 mmWave Radar & Comparison with Lidar
An mmWave radar can output a three-dimensional (3D) Cartesian
point cloud of all the targets in the field of view (FoV), where each
point is associated with a radial velocity. Lidar and mmWave radar
are often competing technologies in various applications. Lidars’
higher susceptibility to occlusion, due to their short wavelengths,
makes them less suitable for moving people tracking. In addition,
we provide a brief comparison between the AWR1843 mmWave
radar used in this paper and the A2M8 360° lidar used on a robot
to gain more insights. The list prices of these two devices are sim-
ilar. Table 1 shows their sensing dimensions, ranges, resolutions,
and acoustic noise levels during operation. The AWR1843 radar
outperforms the A2M8 lidar except on resolution. However, the
radar’s 5 cm resolution is satisfactory for interpersonal distance
tracking. We also measure the two devices’ point cloud densities
when the target’s radial range varies. Fig. 2 shows the result. As
radar is mainly based on specular reflection, its point cloud den-
sity is insensitive to the target range. Differently, as lidar is mainly
based on diffuse reflection, its point cloud density decreases with
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the target range. The attenuation may create a challenge in system
design. Thus, although lidar-based interpersonal distance tracking
is possible, we design ImmTrack based on mmWave radar.

2.2 Related Work
2.2.1 Wireless localization, target identification, and IMU tracking.
Wireless indoor localization has received extensive research in the
last two decades. Except camera-based surveillance, the device-
free approaches in general suffer the anonymity problem in the
multi-target setting [43]. Recently, wireless signals are used for
designing device-free systems that perform both target tracking
and identification. For instance, the studies [40, 48] design human
subject identification systems usingWi-Fi signal. However, the used
channel state information is unstable in various environments. In
addition, the studies [31, 46, 49] train a deep learning model for hu-
man subject identification using mmWave radar signal and achieve
accuracy above 92%. However, the required extensive training data
collection introduces high overheads in practice. Moreover, these
systems [31, 46, 49] do not perform well with increased number
of human subjects. This is because the distinctiveness among the
radar data features is weakened when the number of human sub-
jects increases. The device-based approaches, in which each target
carries a signal transmitter/receiver, are free of the anonymity issue.
However, as discussed in §1, the device-based approaches using
various modalities have respective limitations.

Besides Bluetooth, acoustic sensing is another candidate for
neighbor discovery and ranging. The BeepBeep system [32] per-
forms ranging between two smartphones with audible acoustic
signals. However, the beeps in continued use is annoying. When
adapting to the near-inaudible frequency band, the operational
resolution becomes unsatisfactory as the inter-device distance in-
creases, because the smartphone audio systems are not designed to
work in the inaudible band. The studies [47] and [10] that use the
near-inaudible band manage to evaluate their systems when the
inter-device distance is up to 0.4m and 1.2m, respectively. Thus,
inaudible acoustic ranging is limited to near-field scenarios.

IMU can be used to track user’s movements by dead reckoning.
Embedding the resulting trajectory into the global coordinate sys-
tem requires either the global coordinates of at least one point on
the trajectory or certain prior knowledge like the spatial constraints
expressed in the global coordinate system that any trajectory is
subjected to. Dead reckoning suffers from the error accumulation
problem. A recent study [45] applies machine learning to improve
the accuracy of dead reckoning, which, however, requires massive
training data and suffers domain shifts [26]. Therefore, IMU is bet-
ter for complementing other sensing modalities that can perform
localization in the global coordinate system. ImmTrack uses IMUs
to re-identify the mmWave radar sensing results. As ImmTrack only
requires IMU’s short-term dead reckoning result, it is not sensitive
to the IMU dead reckoning’s error accumulation problem.

2.2.2 Multi-modality data processing. The existing works can be
classified into the following three broad categories.

Cross-modality data translation generates synthetic data in
the target modality from real data in the source modality. The stud-
ies [18, 21, 35] generate synthetic IMU data from videos of human
activities. The work [2] generates mmWave radar data from videos.

Since computer vision techniques can be employed to recognize the
human activities from the videos, the synthetic IMU or mmWave
radar data can be automatically labeled and used to train human
activity recognition (HAR) models.

Multi-modal data fusion fuses data from complementarymodal-
ities at the feature level or score/decision level to improve the ro-
bustness of sensing. The work [38] fuses camera and mmWave
radar to manage their respective limitations for robust object detec-
tion. Fusing camera, lidar, and radar data has been studied in the
context of autonomous driving. The milliEgo system [23] improves
the accuracy of trajectory reconstruction by fusing mmWave radar
data and IMU data in the single-user setting.

Cross-modality data association associates the sensing re-
sults in different modalities to increase information about the mon-
itored process. The work [15] matches body-worn IMU data traces
with the body joints recognized by a camera. The work [36] ap-
plies the same approach to re-identify the body-worn IMUs from
the video. The studies [3, 8, 27] associate camera data with Wi-Fi
data for various purposes of augmenting the camera with depth
information [3] or simultaneous human subject identification and
tracking [8]. The work [20] associates users’ smartphone Wi-Fi fine
timing measurements and IMU data with a camera footage.

ImmTrack belongs to the cross-modality data association cate-
gory. Different from the existing studies [3, 8, 20, 27, 36] that use
camera as an association source, we employ mmWave radar that
is less privacy-intrusive. Moreover, technically, mmWave radar di-
rectly provides 3D locations and velocities of the human subjects,
which facilitate the association.

3 OVERVIEW OF IMMTRACK
3.1 Problem Description and Challenges
We consider an enclosed space that requires extra attention to
interpersonal distances, due to say the risk of airborne transmis-
sions of pathogens via respiratory droplets. One or more mmWave
radars are deployed to fully cover the space such that any human
subject therein can be sensed by the radar(s). The objective of Imm-
Track is to track the interpersonal distances among the users in
the space. The tracking results can be sent back to the users and/or
fed into downstream applications (e.g., contact tracing). When a
user is about to enter the space, the user needs to enrol in Imm-
Track, e.g., by quick response (QR) code scanning. Certain user
PID generation scheme can be used for ImmTrack, depending on
the detailed privacy policy. For instance, the ImmTrack mobile app
may generate a universally unique identifier (UUID) that takes
effect throughout the lifetime of the app and is used as the PID
across all ImmTrack-instrumented spaces; or the app may com-
municate with the ImmTrack server to generate a temporary PID
that is unique in the enrolled space. The design of ImmTrack is
agnostic to the PID generation scheme. When the user is in the
ImmTrack-instrumented space, the ImmTrack mobile app runs in
the background and collects IMU data. When the user exits the mon-
itored space, the user needs to sign out. Thus, ImmTrack works in a
nearly unobtrusive manner, except the little overhead of signing in
and out incurred to the user. Such little overhead is acceptable for
specific spaces that require close interpersonal distance monitoring.
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The presentation of this paper focuses on a given time period,
during which there are 𝑁 users in the monitored space. Due to the
mandatory enrolment, the value of 𝑁 , although may vary with time,
is known by the system at all times. To simplify exposition, the
design presentation of ImmTrack focuses on the case that a single
mmWave radar is deployed. When a single radar is insufficient
to cover the entire space, multiple radars can be deployed. The
existing planning algorithms to minimize the number of cameras
while achieving visual coverage [11, 13] can be applied to plan the
radars’ deployment. §6.1.4 and §6.1.5 will present the details of
merging the point clouds from multiple radars and the evaluation
of multi-radar ImmTrack, respectively. Although the deployment of
radar(s) involves a cost, it enables the demanded close interpersonal
distance monitoring. Moreover, it is a one-time cost that brings
sustained benefits to the users’ health and safety.

The design of ImmTrack faces the following twomain challenges.
First, robust tracking of multiple users with mmWave radar is

challenging. Reflections from unrelated objects may cause exces-
sive noise points in the radar’s output point cloud. Moreover, as
mmWave reflections are mostly specular, the radar’s point clouds
are generally sparse. As such, the state-of-the-art object detec-
tion and tracking algorithms developed for processing dense point
clouds yielded by high-profile lidars are ill-suited for mmWave
radars. The mmWave-based multi-user tracking also needs to deal
with the users’ close encounters and crossings in FoV. The DB-
SCAN algorithm that is widely adopted for point cloud clustering
often mistakenly merges multiple users in proximity into a single
cluster. As such, the clustering accuracy decreases drastically with
the number of people (45% [22] and 65% [14] for five people). To
address this issue, the clustering algorithm should maintain and
incorporate the understanding of all users’ movements.

Second, robust cross-modality association of the mmWave and
IMU tracking results is non-trivial. The two modalities differ in the
following two aspects. First, their sensing results are in different
coordinate systems. Second, they capture different aspects of the
user’s movement. The mmWave radar captures the user torso loca-
tion and velocity with lower frame rates, while the IMU captures
the acceleration and angular speed of the user limb with higher
frame rates. To achieve robust association, a common feature of the
user’s movement needs to be derived from both the mmWave data
and IMU data. Moreover, the association algorithm needs to accom-
modate each modality’s error in deriving the common feature.

3.2 System Overview
Fig. 3 overviews the design of ImmTrack. It consists of two compo-
nents to address the above two challenges.

IMU-assistedmmWave tracking: This component consists of
three steps. First, it clusters the points in each frame’s point cloud
into human bodies and associates the clusters corresponding to the
same user across frames. ImmTrack maintains a recurive Kalman
filter [9] to track each user’s movement and uses its predicted
user location as the initial centroid of the user’s cluster for the
clustering algorithm. This motion-aware clustering remains robust
when the users encounter each other. Compared with the simplistic
mmWave-based target tracking techniques such as that included in
the radar vendor’s application note [22], our algorithm avoids using

Fig. 3: Overview of ImmTrack. It processes data from one
or more mmWave radars and users’ IMUs with two compo-
nents: IMU-assisted mmWave tracking and learning-based
cross-modality trajectory association. The association re-
sults are fed to downstream applications.

heuristic object detectors such as constant false alarm rate (CFAR)
detector, which easily result in detection errors. Second, to perform
the cross-frame cluster association for user tracking, a deep neural
network called mmClusterNet extracts the feature of each cluster
produced by the clustering algorithm. The feature incorporates the
shape and motion information of the point cluster, as well as the
PID of a pre-matched IMU in terms of movement velocity. Such
multidimensional information improves the robustness of the cross-
frame cluster association. Third, theHungarian algorithm associates
the clusters across frames in terms of their features extracted by
the mmClusterNet to achieve multi-user tracking. The details are
presented in §4.

Learning-based cross-modality trajectory association: Imm-
Track adopts the trajectory incorporated with velocity information
as the common feature of the user’s movement sensed by mmWave
radar and IMU. Reasons are two-fold. First, velocity-incorporated
trajectory is high-level information that summarizes the user move-
ment and generally remains consistent between the two modalities.
Second, trajectory includes both temporal and spatial information.
With the temporal continuity embedded in adjacent frames, the
noise flickering in single frame can be largely suppressed. After the
users’ trajectories are reconstructed from the mmWave and IMU
tracking, ImmTrack computes an imagery representation of each
trajectory, which is called trace map. Then, ImmTrack applies a
Siamese neural network [37] with convolutional layers to extract
comparative features from the trace maps, which are insensitive
to the relative relationship between the radar’s global coordinate
system and the IMU’s local coordinate system. Finally, a bipartite
graph matching algorithm associates the mmWave and IMU track-
ing results in terms of the cosine similarity among the comparative
features. For users with nearly identical trace maps due to say
side-by-side walks or simple straight walks, gait analysis will be
performed on the involved mmWave clusters and IMU traces to
generate gait features for mmWave-IMU association. The details
are presented in §5.
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Note that except the IMU trace map generation running on each
user’s smartphone, all other processing tasks of ImmTrack run on
an edge server or a cloud server. The smartphone transmits the
periodically generated trace maps to the ImmTrack server.

4 IMU-ASSISTED MMWAVE TRACKING
4.1 Motion-Aware Intra-Frame Clustering
4.1.1 Design. The radar yields a point cloud per frame. For each
frame, ImmTrack removes the static points that normally corre-
spond to the background. Specifically, ImmTrack compares each
point’s velocity with an adaptive velocity threshold updated by the
triangle histogram algorithm [19] to decide whether the point is
static. ImmTrack adopts the 𝑘-means algorithm to divide the point
cloud into 𝑁 clusters by setting 𝑘 = 𝑁 . Notably, the initial cen-
troids often affect the performance of 𝑘-means. ImmTrack uses the
recursive Kalman filters (RKFs) [9] to predict the initial centroids.

ImmTrack maintains an RKF for each user’s volumetric centroid.
The human body’s kinetic model used by RKF is as follows. Let x𝑖, 𝑗
denote the state of the 𝑖th user’s centroid in the 𝑗 th frame, where
𝑖 ∈ [1, 𝑁 ] is the internal PID in the domain of RKF. Note that
this PID is different from the PID of the IMU. We define x𝑖, 𝑗 =

[𝑟𝑖, 𝑗 , ¤𝑟𝑖, 𝑗 , 𝜃𝑖, 𝑗 , ¤𝜃𝑖, 𝑗 , 𝜙𝑖, 𝑗 , ¤𝜙𝑖, 𝑗 ]⊤, where 𝑟𝑖, 𝑗 , 𝜃𝑖, 𝑗 , and 𝜙𝑖, 𝑗 are the radial
range, azimuthal and polar angles, and the overhead dot denotes the
velocity. Denote by c𝑖, 𝑗 = [𝑟𝑖, 𝑗 , 𝜃𝑖, 𝑗 , 𝜙𝑖, 𝑗 ]⊤ the 𝑖th user’s observed
centroid, where the 𝑘-means algorithm fed with the point cloud
is viewed as the observation process. By assuming that the user’s
velocity is constant in a frame duration (denoted by Δ𝑡 ), the state
transition and observation models are

x𝑖, 𝑗 = Fx𝑖, 𝑗−1 +w𝑖, 𝑗 , c𝑖, 𝑗 = Hx𝑖, 𝑗 + z𝑖, 𝑗 , (1)
where F is the state-transition matrix capturing the movement ki-
netics,w𝑖, 𝑗 is the stationary process noise capturing the uncertainty
of the movement, H is the observation matrix, and z𝑖, 𝑗 is the non-
stationary observation noise capturing the uncertainties caused by
the radar’s sensing noises and inaccuracy of the 𝑘-means algorithm.
Specifically, F = diag(A,A,A) ∈ R6×6, where A = [1,Δ𝑡 ; 0, 1] and
H is a binary matrix that selects 𝑟𝑖, 𝑗 , 𝜃𝑖, 𝑗 , and 𝜙𝑖, 𝑗 from x𝑖, 𝑗 .

Before processing the 𝑗 th frame, ImmTrack uses the RKF to pre-
dict the 𝑖th user’s centroid c̃𝑖, 𝑗 by c̃𝑖, 𝑗 = HFx𝑖, 𝑗−1, where x𝑖, 𝑗−1
was obtained in the previous frame. When RKF is bootstrapped
(i.e., 𝑗 = 0), ImmTrack uses the DBSCAN algorithm to obtain c̃𝑖,0.
Then, ImmTrack uses {̃c𝑖, 𝑗 |𝑖 ∈ [1, 𝑁 ]} as the initial centroids for
the 𝑘-means algorithm with 𝑘 = 𝑁 to process the point cloud
in the 𝑗 th frame. We sequentially assign the PID of each initial
centroid to the closest centroid of a cluster exclusively, forming
the pseudo-identified clustering result {c𝑖, 𝑗 |𝑖 ∈ [1, 𝑁 ]}. Finally,
ImmTrack uses a policy derived in [9] to update x𝑖, 𝑗 and the co-
variance matrix of z𝑖, 𝑗 , i.e., x𝑖, 𝑗 = x𝑖, 𝑗−1 + K𝑖, 𝑗

(
c𝑖, 𝑗 − Hx𝑖, 𝑗−1

)
and

cov(z𝑖, 𝑗 ) = cov(Mc𝑖, 𝑗 −FMc𝑖, 𝑗−1)−cov(w𝑖, 𝑗 ), whereK𝑖, 𝑗 is the con-
stant Kalman gain and M =

(
H⊤H

)−1 H⊤. We follow the approach
described in [4] to estimate cov(w𝑖, 𝑗 ) used in the above update. The
update of cov(w𝑖, 𝑗 ) enables ImmTrack to adapt to dynamic sensing
performance of the radar due to the position variations of users.

Note that the distance-based heuristic rule of transferring the
PID of the initial centroids to the resulting centroids of the 𝑘-means
clustering may have errors when the trajectories of two users cross
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(a) Performance of intra-frame cluster-
ing algorithms. Baselines: 𝑘-means, DB-
SCAN, GMM, mmTrack and its variant.

(b) Results of RKF-
assisted 𝑘-means and
DBSCAN when 𝑁 = 3.

Fig. 4: Intra-frame clustering. The proposed RKF-assisted
𝑘-means clustering algorithm outperforms 𝑘-means, DB-
SCAN, and GMM. It also outperforms mmTrack [42] when
𝑁 ≥ 4. In (b), color represents cluster ID, cross represents
centroid, and DBSCAN yields 2 clusters for 3 users.

in the radar’s FoV. However, since the RKF is mainly used to assist
better choosing the initial centroids rather than track the users, the
swap of PIDs does not have long-lasting negative effect after the
crossing because the models in Eq. (1) are Markovian. Note that
tracking the users is the subject of §4.2.

4.1.2 Evaluation. We compare our RKF-assisted 𝑘-means algo-
rithm with a variant without RKF and several other clustering ap-
proaches including DBSCAN and Gaussian mixture model (GMM)
built with the expectation-maximization (EM) algorithm. We also
implement the clustering algorithm proposed in mmTrack [42].
The mmTrack applies the 𝑘-means algorithm with random initial
centroids to cluster the point cloud. During the 𝑘-means iterations,
mmTrack uses the medoids of the clusters obtained in the previous
iteration as the initial centroids of the next iteration. The mmTrack
determines the value of 𝑘 using the silhouette analysis. In addition,
we implement a variant of mmTrack’s clustering algorithm by re-
moving the silhouette analysis and directly setting 𝑘 = 𝑁 . All the
above baseline approaches do not consider motion.

We use the Adjusted Rand Index (ARI) to measure the quality
of clustering. Zero ARI indicates random guessing-like clustering,
whereas ARI of one suggests perfect clustering. We compute per-
frame ARIs and report the average ARI. During the experiment,
the users follow pre-defined trajectories, so that we can obtain the
ground truth. More details of the experiment setup are presented in
§6. From Fig. 4a, our RKF-assisted 𝑘-means outperforms 𝑘-means,
DBSCAN, and GMM. When 𝑁 ≤ 3, the mmTrack and its variant
with known 𝑘 slightly outperform our RKF-assisted 𝑘-means in
terms of ARI. However, the advantage of our RFK-assisted 𝑘-means
over mmTrack and its variant increases with 𝑁 when 𝑁 ≥ 4. The
explanations for the above results are as follows. When the occlu-
sion cases increase due to the increase of users, our RKF-assisted
𝑘-means algorithm outperforms mmTrack. When there are no or
limited occlusions, mmTrack’s clustering algorithm performs well.
However, with our RKF-assisted 𝑘-means algorithm, some of the
points corresponding to users in the point cloud are excluded in
the phase of static points removal, leading to lower ARI. Fig. 4b
shows the clustering results of the DBSCAN and RKF-assisted 𝑘-
means algorithms when 𝑁 = 3, respectively. DBSCAN mistakenly
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Fig. 5: mmClusterNet for fusing shape,motion, IMUPID fea-
tures. The distancematrix of fused feature of clusters is used
as the metric for inter-frame association and tracking.

combines two users into a single cluster. The above results suggest
that the consideration of motion improves clustering performance.

4.2 IMU-Assisted Inter-Frame Cluster Tracking
4.2.1 Design. The association of the clusters in the consecutive
frames that correspond to the same user is based on space coherence
andmotion coherence. The former means that the shape of a moving
object at close locations are similar from the radar’s perspective;
the latter means that the object’s motions in consecutive frames
are similar. We design a new deep learning-based feature extractor
calledmmClusterNet that fuses shape,motion, and IMU PID features
of a cluster into a single cluster tracking feature for each frame.

Fig. 5 shows mmClusterNet’s architecture. For each frame, it
takes each of the clusters produced by §4.1 as input. The mmClus-
terNet is designed to process a cluster with 𝑛 3D points, where 𝑛 is
fixed at the design phase. When processing a smaller cluster, Imm-
Track firstly applies interpolation to generate an𝑛-point cluster. For
the AWR1843 mmWave radar, 𝑛 = 24 is a good setting because it is
an empirical upper bound of human cluster size. As shown in the
upper branch in Fig. 5, each of the 𝑛 points is processed by a shared
multilayer perceptron (MLP) with two 32-neuron hidden layers.
The results of the𝑛 sharedMLPs are max-pooled to generate a 1×32
shape feature, which is copied vertically 𝑛 times, concatenated with
the shared MLPs’ outputs and the cluster’s radial velocity vector (as
the motion feature) to form an 𝑛 × 65 tensor. Then, each row of the
tensor is processed by an MLP with two 64-neuron hidden layers
and max-pooling to produce a 1 × 64 shape-motion feature. Finally,
the shape-motion feature is fused with the IMU PID feature, which
is detailed shortly, by element-wise addition to produce the cluster
tracking feature. To train mmClusterNet, we append a regression
MLP as the downstream task that produces a bounding box of the
cluster from the shape-motion feature. Then, we use manually la-
beled bounding boxes as ground truth to train the mmClusterNet
core. In §6.3, we will evaluate the impact of different choices of
the downstream task on mmClusterNet’s performance. Note that
the training data for the mmClusterNet core is unnecessary to be
in situ data. The training can be based on a public dataset such as
ShapeNet.

(a) Setup. (b) Case 1 result. (c) Case 2 result.

Fig. 6: Cosine similarity between features of clusters of same
user in two consecutive frames.

The shape-motion feature is directly affected by the radar’s sens-
ing noises. Thus, we supplement user-specific static information
(i.e., the IMU PID feature) to assist the cluster tracking. Specifically,
we perform a pre-matching between the clusters generated by the
radar and the IMUs, and then use thematched IMU’s PID as the user-
specific static information. The pre-matching is as follows. First, we
compute v𝑖 , which is the weighted average 3D velocity of all points
in the 𝑖th cluster, by v𝑖 =

∑𝑛𝑖
𝑠=1

projectionvc𝑖 v𝑖,𝑠
ln𝑛𝑖 ·rank(𝑑𝑠 ,{𝑑1,...,𝑑𝑛𝑖 })

, where 𝑛𝑖 is
the number of points in the cluster, c𝑖 is the cluster centroid, vc𝑖 is
c𝑖 ’s 3D velocity, v𝑖,𝑠 is the 3D velocity of the 𝑠th point of the cluster,
𝑑𝑠 is the Euclidean distance between the 𝑠th point and the centroid,
the operator projectionab returns the projection of b in the direction
of a, and the operator rank(𝑎,𝐴) ∈ {1, . . . , |𝐴|} returns the rank of
𝑎 in the set 𝐴 with elements in ascending order. With the recipro-
cal of rank as the weight, a point closer to the centroid receives a
larger weight in the averaging. Using the rank instead of distance
as weight for velocity avoids the issue of physical unit conciliation.
We apply the coefficient 1

ln𝑛𝑖 to make the sum of the weights to
be approximately one, i.e.,

∑𝑛𝑖
𝑠=1

1
ln𝑛𝑖 ·rank(𝑑𝑠 ,{𝑑1,...,𝑑𝑛𝑖 })

≈ 1. Sec-
ond, with all clusters’ average velocity magnitudes {|v1 |, . . . , |v𝑁 |}
and all IMUs’ velocity magnitudes denoted by {|u1 |, . . . , |u𝑁 |}, we
apply the Hungarian algorithm to find the one-to-one pre-match
between the clusters and IMUs based on Euclidean distance. Let
PID𝑖 ∈ {1, . . . , 𝑁 } denote the PID of the IMU pre-matched with
the 𝑖th cluster. We apply the position encoding [39] to generate the
𝑖th cluster’s 1 × 64 IMU PID feature as [𝑔1, ℎ1, 𝑔2, ℎ2, . . . , 𝑔32, ℎ32],

where𝑔𝑚 = sin
((

PID𝑖

1000

)𝑚
32
)
andℎ𝑚 = cos

((
PID𝑖

1000

)𝑚
32
)
. As presented

earlier, the IMU PID feature is added to the shape-motion feature
to form the cluster tracking feature.

Given the cluster tracking features obtained in two consecutive
frames, the Hungarian algorithm is used to associate one feature in
the former frame and one feature in the latter, exclusively, based on
cosine similarity. The associated clusters are considered from the
same user. In addition, their centroids over time form the trajectory
of the user. All trajectories will be input to the trajectory-based
association module presented in §5.

4.2.2 Evaluation. We evaluate the advantage of the cluster track-
ing feature, compared with solely using either shape-motion feature
or IMU PID feature. We consider two cases as illustrated in Fig. 6:
(1) all users walk at the same speed but follow different paths of
different shapes; (2) all users walk at different speeds and follow
different paths of the same shape. We measure the cosine similarity
between the features of the clusters corresponding to the same user
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in two consecutive frames. Fig. 6 shows the cumulative distribu-
tion functions (CDFs) of the measured cosine similarities in the
two cases. In case (1), the performance of shape-motion feature
is similar to cluster tracking feature. In case (2), the performance
of IMU PID feature is similar to cluster tracking feature, because
the velocity-based mmWave-IMU pre-matching is accurate when
users’ speeds are different and the matched IMU PID contributes
more information than the shape-motion feature. The above results
show that the cluster tracking feature takes both the advantages of
shape-motion feature and IMU PID feature.

5 LEARNING-BASED CROSS-MODALITY
TRAJECTORY ASSOCIATION

5.1 Design Principle
This module identifies the correspondence among the trajectories
reconstructed by the radar in §4 and IMUs via dead reckoning, to
re-identify radar’s sensing results. Essentially, it is a weighted bi-
partite matching problem with trajectory similarity as the weight.
For association, we use the 2D trajectory (without including the
altitude dimension), as it is a common feature that can be de-
rived from both the radar’s and IMUs’ results and is agnostic to
modality-dependent details. For either a radar cluster or an IMU,
a trajectory over an association time window [𝑡0, 𝑡1] is denoted by
T (𝑡) = {𝑥 (𝑡), 𝑦 (𝑡) |𝑡 ∈ [𝑡0, 𝑡1]}. To compute the similarity between
a radar cluster’s trajectory T𝑟 (𝑡) and an IMU’s trajectory T𝑖 (𝑡), the
radar’s and IMU’s 2D coordinate systems need to be registered.
A potential method to register the two coordinate systems, both
originating at the start points of T𝑟 (𝑡) and T𝑖 (𝑡), is to exhaustively
search a relative angle between them such that the similarity be-
tweenT𝑟 (𝑡) andT𝑖 (𝑡) under the candidate registration is maximized.
However, this registration incurs high compute overhead.

We design a learning-based, registration-free association ap-
proach. The main idea is that, instead of considering the distance
between two registered trajectories in the same Euclidean space,
we take advantage of the feature extraction capability of neural
networks to transform trajectories into high-dimensional features,
and perform the association based on the distance in the high-
dimensional space. Specifically, we first encode the trajectory into
an imagery representation, called trace map. This is a preparation
step that restructures data to a uniform and compact form. Then,
we feed trace maps from the two modalities into a Siamese neural
network for feature extraction, based on whose outputs, the dis-
tance matrix can be calculated. Finally, in association, we introduce
a soft voting mechanism which aggregates the information of mul-
tiple association time windows and thus mitigates the short-time
interference. To train the Siamese network, we do not require the
ground-truth trajectories. Instead, we extensively construct posi-
tive pairs and negative pairs of trajectories, and use a triplet loss to
push negative pairs away while bringing together positive pairs,
where the only labels required are the matching relationships of
the trajectories from the two modalities.

5.2 Trace Map Generation
Let M = {𝑀 (𝑥,𝑦) |∀(𝑥,𝑦)} denote a trace map converted from
a trajectory T (𝑡), where the pixel value M(𝑥,𝑦) encodes all the
times elapsed from when the trajectory crosses the location (𝑥,𝑦).

(a) truth (𝜌=0.5) (b) radar (𝜌=0.5) (c) IMU (𝜌=0.5)

(d) truth (𝜌=0.2) (e) radar (𝜌=0.2) (f) IMU (𝜌=0.2)

Fig. 7: Trace maps of ground truth, radar, IMU trajectories.

Let 𝑓𝑠 denote the sampling rate in frames per second (fps) of the
sensor. Let 𝑇 (𝑥,𝑦) denote the set of the time instants at which
the trajectory crosses (𝑥,𝑦). If 𝑇 (𝑥,𝑦) ≠ ∅, the map pixel value
is given by M(𝑥,𝑦) =

∑
𝑡 ∈𝑇 (𝑥,𝑦) 𝑓𝑠 · (𝑡 − 𝑡0), where 𝑡0 denotes

the time instant that the trajectory starts; otherwise,M(𝑥,𝑦) = 0.
Intuitively,M(𝑥,𝑦) encodes the number of frames passed when the
user’s trajectory crossed (𝑥,𝑦) since the trajectory begins. Then,
ImmTrack converts the obtained trace map into an image with
three 8-bit channels of RGB data. We useM𝑟 andM𝑖 to denote the
color trace maps converted from T𝑟 (𝑡) and T𝑖 (𝑡), respectively.

Furthermore, in order to mitigate the impact of noises, we adopt
specific spatial grid size 𝜌 for the trace maps. Fig. 7 shows the trace
maps of the ground truth, radar, and IMU trajectories under two
𝜌 settings, where a user follows a square zig-zag path to move. A
darker red pixel indicates that the trajectory crosses the position
more recently. We can see that, due to the inherent uncertainty of
sensing, the radar’s and IMU’s trace maps have deviations from the
ground truth. Moreover, under a certain 𝜌 setting, the IMU’s trace
map has more colored pixels on the trace than the radar’s because of
IMU’s higher sampling rate. As a result, for IMU, setting a smaller
𝜌 can better reduce the crosstalks among different segments of
the trajectory, while a larger 𝜌 can make the trace for the radar
more continuous. In the rest of this paper, we adopt 𝜌 = 0.2m and
𝜌 = 0.5m for IMU and radar, respectively. Finally, we crop the trace
map in an area of 20m × 20m and resize it to 193 × 193, which will
be fed into the Siamese neural network presented in §5.3.

5.3 Comparative Features Extraction
We design a Siamese neural network to extract comparative features
from M𝑟 and M𝑖 , whose cosine similarity characterizes how close
the T𝑟 (𝑡) and T𝑖 (𝑡) are. Typically, a Siamese network contains two
or more identical sub-networks that extract features from their re-
spective input. During training, any parameter updates aremirrored
across all sub-networks. As illustrated in Fig. 8, the Siamese net-
work used by ImmTrack employs a convolutional neural network
(CNN) as the feature extractor. The CNN consists of three convolu-
tional layers with rectified linear unit (ReLU) activation followed by
max-pooling and a final fully-connected layer producing a 1 × 1024
feature vector. During training, three such identical CNNs are used
to process three inputs, i.e., anchor, positive, and negative inputs.
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Fig. 8: Left: Siamese network using three identical CNNs
with shared weights during training. Right: Architecture of
CNN that extracts comparative feature from trace map.

The anchor and positive inputs are two trace maps generated from
the radar and IMU for the same user at the same time, while the neg-
ative input is an unrelated trace map from either the radar or IMU.
Denoting by f𝑎 , f𝑝 , and f𝑛 the feature vectors produced by the CNN
for the anchor, positive, and negative inputs, we use the triplet loss
function for training: L = max(∥f𝑎− f𝑝 ∥ℓ2 −∥f𝑎− f𝑛 ∥ℓ2 +margin, 0).
We also generate simulated trajectories to augment the training
data collected in a real environment. Specifically, we use a ran-
dom walk stochastic process to generate the anchor, and obtain the
positive input by scaling up or down the anchor and shifting 10%
of the anchor positions to their neighbors. Note that the training
data needed by the Siamese neural network is unnecessary to be in
situ data, because the network only learns extracting environment-
agnostic comparative features. At ImmTrack’s run time, the trained
CNN is used to extract the comparative feature from any given
trace map M.

5.4 Cross-Modality Association
For the𝑤 th time step in an association time window, ImmTrack con-
structs a similarity matrix S𝑤 ∈ R𝑁×𝑁 , where its (𝑖, 𝑗)th element
is the cosine similarity between the comparative feature vectors
extracted by the Siamese network from the trace maps of the 𝑖th
radar cluster and 𝑗 th IMU, respectively. ImmTrack generates an
average similarity matrix, denoted by S, over a total of𝑊 consec-
utive association time windows, i.e., S = 1

𝑊

∑𝑊
𝑤=1 S𝑤 . Hungarian

algorithm is applied to propose an association between the radar
clusters and IMUs. If the proposal is accepted, the IMUs’ PIDs are
transferred to the radar clusters for re-identification. §6.1.2 will
show via evaluation that the multi-window similarity averaging
improves the robustness of the association, compared with using a
single window only.

In addition, ImmTrack applies two criteria to accept an associ-
ation proposal. If either criterion is not met, ImmTrack excludes
the oldest window from the𝑊 windows, waits for a new window
becoming available, and checks the two criteria again. The two
criteria are as follows. Criterion 1: For each pair of associated
radar cluster and IMU, the similarity between their comparative
features needs to be higher than a pre-defined threshold 𝛼 . This
criterion sets a lower bound for the association quality. The 𝛼 can
be set according to the data used to train the Siamese network
by 𝛼 = max{min∀(a,p) ∈P 𝑆𝑐 (a, p),max∀(a,n) ∈N 𝑆𝑐 (a, n)}, where P
andN are the positive and negative pair sets, 𝑆𝑐 (·, ·) denotes cosine
similarity. Our training data gives 𝛼 = 0.23. Criterion 2: Any IMU

cannot produce the highest cosine similarity with two or more
radar clusters among all IMUs. Formally, ∀𝑖 ∈ [1, 𝑁 ], if the (𝑖, 𝑗)th
element of S (denoted by S𝑖, 𝑗 ) is the maximum value within the 𝑖th
row of S, then �𝑘 ∈ [1, 𝑁 ] such that S𝑘,𝑗 is the maximum value
within the 𝑘th row of S. This criterion makes sure that the IMU
most similar with every radar cluster is unique.

5.5 Handling Users with Identical Trace Maps
Multiple users may generate nearly identical trace maps in certain
cases, e.g., when they walk side by side or follow simple straight
paths. Within a certain modality, such nearly identical trace maps
can be detected by checking their pair-wise similarities. Based
on a dataset collected from six human subjects in controlled ex-
periments with pairs of human subjects walking side by side, the
detection rates of identifying the side-by-side walk are 92.5% and
77.5% using mmWave radar data and IMU data, respectively, by
adopting a threshold of 0.92 on the normalized similarity for the
detection. After removing the entries of the S𝑤 corresponding to
the detected identical trace maps, the remaining entries are pro-
cessed by the cross-modality association presented in §5.4. This
section presents a separate cross-modality association approach for
the nearly identical trace maps based on gait analysis. ImmTrack
initializes the gait analysis if it detects users with nearly identi-
cal trace maps from the mmWave radar. The gait analysis for an
mmWave cluster is as follows. First, we compute the measured
spectrogram X𝑚 (𝑣𝑘 , 𝑡𝑙 ) from the Doppler Fourier transform cor-
responding to the points belonging to the cluster, where 𝑣𝑘 and
𝑡𝑙 represent the velocity and time bins, respectively. Second, we
use the Boulic model [5] to generate the simulated spectrogram
X𝑠 (𝑣𝑘 , 𝑡𝑘 |𝑓𝑐 , 𝑙𝑐 , 𝜑𝑐 ), where the parameters 𝑓𝑐 , 𝑙𝑐 , and 𝜑𝑐 are the spec-
ified step frequency, step length, and start phase, respectively. By
solving argmin𝑓𝑐 ,𝑙𝑐 ,𝜑𝑐

∑
∀𝑣𝑘 ,𝑡𝑙

Xlog
m (𝑣𝑘 , 𝑡𝑙 ) − Xlog

s (𝑣𝑘 , 𝑡𝑙 |𝑓𝑐 , 𝑙𝑐 , 𝜑𝑐 )
2
ℓ2
,

where the superscript “log” means element-wise log normalization,
the gait feature (𝑓𝑐 , 𝑙𝑐 ) is estimated from mmWave radar data. For
IMU data, we employ the IMU-based gait analysis [25] to estimate
the gait feature (𝑓𝑐 , 𝑙𝑐 ). Lastly, Hungarian algorithm is applied to
associate the mmWave clusters and IMU traces that respectively
produce nearly identical trace maps, in terms of the cosine similar-
ity between the mmWave-based and IMU-based gait features. The
effectiveness of the mechanism presented in this section will be
evaluated in §6.1.5.

6 IMPLEMENTATION AND EVALUATION
Wehave implemented ImmTrack using a Texas Instrument AWR1843
mmWave radar hosted by a laptop computer. The users use their
own smartphones of various models to participate in the evalua-
tion.1 We collect IMU data using the MATLAB Mobile app running
on the users’ smartphones. The sampling rates of the radar and IMU
are 8 fps and 100 fps, respectively. The association timewindow is 12
seconds, with 2-second overlap between two consecutive windows.
For cross-modality association, we set𝑊 = 3, i.e., the similarity
matrices in three consecutive association windows are averaged.
We primarily conduct experiments in an indoor sports hall and an

1Volunteers’ participation is under NTU IRB protocol with reference no. IRB-2022-309.
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mmWave Radar
camera

(a) Sports hall setup (b) Subject detection

mmWave Radar camera

(c) Outdoor setup

Fig. 9: The sports hall and outdoor experiment setups.
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(b) Sports hall and outdoor W-ACC and E2E-ACC

Fig. 10: Cross-modality association accuracy.

outdoor space as shown in Fig. 9. We also conduct experiments in
a lab space as shown in Fig. 13a with up to 27 people.

6.1 Cross-Modality Association Performance
6.1.1 Baselines and evaluation metrics. We employ the following
three baseline systems.
■ ICTrack is the variant of ImmTrack with mmWave radar re-

placed by camera. Camera provides much higher resolution than
mmWave radar, but causes privacy concerns. ICTrack employs
YOLO [34] to detect objects and Deep SORT [41] to associate the
bounding boxes of the same object in adjacent image frames. In our
implementation, the feature dimension used in Deep SORT for each
bounding box is 416. However, Deep SORT does not exploit the
prior information of the total number of users (i.e., 𝑁 ). As a result,
it often mistakenly creates a new tracking identity for a previously
seen user. For fair comparison, we explicitly correct a wrongly cre-
ated tracking identity by the nearest bounding box in the previous
frame. ICTrack generates the 2D trajectory of each detected user
from the video stream and executes the cross-modality trajectory
association module presented in §5.
■ ImmTrack-ICP is the variant of ImmTrack with the Siamese

network replaced by colored-ICP [29], a colored point cloud regis-
tration algorithm. ImmTrack-ICP applies colored-ICP to find the
optimal transformation matrix from each trace map of the radar

Fig. 11: ImmTrack can track the trajectory of a partially oc-
cluded user (marked in blue) correctly with help of IMU.

cluster to each trace map of IMU. ImmTrack-ICP adopts the op-
timization objective function value of the transformation as the
similarity between the trace maps of the radar cluster and IMU.
■ mmUniverSense is a variant of UniverSense [28] that asso-

ciates the user’s limb movement detected by camera with IMU data
based on movement acceleration. We compare UniverSense’s single
metric-based association with ImmTrack’s high-dimensional com-
parative feature-based association. For fair comparison, we adapt
UniverSense to mmWave radar by replacing the acceleration metric
with velocity metric, as mmWave radar directly provides velocity
data. This adapted version is called mmUniverSense.

Evaluation metrics: We adopt the ratio of correctly associated
pairs to all users to characterize the association accuracy. This accu-
racy in each association time window is denoted by W-ACC, while
the accuracy of the association achieved by the average similarity
matrix over𝑊 windows is called end-to-end accuracy (E2E-ACC).

6.1.2 Association performance in sports hall and outdoor spaces.
Fig. 10a presents W-ACC and E2E-ACC of ImmTrack, ImmTrack-
ICP, ICTrack, and mmUniverSense on the data collected in the
sports hall and outdoor spaces. For each setting of 𝑁 , the experi-
ment lasts for half an hour. Overall, ImmTrack achieves comparable
performance with ICTrack on cross-modality association, while
remaining less privacy-intrusive. Specifically, ImmTrack achieves
E2E-ACC from 81.4% to 93.6%, while ICTrack achieves 85.4% to
95.1%. On W-ACC and E2E-ACC, ICTrack outperforms ImmTrack
by around 7% and 3%, respectively. The accuracy of mmUniverSense
is inferior, because when users walk at similar speeds, the associa-
tion merely based on velocity is prone to be erroneous. ImmTrack-
ICP gives the lowest accuracy, which is close to random guessing.
For each pair of trace maps from mmWave radar cluster and IMU,
the colored-ICP algorithm finds a transformation with small error
even if the cluster and IMU are from different users. As a result, all
values in the similarity matrix are high and the association process
is close to random guessing.

As shown in Fig. 10b, camera-based ICTrack yields higher accu-
racy indoors than outdoors. Essentially, the performance of ICTrack
may degrade in certain environments with dimmed illumination,
e.g., in museums with low illumination for protecting ancient arti-
facts. Differently, ImmTrack yields consistent accuracy, as mmWave
radar is robust to different illumination condition.

By analyzing the results of ICTrack, YOLO in ICTrack performs
well in detecting humans (as shown in Fig. 9b), while Deep SORT
has difficulties in associating bounding box across frames due to the
non-coherent visual features of the same user in different frames.
Differently, ImmTrack employs extensive features including shape,
motion and IMU PID to achieve robust inter-frame cluster tracking.
Note that the experiments include cases of inter-person occlusions.
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Fig. 12: Impact of passengers on cross-modality association.

Table 2: Performance improvement by one more radar.

Number of users 2 3 4 5 6 7
W-ACC improvement 2.3% 2.1% 4.0% 2.5% 4.2% 3.8%
E2E-ACC improvement 1.1% 1.2% 1.1% 1.0% 1.7% 1.3%

In Fig. 11, we show that the mmWave radar can still yield some
points on the visually occluded user, though with a lower density.
This, together with our IMU-assisted design, makes ImmTrack work
well in the transient occlusion cases.

6.1.3 Dealing with passengers entering the monitored space. A pas-
senger refers to a person who is within the monitored space but
does not participate in the monitoring. For instance, a person whose
smartphone is not installed with the ImmTrack app is a passenger.
In the presence of passengers, there are outlier points correspond-
ing to the passengers away from the new centroids after the RKF-
assisted 𝑘-means clustering. To address this problem, ImmTrack
views all the points out of the new centroids’ bounding boxes as
outliers and removes them, where the bounding box size is set to be
commensurate to human body dimension. This design is motivated
by the fact that the enhanced RKF-assisted 𝑘-means algorithm can
keep tracking the users even if passengers enter the space, as long
as ImmTrack is bootstrapped from a situation with no passenger.
Fig. 12a shows ImmTrack’s clustering when one out of three people
is a passenger. The outlier points away from the centroids repre-
sented by crosses are excluded from the clustering result. For fair
comparison, we also augment ICTrack to deal with passenger. In
specific, we use an asymmetric auction algorithm to perform the
𝑀-to-𝑁 bipartite cross-modality matching, where 𝑀 is the total
number of people detected by YOLO, and 𝑁 is the number of users.
We measure W-ACC when a certain number (0 to 8) of passengers
enter the monitored space, while fixing the number of users at 5.
From Fig. 12b, ImmTrack achieves similar or even better W-ACC
than ICTrack when there are passengers; the W-ACC of ImmTrack
is not sensitive to the passenger-user ratio.

6.1.4 Combining point clouds from multiple radars. Properly com-
bining the point clouds from multiple radars may increase the
spatial coverage of a space as well as the point density of a human
target seen by multiple radars. In this set of experiments, we deploy
two radars with their FOVs’ axes of symmetry perpendicular. To
accurately combine the two point clouds, we first apply a linear
transform including a 90° rotation and origin shift to one point
cloud, such that the two point clouds are roughly aligned. Then, we
apply the iterative closest point (ICP) algorithm to perform a fine

(a) Floor plan; angular coverages
of two radars; a snapshot of distri-
bution of human subjects.
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Fig. 13: Cross-modality association in a live lab space.

registration of the two point clouds. Table 2 presents the W-ACC
and E2E-ACC improvement over varying number of users when
two radars are used. With one more radar, there are about 4% and
1% absolute improvements in W-ACC and E2E-ACC, respectively,
due to higher point cloud density.

6.1.5 Evaluation in a live lab space. Fig. 13a shows the floor plan.
The total area of the space is about 300m2. We deploy twommWave
radars to fully cover the corridors and occupied workspaces, while
accounting for the blockages caused by internal concrete structures.
A total of 17 lab residents voluntarily participate in our evaluation
by installing the IMU data collection program on their smartphones.
Other lab residents are passengers to our system. During the times-
pan, the numbers of users and passengers in the lab change. Fig. 13a
also shows a snapshot distribution of the users and passengers. We
collect data for four consecutive days. In this setup, we observe the
users may walk side by side in the corridor. Thus, we particularly
evaluate the effectiveness of the mechanism presented in §5.5 for
handling identical trace maps. The ImmTrack variant that does
not apply the mechanism to separately process the nearly identical
trace maps is called non-hierarchical ImmTrack. Note that stationary
users, who can be detected in both the radar and IMU modalities,
are excluded from the processing pipeline, because the workspaces
in this lab conform to safe distancing requirement. However, the
stationary users’ locations and PIDs are maintained in the system.
Fig. 13b shows the W-ACC of ImmTrack and the non-hierarchical
ImmTrack, versus the total number of people in the monitored area.
The 𝑥-axis is the number of people in the lab during different testing
periods. ImmTrack achieves up to 5.6% higher W-ACC compared
with the non-hierarchical ImmTrack. The horizontal line in Fig. 13b
shows the mean E2E-ACC of ImmTrack over the entire evaluation
period, which is 94.1%.

6.2 Distance Tracking and Contact Tracing
We compare the interpersonal distance tracking performance of
ImmTrack with the performance of mmTrack [42]. In addition, we
evaluate ImmTrack’s performance for contact tracing. We collect
a 47-minute trace with mmWave and camera data recorded, where
seven users move in the sports hall shown in Fig. 9. We apply IC-
Track and manually rectify ICTrack’s tracking identities to generate
de-anonymized groundtruth trajectories of all the users. In addition,
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we project the trajectories to the world coordinate system based
on the camera’s setup geometry and calculate the interpersonal
distance in the global coordinate system as the reference to evaluate
the accuracy of ImmTrack’s interpersonal distance tracking and
contact tracing results.
■ Spatial accuracy of interpersonal distance tracking. Fig. 14

shows the CDF of ImmTrack’s and mmTrack’s tracking errors in
centimeters with respect to the reference trajectory. For ImmTrack,
most tracking errors are within 50 cm. The average tracking error
is 22 cm, showing that ImmTrack can achieve re-identified human
tracking with decimeters spatial accuracy. Compared with mm-
Track, ImmTrack yields more stable tracking accuracy.

For contact tracing, the tracking accuracy is important especially
when the actual interpersonal distances are small. Fig. 15 shows
ImmTrack’s interpersonal distance tracking errors when the refer-
ence distance is in different ranges. When the reference distance
is within one meter, the tracking errors are within 28 cm and the
mean error is 14 cm. The mean error remains under 40 cm when the
reference distance is up to 3m. These results show that ImmTrack
can accurately track interpersonal distances in close contacts.
■ Contact tracing performance. We consider two definitions

of contact: (1) By following a prevailing definition, a close contact is
a contact with less than 2m interpersonal distance; (2) An infectious
contact is a contact with less than 1m interpersonal distance over 𝜏
seconds ormore, where we set 𝜏 from 2 to 16 seconds. Fig. 16a shows
the accumulative close contact time for each pair of users during the
47-minute experiment. It shows that ImmTrack’s result and the ref-
erence. We can see that ImmTrack gives satisfactory close contact
monitoring accuracy. Then, we evaluate ImmTrack’s performance
in pinpointing infectious contact.We slide a timewindow of 𝜏+2 sec-
ondswith two seconds overlapping and checkwhether an infectious
contact occurs between any two users in the window. By checking
against the reference result in each time window, ImmTrack’s de-
tection result is among the true/false positive/negative. We measure
the precision and recall by precision =

# of true positives
# of all ImmTrack’s positives and

recall = # of true positives
# of all reference’s positives . Fig. 16b shows the precision and

recall for 𝜏 = 6 s when 𝑁 varies. Note that for each 𝑁 setting, we
conduct a separate experiment that lasts for about 47 minutes. Imm-
Track achieves about 90% precision and 91%-96% recall in pinpoint-
ing infectious contacts. The opposite trend of recall and precision

Table 3: BND detection delay (s) vs. inter-user distance (m).

Min inter-user distance [0,1) [1,2) [2,3)
Two users 3.2±2.1 4.8±1.7 6.9±3.7
Five users 11.0±4.0 23.9±9.8 42.9±14.1

Table 4: Summary of training datasets & downstream tasks.

Model Input Training Downstream
dataset task

mmClusterNet Point cloud
with velocity

Self-
collected

PC
BBR
NBBR

PointNet Point cloud
w/o velocity ShapeNet OC

PC

is due to the increase in the proportion of false negatives in all
reference contacts.
■ Temporal resolution of contact tracing. We vary the set-

ting of 𝜏 to investigate the temporal resolution of ImmTrack in
contact tracing. Fig. 16c shows the precision and recall in pinpoint-
ing infectious contact versus the 𝜏 setting. While the recall remains
stable at around 94%, the precision increases from about 90% to
93% when 𝜏 is from 2 to 16 seconds. This shows that ImmTrack can
achieve satisfactory temporal resolution fine to 2 seconds with a
little contact detection accuracy drop. For comparison, we measure
the BND detection delays using two or five Android phones. When
using five phones, we place them at vertexes of a pentagon. Table 3
shows the time for a phone to discover all other phones versus the
distance between the two phones or side length of the pentagon.
The discovery delay increases with the distance and the number of
phones. When the distance is one and three meters, the measured
worst-case delay is more than 30 and 80 seconds, respectively.

6.3 Training and Efficacy of mmClusterNet
The MLPs used by mmClusterNet to extract the shape-motion fea-
ture of a point cloud cluster needs to be trained before use. The
training requires a downstream task that utilizes the shape-motion
feature. This set of experiments evaluates the impact of various
downstream tasks on the training of mmClusterNet. We also com-
pare the cluster tracking feature extracted by mmClusterNet and
the feature extracted by PointNet [33], a widely adopted point cloud
feature extractor. PointNet takes a point cloud without velocity as
input and also needs a downstream task to drive training.

Table 4 summarizes the input data, training datasets, and down-
stream tasks used to train mmClusterNet and PointNet. Beside
the widely adopted point cloud completion (PC), bounding box
regression (BBR), and object classification (OC) tasks, we devise a
new task called next-frame bounding box regression (NBBR), which
predicts the 2D bounding box with orientation in the next frame
based on the feature extracted from the current frame. The loss
functions used by the downstream tasks are as follows: PC uses
chamber distance [7]; BBR and NBBR use intersection over union
(IoU); OC uses negative log likelihood. We employ the multiple
object tracking error (MOTE) and ratio of mismatches (RoM) to
jointly measure the inter-frame cluster tracking performance. A
mismatch refers to the case that a cluster is associated with another
cluster in the previous frame that corresponds to a different user.
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Fig. 16: ImmTrack’s performance on contact time estimation and pinpointing infectious contacts.
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The results in Figs. 17 and 18 show that: (1) mmClusterNet outper-
forms the off-the-shelf PointNet in achieving inter-cluster tracking;
(2) BBR is an appropriate downstream task for training mmClus-
terNet. BBR enforces the model to simultaneously capture cluster
contour and enforces utilization of the velocity information of the
shape-motion feature. Thus, BBR helps mmClusterNet better learn
the shape-motion feature. On the contrary, NBBR leads to poor
tracking performance. A possible reason is that NBBR overstretches
the utilization of velocity information. ImmTrack evaluated in other
sections adopts the mmClusterNet trained with BBR.

6.4 Compute and Communication Overheads
6.4.1 Server computation overhead. Fig. 19 shows the runtime la-
tency of ImmTrack and ICTrack on the server under different 𝑁 .
In general, ImmTrack runnning on an Intel i7-11800H CPU can
achieve 30 to 60 fps, depending on the number of users. Note that
our ImmTrack implementation adopts a radar sampling rate of 8

fps. Thus, a CPU-only cloud server can support several ImmTrack
tasks for different venues, or a CPU-only in situ edge server can sup-
port a single ImmTrack instance. ICTrack on the same i7-11800H
CPU can only achieve about 15 fps processing throughput. Even
with a GeForce RTX-3060 or RTX-6000 GPU, ICTrack’s process-
ing throughput is still lower than ImmTrack’s, because the image
processing imposes higher computation overhead than point cloud
processing. By jointly considering the accuracy results obtained in
§6.1, compared with ICTrack, ImmTrack achieves similar accuracy
but only requires 1/4 to 1/2 processing power. Fig. 20 shows the
breakdown of the time for processing 90 frames to generate trace
map and perform cross-modality association, where generating
trace map from radar and camera data takes most of the time.

6.4.2 Smartphone communication and energy overheads. We de-
ploy both the IMU sampling and trace map generation modules
on an Android smartphone and measure the overheads. ImmTrack
uploads the velocity magnitude to the server for the mmWave-IMU
pre-matching. At the end of each association time window, Imm-
Track uploads the trace map to the server, which is about 30KB.
The mmUniverSense uploads the 3D velocity continuously. Our
measurements show that ImmTrack’s and mmUniverSense’s bit
rates are 7.36 kbps and 15.63 kbps, respectively. ImmTrack’s bit
rate is lower than the 8 kbps of G.729, an ITU’s voice codec for
bandwidth-constrained scenarios.

We also compare the battery energy usages of ImmTrack and
three existing contact tracingmobile apps, i.e., TraceTogether, Leave-
HomeSafe, Coronalert. We run these apps in the background on an
Android smartphone for eight hours. We factory-reset the smart-
phone before each benchmark. ImmTrack keeps sampling IMU,
computing trace maps, and uploading data. From publicly available
information, Coronalert (which is based on Google/Apple Expo-
sure Notification system) and TraceTogether exchange Bluetooth
messages with nearby devices; LeaveHomeSafe is a passive tracing
tool based on QR code scanning. During each 8-hour benchmark,
we use the tested app to scan valid QR codes every hour to mimic
normal daily usages. According to our measurements, battery en-
ergy usages of TraceTogether, LeaveHomeSafe, Coronalert are 55.62,
157.04, 37.37 mAh, respectively, while ImmTrack consumes 36.05
mAh. Thus, ImmTrack imposes similar/lower battery energy over-
head compared with the existing contact tracing apps.
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7 CONCLUSION
This paper presents ImmTrack, an interpersonal distance tracking
system using one or more low-cost mmWave radar(s) and the IMUs
of the users’ smartphones. By associating the users’ trajectories
reconstructed from the mmWave radar and IMU sensing in terms
of the trajectory features extracted by a Siamese neural network,
ImmTrack transfers the users’ pseudo identities tagged to the IMU
data to the radar’s global-view sensing results. Extensive experi-
ments with up to 27 people show that ImmTrack achieves similar
tracking accuracy and lower computation overhead compared with
the more privacy-intrusive camera surveillance. ImmTrack achieves
decimeters-seconds spatio-temporal accuracy in tracing contacts,
outperforming the prevailing Bluetooth neighbor discovery ap-
proach that suffers inaccurate distance estimation and up to 80
seconds discovery delays in our experiments.
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