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Enabled by the increasingly available embedded hardware accelerators, the capability of executing advanced
machine learning models at the edge of the Internet of Things (IoT) triggers interest of applying Artificial
Intelligence of Things (AIoT) systems for industrial applications. The in situ inference and decision made based
on the sensor data allow the industrial system to address a variety of heterogeneous, local-area non-trivial
problems in the last hop of the IoT networks. Such a scheme avoids the wireless bandwidth bottleneck and
unreliability issues, as well as the cumbersome cloud. However, the literature still lacks presentations of
industrial AIoT system developments that provide insights into the challenges and offer lessons for the relevant
research and industry communities. In light of this, we present the design, deployment, and evaluation of an
industrial AIoT system for improving the quality control of HP Inc.’s ink cartridge manufacturing lines. While
our development has obtained promising results, we also discuss the lessons learned from the whole course of
the work, which could be useful to the developments of other industrial AIoT systems for quality control in
manufacturing.
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1 INTRODUCTION
The recent advances of machine learning (ML) in dealing with sophisticated data patterns and the
increasingly available embedded hardware for accelerating ML trigger the interest of studying
and implementing industrial Artificial Intelligence of Things (AIoT) [6] that integrates artificial
∗The first two authors contributed equally to this research.
†This work was completed while Joy Qiping Yang was with HP-NTU Digital Manufacturing Corporate Lab, Nanyang
Technological University.

A preliminary version of this work appeared in The 18th Annual IEEE International Conference on Sensing, Communication
and Networking (SECON) held in Virtual Event, 6-9 July 2021 [18].
Authors’ addresses: Duc Van Le, Siyuan Zhou, HP-NTU Digital Manufacturing Corporate Lab, Nanyang Technological
University; Joy Qiping Yang, National University of Singapore; Daren Ho, HP Inc.; Rui Tan, School of Computer Science and
Engineering, Nanyang Technological University.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
1550-4859/2023/8-ART1 $15.00
https://doi.org/XXXXXXX

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: August 2023.

https://doi.org/XXXXXXX
https://doi.org/XXXXXXX


1:2 Duc Van Le, Joy Qiping Yang, Siyuan Zhou, Daren Ho, and Rui Tan

intelligence (AI) with the Internet of Things (IoT) edge. The AIoT systems have distributed, in
situ inference and decision capabilities to avoid the handicaps encountered when transmitting
data to remote central servers for decision making. However, there is no one-size-fits-all AIoT
system that can be used for all industrial applications. The designs and implementations of the
AIoT systems in general need to be highly customized based on the specific objectives, operational
procedures, and practical constraints of the industrial processes. Many task-specific designs such
as the configuration and training of the used ML models still require substantial work to achieve
the objectives. The main challenges often come from the deviations of the real-world conditions
from the assumptions made by the relevant research. Specifically, the relevant research in general
needs a set of clearly defined assumptions to render a satisfactory level of rigor in addressing a
specific problem while isolating other problems, but real-world tasks in industrial practices face
many coupled problems. Therefore, the design of a working industrial AIoT system requires holistic
considerations with many inputs from the domain experts and technicians.
Despite the heterogeneity of industrial AIoT systems, the systematic description of an effort

that designs and implements an AIoT system for a specific industrial application can provide
insights into understanding the potential challenges that would be faced by other AIoT system
designs. In this technical note, we present our recent work of designing an AIoT-based quality
control (QC) system that provides an essential function to maintain high-quality products in the
manufacturing systems. Specifically, the system aims at improving the QC of the ink cartridge
manufacturing lines at the factories of HP Inc. (referred to as HP for short in this technical note).
This development includes the key elements of AIoT, including sensing, data analytics, design and
deployment of embedded ML models at the IoT computing edge, as well as decision support with
associated reasoning for machine health prognostics. We present the motivation, the details of our
system design, and the experiences learned from this work that can be useful to the design and
implementation of other industrial AIoT systems.

Our target application is HP’s ink extraction testing (IET), which is a destructive and accelerated
testing on randomly selected samples of the manufactured ink cartridges. It is the final QC procedure
which aims at detecting any defective batch in which the ink cartridges’ performance deviates
from the specification. In particular, the IET machine (referred to as tester for short in this technical
note) extracts the ink from the tested cartridge at a prescribed rate, which is much faster than those
on printers, and records the liquid pressure of the ink throughout the course. The profile curve of
the liquid pressure versus the volume of the extracted ink provides rich information regarding the
performance of the tested ink cartridge. Thus, the match between the recorded profile and a preset
template profile is the main criterion to pass the test. The alarms due to detected mismatch are
further classified manually by trained technicians. Depending on the manual classification results,
further QC actions will be taken. Although IET is critical to all HP’s ink cartridge manufacturing
lines, the factories’ current IET procedure faces two main challenges as follows.

First, it is desirable to solidify the technicians’ experience-based approach of manually classifying
alarms as a computable classifier for the purpose of QC consistency and knowledge transfer.
However, the pressure profiles exhibit a significant degree of variability and the technicians’
manual classification incorporates extensive domain knowledge regarding the internals of the ink
cartridges, which may be descriptive and not quantifiable. The attempt of converting the manual
classification approach into a computable rule-based classifier results in many questions of how to
properly define the features, configure the rules, and set the thresholds.

Second, the operations of the tester inevitably introduce uncertainties that result in false alarms.
For example, from the technicians’ experiences, formation of air bubbles in the tester’s ink tubes is
one of the major factors causing false alarms, because a bubble with a sufficiently large volume
affects the liquid pressure measurement. Performing a tube flush before each test can largely resolve
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the issue, but it significantly reduces the testing throughput. From the historical records, the overall
alarm rate of the deployed testers is about 30 times of the defect rate of the manufactured ink
cartridges, suggesting most alarms are false. For quality assurance, upon any alarm, the factories’
current practice is to flush the tester’s tube and perform the destructive test on an additional ink
cartridge sample to reconfirm the technician’s manual classification result. Thus, it is desirable to
have an approach that can reliably identify the false alarms and avoid the unnecessary tests.

To address the above two challenges, we designed and implemented an AIoT system that classifies
the tester’s alarms into product-induced (i.e., true alarms) and tester-induced (i.e., false alarms).
The primary design goal is to achieve high recall and precision in identifying the product-induced
and tester-induced alarms. Specifically, our AIoT system has four main components. First, the
ML-based profile classifier captures the product engineers’ experiences in classifying the alarms.
Second, we develop a heuristic-based anomaly detection (AD) approach that classifies the pressure
profiles based on domain knowledge on the patterns contained in the profiles. Third, based on a key
observation that the air bubbles are often formed at the joint of the tester’s ink tubes, we deploy a
smart camera at the joint and design convolutional neural network (CNN) and computer vision
algorithms that run on the camera to detect and estimate the presence and volume of air bubbles.
Fourth, we develop a tester assessment approach that applies statistical learning to estimate the
probability that a tester is faulty based on the historical alarm classification results. The outcome
supports the decision process of whether maintenance activities should be performed for the
concerned tester.

We have deployed our AIoT system in HP’s manufacturing lines. Through controlled experiments,
our heuristic-based AD approach achieves a recall of 95.2% in detecting the defective ink cartridges.
Moreover, the smart camera can correctly detect the presence of air bubbles in 94% of the testing
images. In summary, this technical note presents the design and evaluation processes of the AIoT
system, discusses the key experiences and lessons learned from the whole course of the work,
which can be useful to the developments of other industrial AIoT systems.

The remainder of this technical note is organized as follows. §2 reviews related work. §3 presents
the background about IET and overviews our AIoT system. §4, §5, and §6 present the designs
of ML-based profile classifiers, heuristic-based AD approach, and smart camera, respectively. §7
presents deployment and evaluation of the system integrating the components in §4, §5, and §6. §8
presents the statistical learning-based tester assessment. §9 discusses the experiences and learned
lessons. §10 concludes this technical note.

2 RELATEDWORK
Challenges in deploying ML and AIoT in Industries: Industrial AIoT is the combination of
AI and industrial IoT to improve the level of automation in analyzing and creating useful insights
from the industrial sensor data [12]. Deploying an industrial AIoT system often faces challenges of
making decision on the design and implementation of IoT hardware infrastructures (e.g., edge, fog,
and cloud) and software components (e.g., ML models) based on the specific objectives and practical
constraints of the industrial processes. A number of studies [1, 2, 7–9] have investigated practical
challenges and provided some insights on deploying industrial AIoT systems. Alkhabbas et al. [1]
conduct a survey that distributes a questionnaire containing 14 questions about the deployment
decisions of IoT systems. Their findings based on the responses of 66 IoT system designers from
18 countries show that the reliability, performance, security, and cost are the four main factors
affecting the designer’s decisions on deploying IoT systems. The studies [2, 7–9] discuss practical
challenges and lessons learned from deploying ML algorithms for various applications. For instance,
with experiences in designing analytics platforms at Twitter, Lin and Ryaboy [9] observe that
at the first step, the data scientists often spend many efforts in understanding and cleansing the
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Fig. 1. Illustration of testing a cartridge in IET machines.

Pressure

Volume of extraction

Fig. 2. Samples of measured profiles.

collected data before they can design ML models. Budd et al. [2] identify that the lacking of training
data labels is a key challenge of designing ML models for medical image analysis. As presented
in [7], practical ML systems often employ simple ML models such as random forests, decision
trees, and shallow neural networks to shorten the deployment time and gain better interpretability.
For instance, Haldar et al. [7] report that in the process of applying deep ML models for AirBnB
search, after several unsuccessful attempts with complex neural networks, they finally deployed
a simple neural network model to simplify the deployment process while providing reasonably
good performance. In addition, Hazelwood et al. [8] discuss several key factors that drive the
decisions on designing ML models for data center infrastructures at Facebook. Similar to the above
studies, this technical note presents our experiences and lessons learned from the design and
implementation of an industrial AIoT system. As our work considers different specific objectives,
operational procedures, and practical constraints, this technical note provides new insights.
QC in production processes: QC is a set of procedures for determining whether a product

meets a predefined set of quality criteria or the customer’s requirements [16]. It also provides
the information to determine the need for corrective actions in the manufacturing process. AIoT
technologies have been adopted to improve QC of manufacturing lines. For instance, at Siemens’
electronics plant in Amberg, Germany [14], various ML models and edge computing are used to
design a predictive model-based QC framework for testing the quality of printed circuit boards
(PCBs). The framework helps improve the recall in detecting defective PCBs and reduce testing
overheads. In this technical note, we present the work to develop an industrial AIoT system for
improving the QC of the ink cartridge manufacturing lines at the HP’s factories.

Our prior work [18] has presented the design of the first three components of the developed AIoT
system, i.e., ML-based profile classifiers, heuristic-based AD approach, and smart camera. Based
on [18], we make the following new contributions in this paper. First, §4.2 presents a new profile
classification approach based on ensemble learning and §4.3 presents a new set of experiments
driven by historical data to evaluate all theML-based profile classifiers incorporated with resampling
for addressing the data imbalance issue. Second, §8 presents the fourth newly designed component
of statistical learning-based tester assessment approach and the related evaluation.

3 BACKGROUND, MOTIVATION, & SYSTEM OVERVIEW
In this section, we present the background of the ink extraction testing (IET) and discuss its current
problems in practice. Then, we overview the design of our AIoT system for improving the IET.

3.1 IET Background and Problem Statement
As discussed in §1, the IET is the final QC process of the ink cartridge manufacturing. Specifically,
a number of randomly selected ink cartridge samples are tested using the tester. The tester can run
six ink cartridges simultaneously. Fig. 1 illustrates how the tubes connect a tested ink cartridge, a
stepper motor pump, and a pressure sensor. A transparent plastic Y-joint is used to join the tubes.
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A workstation computer of the tester controls the stepper motor pump to extract ink from the
ink cartridge at a steady volume rate for a certain time duration. Meanwhile, a liquid pressure
sensor continuously measures the pressure in the tube and reports the readings to the workstation
computer. The resulting curve of the measured liquid pressure versus the volume of the extracted
ink is a profile of the tested ink cartridge. The ink cartridges of different models have distinct
profiles. Fig. 2 shows profile samples of a certain ink cartridge model.
The tester adopts a bound-based detector to assess a measured profile against a template profile

with an upper bound and a lower bound. The template profile is defined based on the specification of
the ink cartridge. The bound-based detector classifies a profile normal if the profile completely lies
within the belt area between the two bounds; otherwise, the tester classifies the profile abnormal.
To achieve high recall in capturing defective cartridges, the factories’ current practice is to impose
stringent bounds. As a result, the tester generates alarms frequently. As mentioned in §1, many
alarms are actually false. This is because that the pressure measurements can be noisy and biased.

Specifically, the pressure sensing is subject to both endogenous and exogenous noises. Endoge-
nous noises are mainly from the thermal noises of the pressure sensor and the random control
errors of the stepper motor pump. Exogenous noises are mainly caused by vibrations and blockage
of the ink tubes. The vibration is caused by the movements of nearby human operators and bulky
manufacturing machines, while the blockage is caused by the hardening ink residue trapped within
the tube. In addition, the tester is subject to the following biases. An improper manual insertion
of the tested ink cartridge onto the tester may cause loss of back pressure of the cartridge and
deviation from the template profile. An air bubble formed in the tester’s ink tubes with a sufficiently
large volume can also affect the pressure sensing.
In the current protocol of the factories, the alarm-triggering profiles will be further classified

manually by the technicians into false positives (i.e., tester-induced) and true positives (i.e., product-
induced). The manual classifications are based on the technicians’ knowledge received during
training and also their own experiences. As such, the classification results may lack high confidence
and consistency. To ensure that there is no doubt regarding the QC result of a tested batch, the
technicians may need to perform maintenance of the tester and conduct destructive tests with
additional samples. A common maintenance performed is to flush the tubes with water to purge
out ink and air bubbles at the end of every test. However, the frequent maintenance reduces the
IET throughput significantly; the additional destructive tests increase the cost. Therefore, it is
desirable to develop a system that can reliably and consistently classify the alarms generated by the
bound-based detector, such that all or part of the unnecessary tester maintenance and additional
destructive tests can be avoided.

3.2 AIoT System Overview
In this work, we follow the progressive system development methodology to design and implement an
AIoT system to replace the factories’ current practice of manually classifying the alarm-triggering
profiles into normal and abnormal profiles. During the whole course of designing our AIoT system,
we have developed four main components as follows.

(1) ML-based profile classifiers:We design and train several ML-based classifiers to classify
the profiles. The training processes are based on historical profiles labeled by the product engineers.
Specifically, we design multiple classifiers based on supervised, semi-supervised, and unsupervised
ML models. Each classifier takes different features as input to classify a profile. Ensemble methods
are also used to integrate the results of the multiple classifiers.
(2) Heuristic-based anomaly detection: The ML-based classifiers face challenges of limited

and imbalanced training dataset. Thus, we also develop a heuristic approach which considers the
profile classification as an anomaly detection (AD) problem. The profiles of good ink cartridges,
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Table 1. Accuracy of ML-based classifiers over 134 historical profile samples. Each table entry includes average
and standard deviation of accuracy results over 10 sub-datasets.

Evaluation metrics Classifiers Ensemble
CNN DT MVAE k-means Veto Majority

Accuracy 0.9 ± 0.03 0.89 ± 0.07 0.62 ± 0.34 0.28 ± 0.12 0.92 ± 0.002 0.91 ± 0.04
Abnormal recall 0.97 ± 0.03 0.94 ± 0.07 0.64 ± 0.40 0.22 ± 0.13 1.0 ± 0.0 0.97 ± 0.03
Abnormal precision 0.92 ± 0.004 0.94 ± 0.03 0.85 ± 0.28 0.9 ± 0.30 0.92 ± 0.002 0.93 ± 0.02
Normal recall 0.0 ± 0.0 0.3 ± 0.45 0.4 ± 0.48 1.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3
Normal precision 0.0 ± 0.0 0.225 ± 0.39 0.035 ± 0.044 0.096 ± 0.01 0.0 ± 0.0 0.1 ± 0.03

albeit measured in the presence of noises and biases, should be detected normal; the profiles of
defective cartridges should be detected abnormal.

(3) Smart camera: From the technicians’ experiences, formation of an air bubble at the Y-joint
of the ink tubes can affect the pressure measurement, which likely leads to false alarms. We design
a smart camera system to monitor the Y-joint. It runs a CNN to detect air bubble and a computer
vision algorithm to estimate the volume of the bubbles. The results are used to assist the profile
classifier or the AD algorithm in deciding the nature of any alarm generated by the tester.

(4) Statistical learning-based tester assessment: We develop a tester assessment approach
that leverages statistical learning to estimate the probability that a tester is faulty based on the
historical alarm classification results. The estimated probability can support making decisions on
whether maintenance activities should be performed for the concerned tester. With the assessment
support, more false alarms can be prevented proactively.
All computing for the profile classification and bubble detection is executed on a Raspberry Pi

single-board computer deployed close to the sensors generating data. Specifically, the Pi is connected
directly with the camera and tester to receive the captured images and measured pressure profiles.

4 ML-BASED PRESSURE PROFILE CLASSIFIERS
This section presents the design of the ML-based profile classifiers. It also evaluates the performance
of the designed classifiers on the historical data samples.

4.1 Preparation of Design Data
We receive a dataset containing 550,508 pressure profiles of 723 ink cartridge models collected from
the testers deployed in HP’s factories in 18 months. The dataset includes the profile labels which
are generated by the tester using the bound-based detector. Specifically, the bound-based detector
classifies about 2% of profiles abnormal. However, the actual defect rate of the manufactured ink
cartridges is about 0.07% only. This result suggests that most abnormal profile labels generated by
the bound-based detector are inaccurate. We work with HP’s product engineers and domain experts
to manually relabel the abnormal profiles in the dataset. However, the relabeling is tedious and time-
consuming. We can only confirm 134 abnormal profiles. Eventually, we have a dataset consisting of
about 530,000 profiles with reliable “normal” labels, merely 134 profiles with reliable “abnormal”
labels, and about 110,000 profiles that were classified abnormal by the bound-based detector but
unlabeled after the relabeling process. This renders the training dataset imbalanced with limited
data with abnormal labels. The difficulty of the labeling process will be further discussed in §9.

4.2 Design of ML-based Classifiers
As discussed in §1, each ML approach addresses a specific problem based on a set of assumptions,
but real-world tasks often face a mix of many problems. In practice, it is often more efficient to
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Table 2. Accuracy of ML-based classifiers with under-sampling and over-sampling over historical profiles.

Metrics Under-sampling Over-sample
CNN DT MVAE CNN DT MVAE

Accuracy 0.68 ± 0.09 0.65 ± 0.15 0.51 ± 0.15 0.84 ± 0.09 0.89 ± 0.04 0.47 ± 0.19
Abnormal recall 0.67 ± 0.11 0.64 ± 0.17 0.48 ± 0.16 0.86 ± 0.10 0.94 ± 0.05 0.46 ± 0.23
Abnormal precision 0.98 ± 0.03 0.98 ± 0.03 0.98 ± 0.03 0.96 ± 0.04 0.94 ± 0.03 0.95 ± 0.06
Normal recall 0.80 ± 0.4 0.8 ± 0.4 0.9 ± 0.3 0.60 ± 0.48 0.3 ± 0.45 0.6 ± 0.48
Normal precision 0.15 ± 0.09 0.15 ± 0.09 0.13 ± 0.07 0.26 ± 0.23 0.13 ± 0.20 0.07 ± 0.07

try multiple ML approaches than relying on a single approach unless we clearly know that the
conditions of the task well match the assumptions of the single approach. As such, we have tried
four ML-based profile classifiers which are the CNN-based, decision tree (DT)-based, multimodal
variational autoencoder (MVAE)-based, and 𝑘-means-based classifiers. The detailed design of these
four ML-based classifiers can be found in our prior publication [18]. In addition, as an ensemble of
multiple ML-based classifiers is often more accurate than any single member classifier [13], we also
try the ensembles of the four classifiers with distinct combination rules. Specifically, we adopt a
widely used ensemble method called bagging [13], which combines the results of the four ML-based
classifiers to yield the final result. We implement two variants of the bagging method including
veto and majority. With a primary focus on achieving high recall in capturing defective products,
the veto approach considers the profile as abnormal if any of four classifiers outputs abnormal. The
majority approach yields the majority of the classifiers’ results as the final result.

4.3 Evaluation based on Historical Data
We evaluate the performance of fourML classifiers and two ensemble approaches using the historical
profile samples with reliable labels (cf. §4.1). Specifically, we follow the 10-fold cross-validation
procedure to train the CNN-based, DT-based, and MVAE-based classifiers. This procedure is often
used to evaluate the MLmodels on small datasets. Specifically, the training dataset is equally divided
into 10 groups with the same ratio between the abnormal and normal profile samples.
We use the overall classification accuracy, recall, and precision in detecting the abnormal and

normal profiles as the evaluation metrics. Table 1 shows the evaluation metrics of the four ML-based
classifiers and two ensemble methods on the 134 training samples. From Table 1, the CNN-based
classifier exhibits the highest average accuracy of 0.9 and abnormal recall rate of 0.97 among the
four classifiers. The DT-based classifier has the highest average abnormal precision of 0.94. Both
two ensemble methods (i.e., veto and majority) always achieve higher classification accuracy than
each individual classifier. Moreover, the veto method has the highest average recall in detecting the
abnormal profiles. However, as presented in §7.2, these trained ML-classifiers cannot achieve the
accuracy level of at least 90% on the testing samples that we collect from the controlled experiments
in the deployment phase of our system.

The main reason causing the inferior accuracy performance of the ML-based classifiers is that we
can only label 134 historical training samples with a majority of normal samples. The imbalanced
training dataset and limited training samples pose substantial challenges for the classifiers to achieve
high accuracy. In general, ML techniques such as resampling [11] and few-shot learning [17] can
be used to mitigate these problems. Therefore, we adopt two common resampling methods which
are under-sampling and over-sampling to create a balanced dataset for training our developed
ML-based classifiers. Specifically, the under-sampling method reduces the number of samples in
the majority classes, while the over-sampling method duplicates samples from the minority classes.
As a result, a balanced training dataset can be achieved.
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Table 2 presents the accuracy results of the supervised (i.e., CNN-based, DT-based) and semi-
supervised (i.e., MAVE-based) classifiers with the under-sampling and over-sampling methods. From
Table 2, two resampling methods do not help improve the accuracy of the developed supervised and
semi-supervised ML-based classifiers. They even lead to the low overall accuracy on the training
samples. Moreover, the resampling can be used to create a more balanced dataset only. However, it
cannot help expand the training data distribution to cover unobserved/unlabelled abnormal profile
samples. On the other hand, although the few-shot learning can build accurate ML models with
limited training samples based on prior knowledge about the data structure and learning process,
we have limited knowledge about the dynamics of the pressure-volume profiles.

5 ANOMALY DETECTION (AD)-BASED PRESSURE PROFILE CLASSIFIERS
As evaluated in §4, the developed ML-based profile classifiers show limitations in achieving high
accuracy due to the limited training dataset. In this section, we develop a heuristic approach which
treats the profile classification as an AD problem. Specifically, our approach considers the abnormal
profiles as outliers which do not follow the expected pattern of the normal profiles. Upon a new
profile, a distance-based similarity score between itself and the normal profiles is calculated. The
profile is considered abnormal if the score is lower than a threshold. This AD approach provides
good interpretability in that it gives information for understanding the classification results. In this
section, we present four categories of false alarms and then describe the AD approach.

5.1 Categories of Alarm-Triggering Normal Profiles
As mentioned in §3, the liquid pressure measurements are subject to various biases due to the
human operators and the tester deviations. The biases can cause different patterns of the normal
profiles that trigger the bound-based detector. From the product engineers’ domain knowledge and
experiences, the normal profiles can be divided into four categories as follows.
Miss-configuration profiles are caused by setting a wrong reference point by the human

operator at the beginning of the test. With the wrong reference point, the measured profiles have a
similar pattern to the profiles of good ink cartridges. However, they are shifted beyond the belt area
between the two bounds of the template profile which is used by the tester to classify the profiles
into normal and abnormal. As a result, these miss-configuration profiles trigger false alarms.
Miss-calibration profiles are caused by configuring a wrong gain to scale the sensor’s raw

readings to the pressure unit in the calibration process of the pressure sensor.
No-cartridge profiles are collected when the ink cartridges are not inserted properly onto the

tester. Without the ink from the cartridge, the motor pump of the tester pulls the air through the
tube only. Under this condition, the measured pressure profile is nearly a flat line.
Tube-blocking profiles are measured when the ink tubes are blocked by air bubbles or ink

residue. Specifically, the tube-blocking profiles have a liquid pressure drop in the early stage of
the extraction due to presence of the air bubbles inside the tube. Then, they quickly increase and
recover to the pattern which is similar to a shift-up variation of the normal profile.

5.2 Anomaly Detection
From the technician’s experiences, the last phase of the profiles often includes the pressure mea-
surement fluctuations caused by over extraction in which the tester’s motor pump still operates
when the internal valve of the ink cartridge is already closed. The air gaps traveling through the
tube introduce measurement fluctuations that can trigger the bound-based detector. Thus, our
AD algorithm excludes such fluctuations from the input profile. Moreover, our experiments in §7
show that the over extraction has a strong correlation with the presence of air bubble in the tube.
Thus, we use air bubble as an indicator to determine whether the measurement fluctuations are
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Part 1 Part 2
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Fig. 3. Smart camera fixed into a 3D-printed holder
for Y-joint monitoring.
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Fig. 4. Workflow of computer vision (CV)-based air
bubble size measuring.

caused by over extraction. Lastly, we apply data analytics methods to extract the features of the
normal profiles that are used to distinguish the abnormal profiles as outliers. Specifically, we check
whether a testing profile belongs to any of the four categories presented in §5.1. If yes, it is normal;
otherwise, it is abnormal. The details of the check are as follows.
For the miss-configuration, no-cartridge, and tube-blocking categories, we use the mean sub-

traction method to normalize the original profile by subtracting its pressure measurements from
its average. Dynamic time warping (DTW) distances [3] between all pairs of normalized training
profiles in the normal profile category 𝑖 are calculated. We define 𝛾𝑖 as the detection threshold for
category 𝑖 and 𝛾𝑖 = ` + 3𝜎 , where ` and 𝜎 are the mean and standard deviation of the calculated
DTW distances. Upon a new profile, we first calculate the DTW distance between itself with all
training profiles of the category 𝑖 . If the mean of the calculated distances is less than 𝛾𝑖 , the profile
is considered normal in the category 𝑖 .
For the miss-calibration category, we use a scale matching method to extract profile features.

Each training profile is equally divided into 10 segments and the maximum among the pressure
measurements of each segment is determined. The mean and variance of the maximum over the
same segment across all training profiles are calculated. For a new profile, we first determine the
maximum of its 10 segments, and then compute their scale with respect to the mean and variance
obtained from the training profiles. The profile is considered normal if all scales of its 10 segments
fall within a suitable range between each other. If the profile is considered normal by the above
scale matching approach, we additionally perform the DTW distance-based AD process to confirm
whether the profile is normal.

6 SMART CAMERA SYSTEM
As mentioned earlier, the presence of the air bubbles inside the tester’s tube can affect the pressure
sensing and is indicative of over extraction. Thus, we design and deploy a smart camera with an
embedded image processing pipeline to monitor the air bubbles during the ink extraction.

6.1 Hardware Components
Fig. 3 illustrates our camera system that consists of three main components: the low-cost camera,
the edge node, and the light source. For the camera, we select the Raspberry Pi camera module that
can capture up to 90 images per second. The captured images are transferred to a Raspberry Pi 4
edge node that runs the CNN and traditional computer vision (CV) algorithms.
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An external light source is used to illuminate the ink tube for the camera. To reduce the impact
of the tube’s vibration on the camera’s image sensing, all hardware components and Y-joint are
fixed into a custom 3D-printed holder as shown in Fig. 3. We deploy the camera system to monitor
the air bubbles at the Y-joint of the tube since the air bubbles are often trapped by the Y-joint.

6.2 Image Processing
We implement a two-step processing pipeline to process the images at the Raspberry Pi. First, the
image is fed to a CNN to detect the bubbles in the Y-joint. Specifically, each image is characterized
by three labels that indicate the presence of the bubbles in the three tube channels of the Y-joint as
shown in Fig. 3. To train the designed CNN, we collected and manually labeled an dataset of 1,494
and 1,455 images with and without the bubbles, respectively. Different from relabeling the pressure
profiles, this labeling process is easy because human can easily recognize the bubbles.

Second, we develop a CV-based framework to determine the size of the detected bubbles as shown
in Fig. 4. In particular, a previously captured image without air bubble is used as the background.
Upon a new image with bubbles, a background subtraction method is used to extract the bubble
areas by subtracting the image from the background. Then, the morphological processing is adopted
to remove the noises from the extracted bubble areas. Finally, the number of points with the pixel
value greater than zero is yielded as the size of the air bubble. The background is updated once a
new image without the bubbles is captured.

6.3 Usages of the Smart Camera
We use the camera system to reduce the maintenance overheads and improve the ML-based
classifiers or the heuristic-based AD. First, it provides an indicator to determine whether the
bubbles are completely removed after performing a water flushing round. As mentioned earlier,
the current protocol of the factories performs water flushing to purge out ink and bubbles at the
end of every test. This process is labor intensive and usually requires a number of attempts. Thus,
to reduce the flushing overheads, the camera system can be used to check whether the air bubbles
are completely removed from the tube. Once the tube is clear without bubbles, the flushing process
can be stopped. Second, the bubble detection and size measurement functions can be used to avoid
the measurement fluctuations during the over extraction period. Specifically, in the last phase of
the tests, we stop the pressure measurement when a bubble with a certain size is detected. The
bubble presence is also used as an indicator to determine and exclude the over extraction period.

7 DEPLOYMENT AND EVALUATION EXPERIMENTS
This section presents the deployment of our AIoT system integrating the components presented
in §4 and §5 in an HP factory and the results of the evaluation experiments conducted on an
operational tester.

7.1 Deployment
We deploy our AIoT system to an operational tester in an HP factory. Specifically, we use Python
and several ML libraries including PyTorch, TensorFlow Lite, and Scikit-Learn to implement the
ML-based classifiers and AD module running on a Raspberry Pi 4. At the end of each testing round,
the tester reports the measured profiles of six tested cartridges to the workstation computer. The
profiles triggering alarms are then transferred to the Pi for further classification into normal (i.e.,
the tester-induced alarm) or abnormal (i.e., the product-induced alarm) profiles. We also deploy
six units of the smart cameras to monitor the bubbles at the Y-joints of six tubes connected to six
testing modules. The camera periodically captures an image of the Y-joint and transfers it to the Pi
at every two seconds during the testing period.
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Table 3. Accuracy of ML-based classifiers over 88 profiles collected from controlled experiments.

Metrics Classifiers Ensemble
CNN DT MVAE 𝑘-means Veto Majority

Accuracy 0.34 0.51 0.42 0.40 0.65 0.41
Abnormal recall 0.08 0.44 0.38 0.16 0.83 0.17
Abnormal precision 1 0.78 0.67 1 0.72 1
Normal recall 1 0.68 0.52 1 0.2 1
Normal precision 0.30 0.33 0.25 0.32 0.31 0.32

Table 4. Accuracy of AD-based profile classifier over 88 profiles collected from controlled experiments.

Metrics Anomaly Detection Overall VetoMiss-configuration Miss-calibration No-cartridge Tube-blocking
Accuracy 95.7% 95.7% 100% 100% 96.5% 64.7%
Abnormal recall 95.2% 95.2% 100% 100% 95.2% 82.5%
Abnormal precision 100% 100% 100% 100% 100% 72.2%
Normal recall 100% 100% 100% 100% 100% 20%
Normal precision 70% 72.7% 100% 100% 89.2% 31.2%

7.2 Accuracy of Profile Classification
We perform a set of controlled experiments to evaluate the accuracy of our ML-based classifiers
and AD module. We intentionally induce the tester’s biases and noises to generate the normal
profiles of four categories (cf. §5). Specifically, we create seven miss-configuration profiles by
setting an arbitrary reference point in the beginning of tests for seven good ink cartridges. Eight
miss-calibration profiles are created by setting a wrong gain parameter to scale the pressure sensor’s
raw readings to the pressure unit. We also generate six no-cartridge profiles by inserting the ink
cartridges improperly such that no ink is extracted under the pressure from the pumps. Moreover,
we induce bubbles and ink residue inside the tubes to create four tube-blocking profiles. In summary,
we create 25 normal profiles that trigger false alarms. Additionally, we manually induce defects
to good ink cartridges by damaging the vent of the cartridges or releasing the pressure into the
cartridge to create 15 abnormal profiles. In addition, we run tests for 48 defective cartridges and
generate abnormal profiles. As a result, we have 63 abnormal profiles. In summary, our controlled
experiments generate a total of 88 profiles whose labels are also confirmed by the domain experts.
We use the overall classification accuracy, recall, and precision in detecting the normal and

abnormal profiles as the evaluation metrics. Table 3 shows the evaluation metrics of four ML-based
classifiers on the 88 profiles. For the 𝑘-means-based classifier, we adopt the settings of 𝑘 = 12
and 𝑘𝑡ℎ = 3. From Table 3, the four classifiers (i.e., CNN, DT, MVAE, and 𝑘-means) show the best
performance in different metrics. For instance, DT has the highest accuracy and abnormal recall,
while CNN and 𝑘-means exhibit the best abnormal precision, and normal recall. Moreover, the two
ensemble approaches mostly show better accuracy performance. The veto approach has the highest
accuracy and abnormal recall.
Table 4 shows the performance of the AD module. The columns headed by miss-configuration,

miss-calibration, no-cartridge, and tube-blocking present evaluation metrics of the AD module in
detecting the 88 profiles by comparing its similarity score with the normal profiles in each of four
category only. The overall column shows the performance results when the scores between the
testing profile and the normal profiles in all four categories are used. The AD approach achieves an

ACM Trans. Sensor Netw., Vol. 1, No. 1, Article 1. Publication date: August 2023.



1:12 Duc Van Le, Joy Qiping Yang, Siyuan Zhou, Daren Ho, and Rui Tan

(a) Distribution of percentiles. (b) Fitted distributions.

Fig. 5. Impact of air bubbles on pressure measurements. The percentile represents the percentage of historical
profiles whose average is lower than the average of the testing profile. In (a), the box, line, triangle, upper and
lower whiskers represent middle 50%, median, average, ranges for the bottom 25% and the top 25% of the
samples, respectively.

overall accuracy of 96.5% in classifying the testing profiles. Moreover, it always has better accuracy
performance, compared with that of the best-performing ML-based classifier, i.e., the veto.

7.3 Performance of Camera System
7.3.1 Accuracy of bubble detection and size measurement. We use 450 captured images in the
controlled experiments to evaluate the accuracy of bubble detection by the camera system. The
CNN can detect the air bubbles in 450 testing images with an accuracy of 94%. It cannot detect
small air bubble in the co-presence of the diluted ink inside the Y-joint. However, the small air
bubbles generate little/no impact on the pressure measurements. Moreover, we use 49 images with
the air bubbles to evaluate the accuracy of the size measurement by the CV method. We adopt the
intersection over union (IoU) as the evaluation metric. In particular, for each image, we calculate
the IoU between the detected bubble areas and the ground truth of the bubble areas. The bubble
size measurement is considered correct if the calculated IoU is higher than 0.5. Our CV method
achieves an accuracy of 79.5% in measuring the sizes of the air bubbles in 49 testing images.

7.3.2 Impact of air bubble on pressure measurement. We use our camera system to capture the top
view of the Y-joint at the beginning of the ink extraction for 81 ink cartridges of 6 models over
a 7-day operation period of the tester. We perform an analysis on the captured images and the
corresponding profiles to study how the bubbles affect pressure measurements. Specifically, we
cannot directly compare the 81 pressure profiles with and without bubbles since the profiles of
different cartridge models fall in different measurement ranges. Thus, we compare the average
of testing profiles with that of profiles of the same cartridge model in our historical dataset. We
use the percentage (i.e., percentile) of historical profiles whose average over time is lower than
that of the testing profile to characterize the testing profile. Fig. 5(a) shows the box plots of the
percentiles of 81 testing profiles which are divided into three groups based on the measured bubble
size. The percentiles of the profiles with the bubble size lower than 2,000 pixels have similar average
and median. Meanwhile, when the bubble size is greater than 2,000 pixels, the profile percentiles
fluctuate in narrower ranges and have lower average. To further investigate the impact of the
bubble size on the distribution of the profile percentile, we fit two probability distributions to model
the percentiles of the profiles without the bubbles and with the bubble size greater than 2,000 pixels.
Fig. 5(b) shows the histograms of the percentiles and the fitted density functions. We can see that
the mean percentile of profiles with bubbles is lower than that of the profiles without bubbles.
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We also conduct a one-sided Kolmogorov–Smirnov test using testing profiles to check the null
hypothesis that the percentile of profile with the bubbles of the size greater than 2,000 pixels is
higher than that of the profiles without the bubbles. We obtain a p-value of 0.0273. Thus, the null
hypothesis can be rejected. This result implies that the bubbles with large sizes make the pressure
measurements statistically lower.

7.3.3 Correlation between the bubble presence and over extraction pressure fluctuation. Asmentioned
in §5, the measured pressure often has fluctuations during the over extraction period. These
fluctuations should be excluded from the profiles for better classification performance. However, it
is non-trivial to determine the starting point of the fluctuations in the presence of measurement
noises. From prior observations, the over extraction often coincides with bubbles in the tubes.
Now, we analyze the Pearson correlation between the bubble presence and the over extraction
fluctuations. We collect a dataset consisting of 17 profiles and five profiles with and without over
extraction, respectively. An image of Y-joint is captured for each profile. The Pearson correlation
is 0.7483 over the 22 collected data points. This result implies that there is a strong correlation
between the bubble presence and the over extraction fluctuations. Therefore, our AIoT system uses
bubble presence to assist the determination of the presence of over extraction fluctuation.

8 STATISTICAL LEARNING-BASED TESTER ASSESSMENT
8.1 Objective and Approach Overview
The main goal of the profile classification approaches (i.e., the ML-based and AD-based classifiers)
and the smart camera system is to reliably assess the alarms generated by the tester’s bound-
based detector. When a normal profile (i.e., the false alarm) and the presence of the air bubbles
are detected, the water flushing is performed to purge ink and bubbles out of the tester’s tube.
However, the water flushing action can only remove pressure measurement errors due to the
effects of the air bubbles and ink residue trapped within the tester’s tubes. Beyond the above two
effects, the tester may malfunction and generate excessive false alarms due to the wear and tear
of its components including the motor pump and pressure sensor. Thus, the operator also needs
to periodically perform maintenance activities for assessing and repairing the faulty components
of the testers. Frequent assessment processes require many manual efforts and reduce the testing
throughput of the testers. In this section, we develop an assessment approach that uses the statistics
of the historical testing processes to assist determining whether a tester in question is faulty and
planned maintenance activities are necessary. The main goal is to reduce unnecessary maintenance
overheads and meanwhile capture the faulty testers to reduce false alarms.

As mentioned earlier, each IET can simultaneously test six ink cartridges via individual pockets
with the same configuration. Note that the setup illustrated in Fig. 1 is for a single pocket only.
Since the six ink cartridges in the six pockets are from the same manufacturing line, they have a
certain and identical defect rate. Moreover, since these six pockets operate in the same working
condition, their pressure sensing measurements are subject to the similar types of the endogenous
and exogenous noises. Thus, if all six pockets are not faulty, they should generate similar true and
false alarm rates over the long run. Our proposed tester assessment approach monitors statistics
of the alarms generated by the six pockets of a tester based on the historical profile classification
results. At a specific time, a pocket is considered as an outlier (i.e., a faulty pocket) and requires
the corrective maintenance if its statistics metric has large discrepancy from other pockets. For
instance, if one pocket generates a number of false alarms more than other five pockets, it should
be inspected.
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Algorithm 1: Detect faulty pockets of a tester
Data: 𝑁 : number of tested products on each machine; 𝐷 : number of IET pockets;

𝑋𝑖 (𝑖 = 1, . . . , 𝐷): number of defective products from IET pocket 𝑖; Y: defect rate
threshold.

1 Ŷ (𝑖 ) ← 𝑋𝑖/𝑁 ; ⊲ The estimated defect rate Y1 + Y (𝑖 )2 .

2 𝑆 ← ∅; ⊲ Set variable for faulty pockets to be reported.
3 if min𝑖 Ŷ (𝑖 ) < Y then
4 𝑗 ← argmin𝑖 Ŷ (𝑖 ) ;
5 for 𝑘 ≠ 𝑗 do
6 if 𝑍𝑃 (𝑋𝑘 , 𝑋 𝑗 ) ≥ 0.001 then
7 𝑆 .add(𝑘); ⊲ If 𝑧-statistic is higher than 0.001, report as defective.

8 else
9 𝑆 ← {1, · · · , 𝐷}; ⊲ If all pockets exhibit high defect rate, report all.
Result: 𝑆 ⊲ Set of faulty pockets.

8.2 Proposed Approach
We formulate the task of detecting faulty pockets of a certain tester as a variant of the hide-and-seek
statistical learning problem [15]. Specifically, we view both product-induced and tester-induced’s
effects as corruptions to profile data. Denote 𝑝 as the desired distribution of profile data, 𝑞1 as
the distribution of product-induced profile and 𝑞2 as the distribution of tester-induced profile. All
three are unknown. Denote Y1 and Y2 as the percentages of corruptions associated with 𝑞1 and 𝑞2,
respectively. Thus, the observations are from a mixture of the three:

𝑃 (𝑖 ) = (1 − Y1 − Y (𝑖 )2 )𝑝 + Y1𝑞1 + Y
(𝑖 )
2 𝑞

(𝑖 )
2 . (1)

In addition, we have six independent pockets, with possibly different conditions, identified by
(𝑖) in Eq. (1). We aim to estimate the outlier ratios Y1 + Y (𝑖 )2 and base our decision on detecting
discrepancies among pockets through 𝑖 = 1, . . . , 6. Our approach takes estimations of outlier ratios
as input and return YES/NO for the pockets that are likely to be faulty.

The work [4] proposed an approach to address the above problem, which is employed as a baseline
approach in our work. Based on the understanding of the limitations of [4], we design an improved
approach. To illustrate the drawbacks of [4], we consider the following setting. Assume that Y1 < 𝛿1 is
the same over all pockets considering that every pocket takes samples from the same manufacturing
line. Given 𝑁 samples from each 𝑃 (𝑖 ) , the approach detects whether Y1 + Y (𝑖 )2 is significantly higher
than the rest. Assume that Y (𝑖 )2 follows a prior distribution, i.e.,𝐷 ∼ Bin(𝑛, 𝛼), where𝐷 is the number
of pockets with pocket fault rate Y2 > 𝛿2 for a batch size of 𝑁 samples. In reality, there is a gap
between 𝛿2 and 𝛿1, i.e., 𝛿2 ≫ 𝛿1. We now show that the approach in [4] can fail to detect cases when
the majority of the pockets are faulty, i.e., with Y2 > 𝛿2, and the main reason is the use of a biased
estimator of defect rate average. In the approach of [4], the null hypothesis is that there is no faulty
pocket. Thus, the approach computes the average defect rate from all pockets and make decisions
based on the difference of each individual pocket to this estimate being statistically significant. An
estimate of average defect rate caused by both the pockets and products can be calculated. Denote
𝑝 as the random variable from averaging over all pockets and 𝑝 as the actual defect rate of the
product. We have E(𝑝) ≥ 𝑝 +∑𝑛

𝑖=0 𝑃 (𝐷 = 𝑖)
[
𝑖Y
𝑛

]
= 𝑝 + Y

𝑛

∑𝑛
𝑘=1

(
𝑛
𝑘

)
𝛼𝑘 (1−𝛼)𝑛−𝑘𝑘 ∗= 𝑝 +Y𝛼 , where the

derivation step marked by * follows from Y
𝑛

∑𝑛
𝑘=1

(
𝑛
𝑘

)
𝛼𝑘 (1 − 𝛼)𝑛−𝑘𝑘 = Y

∑𝑛
𝑘=1

(
𝑛−1
𝑘−1

)
𝛼𝑘 (1 − 𝛼)𝑛−𝑘 =
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Table 5. A simulation experiment with common parameters on 𝐷 = 6, 𝑁 = 1000, Y = 0.04 and Y1 = 0.02. FPR
stands for average false positive rate, FNR stands for average false negative rate. Both metrics are better if it
is a lower value. p-value: 0.001 both.

Parameters Baseline Proposed
Common 𝐷 = 6, 𝑁 = 1000, Y = 0.04, Y1 = 0.02 FPR FNR FPR FNR
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 5], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (5, 6] 1e-4 0.0016 0.15 1.66e-5
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 4], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (4, 6] 0.0 0.0392 0.0972 1e-4
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 3], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (3, 6] 0.0 0.216 0.0533 5e-4
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 2], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (2, 6] 0.0 0.518 0.020 0.0019
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 1], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (1, 6] 0.0 0.792 0.0 0.0115

Y
∑𝑛−1

𝑘=0
(
𝑛−1
𝑘

)
𝛼𝑘+1 (1 − 𝛼)𝑛−𝑘−1 = Y𝛼

∑𝑛−1
𝑘=0

(
𝑛−1
𝑘

)
𝛼𝑘 (1 − 𝛼)𝑛−1−𝑘 = Y𝛼 . The problem with testing with

the average defect rate is that, while it works fine when the majority of the pockets are functional,
it cannot handle the case when half of the pockets are faulty.
In the above cases, the ones with the lower defect rates are more likely to be correct under the

approach in [4]. Our improved method works by estimating averages from these subsets rather
than the entire population – trading off lower bias with higher variance. Our approach is more
robust since it fails only when all pockets are faulty. We now present our algorithm. First, our
algorithm makes sure that Y1 is below some threshold by checking Ŷ1 ≤ Ŷ1 + Ŷ (𝑖 )2 ≤ Y for all 𝑖 ,
where Y is the defect rate threshold. If this is not true, our method declares that either all pockets
require maintenance or there is some component not functioning in the upstream production line.
Otherwise, our algorithm uses one of the pockets that pass the test as our baseline to conduct
two sample tests. Algorithm 1 shows the pseudocode of our algorithm. The Line 6 of Algorithm 1
uses the 𝑍𝑃 function for exact 𝑍 -pooled test, which is defined as 𝑍𝑃 (𝑋1, 𝑋0) = 𝑝1−𝑝0√︃

�̃� (1−�̃� ) ( 1
𝑛1
+ 1
𝑛0
)
,

where 𝑝𝑖 = 𝑋𝑖

𝑁
and 𝑝 =

𝑋1+𝑋0
2𝑁 . The exact 𝑍 -pooled test in Algorithm 1 adopts a 𝑝-value threshold

of 0.005
5 = 0.001 to ensure that the type-I (all pockets do not malfunction, but at least one of them

reported as defective) error is at most 0.005, where the normalization by 5 is an adjustment for the
family-wise error rate.

Our algorithm cannot distinguish between all pockets exhibit error and production line exhibits
error without examining other aspects of the process. Compared with the method used in the
manufacturing line at present, our algorithm does not require involvement of engineers at the
detection phase. Compared with [4], our analysis shows that there exists certain bias-variance
trade-off. By exploiting this trade-off, we can obtain an algorithm better suited for our application.

8.3 Evaluation Results
We perform simulation-based evaluation to demonstrate the performance of the baseline algorithm
in [4] and our proposed algorithm. Specifically, these algorithms take YES/NO results from the IET
or other algorithms that perform the profile-specific analysis. Through these YES/NO responses,
these algorithms check the discrepancies between 𝐷 = 6 independent pockets. These YES/NO
responses are simulated, which are sampled from a Bernoulli distribution with parameters matching
the actual pockets, i.e., the functional pocket generates 2% errors (actual product failure rate) and
the malfunctioned pocket generates at least 5% errors. We fix a seed for the pseudorandom number
generator and repeat the experiments for 10,000 times and collect the corresponding metrics for
Table 5. We use the exact 𝑍 -pooled test as our two sample pockets. One of the metrics used is
average False Positive Rate (FPR), i.e., the ratio of functioning pocket being flagged as malfunctioned
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Table 6. A simulation experiment with common parameters on 𝐷 = 6, 𝑁 = 1000, Y = 0.04 and Y1 = 0.02. FPR
stands for average false positive rate, FNR stands for average false negative rate. Both metrics are better if it
is a lower value. p-value: 0.8 (baseline) vs 0.001 (proposed)

Parameters Baseline Proposed
Common 𝐷 = 6, 𝑁 = 1000, Y = 0.04, Y1 = 0.02 FPR FNR FPR FNR
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 5], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (5, 6] 9.98e-02 0 1.50e-01 1.67e-05
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 4], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (4, 6] 7.70e-03 1.17e-04 9.72e-02 1.33e-04
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 3], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (3, 6] 2.67e-04 2.48e-03 5.33e-02 4.83e-04
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 2], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (2, 6] 1.67e-05 0.0311 2.00e-02 1.87e-03
Y
(𝑖 )
2 = 0.0, 𝑖 ∈ [1, 1], Y ( 𝑗 )2 = 0.03, 𝑗 ∈ (1, 6] 0 0.174 0 0.0115

by the algorithm. It is averaged over these 10,000 repetitions. The other metric False Negative Rate
(FNR) is the ratio of malfunctioned pocket being flagged as functioning pocket by the algorithm.
Both two metrics are better if they have lower values. Both tables use the same error rates (i.e.,
2% and 5%) for functional and malfunctioned pockets and iterate through 5 scenarios: 5, 4, 3, 2, 1
functional pockets in a total of 6 pockets, where the first pocket is always functional and the sets
of malfunctioned pockets changes from {6} to {2, 3, 4, 5, 6}. Difference between the two tables is
the sample size 𝑁 , i.e., the number of samples that the algorithm collects before making decisions.

The baseline approach works by computing the average defect rate over all 6 pockets. Based on
this estimate, the baseline algorithm conducts an exact Z-pooled test. Therefore, when more than
one pocket malfunction, the baseline algorithm overestimates the defect rate, making it harder to
detect malfunctioned pockets. As a result, it generates more false negatives. As seen from Table 5,
the average FNR of the baseline algorithm becomes higher when the number of malfunctioned
pockets increases, and it persists even if we increase the sample size. On the other hand, while the
proposed algorithm has a higher FPR in the case of five functional pockets and one malfunctioned
pocket, it has lower FNR and better detection rate when the number of pockets is more than two.
From Table 6, we can tune the two algorithms to have similar performance. However, the 𝑝-value
for the baseline algorithm becomes less meaningful.

We can see from the evaluation that both malfunction detection algorithms have their merits. For
IET, slightly higher false positive rates are in general acceptable. This is because the maintenance
cost of IET is generally cheaper than inspecting/logging extra failure cartridges.

9 EXPERIENCES AND LEARNED LESSONS
As a systematic attempt of developing an industrial AIoT system for improving the QC of ink
cartridge manufacturing, our research has generated experiences and learned lessons that the
future industrial practices can consider. The experiences and lessons are summarized as follows.
(1) Classifiers vs. heuristics: In the early stage of our system development, we considered

the problem of dividing the profiles into normal and abnormal classes as a classification problem.
However, the four ML-based classifiers cannot achieve a high accuracy in the deployment. A
main reason is the limited and imbalanced training dataset, which is also related to the second
challenge that we will discuss shortly. Then, we investigated the characteristics of the normal and
abnormal profiles. Specifically, the tester often induces stable biases and noises to the pressure
measurement of all tested ink cartridges over a certain period of time. The profiles of defective ink
cartridges are rare ones which do not follow the pattern of the profile of good cartridges under the
tester-induced noises and biases. Thus, we further designed a heuristic approach that considers
the profile classification as an AD problem. Our evaluation results based on the controlled tests
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Fig. 6. Impact of sensor condition on data quality.

show that the AD approach outperforms the ML-based profile classifiers. From our experience, the
quality of the training data is crucial to the development of effective ML classifiers. It is often very
difficult to achieve satisfactory performance if the data is limited or include high-variance noises
and biases. In such cases, simpler, heuristic solutions (e.g., AD approach in our case) can be more
effective.
(2) Curse from data labeling:ML classifier’s attractive advances recently are mainly owing

to availability of big labeled training data and standardized hardware acceleration. For the tasks
that humans are good at, creating big labeled training datasets is feasible. Manual labeling services
(e.g., Google’s [5]) are now established. However, data labeling is very challenging for developing
an industrial AIoT system. Such labeling processes cannot be performed by normal persons based
on their instinct and/or basic knowledge. Differently, they require experts’ experience and prior
knowledge. In our work, relabeling the pressure profiles is highly non-trivial and requires a collab-
oration with the tester domain experts. In particular, the experts sometimes lack high confidence
and consistency for assigning labels for high-variance profiles. This can be solved if they can access
meta information about the internals of the tested ink cartridges and tester’s parameters. However,
this meta information was not collected in the historical database. Even if the meta information is
available, frequently referring to the detailed meta information inevitably adds overhead to the
relabeling process. Eventually, we can only relabel a limited number of profile samples, which lead
to the poor performance of our ML-based profile classifiers. The use of ML classifier in our AIoT
system is limited to the bubble detection, which is a task that a normal human can complete after
receiving some simple guidance. From this experience, it is reasonable to argue that the success
of applying ML classification to an industrial task highly depends on the availability of sufficient
labeled data.

(3) System challenges: Sensor inconsistency and deviation pose challenges for the deployment
of industrial AIoT systems in practices. In our system, we use a camera to capture images to train
the CNN for detecting the air bubbles. A light source was used to provide a stable and sufficient
illumination for the camera to capture the training images. Then, the trained CNN was deployed to
six sets of cameras. However, the trained CNN did not show the same performance on them. This
is because the quality of captured images across six cameras are different due to the deviation in
installation and working condition of the cameras and light sources. Fig. 6(a) shows two images
captured by two camera sets. We can see that they have different illumination conditions, which
affect the performance of the CNN. Moreover, the illumination condition of a certain camera can
drift over time due to wear and tear of the light source. Fig. 6(b) presents two images captured by
the same camera set at the beginning of the deployment and three months later. The light intensity
of the light source is weakened. As a result, the CNN cannot correctly detect the air bubbles in
the images captured with weakened lighting conditions. Although the dimming was caused by
that the light was kept on all the time, which was then replaced with on-demand switch-on, the
long-term wear and tear are inevitable. This calls for new research to obviate negative impacts of
sensor inconsistency and deviation on performance of AIoT systems. The method proposed in [10]
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may be promising to address the issues. Specifically, we can model the relationship between the
images captured by different cameras or under different controlled illumination levels. Then, we
can use the modeled relationship to augment the training dataset. As such, the trained CNN can
have the capability to deal with different cameras and illumination levels.

10 CONCLUSION
This technical note presented the design, deployment, and evaluation of an industrial AIoT system
for improving the quality control of HP Inc.’s ink cartridge manufacturing lines. Specifically, the
evaluation results showed that our AIoT system can help improve the accuracy of the HP Inc.’s
testers in detecting defective ink cartridges. This technical note also developed a statistical learning-
based tester assessment support approach that detects the faulty pockets of a certain tester. The
lessons learned and experiences discussed in this technical notes can be useful to the developments
of other industrial AIoT systems, especially those for QC purposes.
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