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Abstract—Enabled by the increasingly available embedded
hardware accelerators, the capability of executing advanced
machine learning models at the edge of the Internet of Things
(IoT) triggers wide interest of applying the resulting Artificial
Intelligence of Things (AIoT) systems in industrial applications.
The in situ inference and decision made based on the sensor
data containing patterns with certain sophistication allow the
industrial system to address a variety of heterogeneous, local-
area non-trivial problems in the last hop of the IoT networks,
avoiding the wireless bandwidth bottleneck and unreliability
issues and also the cumbersome cloud. However, the literature
still lacks presentations of industrial AIoT system developments
that provide insights into the challenges and offer important
lessons for the relevant research and engineering communities,
no matter the development is successful or not. In light of
this, we present the design, deployment, and evaluation of an
industrial AIoT system for improving the quality control of
Hewlett-Packard’s ink cartridge manufacturing lines. While our
development has obtained promising results, we also discuss the
lessons learned from the whole course of the effort, which could
be useful to the developments of other industrial AIoT systems.

Index Terms—Industrial AIoT, quality control

I. INTRODUCTION

The recent advances of machine learning (ML) techniques
in dealing with sophisticated industrial data patterns and the
increasingly available embedded hardware for accelerating ML
trigger the interest of studying and implementing industrial
Artificial Intelligence of Things (AIoT) [1] that integrates
artificial intelligence (AI) with the Internet of Things (IoT)
edge. The AIoT systems will have distributed, in situ inference
and decision capabilities to avoid the handicaps encountered
when transmitting data to remote central servers for decision
making. As such, AIoT is promising for addressing a variety
of local-area, non-trivial problems in the industrial processes.

However, there is no one-size-fits-all AIoT system that can
be used for all industrial applications. The designs and imple-
mentations of the AIoT systems in general need to be highly
customized based on the specific objectives, operational pro-
cedures, and practical constraints of the industrial processes.
Due to the application-oriented nature and the high/prohibitive
cost of the system design from scratch, it is wise to integrate
commercial off-the-shelf (COTS) hardware modules, follow
academically proven approaches, and use available software
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components to implement the desired functionalities. However,
many task-specific designs such as the configuration and
training of the used ML models still require substantial work
to achieve the objectives. The main challenges often come
from the deviations of the real-world conditions from the
assumptions made by the relevant research artifacts. This is
expected, because the relevant research in general needs a set
of clearly defined assumptions to render a satisfactory level of
academic rigor in addressing a specific problem while isolate
other problems, but real-world tasks in industrial practices face
many coupled problems. Therefore, the design of a working
industrial AIoT system requires holistic considerations with
many inputs from the domain experts and technicians.

Despite the heterogeneity of industrial AIoT systems, the
systematic description of an effort that designs and implements
an AIoT system for a specific industrial application can
provide insights into understanding the potential challenges
that would be faced by other AIoT system designs. However,
so far, such a systematic presentation is still lacking. As such,
in this paper, we present our recent effort of developing an
industrial AIoT system for improving the quality control (QC)
of the ink cartridge manufacturing lines at the factories of
Hewlett-Packard (HP) Inc. This development includes the key
elements of AIoT, including sensing, data processing, design
and deployment of embedded ML models at the IoT edge. We
present the motivation, the details of our system design, and
more importantly, the experiences and lessons learned from
this effort that can be useful to the design and implementation
of other industrial AIoT systems.

In this paper, the target application is HP’s ink extraction
testing (IET), which is a destructive and accelerated testing on
randomly selected samples of the manufactured ink cartridges.
It is the final QC procedure which aims at detecting any
defective batch in which the ink cartridges’ performance
deviates from the specification. Specifically, the IET machine
(referred to as tester for short in this paper) extracts the ink
from the tested cartridge at a prescribed rate, which is much
faster than those on printers, and records the liquid pressure
of the ink throughout the course. The profile curve of the
liquid pressure versus the volume of the extracted ink provides
rich information regarding the performance of the tested ink
cartridge. Thus, the match between the recorded profile and
a preset template profile is the main criterion to pass the
test. The alarms due to detected mismatch will be further
classified manually by well trained technicians. Depending on978-1-6654-4108-7/21/$31.00 ©2021 IEEE



the manual classification results, further QC actions will be
taken. However, the factories’ current IET procedure faces two
main challenges as follows.

First, it is desirable to solidify the technicians’ experience-
based approach of manually classifying alarms as a com-
putable classifier for the purpose of operation consistency and
knowledge transfer. However, the pressure profiles exhibit a
significant degree of variability and the technicians’ man-
ual classification incorporates extensive domain knowledge
regarding the internals of the ink cartridges, which may be
descriptive and not quantifiable. The attempt of converting the
manual classification approach into a computable rule-based
classifier results in many questions of how to properly define
the features, configure the rules, and set the thresholds.

Second, the operations of the tester inevitably introduce
uncertainties that result in false alarms. For example, from
the technicians’ experiences, formation of air bubbles in the
tester’s ink tubes is one of the major factors causing false
alarms, because a bubble with a sufficiently large volume
affects the liquid pressure measurement. Performing a tube
flush before each test can largely resolve the issue, but it
significantly reduces the testing throughput. From the histor-
ical records, the overall alarm rate of the deployed testers
is about 30 times of the defect rate of the manufactured
ink cartridges, suggesting most alarms are false. For quality
assurance, upon any alarm, the factories’ current practice is to
flush the tester’s tube and perform the destructive test on an
additional ink cartridge sample to reconfirm the technician’s
manual classification result. Thus, it is desirable to have an
approach that can reliably identify the false alarms and avoid
the unnecessary additional destructive tests.

To address the above two challenges, we have designed and
implemented an AIoT system that classifies the tester’s alarms
into product-induced (i.e., true alarms) and tester-induced (i.e.,
false alarms). The primary design goal is to achieve high
recall and precision in identifying the product-induced and
tester-induced alarms. Specifically, our AIoT system has three
components. First, the ML-based profile classifier captures
the product engineers’ experiences in classifying the alarms.
Second, we develop a heuristic-based anomaly detection (AD)
approach that classifies the pressure profiles based on domain
knowledge on the patterns contained in the profiles. Third,
based on a key observation that the air bubbles are often
formed at the joint of the tester’s ink tubes, we deploy a smart
camera at the joint and design convolutional neural network
(CNN) and computer vision algorithms that run on the camera
to detect and estimate the presence and volume of air bubbles.
We have deployed our AIoT system in HP’s manufacturing
lines. Through controlled experiments, our heuristic-based AD
approach achieves a recall of 95.2% in detecting the defective
ink cartridges. Moreover, the smart camera can correctly detect
the presence of air bubbles in 94% of the testing images.
This paper presents the design and evaluation processes of the
AIoT system. We also discuss the key experiences and lessons
learned from the whole course of the effort, which could be
useful to the developments of other industrial AIoT systems.

The remainder of this paper is organized as follows. §II
reviews related work. §III presents the background about IET
and overviews our AIoT system. §IV, §V, and §VI present the
designs of ML-based profile classifiers, heuristic-based AD
approach, and smart camera, respectively. §VII presents de-
ployment of our system and evaluation results. §VIII discusses
the experiences and learned lessons. §IX concludes this paper.

II. RELATED WORK

Challenges in deploying ML and AIoT in industries:
Industrial AIoT is the combination of AI and industrial IoT
to improve the level of automation in analyzing and creating
useful insights from the industrial sensor data [2]. Deploying
an industrial AIoT system often faces challenges of making
decision on the design and implementation of IoT hardware
infrastructures (e.g., edge, fog, and cloud) and software com-
ponents (e.g., ML models) based on the specific objectives
and practical constraints of the industrial processes. A number
of studies [3]–[7] have investigated practical challenges and
provided some insights on deploying industrial AIoT systems.
Alkhabbas et al. [3] conduct a survey that distributes a
questionnaire containing 14 questions about the deployment
decisions of IoT systems. Their findings based on the re-
sponses of 66 IoT system designers from 18 countries show
that the reliability, performance, security, and cost are the four
main factors affecting the designer’s decisions on deploying
IoT systems. The studies [4]–[7] discuss practical challenges
and lessons learned from deploying ML algorithms for various
applications. For instance, with experiences from building data
analytics platforms at Twitter, Lin and Ryaboy [4] observe
that at the first step, the data scientists often spend a lot of
efforts in understanding and cleansing the collected data before
they can develop ML algorithms. Budd et al. [5] identify
that the lacking of training data labels is a key challenge
of developing ML algorithms for medical image analysis. As
presented in [6], practical ML systems often employ simple
ML models such as random forests, decision trees, and shallow
neural networks to shorten the deployment time and gain
better interpretability. For instance, Haldar et al. [6] report
that in the process of applying deep ML models for AirBnB
search, after several failed attempts with complex neural
networks, they finally deployed a simple neural network that
simplifies the deployment process while providing reasonably
good performance. In addition, Hazelwood et al. [7] discuss
several key factors that drive the decisions on designing ML
models for data center infrastructures at Facebook. Similar to
the above studies, in this paper, we present our experiences
and lessons learned from the design and implementation of
an industrial AIoT system. As our work considers different
specific objectives, operational procedures, and practical con-
straints, this paper will provide new insights.

QC in production processes: QC is a set of procedures for
determining whether a product meets a predefined set of qual-
ity criteria or the customer’s requirements [8]. It also provides
the information to determine the need for corrective actions
in the manufacturing process. AIoT technologies have been



Fig. 1. Illustration of testing an ink cartridge in IET machines.

adopted to improve QC of manufacturing lines. For instance,
at Siemens’ electronics plant in Amberg, Germany [9], various
ML models and edge computing are used to design a predictive
model-based QC framework for testing the quality of printed
circuit boards (PCBs). The framework helps improve the recall
in detecting defective PCBs and reduce testing overheads. In
this paper, we present our effort in developing an industrial
AIoT system for improving the QC of the ink cartridge
manufacturing lines at the HP’s factories.

III. BACKGROUND, MOTIVATION, & SYSTEM OVERVIEW

In this section, we present the background of the ink
extraction testing (IET) and discuss its current problems in
practice. Then, we overview the design of our AIoT system
for improving the IET process.

A. IET Background and Problem Statement

As discussed in §I, the IET is the final QC process of the ink
cartridge manufacturing. Specifically, a number of randomly
selected ink cartridge samples are tested using the tester. The
tester can run six ink cartridges simultaneously. Fig. 1 illus-
trates how the tubes connect a tested ink cartridge, a stepper
motor pump, and a pressure sensor. A transparent plastic Y-
joint is used to join the tubes. A workstation computer of the
tester controls the stepper motor pump to extract ink from
the ink cartridge at a steady volume rate for a certain time
duration. Meanwhile, a liquid pressure sensor continuously
measures the pressure in the tube and reports the readings to
the workstation computer. The resulting curve of the measured
liquid pressure versus the volume of the extracted ink is
a profile of the tested ink cartridge. The ink cartridges of
different models have distinct profiles. Fig. 2 shows profile
samples of an ink cartridge model.

The tester adopts a bound-based detector to assess a mea-
sured profile against a template profile with an upper bound
and a lower bound The template profile is defined based
on the specification of the ink cartridge. The bound-based
detector classifies a profile normal if the profile completely
lies within the belt area between the two bounds; otherwise,
the tester classifies the profile abnormal. To achieve high
recall in capturing defective cartridges, the factories’ current
practice is to impose stringent bounds. As a result, the tester
generates alarms frequently. As mentioned in §I, many alarms
are actually false. This is because that the liquid pressure
measurements can be noisy and biased.

Specifically, the pressure sensing is subject to both endoge-
nous and exogenous noises. Endogenous noises are mainly

Pressure

Volume of extraction
Fig. 2. Measured profiles of an ink cartridge model.

from the thermal noises of the pressure sensor and the random
control errors of the stepper motor pump. Exogenous noises
are mainly caused by vibrations and blockage of the ink
tubes. The vibration is caused by the movements of nearby
human operators and bulky manufacturing machines, while the
blockage is caused by the hardening ink residue trap within the
tube. In addition, the tester is subject to the following biases.
An improper manual insertion of the tested ink cartridge onto
the tester may cause loss of back pressure of the cartridge and
deviation from the template profile. An air bubble formed in
the tester’s ink tubes with a sufficiently large volume can also
affect the pressure sensing.

In the current protocol of the factories, the alarm-triggering
profiles will be further classified manually by the technicians
into false positives (i.e., tester-induced) and true positives
(i.e., product-induced). The manual classifications are based
on the technicians’ knowledge received during training and
also their own experiences. As such, the classification results
may lack high confidence and consistency. To ensure that there
is no doubt regarding the QC result of a tested batch, the
technicians may need to perform maintenance of the tester and
conduct destructive tests with additional samples. A common
maintenance performed is to flush the tubes with water to
purge out ink and air bubbles at the end of every test. How-
ever, the frequent maintenance reduces the IET throughput
significantly; the additional destructive tests increase the cost.
Therefore, it is desirable to develop a system that can reliably
and consistently classify the alarms generated by the bound-
based detector, such that all or part of the unnecessary tester
maintenance and additional destructive tests can be avoided.

B. AIoT System Overview

In this work, we follow the progressive system development
methodology to design and implement an AIoT system to re-
place the factories’ current practice of manually classifying the
alarm-triggering profiles into normal and abnormal profiles.
During the whole course of designing our AIoT system, we
have developed three main components as follows.

(1) ML-based profile classifiers: We design and train
several ML-based classifiers to classify the profiles. The train-
ing processes are based on historical profiles labeled by the
product engineers. Specifically, we design multiple classifiers
based on supervised, semi-supervised, and unsupervised ML
models. Each classifier takes different features as input to
classify a profile. Ensemble methods are also used to integrate
the results of the multiple classifiers.



(2) Heuristic-based anomaly detection: The ML-based
classifiers face challenges of limited and imbalanced training
dataset. Thus, we also develop a heuristic approach which
considers the profile classification as an anomaly detection
(AD) problem. The profiles of good ink cartridges, albeit
measured in the presence of noises and biases, should be
detected normal; the profiles of defective cartridges should
be detected abnormal.

(3) Smart camera: From the technicians’ experiences,
formation of an air bubble at the Y-joint of the ink tubes can
affect the pressure measurement, which likely leads to false
alarms. We design a smart camera system to monitor the Y-
joint. It runs a CNN to detect air bubble and a computer vision
algorithm to estimate the volume of the bubbles. The results
are used to assist the profile classifier or the AD algorithm in
deciding the nature of any alarm generated by the tester.

All computing for the profile classification and bubble
detection is executed on a Raspberry Pi single-board com-
puter which is deployed close to the sensors generating data.
Specifically, the Pi is connected directly with the camera and
tester to receive the captured images and measured pressure
profiles. The designs of the above three system components are
presented in §IV, §V, and §VI, respectively. Their performance
will be evaluated via field experiments as presented in §VII.

IV. ML-BASED PRESSURE PROFILE CLASSIFIERS

A. Preparation of Design Data

We receive a dataset containing 550,508 pressure profiles of
723 ink cartridge models collected from the testers deployed
in HP’s factories in 18 months. The dataset includes the profile
labels which are generated by the tester using the bound-based
detector. Specifically, the bound-based detector classifies about
2% of profiles abnormal. However, the actual defect rate of
the manufactured ink cartridges is about 0.07% only. This
result suggests that most abnormal profile labels generated by
the bound-based detector are inaccurate. We work with HP’s
product engineers and domain experts to manually relabel the
abnormal profiles in the dataset. However, the relabeling is
tedious and extremely time-consuming. We can only confirm
134 abnormal profiles. Eventually, we have a dataset consist-
ing of about 530,000 profiles with reliable “normal” labels,
merely 134 profiles with reliable “abnormal” labels, and about
110,000 profiles that were classified abnormal by the bound-
based detector but unlabeled after the relabeling process. This
renders the training dataset imbalanced with limited data with
abnormal labels. The difficulty of the labeling process will be
further discussed in §VIII.

B. Design of ML-based Classifiers

As discussed in §I, each ML approach addresses a specific
problem based on a set of assumptions, but real-world tasks
often face mixes of many problems. In practice, it is often
more efficient to try multiple ML approaches than relying on
a single approach unless we clearly know that the conditions
of the task well match the assumptions of the single approach.
As such, we have tried two unsupervised, one semi-supervised,
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Fig. 3. Architecture of the MVAE-based profile classifier.

and one unsupervised ML approaches, which are presented
below. In addition, as an ensemble of multiple ML-based
classifiers is more accurate than any of the single classifier
[10], in the performance evaluation, we also try the ensembles
of the four classifiers with distinct combination rules.

Supervised ML-based classifiers: Inspired by the success
of the CNNs in many classification tasks, we first build
a CNN-based profile classifier. We normalize the pressure
measurements of the profile into [−1, 1], and feed them into
a CNN consisting of an input layer, a convolution layer, four
fully-connected (FC) layers, and an output layer. The rectified
linear units (ReLUs) are used as the activation function for
convolution and FC layers, while the softmax activation is
used at the output layer. Additionally, we build a decision tree
(DT)-based profile classifier which is widely adopted in man-
ufacturing applications due to its good interpretability [11].
From the prior domain knowledge, the normal profile curve
can be divided into three phases: early, middle, and last phases
according to the volume of extraction. In the early phase,
the pressure often sharply drops. Then, the pressure remains
flat and stable in the middle phase. At last, the pressure
further drops. Thus, we considered variability of the pressure
measurement in these three phases as inputs for the DT-based
classifier. Specifically, we implement a change point detection
algorithm [12] to divide the profile curve into three phases.
The change point, minimum, maximum, median, mean, and
slope rate of the pressure measurements in the three phases
are fed to the DT to predict the profile label. The CNN and
DT are trained using the relabeled training dataset.

Semi-supervised ML-based classifier: To use both un-
labeled and labeled profiles, we develop a profile classifier
based on a semi-supervised learning ML model, called mul-
timodal variational autoencoder (MVAE) [13]. Fig. 3 shows
the architecture of our MVAE-based classifier which contains
two encoders and two decoders. The MVAE is trained using
labeled and unlabeled profiles as follows. For the labeled
profiles, Encoder 1 and Encoder 2 take profile and its label,
respectively, to jointly generate a latent vector. Then, Decoder
1 and Decoder 2 use the latent vector to reconstruct the
original profile and label, respectively. The classifier is trained
to minimize the differences between the original and recon-
structed profiles/labels. For the unlabelled profiles, Encoder 1
and Decoder 1 are trained using the pressure profiles only.
Upon a new profile, the trained MVAE takes the profile as
input to predict the profile label at the output of Decoder 2.

Unsupervised ML-based classifier: We develop an unsu-
pervised classifier that can leverage a large number of normal
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profiles classified by the bound-based detector. In particular,
we develop an algorithm to determine the lower and upper
bounds that the normal profiles lie within. For each abnormal
profile classified by the bound-based detector, we compute
pairwise distances between itself and the upper and lower
bounds. The profile distances are fed into the k-means algo-
rithm to group the abnormal profiles into k clusters. Fig. 4(a)
shows the scatter plot of the distances of 3,159 randomly
selected abnormal profiles to the upper/lower bounds, which
are divided into k = 12 clusters by the k-means algorithm.
Fig. 4(b) presents the distribution of the abnormal profiles
among the 12 clusters. The clusters are ordered based on the
`2 norm of the two distances to the upper and lower bounds.
Then, we classify the profiles in the clusters with the cluster
label k ≤ kth as normal and those with k > kth as abnormal.

V. HEURISTIC-BASED ANOMALY DETECTION

From the experiences of evaluating the ML-based classi-
fiers (cf. §VII), the imbalanced training dataset and limited
training samples pose substantial challenges for the classifiers
to achieve high accuracy. In general, ML techniques such
as resampling [14] and few-shot learning [15] can be used
to mitigate these problems. However, such techniques cannot
completely address our issues with the ML-based classifiers.
For instance, the resampling can be used to create a more
balanced dataset. However, it cannot help expand the training
data distribution to cover unobserved/unlabelled abnormal
profile samples. Moreover, the few-shot learning can build
accurate ML models with limited training samples based on
prior knowledge about the data structure and learning process.
Meanwhile, we have limited knowledge about dynamics of
the pressure-volume profiles. Thus, we develop a heuristic
approach which treats the profile classification as an AD
problem. Specifically, our approach considers the abnormal
profiles as outliers which do not follow the expected pattern
of the normal profiles. Upon a new profile, a distance-based
similarity score between itself and the normal profiles is
calculated. The profile is considered abnormal if the score
is lower than a threshold. This AD approach provides good
interpretability in that it gives information for understanding
the classification results. In this section, we present four
categories of false alarms and then describe the AD approach.

A. Categories of Alarm-Triggering Normal Profiles

As mentioned in §III, the liquid pressure measurements are
subject to various biases due to the human operators and the
tester deviations. The biases can cause different patterns of
the normal profiles that trigger the bound-based detector. From
the product engineers’ domain knowledge and experiences, the
normal profiles can be divided into four categories as follows.

Miss-configuration profiles are caused by setting a wrong
reference point by the human operator at the beginning of the
test. With the wrong reference point, the measured profiles
have a similar pattern to the profiles of good ink cartridges.
However, they are shifted beyond the belt area between the
two bounds of the template profile which is used by the tester
to classify the profiles into normal and abnormal. As a result,
these miss-configuration profiles trigger false alarms.

Miss-calibration profiles are caused by configuring a wrong
gain to scale the sensor’s raw readings to the pressure unit in
the calibration process of the pressure sensor.

No-cartridge profiles are measured when the ink cartridges
are not inserted properly onto the tester. Without the ink from
the cartridge, the motor pump of the tester pulls the air through
the tube only. Under this condition, the measured pressure
profile is nearly a flat line.

Tube-blocking profiles are measured when the ink tubes are
blocked by air bubbles or ink residue. Specifically, the tube-
blocking profiles have a liquid pressure drop in the early stage
of the extraction due to presence of the air bubbles inside the
tube. Then, they quickly increase and recover to the pattern
which is similar to a shift-up variation of the normal profile.

B. Anomaly Detection (AD)

From the technician’s experiences, the last phase of the
profiles often includes the pressure measurement fluctuations
caused by over-extraction in which the tester’s motor pump
still operates when the internal valve of the ink cartridge is al-
ready closed. The air gaps traveling through the tube introduce
measurement fluctuations that can trigger the bound-based
detector. First, our AD algorithm excludes such fluctuations
from the input profile. Our experiments in §VII show that the
over-extraction has a strong correlation with the presence of
air bubble in the tube. Thus, we use air bubble as an indicator
to determine whether the measurement fluctuations are caused
by over-extraction. Then, we apply data analytics methods to
extract the features of the normal profiles that are used to
distinguish the abnormal profiles as outliers. Specifically, we
check whether a testing profile belongs to any of the four
categories presented in §V-A. If yes, it is normal; otherwise,
it is abnormal. The checking is as follows.

For the miss-configuration, no-cartridge, and tube-blocking
categories, we used the mean subtraction method to normalize
the original profile by subtracting its pressure measurements
from its average. Dynamic time warping (DTW) distances [16]
between all pairs of normalized training profiles in the normal
profile category i are calculated. We define γi as the detection
threshold for category i and γi = µ + 3σ, where µ and σ
are mean and variance of calculated DTW distances. Upon
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a new profile, we first calculate the DTW distance between
itself with all training profiles of the category i. If the mean
of calculated distances is less than γi, the profile is considered
normal in the category i.

For the miss-calibration category, we use a scale-matching
method to extract profile features. Each training profile is
equally divided into 10 segments and the maximum among
the pressure measurements of each segment is determined. The
mean and variance of the maximum over the same segment
across all training profiles are calculated. For a new profile,
we first determine the maximum of its 10 segments, and then
compute their scale with respect to the mean and variance
obtained from the training profiles. The profile is considered
normal if all scales of its 10 segments fall within a suitable
range between each other. If the profile is considered normal
by the above scale-matching approach, we additionally per-
form the DTW distance-based AD process to confirm whether
the profile is normal.

VI. SMART CAMERA SYSTEM

As mentioned earlier, the presence of the air bubbles in-
side the tester’s tube can affect the pressure sensing and is
indicative of over-extraction. Thus, we design and deploy a
smart camera with an embedded image processing pipeline to
monitor the air bubbles during the ink extraction.

A. Hardware Components

Fig. 5 illustrates our camera system that consists of three
main components: the low-cost camera, the edge node, and
the light source. For the camera, we select the Raspberry
Pi camera module which can capture up to 90 images per
second. The captured images are transferred to a Raspberry Pi
4 edge node that runs the CNN and traditional computer vision
(CV) algorithms. An external light source is used to illuminate
the ink tube for the camera. To reduce the impact of the
tube’s vibration on the camera’s image sensing, all hardware
components and Y-joint are fixed into a custom 3D-printed
holder as shown in Fig. 5. We deploy the camera system to
monitor the air bubbles at the Y-joint of the tube since the air
bubbles are often trapped by the Y-joint.

BackgroundBubble image Subtracted Noise removed

Fig. 6. Workflow of CV-based air bubble size measuring.

B. Image Processing

We implement a two-step image processing pipeline to
process the captured images at the Raspberry Pi. First, the
image is fed to a CNN to detect the air bubbles in the Y-joint.
Specifically, each image is characterized by three labels that
indicate the presence of the bubbles in three tube channels of
the Y-joint as shown in Fig. 5. To train the designed CNN, we
collected and manually labeled an dataset of 1,494 and 1,455
images with and without the bubbles, respectively. Different
from relabeling the pressure profiles, this labeling process is
easy because human can easily recognize the bubbles.

Second, we develop a CV-based framework to determine
the size of detected bubbles as shown in Fig. 6. In particular,
a previously captured image without air bubble is used as the
background. Upon a new image with bubbles, a background
subtraction method is used to extract the bubble areas by
subtracting the image from the background. Then, the mor-
phological processing is adopted to remove the noises from
the extracted bubble areas. Finally, the number of points with
the pixel value greater than zero is yielded as the size of the air
bubble. The background is updated once a new image without
the bubbles is captured.

C. Usages of the Smart Camera

We use the camera system to reduce the maintenance
overheads and improve the classification of the ML-based clas-
sifiers or the heuristic-based AD. First, it provides an indicator
to determine whether the bubbles are completely removed
after performing a water flushing round. As mentioned earlier,
the current protocol of the factories performs water flushing
to purge out ink and bubbles at the end of every test. This
process is labor intensive and usually requires a number of
attempts. Thus, to reduce the flushing overheads, the camera
system can be used to check whether the air bubbles are
completely removed from the tube. Once the tube is clear
without bubbles, the flushing process can be stopped. Second,
the bubble detection and size measurement functions can be
used to avoid the measurement fluctuations during the over-
extraction period. Specifically, in the last phase of the tests, we
stop the pressure measurement when a bubble with a certain
size is detected. The presence of the bubble is also used as an
indicator to determine and exclude the over-extraction period.

VII. DEPLOYMENT AND EVALUATION EXPERIMENTS

A. Deployment

We deploy our AIoT system to an operational tester in
an HP factory. Specifically, we use Python and several ML
libraries including PyTorch, TensorFlow Lite, and Scikit-Learn
to implement the ML-based classifiers and AD module running



TABLE I
ACCURACY (IN %) OF ML-BASED CLASSIFIERS OVER 88 PROFILES

COLLECTED FROM CONTROLLED EXPERIMENTS.

Metrics Classifiers Ensemble
CNN DT MVAE k-means Veto Majority

Accuracy 34 51.1 42 39.7 64.7 40.9
Abnormal recall 7.9 44.4 38 15.8 82.5 17.4
Abnormal precision 100 77.7 66.6 100 72.2 100
Normal recall 100 68 52 100 20 100
Normal precision 30.1 32.6 25 32 31.2 32.4

on one Raspberry Pi 4. At the end of each testing round, the
tester reports the measured profiles of six tested cartridges to
the workstation computer. The profiles triggering alarms are
then transferred to the Pi for further classification into normal
(i.e., the tester-induced alarm) or abnormal (i.e., the product-
induced alarm) profiles. We also deploy six units of the smart
cameras to monitor the bubbles at the Y-joints of six tubes
connected to six testing modules. The camera periodically
captures an image of the Y-joint and transfers it to the Pi
at every two seconds during the testing period.

We first evaluate the performance of our system in con-
trolled experiments, in which we induce biases and noises to
the tester to generate normal profiles, and defects to good ink
cartridges to create abnormal profiles. This section presents
the results of the controlled experiments. We are now working
with our industry partner to run long-term evaluation on the
cartridge manufacturing lines. We plan to present the long-
term evaluation results in a longer version of this paper that
will be made publicly available.

B. Accuracy of Profile Classification

We perform a set of controlled experiments to evaluate the
accuracy of our ML-based classifiers and AD module. We
intentionally induce the tester’s biases and noises to generate
the normal profiles of four categories (cf. §V). Specifically, we
create seven miss-configuration profiles by setting an arbitrary
reference point in the beginning of tests for seven good ink
cartridges. Eight miss-calibration profiles are created by setting
a wrong gain parameter to scale the pressure sensor’s raw
readings to the pressure unit. We also generate six no-cartridge
profiles by inserting the ink cartridges improperly such that no
ink is extracted under the pressure from the pumps. Moreover,
we induce bubbles and ink residue inside the tubes to create
four tube-blocking profiles. In summary, we create 25 normal
profiles that trigger false alarms. Additionally, we manually
induce defects to good ink cartridges by damaging the vent
of the cartridges or releasing the pressure into the cartridge
to create 15 abnormal profiles. In addition, we run tests for
48 defective cartridges and generate abnormal profiles. As
a result, we have 63 abnormal profiles. In summary, our
controlled experiments generate a total of 88 pressure profiles
whose labels are also confirmed by the domain experts.

We use the overall classification accuracy, recall, and pre-
cision in detecting the normal and abnormal profiles as the
evaluation metrics. Table I shows the evaluation metrics of

four ML-based classifiers over 88 profiles. For the k-means-
based classifier, we adopt the settings of k = 12 and kth = 3.
We also evaluate two ensemble approaches including veto and
majority, which combine the results of four ML-based classi-
fiers to yield the final result. Specifically, with a primary focus
on achieving high recall in capturing defective cartridges,
the veto approach considers the profile as abnormal if any
of four classifiers outputs abnormal. The majority approach
yields the majority of the classifiers’ results as the final result.
From Table I, the four classifiers (i.e., CNN, DT, MVAE,
and k-means) show best performance in different metrics. For
instance, DT has the highest accuracy and abnormal recall,
while CNN and k-means exhibit the best abnormal precision,
and normal recall. Moreover, two ensemble approaches mostly
show better accuracy performance. The veto approach has the
highest accuracy and abnormal recall.

Table II shows the performance of the AD module. The
columns headed by miss-configuration, miss-calibration, no-
cartridge, and tube-blocking present evaluation metrics of the
AD module in detecting 88 profiles by comparing its similarity
score with the normal profiles in each of four category only.
The overall column shows the performance results when the
scores between the testing profile and the normal profiles in all
four categories are used. The AD approach achieves an overall
accuracy of 96.5% in classifying the testing profiles. Moreover,
it always has better accuracy performance, compared with that
of the best-performing ML-based classifier, i.e., the veto.

C. Performance of Camera System

1) Accuracy of bubble detection and size measurement:
We use 450 captured images in the controlled experiments
to evaluate the accuracy of bubble detection by the camera
system. The CNN can detect the air bubbles in 450 testing
images with an accuracy of 94%. It cannot detect small air
bubble in co-presence of the diluted ink inside the Y-joint.
However, the small air bubbles generate little/no impact on the
pressure measurements. Moreover, we use 49 images with the
air bubbles to evaluate the accuracy of the size measurement
by the CV method. We adopt the intersection over union (IoU)
as the evaluation metric. In particular, for each image, we
calculate the IoU between the detected bubble areas and the
ground truth of the bubble areas. The bubble size measurement
is considered correct if the calculated IoU is higher than 0.5.
Our CV method achieves an accuracy of 79.5% in measuring
the sizes of the air bubbles in 49 testing images.

2) Impact of air bubble on pressure measurement: We use
our camera system to capture the top view of the Y-joint
at the beginning of the ink extraction for 81 ink cartridges
of 6 models over a 7-day operation period of the tester.
We perform an analysis on the captured images and the
corresponding profiles to study how the bubbles affect pressure
measurements. Specifically, we cannot directly compare the 81
pressure profiles with and without bubbles since the profiles of
different cartridge models fall in different measurement ranges.
Thus, we compare the average of testing profiles with that of
profiles of the same cartridge model in our historical dataset.



TABLE II
ACCURACY OF HEURISTIC-BASED AD OVER 88 PROFILES COLLECTED FROM CONTROLLED EXPERIMENTS.

Metrics Anomaly Detection Overall VetoMiss-configuration Miss-calibration No-cartridge Tube-blocking
Accuracy 95.7% 95.7% 100% 100% 96.5% 64.7%
Abnormal recall 95.2% 95.2% 100% 100% 95.2% 82.5%
Abnormal precision 100% 100% 100% 100% 100% 72.2%
Normal/Category recall 100% 100% 100% 100% 100% 20%
Normal/Category precision 70% 72.7% 100% 100% 89.2% 31.2%

(a) Distribution of percentiles. (b) Fitted distributions.

Fig. 7. Impact of air bubbles on pressure measurements. The percentile
represents the percentage of historical profiles whose average is lower than the
average of the testing profile. In (a), the box, line, triangle, upper and lower
whiskers represent middle 50%, median, average, ranges for the bottom 25%
and the top 25% of the samples, respectively.

We use the percentage (i.e., percentile) of historical profiles
whose average over time is lower than that of the testing
profile to characterize the testing profile. Fig. 7(a) shows the
box plots of the percentiles of 81 testing profiles which are
divided into three groups based the measured bubble size. The
percentiles of the profiles with the bubble size lower than 2,000
pixels have similar average and median. Meanwhile, when the
bubble size is greater than 2,000 pixels, the profile percentiles
fluctuate in narrower ranges and have lower average. To further
investigate the impact of the bubble size on the distribution
of the profile percentile, we fit two probabilistic distributions
to model the percentiles of the profiles without the bubbles
and with the bubble size greater than 2,000 pixels. Fig. 7(b)
shows the histograms of the percentiles and the fitted density
functions. We can see that the mean percentile of profiles with
bubbles is lower than that of the profiles without bubbles.
We also conduct a one-sided Kolmogorov–Smirnov test using
testing profiles to check the null hypothesis that the percentile
of profile with the bubbles of the size greater than 2,000 pixels
is higher than that of the profiles without the bubbles. We
obtain a p-value of 0.0273. Thus, the null hypothesis can be
rejected. This result implies that the bubbles with a large size
make the pressure measurements statistically lower.

3) Correlation between the presences of air bubble and
over-extraction pressure fluctuation: As mentioned in §V,
the measured pressure often has fluctuations during the over-
extraction period. These fluctuations should be excluded from
the profiles for better classification performance. However, it is
non-trivial to determine the starting point of the fluctuations in
the presence of measurement noises. From prior observations,

the over-extraction often coincides with bubbles in the tubes.
Now, we analyze the Pearson correlation between the bubble
presences and the over-extraction fluctuations. We collect a
dataset consisting of 17 profiles and five profiles with and
without over-extraction, respectively. An image of Y-joint is
captured for each profile. The Pearson correlation is 0.7483
over 22 collected data points. This result implies the strong
correlation between presences of the bubbles and the over-
extraction fluctuation. Therefore, our AIoT system uses bubble
presence to assist the determination of the presence of over-
extraction fluctuation.

VIII. EXPERIENCES AND LEARNED LESSONS

As a systematic attempt of developing an industrial AIoT
system for improving the QC of ink cartridge manufacturing,
our research has generated experiences and learned lessons
that the future industrial practices can consider. The experi-
ences and lessons are summarized as follows.

(1) Classifiers vs. heuristics: In the early stage of our
system development, we considered the problem of dividing
the profiles into normal and abnormal classes as a classifica-
tion problem. However, the four ML-based classifiers cannot
achieve a high accuracy in the deployment. A main reason
is the limited and imbalanced training dataset, which is also
related to the second challenge that we will discuss shortly.
Then, we investigated the characteristics of the normal and
abnormal profiles. Specifically, the tester often induces stable
biases and noises to the pressure measurement of all tested
ink cartridges over a certain period of time. The profiles of
defective ink cartridges are rare ones which do not follow
the pattern of the profile of good cartridges under the tester-
induced noises and biases. Thus, we further designed a heuris-
tic approach that considers the profile classification as an AD
problem. Our evaluation results based on the controlled tests
shows that the AD approach outperforms the ML-based profile
classifiers. From our experience, the quality of the training data
is crucial to the development of effective ML classifiers. It is
often very difficult to achieve satisfactory performance if the
data is limited or include high-variance noises and biases. In
such cases, simpler, heuristic solutions (e.g., AD approach in
our case) can be more effective.

(2) Curse from data labeling: ML classifier’s attractive
advances recently are mainly owing to availability of big
labeled training data and standardized hardware acceleration.
For the tasks that humans are good at, creating big labeled
training datasets is feasible. Manual labeling services (e.g.,
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Fig. 8. Impact of sensor condition on data quality.

Google’s [17]) are now established. However, data labeling
is very challenging for developing an industrial AIoT system.
Such labeling processes cannot be performed by normal per-
sons based on their instinct and/or basic knowledge. Differ-
ently, they require experts’ experience and prior knowledge. In
our work, relabeling the pressure profiles is highly non-trivial
and requires a collaboration with the tester domain experts.
In particular, the experts sometimes lack high confidence and
consistency for assigning labels for high-variance profiles.
This can be solved if they can access meta information
about the internals of the tested ink cartridges and tester’s
parameters. However, this meta information was not collected
in the historical database. Even if the meta information is
available, frequently referring to the detailed meta information
inevitably adds overhead to the relabeling process. Eventually,
we can only relabel a limited number of profile samples,
which lead to the poor performance of our ML-based profile
classifiers. The use of ML classifier in our AIoT system is
limited to the bubble detection, which is a task that a normal
human can complete after receiving some simple guidance.
From this experience, it is reasonable to argue that the success
of applying ML classification to an industrial task highly
depends on the availability of sufficient labeled data.

(3) System challenges: Sensor inconsistency and deviation
pose challenges for the deployment of industrial AIoT systems
in practices. In our system, we use a camera to capture images
to train the CNN for detecting the air bubbles. A light source
was used to provide a stable and sufficient illumination for the
camera to capture the training images. Then, the trained CNN
was deployed to six sets of cameras. However, the trained
CNN did not show the same performance on them. This is
because the quality of captured images across six cameras
are different due to the deviation in installation and working
condition of the cameras and light sources. Fig. 8(a) shows
two images captured by two camera sets. We can see that
they have different illumination conditions, which affect the
performance of the CNN. Moreover, the illumination condition
of a certain camera can drift over time due to wear and tear
of the light source. Fig. 8(b) presents two images captured
by the same camera set at the beginning of the deployment
and three months later. The light intensity of the light source
is weakened. As a result, the CNN cannot correctly detect
the air bubbles in the images captured with weakened lighting
conditions. Although the dimming was caused by that the light
was kept on all the time, which was then replaced with on-
demand switch-on, the long-term wear and tear are inevitable.
This calls for new research to obviate negative impacts of

sensor inconsistency and deviation on performance of AIoT
systems. The method proposed in [18] may be promising to
address the issues. Specifically, we can model the relationship
between the images captured by different cameras or under
different controlled illumination levels. Then, we can use the
modeled relationship to augment the training dataset. As such,
the trained CNN can have the capability to deal with different
cameras and illumination levels.

IX. CONCLUSION

This paper presented the design, deployment, and evaluation
of an industrial AIoT system for improving the quality con-
trol of Hewlett-Packard’s ink cartridge manufacturing lines.
Specifically, the evaluation results showed that our AIoT
system can help improve the accuracy of the HP’s testers in
detecting defective ink cartridges. The lessons learned and
experiences discussed in this paper can be useful to the
developments of other industrial AIoT systems.
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