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LoRaWAN is a narrowband wireless technology for ubiquitous connectivity. For various applications, it is desirable to

localize LoRaWAN devices based on their uplink frames that convey application data. This localization service operates in an

unobtrusive manner, in that it requires no special software instrumentation to the LoRaWAN devices. This paper investigates

the feasibility of unobtrusive localization for LoRaWAN devices in hall-size indoor spaces like warehouses, airport terminals,

sports centers, museum halls, etc. We study the TDoA-based approach, which needs to address two challenges of poor timing

performance of LoRaWAN narrowband signal and nanosecond-level clock synchronization among anchors. We propose the

ILLOC system featuring two LoRaWAN-specific techniques: (1) the cross-correlation among the differential phase sequences

received by two anchors to estimate TDoA and (2) the just-in-time synchronization enabled by a specially deployed LoRaWAN

end device providing time reference upon detecting a target device’s transmission. In a long tunnel corridor, a 70 × 32m
2

sports hall, and a 110 × 70m
2
indoor plaza with extensive non-line-of-sight propagation paths, ILLOC achieves median

localization errors of 6m (with 2 anchors), 8.36m (with 6 anchors), and 15.16m (with 6 anchors and frame fusion), respectively.

The achieved accuracy makes ILLOC useful for applications including zone-level asset tracking, misplacement detection,

airport trolley management, and cybersecurity enforcement like detecting impersonation attacks launched by remote radios.
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1 INTRODUCTION
Low-power wide-area networking (LPWAN) is a wireless access network paradigm that provides narrowband

connectivity to the Internet of Things (IoT) objects distributed in a geographic area. LPWAN systems follow the

star topology, in which each end device communicates with the gateway(s) in one hop. Among various LPWAN

technologies (including NB-IoT and Sigfox), LoRaWAN, which is an open data link layer specification based on the

LoRa physical layer technique, offers the advantages of using license-free industrial, scientific and medical (ISM)

frequency bands, low costs for end devices, and independence from managed infrastructures. Thus, LoRaWAN

has been favorably considered for IoT systems [53]. LoRaWAN signals have also been exploited for ubiquitous

sensing tasks including human respiration sensing and human walking monitoring [69, 70].

While LoRaWAN is mainly designed for establishing connectivity, being able to localize LoRaWAN devices

unobtrusively using their uplink frames is desirable. Note that wireless device localization is one of the ubiquitous

computing tasks [17, 29, 55, 66]. The unobtrusiveness here means that no special software instrumentation is

needed for the LoRaWAN end devices. As such, the localization service is free from entanglement with any other

applications running on the LoRaWAN devices; the already deployed LoRaWANs can develop the localization

capability seamlessly. Most existing LoRaWAN localization systems are for outdoor environments (cf. Section 2).

The SateLoc [35] and OwLL [8] are two representatives based on received signal strength indicator (RSSI) and time

difference of arrival (TDoA), respectively. By considering the impact of outdoor land-cover type on path loss and

using satellite images for identifying land-cover types, SateLoc achieves a median error of 47.1m. OwLL adopts

TDoA-based multilateration and applies frequency stitching to overcome LoRaWAN’s narrowband challenge. By

using both TV whitespace and ISM bands, OwLL in an outdoor deployment achieves 15.7m median error for

non-line-of-sight (NLOS) locations and 9mmedian error across line-of-sight (LOS) and NLOS locations. However,

the use of TV whitespaces is beyond the LoRaWAN specification [37]. OwLL requires the end device to support

TV whitespaces and software instrumentation to implement frequency hopping.

Differently, we quest unobtrusive localization for LoRaWAN devices in indoor environments. We focus on

hall-size two-dimensional (2D) indoor spaces. Examples of such indoor spaces include expo centers, warehouses,

museum halls, single-storey supermarkets, airport terminals, etc. In such environments, Wi-Fi and Bluetooth-

based device localization solutions have been available. However, these solutions have respective issues to be

managed. Wi-Fi is power-intensive and ill-suited for energy-constrained IoT objects. Although Bluetooth can

achieve tens of meters communication ranges, our tests using Feasycom FCS-BP103B Bluetooth beacons show

that the functional range for ranging is within 15m to maintain sub-5m accuracy. When the actual distance is

more than 15m, the ranging error increases drastically. These results are consistent with those in [11]. Thus,

dense Bluetooth beacon deployment is in general required. Owing to above, in this paper, we aim at investigating

the attainable accuracy in localizing in-hall end devices using standard LoRaWAN uplink frames.

This paper presents the design and evaluation of a TDoA-based, unobtrusive in-hall LoRaWAN localization

(ILLOC) system for any off-the-shelf LoRaWAN end devices. ILLOC deploys multiple anchors with known

positions and estimates the position of an end device based on the anchors’ TDoA measurements regarding any

single uplink frame from the end device. The anchors are based on software-defined radios (SDRs) to access the

physical layer. We prototype ILLOC using both Universal Software Radio Peripheral (USRP) and LimeSDR that is

about 10x cheaper than USRP as the anchor. The design of ILLOC faces the following two challenges:

Challenge 1: Narrowband. To estimate TDoA, a signal that is short in time domain and spreads over a wide

frequency band is desirable. For instance, the ultra-wideband (UWB) radio that is designed for precise ranging

can transmit a 2 ns impulse signal spreading over a 500MHz frequency band. However, LoRa’s Chirp Spread

Spectrum (CSS) modulation uses narrow frequency bands (125 to 500 kHz). Thus, LoRa signals are long and

smooth in time domain. Determining the arrival time of a LoRa signal for the purpose of ranging and localization
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is challenging. Without special treatment, the uncertainty of estimating the arrival time of a transmission with

125 kHz bandwidth is up to 8 𝜇s, which is translated to 2.4 km distance in ranging [8].

Challenge 2: Inter-anchor clock skews. Tight synchronization of the anchors’ clocks (ideally, to nanoseconds
accuracy) is a basis of TDoA-based multilateration. However, implementing highly accurate clock synchronization

can incur large deployment overhead. For an in-hall LoRaWAN, a specially engineered wired network (e.g.,

IEEE-1588 network) interconnecting the anchors can achieve nanoseconds synchronization accuracy, but incurs

cabling work and thus increased deployment costs. The best civil Global Positioning System (GPS) receivers can

provide global time with tens of nanoseconds accuracy. However, for good satellite signal reception, the GPS

antennas need to be installed outdoors, also incurring cabling work to connect to the indoor anchors.

To address the above technical challenges, we make the following designs:

Differential phase sampling (DPS). Both USRP and LimeSDR can sample the baseband signal at 25Msps with

an interval of 40 ns. The 40 ns time is translated to 12m in ranging. To avoid loss of time resolution, ILLOC applies

the cross-correlation maximization technique on two 25Msps signals received by two anchors to determine

TDoA. Operating on the signals over a sufficiently long time duration, the cross-correlation maximization assists

combating with the narrowband challenge. However, the phase of the raw CSS signal sampled by the SDR

contains the phase of the SDR’s locally generated reference carrier, which is unknown. To remove the effect of

the unknown local phase, we propose a novel DPS scheme that transforms the raw CSS signal to a sequence of

the phase differences between any two consecutive CSS samples. The TDoA obtained from the cross-correlation

maximization on the DPS traces is not affected by the unknown phases of the local reference carriers.

Just-in-time (JIT) synchronization. Instead of maintaining tight clock synchronization among the anchors’

clocks at all times, we implement a resonator with an end device hardware and deploy it at a known position.

The resonator uses LoRa’s Channel Activity Detection (CAD) feature [15] to continuously monitor the channel

activities. Once an uplink transmission is detected, the resonator transmits another uplink frame using a different

frequency channel. Based on the known distance between the resonator and each anchor as well as the anchors’

unsynchronized TDoA measurements, the instantaneous clock skews among the anchors can be identified. With

this JIT synchronization, we are no longer entangled with the issue of anchors’ clock drifts.

We have implemented ILLOC and evaluated it in several indoor environments. In a long tunnel corridor with

two anchors, ILLOC achieves a median 1D localization error of 6m. In a 70 × 32m
2
sports hall with six anchors,

ILLOC achieves a median 2D localization error of 8.36m. In a 110 × 70m
2
indoor plaza, where 62% paths are

NLOS, ILLOC achieves a median 2D localization error of 15.16mwith six anchors. Thus, ILLOC achieves a similar

accuracy as the localization system OwLL [8] that is evaluated outdoor and uses much more frequency spectrum

resources. Although the localization accuracy achieved by ILLOC is less exciting compared with sub-meter

accuracy, ILLOC’s unobtrusive localization service can be useful for numerous scenarios. For instance, in a

warehouse, 10m-level localization accuracy is useful for zone-level asset tracking, misplacement detection, etc.

In supermarkets and airports, LPWAN radios have been used for trolley management [10, 51], where trolleys’

coarse location information is useful. The 10m-level localization can be also used to detect impersonation and

replay attacks launched from a malicious radio far away from the victim LoRaWAN end device [19].

The main contributions of this paper are summarized as follows:

• We propose DPS to address the timing challenges arising from the narrowband nature of LoRa.

• We use DPS and LoRa’s CAD to realize JIT synchronization and attain the accuracy needed by localization.

• ILLOC achieves sub-10m median localization accuracy in relatively clean indoor environments and about

15m accuracy in a complex indoor environment with extensive NLOS paths.

The rest of this paper is organized as follows. Section 2 reviews preliminaries and related work. Section 3 and

Section 4 present the overall and detailed system designs. Section 5 presents system implementation. Section 6

presents evaluation results. Section 7 discusses relevant issues and limitations. Section 8 concludes this paper.
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Fig. 1. Spectrograms of LoRa chirps and a LoRa frame.

2 BACKGROUND AND RELATED WORK
This section presents a primer of LoRa and LoRaWAN (Section 2.1), then reviews the related work (Section 2.2).

2.1 A Primer of LoRa and LoRaWAN
LoRa is the physical layer used by LoRaWAN. The ISM frequency band used by LoRa is divided into multiple

channels. An end device can select a channel for data communications. LoRa adopts CSS modulation, in which

each chirp sweeps the whole bandwidth (BW) of the used channel linearly with time. Given a spreading factor

(SF), LoRa evenly divides the BW into 2
SF

bins as the starting points for chirps to represent 2
SF

symbols. Fig. 1a

illustrates the two symbols when SF = 1 and the central frequency is 𝑓𝑐 . We use SF = 1 for illustration only; in

practice, LoRa supports six SF settings from 7 to 12. In Fig. 1a, the starting frequencies of the two chirps are

𝑓𝑐 − BW

2
and 𝑓𝑐 , respectively. When a chirp reaches the bound of BW, it wraps around and continues sweeping

the BW until reaching its starting frequency. We call the chirps with positive gradient up chirps and those with

negative gradient down chirps. The symbol time, denoted by 𝑇sym, is given by
2
SF

BW
.

LoRaWAN is a data link layer specification. Fig. 1b shows a typical LoRaWAN frame with three parts: a

preamble of eight up chirps, a sync word of two up chirps, a Start Frame Delimiter (SFD) of 2
1

4
down chirps,

and a payload of multiple data chirps. LoRaWAN defines three classes (A, B, C) that have different features to

meet application needs. Class A is the default, in which all communications are initiated by end devices. Class

B additionally uses the gateway to broadcast synchronization beacons. Class C end device keeps listening for

downlink frames. ILLOC is compatible with all classes, because ILLOC performs localization with any uplink

frame.

2.2 Related Work
2.2.1 LPWAN Localization. Existing studies on localizing LPWAN end devices can be divided into four categories:

path loss model-based, location fingerprinting with received signal strength indicator (RSSI), TDoA-based, and

angle of arrival (AoA)-based. They are reviewed in this section and summarized in Table 1.

Path loss model-based. In [30], the RSSI measurements collected from a 120 × 50m
2
outdoor area fit well

into the log-distance path loss model. It achieves a mean localization error of 11.2m. However, the environment

in [30] is relatively simplistic. The study [31] proposes various techniques to reduce the impact of Gaussian and

non-Gaussian noises in RSSI measurements on the path loss model-based localization. With six to eight anchors,

the average localization errors of the various variants of the proposed approach are within [20m, 40m] and
[10m, 20m] in two outdoor spaces with dimensions of 110× 64m

2
and 90× 82m

2
, respectively. In a semi-outdoor

space with dimension of 36 × 11m
2
, the average localization errors are within [10m, 270m]. The SateLoc system

[35] considers the impact of land-cover types on the path loss model. It achieves a median localization error of

47.1m in a 650 × 350m
2
urban area. From [31, 35], the accuracy of outdoor LoRa localization based on path loss

models is in general tens of meters and is affected by the distances between the end device and the anchors. The
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Table 1. Comparison of approaches for localizing off-the-shelf LPWAN end devices.

Category Ref. Radio Environment Evaluation # of # of target Error
Area anchors positions

Path loss

[31] LoRa

outdoor 110 × 64m
2

6 3 mean: [20m, 40m]
model outdoor 90 × 82m

2
8 6 mean: [10m, 20m]

with semi-outdoor 36 × 11m
2

6 3 mean: [10m, 270m]
RSSI [35] LoRa outdoor 650 × 350m

2
3 38 median: 47.1m

[30] LoRa outdoor 120 × 50m
2

6 n/a mean: 11.2m†

[21] LoRa indoor 25 × 23m
2

1 n/a 3.72m for ranging
†

Location [4] LoRa outdoor 10 × 6 km
2

68 n/a mean: 398.4m

fingerprinting [49] Sigfox outdoor n/a 2/3 18 90th percentile: 50m

with RSSI
∗

[20] LoRa in/outdoor 150 × 250m
2

10 n/a RMS: 20-30m

[46] LoRa outdoor 10 × 6 km
2

68 n/a mean: 191.5m

indoor 28 × 8m
2

2 n/a mean: 1.3m∗∗

[54] LoRa indoor 104 × 26m
2

2 17 96.72% accuracy

[44] LoRa indoor n/a 1 4 98% accuracy

[71] LoRa indoor 50 × 100m
2

3-4 100+ sub-10m
∗∗

[50] LoRa outdoor n/a n/a n/a around 100m

[14] LoRa outdoor 2 × 3 km
2

4 3 around 100m

TDoA- [45] LoRa outdoor n/a 3 or more 1648 median: 200m

based [7] LoRa outdoor n/a 5 4 mean: ≤ 100m

[8]
‡

LoRa outdoor 300 × 220m
2

8 50 median: 9m

15.7m with NLOS

ILLOC LoRa indoor 70 × 32m
2

6 18 median: 8.36m

110 × 70m
2

6 14 15.16m with NLOS

AoA-based [36]
‡

LoRa outdoor 100 × 60m
2

4 27 median: 4.4m

indoor 25 × 15m
2

4 33 median: 2.4m with NLOS

∗
Location fingerprinting approach requires a laborious process of fingerprinting many/all locations.

∗∗
The error level depends on the spatial density of the location fingerprints and classification accuracy.

†
The testing environments might be well controlled such that RSSI measurements match the log-distance path loss model very well,

which are inconsistent with our measurements as shown in Section 3.1.

‡
The systems in [8] and [36] require predefined frequency hopping, and [8] requires using TV whitespaces, whereas ILLOC uses

standard LoRaWAN. Table 2 presents a detailed comparison.

work [21] reports an attempt of indoor LoRa localization. It shows that LoRa outperforms Wi-Fi and Bluetooth in

terms of the temporal stability of RSSI. However, as shown by our measurements in Section 3.1, the reflections

and attenuation caused by walls and barriers present significant challenges to modeling path losses. The large

localization errors up to hundreds meters obtained semi-outdoor in [31] echo this challenge.

Location fingerprinting with RSSI. This category of approaches matches the RSSI measurements regarding

an end device with those collected offline at known positions (i.e., location fingerprints) to determine the location

of the end device at run time. Various machine learning algorithms such as k-nearest neighbors (k-NN) [4, 54],
support vector machines (SVM) [49], Gaussian process [20], Bernoulli process [71], and artificial neural networks

(ANN) [44, 46] have been used to implement the matching. The work [4] achieves a mean localization error

of about 400m in urban areas. The work [54] achieves a location recognition accuracy of 96.72% indoor. The

studies [20, 49] achieve localization errors of tens of meters. The study [46] uses ANN on both an outdoor dataset

[4] and a small-scale indoor testbed, achieving mean errors of 191.5m and 1.27m, respectively. The work [44]

leverages the frequency diversity and achieves a 98% classification accuracy among four positions indoor. A recent
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Table 2. Comparison among OwLL [8], Seirios [36] and ILLOC.

Features OwLL [8] Seirios [36] ILLOC
Category TDoA-based AoA-based TDoA-based

Environment outdoor in/outdoor indoor

Evaluation area 300 × 220m
2

100 × 60m
2
(outdoor) 70 × 32m

2

25 × 15m
2
(indoor) 110 × 70m

2

# of anchors 8 (4 for sync) 4 6

Synchronization via 4 anchors interchannel via 1 resonator

Spectrum usage 400MHz 1.6MHz 250 kHz

Frames per query 80 to 120 8 1 or more

Unobtrusive? No
∗

No
†

Yes

Error

median: 9m median: 4.4m (outdoor) median: 8.36m

15.7m w/ NLOS 2.4m (indoor w/ NLOS) 15.16m w/ NLOS

∗
OwLL requires end device to support TV whitespaces and software instrumentation for frequency hopping.

†
Seirios requires software instrumentation for frequency hopping.

work [71] defines extreme RSS (ERSS) to obtain more stable RSS fingerprints and achieves sub-10m accuracy

indoor. However, these approaches [4, 20, 49, 71] require a laborious blanket process of fingerprinting many/all

locations, which presents a high deployment overhead. In addition, as evaluated in Section 3.1, the learning-based

approaches [44, 46, 49, 54, 71] are subject to the fingerprint model aging issue.

TDoA-based: Several studies [7, 14, 45, 50] have attempted the TDoA-based approach to localize LoRa end

devices. For instance, Semtech [50] uses Global Navigation Satellite System (GNSS)-synchronized commodity

gateways to perform outdoor TDoA-based localization. The solution achieves a median error of around 100m

by combining the results of 128 frames. These TDoA methods rely on the timestamps of frame arrival given by

commodity gateways, which in general have microsecond granularity. Such coarse-grained timestamps cannot

support accurate ranging and localization. Therefore, their localization errors are tens to hundreds of meters,

which are consistent with the microsecond granularity of timestamps. The OwLL system [8] achieves a median

error of 9m over a 300×220m
2
outdoor area based on TDoA. It includes TV whitespaces for frequency hopping to

make a wideband illusion. As an attempt of exploiting TVwhitespaces that are beyond the LoRaWAN specification,

it needs to ensure the compliance with the geo-dependent TV whitespace policies, including detailed issues such

as whether each end device needs to check the shared databases of available TV whitespace channels [8]. Besides,

OwLL needs to send 80 to 100 frames per localization query to cover the 400MHz wideband, which introduce

extra time and energy overhead. Differently, ILLOC is based on standard LoRaWAN uplink frames in the ISM

bands. ILLOC only needs one frame for prompt one-shot localization. Thus, while ILLOC and OwLL achieve

similar accuracy, ILLOC imposes fewer requirements and overheads.

AoA-based: The Seirios system [36] studies AoA for LoRaWAN device localization. In Seirios, two antennas are

mounted on each SDR-based anchor. Seirios exploits the physical layer structure of LoRa signals to synchronize

them in multiple channels. The synchronized channel state information (CSI) features are then used by the

super-resolution algorithm to resolve the multipaths and locate the device. Seirios achieves median errors of

4.4m and 2.4m over a 100 × 60m
2
outdoor area and a 25 × 10m

2
indoor area, respectively. Similar to OwLL,

the end device in Seirios needs to transmit in a predefined frequency-hopping manner over eight LoRaWAN

channels per localization query. Thus, Seirios needs special software instrumentation at the end devices.

Table 2 summarizes the comparison between OwLL, Seirios, and ILLOC.
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Table 3. Comparison of indoor localization technologies.

Signal Low power? Functional range∗ Error
Wi-Fi [5, 25, 26, 47, 64] ✗ < 30m < 0.9m

Bluetooth [6, 11, 33] ✓ < 15m ≈ 1m

Cellular [27, 43, 48] ✗ ≈ 35-60m ≈ 0.8m

RFID [22, 59, 60, 65] ✓ < 6m < 0.1m

UWB [12, 18, 58] ✓ < 50m ≈ 0.1m

Zigbee [9, 52, 56] ✓ < 20m ≈ 1-2m

Visible light [28, 34, 62, 63, 68] ✓/✗†
in a room

‡ ≈ 0.1m

RF backscatter [38, 41, 57] ✓ tens of m < 0.5m

LoRaWAN (ILLOC) ✓ ≈ 110m ≈ 8-15m

∗
Functional range for accuracy in the next column. It is not the communication range.

†
Depends on the type of target nodes.

‡
Visible light localization systems cannot work in NLOS scenarios.

As shown in Table 1, most existing works focus on outdoor environments. Differently, we investigate the

feasibility of localizing LoRaWAN end devices in large hall-size indoor environments. The existing TDoA-based

approaches [7, 14, 45] use commodity gateways as the anchors, which, however, cannot achieve satisfactory

localization accuracy due to the gateways’ microsecond timestamping granularity. ILLOC and the recent OwLL,

Seirios employ SDR-based anchors in similar quantities to achieve (sub) 10m-level localization accuracy. ILLOC

uses standard LoRaWAN frames and is unobtrusive; Seirios needs special software instrumentation at the end

device; OwLL needs both hardware support for TV whitespaces and software instrumentation at the end device.

2.2.2 Broader Solutions for Indoor Localization. Beyond LPWAN end device localization, there is a body of

literature on indoor localization based on radio frequency (RF) and other signals. The survey [61] divides the

existing solutions into device-based and device-free categories. ILLOC is device-based. The work [13] includes a

brief summary of the existing RF-based solutions based on their requirements of (1) dedicated infrastructure for

providing localization signals, (2) training process to collect data for subsequent localization, and (3) additional

equipment for end devices. Most existing technologies do not have all three requirements, but at least one [13].

ILLOC requires the installation of an infrastructure (i.e., the anchors and resonator). The cost of an anchor can

be down to about 100 US$, similar to a commodity LoRaWAN gateway (see the cost analysis in Section 7). The

deployment overhead is the determination of the anchor and resonator locations, which is a one-time effort

and a common prerequisite for TDoA approaches. Thus, the cost and overhead for setting up ILLOC for an

existing LoRaWAN are low. In Section 7, we will discuss the suitable application scenarios of ILLOC, after

evaluating its accuracy in various real environments. Table 3 presents a high-level comparison among various

indoor localization technologies in terms of power consumption, localization range and accuracy. While some

technologies achieve good localization accuracy in certain scenarios, there are still no solutions good for all

environments and settings. Most existing solutions cannot be simultaneously low-power, long-range (up to

100m), and accurate. This paper aims to explore the indoor localization capability for existing LoRaWAN devices

in indoor environments simply with their standard uplink frames. With ILLOC, the already deployed indoor

LoRaWAN devices can be localized without any modification and still function in a low-power and long-range

manner.
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Fig. 3. ILLOC: Unobtrusive in-hall LoRaWAN localization system.

3 MOTIVATION AND OVERVIEW OF ILLOC

3.1 Challenges of Indoor LoRa Localization
This section discusses the challenges faced by the three categories of approaches (cf. Table 1) in indoor settings.

We measure LoRa RSS in an indoor sports hall sized 70 × 32m
2
, which is an evaluation space used in this

paper with details presented in Section 6. Specifically, we carry a LoRaWAN end device to 18 grid points in the

sports hall and compute the RSS at six distributed anchors. Fig. 2a shows a scatter plot of the RSS in decibel

versus the distance between the end device and anchor in a log
10
scale. From the widely adopted log-distance

path loss model, ideally, the measurements in Fig. 2a should follow a linear trend. The linear fitting with the

measurements shown in Fig. 2a yields a 𝑅2 score of 0.28 only. If we use the fitted log-distance path loss model to

perform ranging, the median ranging error is 1.3 km. This implies that the path loss model-based approach will

have low performance in indoor environments. A possible reason is that the stronger multi-path effects in the

indoor environment render the log-distance path loss model inaccurate.

We collect RSS fingerprints on 14 positions in a 110 × 70m
2
indoor plaza, which is another evaluation space

used in this paper, and revisit these positions to collect data after two months. (Fig. 10b shows the 14 positions.)

We implement five RSS fingerprinting approaches based on SVM [49], k-NN [54], ANN [46], ANN with frequency

diverisity [44], and ERSS [71]. Note that the approach [44] exploits frequency diversity and uses a non-standard

frequency hopping approach. For a fair comparison, we replace its frequency hopping mechanism with LoRaWAN-

compliant random hopping. For all five approaches, six anchors are used to record the RSS fingerprints. When

the training and testing data are split from the same round of data collection, these five approaches achieve 100%

classification accuracy. However, when the models are trained with the data in the first-round data collection

and tested with the second-round data collection two months later, the position recall accuracy drops to 30.93%,

31.71%, 42.1%, 43.90%, and 30.99%, respectively. Besides, we also conduct a 30-day consecutive study with 16

static LoRaWAN end devices and three gateways in a 27 × 17m
2
office. Trained with the first-day data and tested

with other remaining 29 days’ data, the classification accuracy drops from above 90% on day 2 to less than 60%
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after 24 days. These results show the fingerprint model aging issue that can be caused by the gradual changes of

RF environment [67]. Thus, it is necessary to frequently fingerprint all locations.

For TDoA-based approaches, measuring the time of arrival (ToA) of LoRa signal is challenging due to the

signal’s narrowband nature and the resulting smooth time-domain characteristics. Fig. 2b contrasts the time-

domain features of LoRa and UWB. A UWB impulse concentrates its energy within a few nanoseconds, which

enables accurate determination of ToA. However, the waveform of LoRa changes slowly with time. It is difficult

to tell the precise timing of the signal arrival. Note that the presented duration of 10,000 ns in Fig. 2b is merely 1%

of a LoRa symbol duration (SF = 7, BW = 125 kHz). To achieve accurate timing for LoRa signals, ILLOC captures

LoRa’s CSS pattern accumulated in the time domain to deal with the narrowband challenge.

3.2 Deployment of ILLOC
Fig. 3a illustrates the setup of ILLOC. It deploys at least three anchors at known positions. When more anchors

are deployed, the localization accuracy can be improved. Each anchor is equipped with an SDR that samples the

baseband signal at a rate high enough to provide good time granularity. All anchors are connected to a back-end
server via data links. At run time, each anchor processes the baseband signal of the uplink frame and transmits

the result to the back-end server. Then, the back-end server estimates the location of the end device.

The end device to be localized is called target node. It uses an off-the-shelf LoRaWAN radio. If only the

infrastructure needs to know the location of the target node, no special software programs are needed at the

target node – it will be localized once it transmits any uplink frame. If the target node needs to know the

localization result, the LoRaWAN gateway can include the result in the downlink frame to the target node. For

instance, in Class A LoRaWAN, there are two subsequent downlink windows after an uplink frame [37].

To achieve tight clock synchronization among the anchors upon an uplink frame, we deploy a resonator, which
is a normal off-the-shelf LoRa end device loaded with our program. The resonator continuously monitors the

channel activities and transmits a sync frame once upon it detects an uplink frame transmission from any target

node. When there are many target nodes in the field, this resonator may need to transmit sync frames frequently.

Section 7 discusses how to reduce the sync frame transmissions. The resonator’s position can be chosen such

that all anchors have satisfactory RSSIs for the sync frames. The resonator’s position is configured to ILLOC.

3.3 Localization Workflow of ILLOC
Fig. 3b presents the localization workflow of ILLOC, which consists of two steps, i.e., anchor processing performed

by the individual anchors and location estimation performed by the back-end server. In what follows, we present

the resonator’s operations and the overview of the above two steps.

3.3.1 Resonator’s Operations for JIT Synchronization. The study [40] proposed an anchor synchronization scheme

by using a particular LoRaWAN node that transmits a synchronization frame every few seconds at a fixed, known

position to provide time reference. Differently, ILLOC utilizes LoRa’s Channel Activity Detection (CAD) feature

and multi-channel characteristics to provide a more flexible and timely synchronization across anchors. In ILLOC,

the target node and the resonator use two different frequency channels, referred to as target channel and sync
channel, respectively. At run time, the resonator keeps performing CAD on the target channel. CAD is a feature

recently included to the LoRaWAN specification to detect preambles when specified with the frequency channel

and SF. It is available on all of the latest LoRa radios (e.g., SX126x and SX127x). The duration of a CAD operation

is merely𝑇sym + 32

𝐵𝑊
. With BW = 125 kHz and SF = 12, the CAD just takes 33ms. Thus, the resonator can quickly

detect the target frame from some target node. Upon the detection, it immediately transmits a sync frame using
the sync channel to provide a reference signal to all anchors for JIT synchronization.

Two factors may affect the effectiveness of the sync frame as a reference. First, the sync frame takes different

propagation times to arrive at the anchors because of the different distances from the resonator to the anchors.
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Fig. 4. Received signal power when a LoRaWAN frame arrives at the anchor.

As the propagation times can be estimated based on the known positions of the anchors and resonator, the

propagation times can be accounted for in synchronizing the anchors. Second, since there is a delay in detecting

the target frame, which is around a CAD duration, the anchors may develop new clock skews because of their

different clock drift rates. Therefore, even if the anchors’ clocks are perfectly synchronized at the time instants of

receiving the sync frame, the new clock skews projected to the time instants of receiving the target frame remain.

There is no effective way to eliminate the new clock skews. However, as the resonator responds quickly via CAD,

the anchors’ new clock skews during one CAD duration can be safely ignored. For instance, as the oscillator of

the SDR we use drifts at a rate of at most 25 ppb, the maximum new clock skew within a CAD duration is merely

0.825 nanoseconds, which is much smaller than the SDR’s sample interval of 40 nanoseconds when operating at

a 25Msps sampling rate.

3.3.2 Anchor Processing. The anchor processing step detects the target and sync frames, and then computes the

respective DPS sequences. The details are as follows. The anchor applies two band-pass filters on the baseband

signal from the SDR to generate two I/Q data streams in the target and sync channels, respectively. As the data

processing steps for the two streams are identical, our description focuses on one data stream. The anchor uses

an open-source LoRa decoder gr-lora [3] to detect the uplink frame in the I/Q data stream. Upon detection, the

anchor uses the following procedure to identify the timing of the frame with higher precision. As shown in Fig. 1b,

the last up chirp of the sync word and the first down chirp of the SFD form a salient peak pattern in spectrogram.

We compute the cross-correlation between this a priori pattern and the I/Q data stream. The maximum cross-

correlation indicates the timing of the peak (i.e., the start of the SFD). With this timing information, we can locate

every chirp of the uplink frame. Note that the accuracy of this timing information is not high enough for TDoA,

because the cross-correlation is performed in spectrogram with reduced time resolution.

As discussed in Section 1, we apply the cross-correlation maximization technique on the 25Msps signals to

estimate the TDoA between two anchors. Specifically, the technique slides a signal over another signal and

computes the correlation between the two signals at every sliding position; the sliding position with the highest

correlation is yielded as the result. However, the I/Q waveform is affected by the unknown phase of the anchor’s

locally generated carrier for down conversion (cf. Section 4.1.1). As a result, the cross-correlation maximization

technique cannot be directly applied on the I/Q waveform. To address this issue, we employ a novel DPS technique

that removes the impact of the aforementioned unknown phase.

For the detected frame, the anchor computes a DPS sequence from the I/Q data, and then transmits the DPS

sequence to the back-end server for TDoA estimation. Note that we avoid using the first preamble because its

signal power can experience a gradual increasing process. Fig. 4 shows this gradual signal power increase of

the first preamble chirp of a real transmission. This process lasts for about 50 𝜇s and is due to the receiver’s

characteristics. Besides, in our preliminary in-lab study presented in Section 6.2.1 on the used pattern length,
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two-chirp length has the best correlation accuracy. Therefore, we select the second and the third preamble chirps

to compute the DPS sequence.

Each anchor transmits a total of two DPS sequences for the target frame and the sync frame respectively to the

back-end server. Note that the DPS sequence is timestamped with the sample indexes in the time domain of the

original I/Q data stream before the band-pass filtering. As such, the timestamps of the target frame’s and sync

frame’s DPS sequences are in the same time domain to enable the JIT synchronization at the back-end server. The

total volume of the transmitted data by an anchor is less than 30MB, which can be conveyed in short times using

today’s local-area networking technologies like 802.11ax and broadband powerline communication. Our tests

using 2Gbps TP-Link Powerline show that transmitting an anchor’s data over TCP requires 0.8 to 0.9 seconds,

shorter than most LoRaWAN frame transmission times of seconds.

3.3.3 Location Estimation. Once the back-end server receives the data from all anchors, it performs following.

JIT synchronization: The back-end server estimates the clock offsets between every two anchors using their DPS

sequences corresponding to the sync frame. This is achieved by performing the cross-correlation maximization

on the two DPS sequences and also accounting for the sync frame’s propagation times to the anchors.

TDoA estimation: For every two anchors, with the estimated clock offset, the back-end server rectifies the

timestamps for the two anchors’ DPS sequences corresponding to the target frame. Then, the back-end server

performs the cross-correlation maximization using the two time-rectified DPS sequences to estimate the TDoA.

Location estimation: The back-end server solves a least square problem that integrates all TDoA estimates and

the anchors’ known positions to estimate the target node’s position.

4 DETAILED DESIGN OF ILLOC

4.1 Differential Phase Sampling (DPS)
Section 4.1.1 models the processes of LoRa chirp signal propagation and SDR’s reception to exhibit the issue of

unknown reference carrier phases that prevents us from determining the TDoA directly from the raw I/Q traces

received by two anchors regarding the same target frame. Section 4.1.2 presents DPS to address the issue.

4.1.1 Modeling LoRa Chirp Signal Propagation and Reception. A chirp is a finite-time signal with time-varying

frequency. Denote by 𝑡0 the time instant of starting transmitting a chirp. At time instant 𝑡 , let𝐴(𝑡) and 𝑓 (𝑡) denote
the instantaneous amplitude and frequency of the chirp signal at the location of the target node. For a preamble

up chirp, 𝑓 (𝑡) is a linear function sweeping the used frequency band over 𝑇sym. Let 𝑠 (𝑡) denote the chirp signal

modulated by the target node. From the CSS modulation, we have 𝑠 (𝑡) = 𝐴(𝑡) sin
(
2𝜋

∫ 𝑡
𝑡0
𝑓 (𝑥)d𝑥 + 𝜃Tx

)
, where

𝜃Tx ∈ [0, 2𝜋) is the target node’s initial phase at 𝑡 = 𝑡0. The 𝜃Tx is unknown. As RF signals are transverse waves,

the chirp signal at a position 𝑑 meters from the target node is 𝑠 (𝑡, 𝑑) = 𝛼 (𝑑)𝐴
(
𝑡 − 𝑑

𝑐

)
sin

(
2𝜋

∫ 𝑡−𝑑
𝑐

𝑡0
𝑓 (𝑥)d𝑥 + 𝜃Tx

)
,

where 𝑡 ≥ 𝑑
𝑐
+ 𝑡0, 𝛼 (𝑑) and 𝑐 denote the attenuation coefficient and the speed of light, respectively.

Now, we model the reception of the LoRa chirp by an SDR 𝑑 meters from the target node. The SDR generates

two unit-amplitude orthogonal carriers sin(2𝜋 𝑓𝑐𝑡 + 𝜃Rx) and cos(2𝜋 𝑓𝑐𝑡 + 𝜃Rx), where 𝑓𝑐 is a specified frequency

and 𝜃Rx is the initial phase of the two locally generated carriers at 𝑡 = 0. The 𝜃Rx is unknown. The SDR

mixes the received signal with the self-generated carriers, yielding 𝑠𝐼 (𝑡, 𝑑) = 𝑠 (𝑡, 𝑑) · sin(2𝜋 𝑓𝑐𝑡 + 𝜃Rx) and
𝑠𝑄 (𝑡, 𝑑) = 𝑠 (𝑡, 𝑑) · cos(2𝜋 𝑓𝑐𝑡 + 𝜃Rx). Then, the SDR applies two internal low-pass filters to remove the high-

frequency components in 𝑠𝐼 (𝑡, 𝑑) and 𝑠𝑄 (𝑡, 𝑑). After the low-pass filtering, the 𝐼 and𝑄 components yielded by the

SDR, denoted by 𝐼 (𝑡, 𝑑) and𝑄 (𝑡, 𝑑), are given by 𝐼 (𝑡, 𝑑) = 𝛼 (𝑑)𝐴(𝑡−𝑑
𝑐 )

2
cosΘ(𝑡, 𝑑),𝑄 (𝑡, 𝑑) = 𝛼 (𝑑)𝐴(𝑡−𝑑

𝑐 )
2

sinΘ(𝑡, 𝑑),
where Θ(𝑡, 𝑑) = 2𝜋

∫ 𝑡−𝑑
𝑐

𝑡0
𝑓 (𝑥)d𝑥 −2𝜋 𝑓𝑐𝑡 +𝜃 and 𝜃 = 𝜃Tx−𝜃Rx. The low-pass filtering process can be easily derived
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and is thus omitted here due to space constraints. We can see that the waveform of the I/Q trace generated by the

SDR depends on both 𝑑 and 𝜃Rx. Therefore, the task of identifying the TDoA between two anchors directly from

the I/Q waveforms is entangled with the unknown phases of their locally generated carriers.

4.1.2 DPS. To disentangle the unknown phases from the problem, we use the sequence of the differences

between any two adjacent I/Q data samples. From the above analysis, the instantaneous phase Θ(𝑡, 𝑑) can
be computed by Θ(𝑡, 𝑑) = atan2(𝑄 (𝑡, 𝑑), 𝐼 (𝑡, 𝑑)) + 2𝑘𝜋 where 𝑘 ∈ Z. The 𝑘 rectifies the multi-valued inverse

tangent function atan2(·, ·) ∈ (−𝜋, 𝜋) to an unlimited value domain and ensures that Θ(𝑡, 𝑑) is a continuous
function of 𝑡 . How to determine 𝑘 will be discussed shortly. Let 𝑓𝑠 denote the SDR’s sampling rate. Denote

by {Θ[𝑡, 𝑑],Θ[𝑡 + 1

𝑓𝑠
, 𝑑],Θ[𝑡 + 2

𝑓𝑠
, 𝑑], . . . ,Θ[𝑡 + 𝑛

𝑓𝑠
, 𝑑]} a sequence of instantaneous phases computed by the

sampled 𝐼 and 𝑄 values. We define the DPS sequence Δ starting from time 𝑡 with its 𝑖th element Δ[𝑖] given
by Δ[𝑖] = Θ

[
𝑡 + 𝑖+1

𝑓𝑠
, 𝑑

]
− Θ

[
𝑡 + 𝑖

𝑓𝑠
, 𝑑

]
. From the model in Section 4.1.1, the analytic expression of Δ[𝑖] is

Δ[𝑖] = 2𝜋
∫ 𝑡+ 𝑖+1

𝑓𝑠
−𝑑

𝑐

𝑡+ 𝑖
𝑓𝑠
−𝑑

𝑐

𝑓 (𝑥)d𝑥−2𝜋 𝑓𝑐 1

𝑓𝑠
. The Δ[𝑖] is disentangled from 𝜃Tx and 𝜃Rx, and encompasses 𝑑 . The following

proposition solves the issue of determining 𝑘 for unambiguously computing Δ.

Proposition 1. 𝑓𝑠 > BW is a sufficient condition for computing Δ unambiguously based on the I/Q trace.

Proof. First, we analyze the bounds ofΔ[𝑖]. The LoRa chirp’s instantaneous frequency 𝑓 (𝑡) ∈
[
𝑓𝑐 − 𝐵𝑊

2
, 𝑓𝑐 + 𝐵𝑊

2

]
.

By substituting the 𝑓 (𝑥) term in the analytic expression of Δ[𝑖] with its lower bound (𝑓𝑐 − 𝐵𝑊
2
) and upper bound

(𝑓𝑐 + 𝐵𝑊
2
), respectivly, we can obtain a lower bound of Δ[𝑖] as Δ[𝑖] ≥ 2𝜋

∫ 𝑡+ 𝑖+1
𝑓𝑠

−𝑑
𝑐

𝑡+ 𝑖
𝑓𝑠
−𝑑

𝑐

(𝑓𝑐 − 𝐵𝑊
2
)d𝑥 −2𝜋 𝑓𝑐

1

𝑓𝑠
= 2𝜋 (𝑓𝑐 −

𝐵𝑊
2
) 1

𝑓𝑠
− 2𝜋 𝑓𝑐

1

𝑓𝑠
= −𝐵𝑊

𝑓𝑠
𝜋 , and similarly a upper bound as Δ[𝑖] ≤ 𝐵𝑊

𝑓𝑠
𝜋 . Thus, we have −𝐵𝑊

𝑓𝑠
𝜋 ≤ Δ[𝑖] ≤ 𝐵𝑊

𝑓𝑠
𝜋 .

We consider computing a Δ element based on two consecutive Θ values Θ1 and Θ2, i.e., Δ = Θ1 − Θ2 =

(atan2(𝑄1, 𝐼1) + 2𝑘1𝜋) − (atan2(𝑄2, 𝐼2) + 2𝑘2𝜋) = (atan2(𝑄1, 𝐼1) − (atan2(𝑄2, 𝐼2)) + 2𝜋 (𝑘1 −𝑘2), where both 𝑘1 and
𝑘2 are unknown and the term (𝑘1−𝑘2) is to be determined. Since Δ ∈

[
−𝐵𝑊

𝑓𝑠
𝜋, 𝐵𝑊

𝑓𝑠
𝜋

]
, with the condition 𝑓𝑠 > 𝐵𝑊

in Proposition 1, the range of Δ must be within −𝜋 < Δ < 𝜋 . Since −2𝜋 < atan2(𝑄1, 𝐼1) − atan2(𝑄2, 𝐼2) < 2𝜋 ,

if 𝑘1 − 𝑘2 ≥ 2 or 𝑘1 − 𝑘2 ≤ −2, Δ will be out of its range (−𝜋, 𝜋). Thus, there are only three possible cases: i)

𝑘1 − 𝑘2 = 1, ii) 𝑘1 − 𝑘2 = 0, and iii) 𝑘1 − 𝑘2 = −1. It can be easily verified that there is a case satisfying Δ ∈ (−𝜋, 𝜋)
and the other two cases must not satisfy Δ ∈ (−𝜋, 𝜋). The satisfying case determines the value of (𝑘1 − 𝑘2).
Therefore, the elements of Δ can be determined sequentially without ambiguity. □

Our implemented ILLOC with 𝑓𝑠 = 25Msps ≫ 𝐵𝑊 = 125 kHz satisfies the condition in Proposition 1. From

the proof of Proposition 1, the Δ can be computed as follows. First, compute 𝜖 [𝑖] = atan2

(
𝑄

(
𝑡+ 𝑖+1

𝑓𝑠

)
/𝐼

(
𝑡+ 𝑖+1

𝑓𝑠

))
−

atan2

(
𝑄

(
𝑡+ 𝑖

𝑓𝑠

)
/𝐼

(
𝑡+ 𝑖

𝑓𝑠

))
. If 𝜖 [𝑖] < −BW

𝑓𝑠
𝜋 , output Δ[𝑖] = 𝜖 [𝑖] + 𝜋 ; if −BW

𝑓𝑠
< 𝜖 [𝑖] < BW

𝑓𝑠
𝜋 , output Δ[𝑖] = 𝜖 [𝑖]; if

𝜖 [𝑖] > BW

𝑓𝑠
𝜋 , output Δ[𝑖] = 𝜖 [𝑖] − 𝜋 . The top part of Fig. 5a shows the DPS sequence of two real preamble chirps.

The DPS sequence of a chirp is linear over time, because the phase of a preamble chirp is a quadratic function of

time. A zoomed-in view in Fig. 5a shows that the DPS sequence is subject to random noises.

4.2 TDoA Estimation
This section presents the technique of estimating the TDoA between two anchors regarding the same target

frame. In this section, we assume that the clocks of the anchors are synchronized. The details of how to achieve

the clock synchronization are presented in Section 4.3. Note that the clock synchronization between the target

node and the anchors is not required.
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Denote by 𝑑𝐴 and 𝑑𝐵 the distances from the target node to the anchors𝐴 and 𝐵, respectively. The DPS sequence

on 𝐴 is Δ𝐴, where Δ𝐴 [𝑖] = 2𝜋
∫ 𝑡+ 𝑖+1

𝑓𝑠
−𝑑𝐴

𝑐

𝑡+ 𝑖
𝑓𝑠
−𝑑𝐴

𝑐

𝑓 (𝑥)d𝑥 − 2𝜋 𝑓𝑐
1

𝑓𝑠
. Denote by 𝐹 (𝑥) the antiderivative of 𝑓 (𝑥). The DPS

sequence on 𝐴 can be expressed as Δ𝐴 [𝑖] = 2𝜋

(
𝐹

(
𝑡 − 𝑑𝐴

𝑐
+ 𝑖+1

𝑓𝑠

)
− 𝐹

(
𝑡 − 𝑑𝐴

𝑐
+ 𝑖
𝑓𝑠

))
− 2𝜋 𝑓𝑐

1

𝑓𝑠
. As the variable in

this time sequence is 𝑡 − 𝑑𝐴
𝑐
, we can denote the sequence as Δ𝐴 = 𝑆 (𝑡 − 𝑑𝐴

𝑐
). The DPS sequence on 𝐵 can be

written as Δ𝐵 = 𝑆 (𝑡 − 𝑑𝐵
𝑐
). Thus, Δ𝐵 = 𝑆 (𝑡 − 𝑑𝐵

𝑐
) = 𝑆 (𝑡 − 𝑑𝐴

𝑐
+ ( 𝑑𝐴

𝑐
− 𝑑𝐵

𝑐
)). It means that Δ𝐵 is a time-shifted

version of Δ𝐴, where the time shift is
𝑑𝐴
𝑐
− 𝑑𝐵

𝑐
. Hence, we can apply the cross-correlation maximization technique

on Δ𝐴 and Δ𝐵 to estimate the time shift. Assuming 𝐾 is the peak position of the cross-correlation, we have

𝐾 1

𝑓𝑠
≈ 𝑑𝐴

𝑐
− 𝑑𝐵

𝑐
. As 𝐾 is an integer, the approximation in the above expression captures the rounding error. Thus,

the estimated TDoA is TDoA𝐴𝐵 = 𝐾
𝑓𝑠
. Fig. 5a shows the DPS sequences computed by two anchors regarding

the same real target frame in a controlled experiment where the two anchors are placed at the same position.

Fig. 5b shows the cross-correlation between them, in which the peak position is 𝐾 . Note that we have applied the

approach in Section 4.3 to synchronize 𝐴 and 𝐵. Thus, 𝐾 should be zero in this controlled experiment with zero

groundtruth TDoA. Without the synchronization, the 𝐾 value will contain the clock skew between 𝐴 and 𝐵.

4.3 Just-in-Time (JIT) Synchronization
This section presents the details of using the sync frame from the resonator to achieve JIT synchronization

among the anchors. Fig. 6 illustrates the timing of the arrivals of the target/sync frame at two anchors, in which

the target node and the resonator are closer to anchor 𝐴. Note that the target and sync frames are transmitted

in different frequency channels. Consider an unknown clock skew 𝛿 between anchor 𝐴 and anchor 𝐵. When

𝐴 receives the target frame at the time instant 𝑡𝐴𝑡 in terms of 𝐴’s clock, 𝐵’s clock value is 𝑡𝐴𝑡 + 𝛿 . As such,
the TDoA result presented in Section 4.2 contains 𝛿 . Specifically, by denoting TDoA

𝑡
𝐴𝐵

as the actual TDoA

regarding the target node and �TDoA𝑡𝐴𝐵 as the estimated TDoA by the approach presented in Section 4.2 on

the unsynchronized DPS sequences, we have �TDoA𝑡𝐴𝐵 = TDoA
𝑡
𝐴𝐵

+ 𝛿 . Similarly, we apply the cross-correlation

maximization technique on the sync frame’s DPS sequences. Since the clock skew can be time-varying, for the

sync frame, we have �TDoA𝑠𝐴𝐵 = TDoA
𝑠
𝐴𝐵

+ 𝛿 + 𝛿 ′
, where 𝛿

′
is the extra skew during the time period between

the arrival time instants of the target and sync frames. From our evaluation in Section 6.2.2, the controlled

resonator delay up to two seconds introduce little impact on the TDoA error. Since the CAD delay is just tens of

milliseconds as presented in Section 6.2.2, the 𝛿 ′ that is largely introduced during the CAD delay and its impact

can be safely ignored. Thus, in our analysis, �TDoA𝑠𝐴𝐵 ≃ TDoA
𝑠
𝐴𝐵

+ 𝛿 . According to the known positions of the
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Algorithm 1 Greedy anchor subset fusion algorithm.

Given: Set of anchors 𝑆 = {1, ..., 𝑁 }
Output: 𝒑𝑒𝑠𝑡 or one-shot failure
1: 𝑀 = 𝑁 ; solution set 𝐴 = ∅;
2: while𝑀 ≥ 3 do
3: for each subset of𝑀 anchors in 𝑆 do
4: solve the least squares problem with𝑀 anchors to 𝒑; if 𝒑 is in the monitored field then 𝐴 = 𝐴 ∪ {𝒑};
5: end for
6: if 𝐴 ≠ ∅ then return geometric median of solutions in 𝐴; otherwise𝑀 = 𝑀 − 1;

7: end while
8: return one-shot failure

two anchors and the resonator, the actual TDoA regarding the sync frame, i.e., TDoA
𝑠
𝐴𝐵

, is known. Thus, in

the presence of clock skew between 𝐴 and 𝐵, the actual TDoA regarding the target node can be computed as

TDoA
𝑡
𝐴𝐵

= �TDoA𝑡𝐴𝐵 − 𝛿 ≃ �TDoA𝑡𝐴𝐵 − �TDoA𝑠𝐴𝐵 + TDoA
𝑠
𝐴𝐵

.

4.4 Location Estimation
With the techniques in Sections 4.1-4.3, we have the target frame’s TDoA between any two anchors. For any tar-

get node’s candidate position𝒑𝑖 , the analytic TDoA between any two anchors𝐴 and𝐵 is 1

𝑐

(𝒑𝑖 − 𝒑𝐴
 − 𝒑𝑖 − 𝒑𝐵

)
,

where 𝒑𝐴 and 𝒑𝐵 are the positions of 𝐴 and 𝐵, respectively. We adopt the least squares approach to estimate the

target position as 𝒑𝑒𝑠𝑡 = argmin∀𝒑𝑖

𝐴≠𝐵∑
∀𝐴,𝐵∈𝐺

(
TDoA

𝑡
𝐴𝐵

− 1

𝑐

(𝒑𝑖−𝒑𝐴−𝒑𝑖−𝒑𝐵) )2, where TDoA𝑡𝐴𝐵 is the computed

TDoA from Section 4.3 and 𝐺 is the set of used anchors. At least three anchors are needed for 2D localization.

When we have 𝑁 (𝑁 > 3) anchors, we use a greedy anchor subset fusion algorithm as described below to improve

the robustness of the location estimation against TDoA outliers. First, we define the one-shot failure and success.

In solving the least squares problem, we consider a search area for the candidate position 𝒑𝑖 much larger than

the monitored field (i.e., the indoor space). If the resulting 𝒑𝑒𝑠𝑡 is out of the monitored field, the result is regarded

an outlier and the location estimation declares a one-shot failure; otherwise, the location estimation declares a

one-shot success. Then, we describe the algorithm. An iteration of the algorithm considers all subsets of the 𝑁

anchors where each subset has𝑀 anchors, and solves the least squares problem with each anchor subset. The

iteration yields the geometric median of the successful one-shot results among the

(
𝑁
𝑀

)
localization trials. When

all

(
𝑁
𝑀

)
localization trials fail, the algorithm decreases𝑀 by one and proceeds to the next iteration. The algorithm

starts from 𝑀 = 𝑁 and iterates until 𝑀 = 3. Algorithm 1 shows the pseudocode of the algorithm. From our

experiments in a sports hall, this algorithm achieves 100% one-shot success rate and yields similar localization

accuracy achieved by using all 𝑁 anchors during the successful cases.

5 SYSTEM IMPLEMENTATION
Resonator/target node: We use the same hardware for the resonator and the target node. Specifically, we

integrate an SX1276-based inAir9B LoRaWAN radio with a 915MHz antenna and an Arduino Uno microcontroller

board powered by a portable power bank. Each end device is placed on a tripod during the experiments. We

implement the target frame transmission, resonator’s CAD, and sync frame transmission using the open-source

Arduino LoRa library arduino-LoRa [39]. Transmitting power is set to 20 dBm.

Anchors: We build two types of anchors. The first type is based on USRP N210, a 915MHz antenna, and an HP

Elitebook 830 G6 laptop installed with the USRP’s driver and GNU Radio. The laptop performs SDR control,
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(a) Panorama of the sports hall (seen from
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(b) The layout of the sports hall deployment.

Fig. 9. The sports hall deployment. The crosses are the localization results for the two target positions marked by arrows.

anchor signal processing, and data communications with the back-end server. The second type is based on

LimeSDR [1] and Raspberry Pi 4B single-board computer. LimeSDR is about 10x cheaper than USRP N210. Most

performance evaluation experiments in this paper are conducted using USRP-based anchors. In Section 6.2, we

conduct experiments to compare the USRP-based and LimeSDR-based ILLOC systems.

Back-end server. Our back-end server is a workstation computer equipped with a Quadro RTX 6000 GPU. We

use CuPy [42], a GPU-accelerated scientific computing library, to speed up the DPS cross-correlation computation.

It takes about 0.11 s to compute the cross-correlation between two 2-chirp-long DPS sequences.

6 DEPLOYMENTS AND EVALUATION

6.1 Deployments and Experiment Methodology
6.1.1 Deployments. We deploy ILLOC in four environments.

Meeting room: To validate our DPS and JIT designs, we deploy a small-scale testbed in a meeting room. As

shown in Fig. 7, the two anchors are placed at almost the same position; the target node and the resonator are also

placed at almost the same position. Under this setting, the target node’s groundtruth TDoA to the two anchors is

zero. We use this deployment to investigate several issues: (1) impacts of various configurations, (2) performance

of JIT synchronization, and (3) feasibility of using low-cost SDRs.

Corridor: We deploy a testbed in a 55 × 2.3m2
corridor as shown in Fig. 8. Two anchors are deployed at the two

ends of the corridor, respectively. The distance between them is 48m. The resonator is placed at the mid point of

the corridor, i.e., 24m from each anchor. We carry the target node to visit seven positions in the corridor, with

equal separation between two adjacent positions of 6m. This corridor deployment is for evaluating ILLOC’s 1D

localization performance in long and narrow indoor environments.
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(a) View of the plaza.
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(b) The layout of the plaza deployment.

Fig. 10. The indoor plaza deployment. The crosses in the call-out figure are the localization results for position 5.

Table 4. LOS (✓) and NLOS (✗) paths in indoor plaza. 62% paths are NLOS. (R: resonator)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 R

A ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗
B ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓
C ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
D ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓
E ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗
F ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Sports hall:We deploy a testbed in a sports hall sized 70× 32m
2
, with ceiling about 15m to 21m high, as shown

in Fig. 9a. Note that there are movable auditorium seats in the hall. These seats may form a barrier of the LoRa

signal propagation in the hall. Fig. 9b illustrates the setup of the testbed in the hall. Six anchors, represented by

blue triangles, are deployed near the edges of the hall to facilitate power supply access. The resonator, represented

by the black solid dot, is placed at the center of the hall. We evenly divide the hall space into grids and carry the

target node to each grid point that is represented by a red circle in Fig. 9b. We conduct experiments at a total of

6 × 3 = 18 target positions. The separations between two adjacent grid points in the 𝑋 and 𝑌 dimensions are

10m and 8m, respectively. We use this sports hall deployment to evaluate ILLOC’s 2D localization performance.

Indoor plaza:We deploy a testbed in an indoor plaza sized 110× 70m
2
, as shown in Fig. 10. The environment has

extensive NLOS propagation due to the concrete pillars, bushes (green clusters in Fig. 10b), and plants climbing

on large metal racks (green clusters with meshes in Fig. 10b). Six anchors are scattered inside and connected to

wall power outlets. The resonator is placed at the center of the plaza. We carry the target node to 14 positions in

the plaza. In Fig. 10b, unreachable areas are indicated by grey blocks. According to our on-site investigation of the

LOS condition at each target node position to the anchors, all the 14 target positions and the resonator position

have merely 1 to 3 LOS paths to the anchors. Table 4 shows the LOS condition. In summary, 62% paths are NLOS.

We use this plaza deployment to evaluate ILLOC’s localization performance in complex indoor environments

with extensive NLOS propagation.

6.1.2 Evaluation Metrics. We use the following three evaluation metrics. (1) TDoA error is the difference

between the estimated TDoA and the groundtruth TDoA, from the target node to two anchors. This metric

characterizes the accuracy of our TDoA estimation method based on DPS and JIT. As the highest resolution of

the estimation is one I/Q sample internal, we report TDoA errors in terms of the number of I/Q samples. (2)
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Fig. 11. Impact of various LoRaWAN and ILLOC configurations on the performance of TDoA estimation. (Whiskers of
boxplots represent the 5th and 95th percentiles throughout this paper.)

Localization error is the absolute error between the estimated position and the ground truth position of the

target node. This metric characterizes the localization accuracy of ILLOC that incorporates the outlier exclusion

strategies. (3) One-shot success rate is the ratio of the one-shot successes given by Algorithm 1 to the total

number of localization trials. This rate characterizes the availability of ILLOC.

6.2 Experiment Results in Meeting Room
6.2.1 Impacts of Various Configurations. We evaluate the impacts of various configurations of LoRaWAN radio and

ILLOC, including spreading factor (SF), bandwidth (BW), transmitting power, and pattern length for correlation

maximization. Coding rate is another LoRaWAN configuration related to the forward error correction for payload.

As the DPS scheme is irrelevant to the data coding, the coding rate configuration does not affect ILLOC’s

performance. In this subsection, if not specifically mentioned, we by default set SF = 12, BW = 125 kHz, 20 dBm

transmitting power, and the pattern length to be two symbols for the resonator/target node.

Impact of pattern length:We investigate the impact of the pattern length setting on the performance of DPS

correlation maximization. We use one symbol length as the unit length in the benchmark and compute the TDoA

errors with pattern lengths from one to eight preamble symbols. Fig. 11a shows the ratio of the TDoA error under

a pattern length setting to that under 1-symbol pattern length. Results show that pattern lengths from one to

eight symbols have similar performance, while the setting of two preamble symbols is slightly better than the

other settings, with a mean error ratio of 0.975. Therefore, ILLOC chooses the setting of two preamble symbols.

Impact of SF: SF makes the trade-off between data rate and robustness to noises. From Section 2, the symbol time

increases exponentially with SF. Intuitively, the robustness of ILLOC’s DPS correlation maximization increases

with the symbol time. Thus, larger SF settings are beneficial to ILLOC. In our experiments, we set SF to be 12, 10,

and 8. The results in Fig. 11b confirm that higher SF settings lead to more accurate ranging.

Impact of BW: From Section 2, the symbol time decreases with BW. As all LoRaWAN’s BW options (i.e., 125 kHz,

250 kHz, and 500 kHz) are narrow, the CSS signals under all BW options are smooth in time domain. Therefore,

the BW’s effect on the symbol time mainly affects ILLOC’s performance. We conduct experiments with the three

BW options. From Fig. 11c, the narrowest BW of 125 kHz achieves smaller TDoA errors.

Impact of transmitting power: We set the transmitting power of the target node to be 0 dBm, 10 dBm, and

20 dBm. Fig. 11d shows that ILLOC’s ranging accuracy increases with the transmitting power. This is consistent

with the intuition that the higher signal-to-noise ratios due to higher transmitting powers are beneficial.

6.2.2 Performance of JIT Synchronization. First, we evaluate the impact of the JIT synchronization on TDoA

estimation. Since the groundtruth TDoA in this deployment is zero, the TDoA estimated by ILLOC is the TDoA

error. From our measurement, the resonator has an average response delay of 58ms in transmitting the sync
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Fig. 12. TDoA error with different resonator delays.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1 2 3 4 5 6

C
D

F

TDoA error (samples)

USRP
LimeSDR

Fig. 13. TDoA error CDFs using different SDRs.

 0
 0.2
 0.4
 0.6
 0.8

 1

0 1 2 3

C
D

F

TDoA error (samples)

Fig. 14. Corridor TDoA error CDF.

 0

 0.2

 0.4

 0.6

 0.8

 1

0 6 12 18

C
D

F

Loc error (m)

Fig. 15. Corridor localization error CDF.

frame as a response to the target frame. This delay is longer than the CAD duration of 33ms, because it also

includes other delays such as OS delay. However, the anchors’ new clock skews during the 58ms can be still

ignored. The box plot labeled “CAD” in Fig. 12 shows the distribution of the TDoA errors in repeated experiments.

Specifically, the errors are binary – either zero or one sample interval – and 47% are zero.

Then, we stretch the evaluation by artificially introducing extra response delays of the resonator. The extra

delays are 0.5, 1, 2, and 5 seconds. The corresponding TDoA error distributions are shown as box plots in Fig. 12.

When the extra delay is 0.5 seconds, the TDoA error can reach six sample intervals. With 5 seconds extra response

delay, the TDoA error is up to 11 sample intervals. The large TDoA errors are caused by the anchors’ new and

distinct clock skews developed during the resonator’s longer response delays. With one or two seconds extra

delays, the TDoA errors are smaller than those with 0.5 seconds extra delays. This is because that the anchors’

clock drift rates fluctuate. Nevertheless, shorter response delays are beneficial to dealing with the anchors’ clock

drifts. The results suggest that the resonator is important for accurate and stable localization.

6.2.3 Using Low-cost SDRs. Fig. 13 shows the CDFs of the TDoA errors produced by the USRP-based and

LimeSDR-based ILLOC systems that adopt the same SDR sampling rate of 25Msps. The LimeSDR-based ILLOC

produces larger TDoA errors. The median and mean TDoA errors of the LimeSDR-based ILLOC are one and

1.08 sample intervals, while those of the USRP-based ILLOC are one and 0.53 sample intervals, respectively. The

better performance of USRP may be due to its more stable internal oscillator. Though LimeSDR yields slightly

lower performance, some more LimeSDR-based anchors can be deployed to attain the 2D localization accuracy

achieved by fewer USRP-based anchors.

6.3 Experiment Results in Corridor
We perform 40 localization trials at each of the seven target positions shown in Fig. 8. Fig. 14 shows the CDF of

TDoA errors. The median TDoA error is one sample interval. The average TDoA error is 1.2 sample intervals.
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Fig. 18. ILLOC’s localization error and one-shot success rate when all 𝑁 sensors available are used (i.e.,𝑀 = 𝑁 ).

About 93% TDoA errors are within two sample intervals. Fig. 15 shows the CDF of the 1D localization errors. The

median and average 1D localization errors are 6m and 7.14m. About 96% 1D localization errors are within the RF

propagation distance within one sample interval (i.e., 12m). The one-shot success rate is 98.57%. Only four out of

the 280 localization trials yield one-shot failures. The above results show that ILLOC can perform 1D localization

in long halls like a corridor.

6.4 Experiment Results in Sports Hall
In the sports hall deployment, we evaluate the TDoA errors, assess the localization errors and one-shot success

rates with different numbers of available anchors (𝑁 ) and different sizes of anchor subsets (𝑀) used by Algorithm 1.

Lastly, we evaluate the effectiveness of Algorithm 1 in improving the one-shot success rate.

6.4.1 Overall TDoA Errors. We perform 25 localization trials at each of the 18 target positions shown in Fig. 9b.

Fig. 16 shows the TDoA error CDF. The median TDoA error is 1.44 sample intervals. Compared with the corridor

deployment, the median TDoA error in sports hall is larger, possibly due to stronger multi-path effect.

6.4.2 Impact of RSS. We investigate the impact of RSS on TDoA error. Since each TDoA measurement involves

two nodes (target node and resonator) and two anchors, we use the average RSS of the four node-anchor pairs

to characterize the signal reception quality for the TDoA process. Fig. 17 shows the scatter plot of TDoA error

versus average RSS. We can see that when the average RSS is lower, the TDoA errors are scattered in a larger

range. This is because, when the RSS is lower, the random effect of the channel noises is more pronounced.

6.4.3 Impact of 𝑁 and𝑀 . We conduct three sets of experiments. First, we vary 𝑁 and set𝑀 = 𝑁 . Fig. 18 shows

the box plot and CDF of the localization errors, as well as the one-shot success rate. For 𝑁 = 6, 5, 4, 3, the median

localization errors are 6.40m, 11.18m, 12.04m, and 13.89m, and the one-shot success rates are 62.58%, 53.67%,
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Fig. 19. ILLOC’s localization error and one-shot success rate when𝑀 = 3 and 𝑁 varies from 3 to 6.
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Fig. 20. ILLOC’s localization error and one-shot success rate when 𝑁 = 6 and𝑀 varies from 3 to 6, or the greedy algorithm
is used to dynamically configure𝑀 .

45.47%, and 38.78%, respectively. Note that only the localization errors of the successful localization trials are

counted for computing the median. We can see that both the localization accuracy and one-shot success rate

increase with 𝑁 . This observation is consistent with intuition. Second, we fix𝑀 = 3 and vary 𝑁 . Fig. 19a shows

the results. The median localization errors for 𝑁 = 6, 5, 4, 3 are 12.75m, 13.04m, 13.68m, and 13.89m, respectively.

Thus, compared with the previous set of experiments, the localization accuracy degrades. However, by comparing

Fig. 18c and Fig. 19c, we can see the one-shot success rate is improved by introducing the subset fusion mechanism

discussed in Section 4.4. Third, we fix 𝑁 = 6 and vary𝑀 from 6 to 3. Fig. 20 shows the results. With𝑀 = 6, 5, 4, 3,

the median localization errors are 6.40m, 10.01m, 12.27m, and 12.75m, respectively, and the one-shot success

rate increases from 62.58% to 100%.

From the results in Fig. 18, Fig. 19, and Fig. 20, we have the following two observations. First, the localization

accuracy increases with the total number of anchors 𝑁 . Second, the subset fusion mechanism may degrade

localization accuracy but improve the one-shot success rate. Specifically, the localization accuracy increases with

𝑀 but the one-shot success rate decreases with𝑀 .

6.4.4 Effectiveness of Greedy Anchor Subset Fusion. Given the above two observations, the greedy anchor subset

fusion algorithm in Algorithm 1 will exhibit its advantage of preserving accuracy and improving the one-shot

success rate at the same time. As shown in Fig. 20, it achieves a median localization error of 8.36m and an average

localization error of 10.06m. Fig. 20b reveals that 55% of the cases have sub-10m localization errors, and 93% of

the cases have sub-20m localization errors. While it maintains the localization accuracy of using six anchors (as

shown in Fig. 20a), it achieves 100% one-shot success rate (as shown in Fig. 20c). These results clearly show the

effectiveness of the greedy anchor subset fusion algorithm. The crosses in Fig. 9b show the localization results

for two target positions marked by arrows.
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Fig. 21. ILLOC’s localization error and one-shot success rate with the greedy algorithm when 𝑁 varies from 6 to 4.
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Fig. 22. ILLOC’s localization errors in the indoor plaza with different numbers of frames per localization query.

We also test the greedy anchor subset fusion with different total numbers of anchors 𝑁 . The results are shown

in Fig. 21. When 𝑁 drops to 5 and 4, the median localization errors are 10.19m and 12.05m, and the one-shot

success rate drop to 98.27% and 82.79% respectively. The results show that more available anchors in total can

provide both higher localization accuracy and one-shot success rate, as the subset fusion is more diverse.

6.5 Experiment Results in Indoor Plaza
To cope with the extensive NLOS propagation in the indoor plaza, for a target node, we fuse its localization results

for multiple uplink frames to generate a single localization result. Specifically, the greedy anchor subset fusion

algorithm over 6 anchors is used to estimate the target node’s position for each uplink frame. The geometric

median of the estimated positions for multiple frames is yielded as the final estimate of the target node position.

Note that OwLL [8] also fuses 80 to 120 frames in different frequencies within both TV whitespace and ISM bands

for each localization query. Fig. 22 shows the distributions of the localization errors. For one-shot localization

(one frame per localization query), the median and average localization errors are 20.07m and 21.08m, with 100%

one-shot success rate. With a frame fusion scheme, when 5, 20, 80 consecutive frames are fused to generate the

final estimate, ILLOC can reduce the median errors to 17.08m, 15.61m, and 15.16m, respectively. This accuracy

level is similar to OwLL’s 15.7m median error for NLOS locations [8] in an outdoor environment. We expect that,

in such a barrier-rich hall-size area, mounting the anchors and resonators on the ceiling may improve the LOS

condition and thus ILLOC’s localization performance.

6.6 A Simulation on the Impact of Multi-Path Effect
Multi-path effect is a key challenge for wireless indoor localization. While all our experiment results encompass

the impact of multi-path effect, we conduct a barebone simulation study that considers two paths only to obtain
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Fig. 23. Impact of a secondary signal propagation path on ILLOC’s TDoA estimation.

insights into the impact of multi-path effect on ILLOC. Note that modeling the real scenarios with countless

paths is challenging. Specifically, consider two anchors 𝐴 and 𝐵 that are perfectly synchronized and equidistant

from a target node 𝑋 . Assume there is no multi-path effect between 𝐴 and 𝑋 . Between 𝐵 and 𝑋 , we simulate a

two-path model consisting of a direct path and a secondary path that is longer. Let𝑤1 and𝑤2 denote the powers

of the received signals traveling through the direct and secondary paths. We fix𝑤1 = 1 and vary𝑤2 from 0.2 to 2.

We also vary the difference between the arrival times of the signals traveling through the two paths. Fig. 23a

shows the cross-correlation trace when𝑤1 = 1,𝑤2 = 0.8, and the difference of the arrival times is 5 sample points.

We can see two cross-correlation peaks corresponding to the two paths. As the peak of the direct path is higher

than that of the secondary path, the TDoA error is zero. Fig. 23b shows the TDoA errors versus𝑤2/𝑤1 and the

difference of the arrival times over the two paths. We can see that when𝑤2/𝑤1 < 1, the secondary path generates

no impact on the TDoA estimation; when𝑤2/𝑤1 > 1, the TDoA error equals the difference of the arrival times.

This simulation result suggests that, under the general multi-path case, if the aggregate of the signals over the

NLOS paths surpasses the signal over the LOS path in energy, we may have additional TDoA errors beyond that

caused by random noises. However, in real environments, NLOS paths usually have larger attenuation factors

due to their longer travel distances, reflections, scattering, and diffraction. In addition, the large granularity of

12m per sample for SDR operating at 25Msps reduces the impact of the NLOS paths that are longer than the

LOS path by up to 12m.

7 DISCUSSIONS
In this section, we discuss several issues based on the evaluation results obtained in Section 6.

10m-level localization accuracy: From our extensive evaluation results, ILLOC achieves 10m-level localiza-

tion accuracy. Intuitively, ILLOC hits the accuracy limit of device localization based on the standard LoRa signal

sampled at 25Msps, because an alignment error of a single sample point during the cross-correlation maximization

leads to 12m error. The 10m-level localization accuracy suggests that most TDoA errors are zero and one sample.

A high ranging resolution (i.e., 12m in ILLOC) is the basis for achieving similar ranging/localization errors.

ILLOC addresses the narrowband and clock skew challenges to fully exploit this basis. Note that 25Msps is the

highest stable sampling rate that USRP N210 and LimeSDR can achieve. Using SDRs operating at higher sampling

rates may bring localization accuracy improvement, which is left for future study. The 10m-level localization

accuracy can be useful in a number of applications as discussed in Section 1. While our results provide insights

into understanding the feasibility and performance limit of in-hall localization under the main constraint of

LoRa’s narrowband nature, ILLOC is useful when the operator of an already deployed LoRaWAN wishes to
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roughly track the locations of the end devices. If precise locations of end devices are required, LoRaWAN is not

the best choice for engineering a localization system; other solutions (e.g., UWB) and retrofits to the end devices

will be needed.

Additional communication overhead: To address the anchors’ clock skews, ILLOC uses a resonator to

transmit a sync frame immediately after the target frame is detected. This doubles frequency spectrum usage.

To mitigate this issue, ILLOC can command the resonator to transmit the sync frame only when localization is

needed. In addition, ILLOC can selectively perform localization for a single end device or a set of end devices.

Specifically, ILLOC can defer the decision of whether to transmit a sync frame until the end device ID is decoded

from the target frame. Our evaluation results in Fig. 12 show that the JIT synchronization can tolerate up to two

seconds delay in transmitting the sync frame.

Compatibility with concurrent uplink frames: ILLOC can handle concurrent uplink frames in different

frequency channels. As LoRa’s CAD feature can only monitor one frequency channel at a time, ILLOC can deploy

multiple resonators listening to all the used frequency channels. The resonators should use the same SF and

same sync channel, and follow a CAD-based carrier sense multiple access (CSMA) protocol (e.g., [15]) to avoid

sync frame collisions. This design ensures that every target frame is followed by a corresponding sync frame.

Alternatively, ILLOC can deploy an SDR to monitor all frequency channels and transmit a single sync frame

corresponding to all concurrent target frames. In this alternative design, the sync frame is shared by all concurrent

target frames. LoRaWAN also supports concurrent uplink frames in the same frequency channel but different

SF channels. The DPS scheme cannot address such same-frequency concurrent frames and ILLOC will render a

one-shot failure. However, as ILLOC can estimate an end device’s location using any of its uplink frames without

frequency collision, ILLOC’s serviceability degradation for the end device can be acceptable, unless the LoRaWAN

is very dense such that the frequency collisions are frequent. Nevertheless, handling frequency-collided frames is

an open issue to ILLOC, OwLL [8], and Seirios [36], and interesting for further research.

Anchor deployment: The placement of anchor and resonator is a one-time effort and environment-dependent.

In this paper, we select the anchor positions based on the locations of available power outlets, while aiming to

scatter the anchors and minimize signal blockage. We place the resonator near the center of the indoor space,

expecting to achieve good received signal quality at all the anchors. If possible, placing the anchors at open

and high places, which is also suggested by Semtech’s outdoor solution [50], may provide more LOS and thus

improve ILLOC’s performance. Besides, it is also recommended to consider the dilution of precision (DOP) [32]

when deploying the anchors (and resonators in ILLOC) in multilateration systems. Existing works [23, 24, 47]

have studied the DOP minimization problem for anchor placement. We leave the detailed study of optimizing

ILLOC’s anchor and resonator placement to future work.

Deployment cost: In Table 1, ILLOC, OwLL [8], and Seirios [36] require SDR-based anchors, while other

systems use commodity LoRaWAN gateways. While the research-oriented USRP SDR is expensive, this paper also

shows the feasibility of using LimeSDRs that cost about 300 US$ per unit. With the development and increasing

availability, SDR hardware cost has been decreasing and is down to 88 US$ per unit now [2]. Thus, the deployment

cost of ILLOC can be similar to the solutions based on commodity gateways that cost about 135 US$ per unit [16].

8 CONCLUSION
This paper presents ILLOC, a system for unobtrusively localizing LoRaWAN end devices in a hall-size indoor space

with standard uplink frames from the device. ILLOC’s TDoA-based localization approach exploits LoRaWAN’s

multiple frequency channels and Channel Activity Detection to enable a just-in-time synchronization scheme for

anchors, in which a resonator end device transmits a time reference signal once upon detecting an uplink frame

for localization. Based on LoRa’s CSS modulation, we design the DPS scheme to remove the unknown anchor

phase terms and accumulate the CSS pattern in time for precise TDoA estimation. In the localization phase,
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we use a greedy anchor subset fusion strategy to maintain localization accuracy while improving the one-shot

success rate. We implement an ILLOC prototype system with two types of SDRs and off-the-shelf LoRaWAN end

devices. In a 55m long corridor deployed with two anchors, the median localization error is 6m. In a 70 × 32m
2

sports hall deployed with six anchors, the median localization error is 8.36m. In a 110 × 70m
2
indoor plaza with

extensive NLOS propagation, ILLOC with six anchors and frame fusion achieves a median error of about 15m

with frame fusion.
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