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Camera-based computer vision is essential to autonomous vehicle’s perception. This paper presents an attack
that uses light-emitting diodes and exploits the camera’s rolling shutter effect to create adversarial stripes
in the captured images to mislead traffic sign recognition. The attack is stealthy because the stripes on the
traffic sign are invisible to human. For the attack to be threatening, the recognition results need to be stable
over consecutive image frames. To achieve this, we design and implement GhostStripe, an attack system
that controls the timing of the modulated light emission to adapt to camera operations and victim vehicle
movements. Evaluated on real testbeds, GhostStripe can stably spoof the traffic sign recognition results for up
to 94% of frames to a wrong class when the victim vehicle passes the road section. In reality, such attack effect
may fool victim vehicles into life-threatening incidents. To counteract this threat, we propose GhostBuster, a
software-based defense module to detect and mitigate the effects of GhostStripe. GhostBuster incorporates a
perturbation detector and a sign restorer, effectively restoring the natural appearance of compromised traffic
signs and significantly reducing the attack’s impact. We also discuss other countermeasures at the levels of
camera sensor and autonomous driving system.
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1 Introduction
Camera-based computer vision is an essential perception channel of autonomous vehicles, espe-
cially for the tasks of traffic sign recognition and lane detection [35]. Thus, reliable camera-based
perception is vital to autonomous vehicle’s safety. Recent research on adversarial examples [11, 15]
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has aroused the consciousness regarding the potential vulnerability of camera-based perception. Es-
pecially, numerous studies explore and demonstrate deployable adversarial techniques that compro-
mise camera-based perception tasks in autonomous driving [10, 13, 22, 23, 30, 32, 37, 42, 43, 49, 60].
To better understand the security risks in this context, this paper presents a physically deployable
and stealthy optical adversarial-example attack that exploits the camera’s rolling shutter effect to
fool the car’s traffic sign recognition.

Camera sensors are based on either charge-coupled device (CCD) or complementary metal-oxide
semiconductor (CMOS) technology. CCD sensors typically use global shutters, capturing an entire
frame at once by exposing all pixels simultaneously. In contrast, due to CMOS’s inherent line-by-line
readout bottleneck, many CMOS sensors employ an electronic rolling shutter, capturing images
line by line so that different pixel rows are exposed at slightly different times. While some CMOS
sensors incorporate global shutters by adding additional storage elements (e.g., in-pixel memory),
rolling shutter CMOS remains widely adopted in camera products, including those deployed in
vehicles, because it provides a satisfactory balance between cost and image quality. For instance,
both Tesla and Baidu Apollo use rolling shutter CMOS cameras in their vehicles [3, 7].
Despite its advantages, rolling shutter CMOS camera exhibits rolling shutter effect (RSE) [14]

when the input light contains flickering frequencies close to the operational frequency of the rolling
shutter. Specifically, as the rows of a CMOS sensor are exposed in slightly different time periods,
rapid changes of the input light can introduce varied color shades in different sensor scanlines and
thus image distortion. Recent studies have shown the security implication of RSE, i.e., attackers
can control or perturb the input light to create colored stripes on the captured image to mislead
the computer vision’s interpretation of the image. A recent work [44] uses light-emitting diodes
(LEDs) to create flickering ambient illumination and mislead the classification of the images taken
in the space under attack. In [25], a laser beamed into camera lens creates colored stripes to disrupt
object detection.
While the existing studies have implemented elementary RSE attacks on single image frames

captured in controlled environments, they fall short of achieving stable attack results over a
sequence of frames. This paper aims to achieve stable attack results which render clearer security
implications in the autonomous driving context. In the envisaged attack as illustrated in Fig. 1a,
an LED is deployed in the proximity of a traffic sign plate and projects controlled flickering light
onto the plate surface. As the flickering frequency is beyond human eye’s perception limit (up to
50-90Hz [34]), the flickering is invisible to human and the LED appears as a benign illumination
device, as illustrated in Fig. 1a- 1○. Meanwhile, on the image captured by the camera, as illustrated
in Fig. 1a- 2○, the RSE-induced colored stripes mislead the traffic sign recognition. For the attack to
mislead the autonomous driving program to make erroneous decisions unconsciously, the traffic
sign recognition results should be wrong and same across a sufficient number of consecutive frames.
We call the attack meeting this requirement stable. If the attack is not stable, an anomaly detector
may identify the malfunction of the recognition and activate a fail-safe mechanism, e.g., falling
back to manual driving or emergency safe stopping, rendering the attack less threatening.
Implementing a stable attack is a non-trivial task that necessitates addressing two essential

challenges, as illustrated in Figs. 1b and 1c. First, the stable attack requires the capability of
stabilizing the appearance of the pre-designed colored stripes on the image cropout containing the
traffic sign. Otherwise, if the stripes captured by the camera roll on the traffic sign (e.g., rolling
downwards in Fig. 1b- 1○), the recognition result will change over time. The rolling is caused by
the discrepancy between the LED flickering frequency and the camera’s rolling shutter frequency.
Thus, the stripe position stabilization requires precise calibration of LED’s flickering frequency.
Second, the stable attack must adapt to the time-varying position and size of the traffic sign cropout
within the original image sequence captured by the moving victim vehicle. Otherwise, the stripe
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Fig. 1. Invisible optical adversarial-example attack against traffic sign recognition.

pattern on the traffic sign will change over time. For instance, in Fig. 1b- 2○, when the stripes keep
still in the field of view (FoV), the varying sign in the FoV contains varying stripe patterns, leading
to varying recognition results. Thus, a stable attack, as illustrated in Fig. 1c, needs to carefully
control the LED’s flickering based on the information about the victim camera’s operations and
real-time estimation of the traffic sign position and size in the camera’s FoV.
To address the aforementioned challenges in crafting a stable attack, this paper presents the

designs of two versions of an attack system called GhostStripe with different requirements on the
attack deployment. The first version, GhostStripe1, maintains stationary adversarial stripes in the
FoV by calibrating the LED flickering frequency. GhostStripe1 employs a vehicle tracker to monitor
the victim vehicle’s real-time location and dynamically adjusts the LED flickering accordingly.
GhostStripe1 does not require any instrumentation on the victim vehicle. It aims to maintain the
victim’s traffic sign recognition result stable over time. However, it is an untargeted attack, in
that the recognition result is unpredictable (i.e., not deliberately spoofed towards a certain class)
because the vertical positions of the adversarial stripes are not controlled by the attacker. To achieve
targeted attack (i.e., the attacker can control the victim’s recognition result as a certain class), on
top of GhostStripe1, GhostStripe2 deploys a framing sniffer to sense the victim camera’s framing
moments via a current transducer clipped on the power wire of the camera. The sniffer transmits
the detected framing moments to the LED controller to refine the timing control of the flickering.
Although installing the framing sniffer requires physical access to the victim vehicle, it is possible,
say, during maintenance by an auto care provider colluding with the attacker.

The main contributions of this paper are as follows:
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Fig. 2. Rolling shutter’s operation and RSE.

• We analyze the principles for achieving stable RSE-based optical adversarial-example attack
against autonomous driving perception and present techniques to satisfy the conditions
obtained from the analysis.

• Following the principles, we design GhostStripe, a physically deployable attack system. Two
versions of GhostStripe are designed to enable untargeted and targeted attacks with different
attack deployment requirements, respectively.

• We evaluate GhostStripe on a real outdoor testbed and a lab testbed with Leopard Imaging
AR023ZWDR as the victim camera, which is used in Baidu Apollo’s hardware reference
design [7]. On the outdoor testbed, GhostStripe1 and GhostStripe2 can achieve up to 94%
and 97% success rates in launching untargeted and targeted attacks, respectively.

• We discuss various countermeasures and propose GhostBuster, a software-based defense
method to detect and mitigate the threat posed by GhostStripe. With GhostBuster, we achieve
a recovery in classification accuracy to 100% and 80% in over 5% and 50% of trials, respectively.

Paper organization: Section 2 introduces background and preliminaries, and reviews related
work. Section 3 and Section 4 design and implement GhostStripe, respectively. Section 5 presents
experiment setup and results. Section 6 presents our proposed defense method against GhostStripe,
and discusses other possible countermeasures. Section 7 explores the attack effectiveness against
traffic sign detector. Section 8 discusses several issues. Section 9 concludes this paper.

2 Background and Related Work
This section provides the background and preliminaries on traffic sign recognition, rolling shutter
operation, and RSE-based adversarial examples, followed by a review of related work.

2.1 Background and Preliminaries
Traffic Sign Recognition. Car-borne camera-based traffic sign recognition consists of detection
and classification phases [56, 63], which are usually based on deep neural networks (DNNs). First,
the detector locates the traffic sign in the image frames. Then, the detected traffic signs are cropped
and fed to the classifier for interpretation. In this paper, we focus on compromising the classifier.
Rolling Shutter Operation and Effect. Fig. 2 illustrates the rolling shutter’s operation. As

CMOS sensor typically has no memory buffer to store the charge in the photodiode array, it exposes
and reads out the pixel values on a row-wise basis, typically from top to bottom. Denote by 𝑁𝑙𝑖𝑛𝑒𝑠

the number of scanlines. When capturing an image frame, each scanline is exposed for a time
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period 𝑡𝑒𝑥𝑝 . After that, the data of the scanline is read out within a readout time denoted by 𝑡𝑟𝑜 . As
illustrated in Fig. 2, the exposure-readout processes for the scanlines are pipelined. The process
for the next scanline is 𝑡𝑟𝑜 in time later than that of the previous scanline. As a result, the total
time for capturing a frame is 𝑡𝑐𝑎𝑝 = 𝑁𝑙𝑖𝑛𝑒𝑠 × 𝑡𝑟𝑜 + 𝑡𝑒𝑥𝑝 . Note that 𝑡𝑟𝑜 is fixed and can be found
from the sensor specification. The 𝑡𝑒𝑥𝑝 is fixed for a certain frame but can vary across frames
depending on the camera’s exposure setting. The following terms are defined for the rest of this
paper. Framing moment is the time instant at which the exposure of the first scanline starts. Frame
period denoted by 𝑇𝑓 𝑟𝑎𝑚𝑒 is the time between the framing moments of two consecutive frames,
which is the reciprocal of the camera’s frame rate. We have 𝑇𝑓 𝑟𝑎𝑚𝑒 ≥ 𝑡𝑐𝑎𝑝 . Now, we explain the
formation of RSE. As shown in Fig. 2, two light pulses affect the captured image. A pulse affects the
scanlines exposed during its duration. The intensity of the affection on a scanline depends on the
pulse time within the scanline’s exposure. Consequently, light pulses create horizontal stripes in
the captured frame.
RSE-Based Adversarial Examples. An adversarial example, which is the sum of the original

sample and a minute perturbation, misleads a DNN to produce a different result [15]. The work [44]
presents a method that controls the LED flickering to create RSE-induced stripes as the adversarial
perturbation to mislead an object recognition DNN. Its essence is as follows. Denote by 𝑐 ∈ {𝑅,𝐺, 𝐵}
the color channel. We use 𝑐 as the superscript of the quantity defined for a certain color channel.
Denote by 𝑡 ∈ [0, 𝑡𝑐𝑎𝑝 ] the relative time starting from the current frame’s framing moment, by
𝑓 𝑐 (𝑡) ∈ [0, 1] the LED’s relative emission intensity, by 𝛼𝑐 the ambient light intensity, by 𝛽𝑐 the
LED’s maximum intensity, by 𝑙𝑐𝑡𝑒𝑥 (𝑢, 𝑣) the texture of the scene, where (𝑢, 𝑣) are the coordinates in
the camera’s FoV. Illuminated by both the ambient light and LED, the light intensity in color channel
𝑐 at position (𝑢, 𝑣) in the scene at time 𝑡 is 𝑙𝑐𝑡𝑒𝑥 (𝑢, 𝑣) · (𝛼𝑐 + 𝛽𝑐 𝑓 𝑐 (𝑡)). From Fig. 2, the exposure of the
𝑣th scanline starts at time instant 𝑣𝑡𝑟𝑜 . Thus, the value of pixel (𝑢, 𝑣) in color channel 𝑐 is given by

𝐼𝑐 (𝑢, 𝑣)=𝜌
∫ 𝑣𝑡𝑟𝑜+𝑡𝑒𝑥𝑝

𝑣𝑡𝑟𝑜

𝑙𝑐𝑡𝑒𝑥 (𝑢, 𝑣) (𝛼𝑐 + 𝛽𝑐 𝑓 𝑐 (𝑡))d𝑡

= 𝐼𝑐
𝑎𝑚𝑏

(𝑢, 𝑣) + 𝐼𝑐𝑎𝑡𝑡 (𝑢, 𝑣)𝑔𝑐 (𝑣)
where 𝜌 is the sensor gain, 𝐼𝑐

𝑎𝑚𝑏
(𝑢, 𝑣) = 𝜌𝑙𝑐𝑡𝑒𝑥 (𝑢, 𝑣)𝑡𝑒𝑥𝑝𝛼𝑐 , 𝐼𝑐𝑎𝑡𝑡 (𝑢, 𝑣) = 𝜌𝑙𝑐𝑡𝑒𝑥 (𝑢, 𝑣)𝑡𝑒𝑥𝑝𝛽𝑐 , 𝑔𝑐 (𝑣) =

1
𝑡𝑒𝑥𝑝

∫ 𝑣𝑡𝑟𝑜+𝑡𝑒𝑥𝑝
𝑣𝑡𝑟𝑜

𝑓 𝑐 (𝑡)d𝑡 . Note that 𝐼𝑐
𝑎𝑚𝑏

(𝑢, 𝑣) is the image in color channel 𝑐 captured with ambient
illumination only. The 𝐼𝑐𝑎𝑡𝑡 (𝑢, 𝑣) is the image captured with light emitted from the LED in full
intensity all the time and no ambient illumination. It can be obtained by 𝐼𝑐𝑎𝑡𝑡 (𝑢, 𝑣) = 𝐼𝑐

𝑓 𝑢𝑙𝑙
(𝑢, 𝑣) −

𝐼𝑐
𝑎𝑚𝑏

(𝑢, 𝑣), where 𝐼𝑐
𝑓 𝑢𝑙𝑙

(𝑢, 𝑣) is the image captured with both the ambient illumination and the full-
intensity light from the LED. Both 𝐼𝑐

𝑎𝑚𝑏
(𝑢, 𝑣) and 𝐼𝑐

𝑓 𝑢𝑙𝑙
(𝑢, 𝑣) are collected by the attacker in advance.

The LED control signal in all color channels 𝑓 (𝑡) = {𝑓 𝑅 (𝑡), 𝑓 𝐺 (𝑡), 𝑓 𝐵 (𝑡)} is designed by solving
argmin𝑓 (𝑡 ) ℓ (M(𝐼 (𝑢, 𝑣)), 𝑘), where 𝐼 (𝑢, 𝑣) = {𝐼𝑅 (𝑢, 𝑣), 𝐼𝐺 (𝑢, 𝑣), 𝐼𝐵 (𝑢, 𝑣)}, M(·) is the classifier, 𝑘
is the target class of the attack (i.e., the attack aims to mislead the classifier to produce class 𝑘),
ℓ (M(𝐼 (𝑢, 𝑣)), 𝑘) is the classification loss for the target class 𝑘 when the classifier is fed with 𝐼 (𝑢, 𝑣).

2.2 Related Work
Physical attacks on general computer vision. There are a number of work that studies the
practical physical adversarial attacks against computer vision tasks [50, 51]. The physical forms of
the attacks include but are not limited to stickers/patches/clothes [9, 13, 52], 3D-printed objects [8],
and glasses [45]. Unlike prior digital adversarial attacks, physical attacks are usually visible in the
real-world to both human eyes and cameras, as they need to be effectively-captured by the camera
(although might be designed to be less noticeable/unreasonable). Different from conventional
physical attacks that aim to compromise general computer vision tasks, GhostStripe is specifically
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designed for autonomous vehicle’s camera perception, and the perturbation is invisible to human
eyes.
Physical attacks on autonomous vehicle camera perception. Physical attacks can be

categorized into object perturbation and camera perturbation. Object perturbation attacks modify
the object appearance, such as using stickers or light on traffic signs to mislead recognition
[13, 30], painting on billboards to alter steering [60], 3D-printed objects to escape detection [10],
patches/marks on roads to confuse lane detection [23, 43], and depth-less images recognized
as real objects [37]. These attacks are visible to humans. Camera perturbation attacks exploit
camera hardware properties, like using lasers to blind cameras [39, 53], projecting patterns to
create lens flare effects [32], and using infrared light to create magenta pixels [49]. These require
precise targeting of the camera lens. In contrast, GhostStripe uses the traffic sign to reflect attack
light, requiring no such physical maneuvers. A recent work [42] uses invisible infrared laser to
reflect projections on traffic signs, creating perturbations as purple/magenta spot, effective only for
cameras without infrared filters. Another approach [22] uses sound waves to interfere with image
stablizer’s built-in inertial sensor, triggering unwanted motion compensation, but it only disrupts
object detection in single frames and does not address attack stability.
RSE applications and exploitation for attacks. Many visible light communication (VLC)

systems are designed based on RSE [12, 18, 19, 27, 55, 57]. These systems encode information
through controlled flickering of light sources, which cameras decode from the induced stripes.
Such a VLC capability can be employed in indoor smartphone localization using LED landmarks
[26, 40]. RSE has also been applied for watermarking physical scenes to prevent unauthorized
photographing [58, 62], and for enhancing hand pose tracking and reconstruction [59].

In addition to [44] that is employed as a baseline attack method in this paper, a few other works
[25, 28, 54] also exploit RSE to mislead computer vision. The work [28] explores the RSE-based
backdoor attack. During training data collection, light flickering creates RSE-induced stripes to
embed poisoning samples with adversarial class labels. During inference, the same flickering
triggers the backdoored classifier to output the adversarial class. The works [25, 54] particularly
consider RSE-based attacks in the context of autonomous vehicles. The work [25] models the
rolling shutter process by collecting RSE patterns with various parameter settings in a dark room.
Certain RSE patterns overlaid on captured images can lead to miss detection of up to 75% objects.
In an autonomous vehicle simulator, the attack can introduce noticeable braking delays when a
pedestrian or cyclist is in front of the vehicle under attack. The work [54] uses a laser to cause
a monochromatic stripe that covers the traffic light to disturb the traffic light color recognition.
The laser’s emission duration is controlled based on the frame time. However, these two attacks
[25, 54] require aiming the laser at the victim vehicle’s camera lens, while GhostStripe is free of this
requirement. Moreover, the above works [25, 28, 54] do not consider the phase synchronization
issue discussed in Section 3.1. Thus, they cannot control the positions of the RSE-induced stripes.
Differently, GhostStripe2 applies framing sniffer to achieve phase synchronization.

Our prior work [17] introduces the design of GhostStripe and provides an evaluation of its attack
performance. Building on that foundation, this paper makes the following contributions: (1) We
design and evaluate GhostBuster, a defense module to detect and mitigate the threat posed by
GhostStripe. (2) We extend our evaluation on GhostStripe by investigating the target class feasibility,
and the opportunities to bypass an entropy-based anomaly detector. (3) We explore GhostStripe’s
attack effectiveness against traffic sign detector. (4) We includes a broader review of related work.

3 Design Principles of GhostStripe
This section analyzes two principles to achieve stable attack described in the introduction section,
i.e., attack timing control and vehicle movement adaptation.
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3.1 Attack Timing Control
In this section, we analyze the simplified scenario described in Section 2.1, i.e., the whole images in
a frame sequence are classified. Figs. 3a-c depict our analysis in this section. In reality, the vehicle
classifies a sequence of image cropouts containing the traffic sign, as illustrated in Fig. 3d. In Section
3.2, we will analyze how to deal with this real scenario.

To affect consecutive frames, the attacker needs to keep replaying the designed attack signal 𝑓 (𝑡)
where 𝑡 ∈ [0, 𝑡𝑐𝑎𝑝 ] to control the LED. Note that𝑇𝑓 𝑟𝑎𝑚𝑒 ≥ 𝑡𝑐𝑎𝑝 and we define Δ𝑡 ≜ 𝑇𝑓 𝑟𝑎𝑚𝑒 − 𝑡𝑐𝑎𝑝 . In
addition, we use 𝛿 to denote the time offset between the onset moment of the first play of 𝑓 (𝑡) and
the nearest camera’s framing moment. A primitive attack, which continuously replays 𝑓 (𝑡) back to
back, accumulates Δ𝑡 over time on the offset between the replay’s onset moment and the camera’s
framing moment. As illustrated in Fig. 3a, the offset increases by Δ𝑡 for every frame. The resulting
stripe pattern created by the attack rolls across the FoV over time (e.g., roll up in Fig. 3a), leading to
varying classification results.

To achieve a stable attack, the rolling needs to be avoided by frequency calibration such that the
replay frequency is identical to the frame rate. This can be achieved by adding a calibration period
𝑡𝑐𝑎𝑙𝑖𝑏 ≜ 𝑇𝑓 𝑟𝑎𝑚𝑒 − 𝑡𝑐𝑎𝑝 after each replay, as illustrated by the checkerboard squares in Fig. 3b. As
such, the offset between the replay’s onset moment and the camera’s framing moment is fixed at 𝛿
over frames. The 𝛿 can take any value from [−𝑇𝑓 𝑟𝑎𝑚𝑒/2,𝑇𝑓 𝑟𝑎𝑚𝑒/2], depending on the onset time of
the attack. The resulted stripe pattern is stationary in the FoV, but the position offset is uncertain.
This uncertainty renders the attack untargeted.

If the attacker can further control its attack onset time such that 𝛿 = 0 (which is called phase
synchronization), the RSE-induced stripes will be identical to the designed pattern, as illustrated in
Fig. 3c. Hence, the victim’s classification results over frames will be the target class 𝑘 . To perform
the phase synchronization, the attacker needs to obtain the framing moments, which can be sensed
from the victim camera’s magnetic emanation as we will detail in Section 4.5.
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3.2 Vehicle Movement Adaptation
The traffic sign recognition pipeline only classifies the image cropout containing the detected sign.
Thus, only the RSE-induced stripes within the cropout affect the classification. As the cropout’s
position and size in the FoV vary when the vehicle moves, the attack needs to adapt to the vehicle’s
movement. The adaptation logistics is analyzed as follows.
Assume the cropout’s upper edge is at the 𝑁𝑢𝑝-th scanline and its vertical dimension is 𝑁𝑠𝑖𝑔𝑛

scanlines. For ease of explanation, we analyze the case with phase synchronization. As illustrated
in Fig. 3d, the attack uses three time windows: delay window, attack window, and calibration
window, represented by crossed, colored, and checkerboard squares, respectively. Their lengths
are 𝑡𝑑𝑒𝑙𝑎𝑦 = (𝑁𝑢𝑝 − 1) × 𝑡𝑟𝑜 , 𝑡𝑎𝑡𝑡 = 𝑁𝑠𝑖𝑔𝑛 × 𝑡𝑟𝑜 + 𝑡𝑒𝑥𝑝 , and 𝑡𝑐𝑎𝑙𝑖𝑏 = 𝑇𝑓 𝑟𝑎𝑚𝑒 − 𝑡𝑑𝑒𝑙𝑎𝑦 − 𝑡𝑎𝑡𝑡 . The
malicious LED flicking is performed within 𝑡𝑎𝑡𝑡 . When the victim vehicle moves, the 𝑡𝑑𝑒𝑙𝑎𝑦 , 𝑡𝑎𝑡𝑡 ,
and 𝑡𝑐𝑎𝑙𝑖𝑏 change over frames, maintaining the stripe pattern as designed on the sign cropout
over frames. For each frame, the LED control signal 𝑓 (𝑡) during 𝑡𝑎𝑡𝑡 can be designed by solving
argmin𝑓 (𝑡 ) ℓ (M(𝐼𝑐𝑟𝑜𝑝𝑜𝑢𝑡 ), 𝑘), where 𝐼𝑐𝑟𝑜𝑝𝑜𝑢𝑡 is the RSE-affected image cropout. However, high
compute overhead makes online solving impractical. To simplify, we design an LED control signal
𝑓0 (𝑡) for a minimum attack window 𝑡𝑎𝑡𝑡0 during the offline stage, based on the smallest detectable
traffic sign in the FoV. At runtime, when 𝑡𝑎𝑡𝑡 ≥ 𝑡𝑎𝑡𝑡0, 𝑓 (𝑡) is scaled up by 𝑡𝑎𝑡𝑡/𝑡𝑎𝑡𝑡0 and replayed.
The replayed attack light signals can be filled into the calibration and delay windows to ensure
that the perturbations appear on the traffic sign when there is no phase synchronization, and avoid
noticeable on-off flickering at the frame rate.

4 GhostStripe Design
This section presents the design of GhostStripe. We first summarize the basic attack assumptions
in Section 4.1. Then, we overview the two versions of GhostStripe in Section 4.2. Then, the re-
maining three subsections present the approaches to attack signal optimization, vehicle movement
adaptation, and phase synchronization, respectively.

4.1 Basic Attack Assumptions
The attacker assumptions are: (1) The attacker can deploy a malicious LED to illuminate the traffic
sign and a vehicle tracker to monitor the road section. (2) The attacker knows fixed parameters
of the victim vehicle’s camera: focal length, sensor size, image resolution, and frame rate, which
are obtainable from datasheets and reverse engineering [22, 25, 32, 49, 54]. For cameras with auto-
exposure, the attacker can model the relationship between exposure time and ambient light [25]. (3)
The attacker has either white-box or black-box access to the DNN used for traffic sign recognition.
White-box access includes knowledge of the DNN’s architecture and weights, while black-box
access involves only the executable DNN without internal information. Obtaining DNNs might
be harder but is assumed in all white-box [10, 13, 23, 30, 32, 60] and black-box [22, 25, 30, 32, 54]
attacks. It is possibly achievable through open codebases, reverse engineering, or social engineering.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2025.



Invisible Adversarial Stripes on Traffic Sign: Threat and Defense for Autonomous Vehicles 111:9

4.2 System Overview
We design two versions of GhostStripe, i.e., GhostStripe1 and GhostStripe2, with different require-
ments on the attack deployment to achieve untargeted and targeted stable attacks, respectively.
GhostStripe1 maintains stationary adversarial stripes within the victim FoV by calibrating the
LED flickering frequency and performs vehicle movement adaptation for real-time adjustment.
It achieves untargeted attack. On top of GhostStripe1, GhostStripe2 implements phase synchro-
nization to elimate the random offset 𝛿 . Therefore, the resulting adversarial stripe pattern remains
same as designed and misleads the victim to produce the target class 𝑘 . To achieve the phase
synchronization, GhostStripe2 requires to clamp a sensor called framing sniffer onto the victim
vehicle’s camera power wire to sense the framing moments. Therefore, it targets a specific victim
vehicle and controls the victim’s traffic sign recognition results.

During the offline attack preparation phase, the attacker designs an LED control signal 𝑓0 (𝑡) for a
minimum attack window 𝑡𝑎𝑡𝑡0 as described in Section 3.2. The workflow of GhostStripe during the
online attack execution phase is illustrated in Fig. 4. The vehicle tracker tracks the victim vehicle’s
real-time position and estimates the traffic sign’s position and dimension in the victim vehicle
camera’s FoV. In GhostStripe2, the framing sniffer senses the framing moments from the magnetic
emanation of the camera power wire. Both the vehicle tracker and framing sniffer continuously
transmit their sensing results to the LED controller. Whenever the LED controller receives a report
from either the vehicle tracker or the framing sniffer, it updates the attack signal and control
parameters. Specifically, it scales up 𝑓0 (𝑡) to have 𝑓 (𝑡) according to the traffic sign’s dimension
and also determines the three time windows for attack timing control as illustrated in Fig. 3d and
Section 3.2. The LED controller continuously replays the latest 𝑓 (𝑡) with attack timing control.

4.3 Attack Signal Optimization
This section describes the generation of the minumum LED control signal 𝑓0 (𝑡). To improve
the robustness of the attack, 𝑓0 (𝑡) is obtained by solving argmin𝑓0 (𝑡 ) E𝜙

[
ℓ (M(𝐼𝜙

𝑠𝑖𝑔𝑛
), 𝑘)

]
, where 𝜙

represents the uncontrollable offset in terms of the number of scanlines; 𝐼𝜙
𝑠𝑖𝑔𝑛

(𝑢, 𝑣) = 𝐼𝑠𝑖𝑔𝑛,𝑎𝑚𝑏 (𝑢, 𝑣) +
𝐼𝑠𝑖𝑔𝑛,𝑎𝑡𝑡 (𝑢, 𝑣) ·𝑔(𝑣+𝜙) is the image cropout containing the traffic sign; 𝐼𝑠𝑖𝑔𝑛,𝑎𝑚𝑏 (𝑢, 𝑣) and 𝐼𝑠𝑖𝑔𝑛,𝑎𝑡𝑡 (𝑢, 𝑣)
are the corresponding image cropouts from 𝐼𝑎𝑚𝑏 (𝑢, 𝑣) and 𝐼𝑎𝑡𝑡 (𝑢, 𝑣) defined in Section 2.1. For
GhostStripe1, since there is no control on the offset, we sample 𝜙 uniformly from [0, 𝑁𝑠𝑖𝑔𝑛] to
evaluate the mathematical expectation of the objective function; for GhostStripe2, as the phase
synchronization can largely reduce the offset, we sample 𝜙 uniformly from a narrow range of
[−0.1𝑁𝑠𝑖𝑔𝑛, 0.1𝑁𝑠𝑖𝑔𝑛], where the multiplier 0.1 is empirically chosen.
White-box optimization. Since the analytical model of the rolling shutter as described in

§2.1 is differentiable, 𝑓0 (𝑡) can be obtained by gradient-based methods. We use Projected Gradient
Descent (PGD) [31], which iteratively perturbs input data towards maximizing the loss function
while maintaining the perturbations within a bounded range, i.e., 𝑓0 (𝑡) ∈ [0, 1]. By iteratively
adjusting the 𝑓0 (𝑡) based on the attainable internal gradients, PGD can efficiently optimize the 𝑓0 (𝑡)
against the victim model.
Black-box optimization. We implement Bayesian Optimization (BO) [36, 38], which is a

strategy for global optimization of black-box functions. It involves a Bayesian statistical model and
an acquisition function. The statistical model generates a Bayesian posterior probability distribution
to approximate the objective function, updated with each new query. Subsequently, this posterior
distribution is utilized to construct the acquisition function, determining the next query point.
With black-box access, we query the model with attacked images 𝐼 (𝑢, 𝑣), and obtain prediction
classes and confidence outputs. This allows BO to iteratively refine 𝑓0 (𝑡) based on the model’s
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Fig. 5. Estimation of the traffic sign’s vertical position and size in the captured image.

responses. Since BO is suitable for problems in low cardinality (typically, lower than 30), we reduce
the cardinality of 𝑓0 (𝑡) by restructuring each color channel 𝑓 𝑐0 (𝑡) as a vector of length 𝑞. Each
element lasts for a time period 𝑡𝑎𝑡𝑡0/𝑞. This limits BO’s search space dimension to 3 × 𝑞 for the
three color channels of 𝑓 (𝑡). In terms of perturbation appearance, the final perturbation consists of
𝑞 stripes with equal vertical length, in contrast to the stripes in the white-box setting that are on a
scanline-wise basis. In our implementation, we experimentally choose 𝑞 from 5 to 10 and use the
one that yields the best attack effectiveness.

4.4 Locating Traffic Sign in Camera FoV
This section presents the approach to estimating the traffic sign’s vertical position and size in
the victim vehicle camera’s FoV based on the prospective projection model. Fig. 5a shows an ego
coordinate system originating from the victim camera’s optical center. The 𝑋 - and 𝑌 -axes define
the camera sensor plane, and the 𝑍 -axis is the optical axis perpendicular to it. Let (𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡 ) and
𝐻 denote the coordinates of the traffic sign’s center and the vertical dimension of the traffic sign,
respectively. 𝑍 𝑓 and ℎ𝑠 denote the victim camera’s focal length and the vertical sensor dimension.
From Fig. 5a, the traffic sign’s vertical position and size on the sensor plane are 𝑦𝑡 = 𝑍 𝑓

𝑌𝑡
𝑍𝑡

and
ℎ = 𝑍 𝑓

𝐻
𝑍𝑡
. With 𝑅𝑠 as the total number of camera scanlines, a unit length of the sensor plane’s

vertical dimension corresponds to 𝑅𝑠
ℎ𝑠

scanlines. Fig. 5b shows the sensor plane and the traffic sign’s
projection. The projection’s vertical size and position in scanlines are 𝑁𝑠𝑖𝑔𝑛 = ℎ

𝑅𝑠
ℎ𝑠

= 𝑍 𝑓
𝐻
𝑍𝑡

𝑅𝑠
ℎ𝑠

and
𝑁𝑢𝑝 = 1

2𝑅𝑠 − 𝑦𝑡
𝑅𝑠
ℎ𝑠

− 1
2𝑁𝑠𝑖𝑔𝑛 = 1

2𝑅𝑠 − (𝑌𝑡 + 1
2𝐻 ) 𝑍𝑓 𝑅𝑠

𝑍𝑡ℎ𝑠
. The values of 𝑍 𝑓 , ℎ𝑠 , and 𝑅𝑠 are available from

the camera’s datasheet; the traffic sign size 𝐻 can be measured by the attacker.
From above, to estimate 𝑁𝑠𝑖𝑔𝑛 and 𝑁𝑢𝑝 , the attacker needs to obtain 𝑌𝑡 and 𝑍𝑡 . If the road section

is flat, 𝑌𝑡 is the altitude difference between the traffic sign and the vehicle camera. The traffic sign’s
altitude can be measured by the attacker; the vehicle camera’s altitude can be obtained from the
vehicle specification or measured by the attacker. 𝑍𝑡 is the horizontal distance between the victim
vehicle and the traffic sign, which can be obtained by localizing the victim vehicle in real time. With
𝑍𝑡 , the updated 𝑁𝑠𝑖𝑔𝑛 and 𝑁𝑢𝑝 are used for vehicle movement adaptation. The victim camera’s pitch
angle and road gradient can be obtained from specification or measurement, and can be factored in
when determining 𝑌𝑡 .

4.5 Phase Synchronization
This section presents how GhostStripe2 senses the victim camera’s framing moments to achieve
phase synchronization. The internal operations of a camera may create variations in the camera’s
current draw and the resulting magnetic emanation.We investigate whether the emanation provides
salient characteristics for inferring framing moments. To sense the magnetic emanation, as shown
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Fig. 6. Framing sniffer and measurement traces.

in Fig. 6a, we integrate a YHDC SCT-006 split-core current transducer with a 330Ω resistor and
sample the voltage over the resistor using an Arduino Due. The current transducer is clamped onto
the camera’s power wire. The current in the wire generates a magnetic field concentrated at the
magnetic split-core, which further induces a secondary current in the winding and then a voltage
over the resistor. Fig. 6b shows the measurement trace for the Leopard Imaging AR023ZWDR
camera, which is the camera product in Baidu Apollo’s hardware reference design [7]. We can see
periodic time-domain spikes with intervals about 𝑇𝑓 𝑟𝑎𝑚𝑒 . Fig. 6b also shows the power spectral
densities (PSDs) of the measurement trace. The highest PSD peak appears at the camera’s frame
rate. Fig. 6c presents the measurement trace and PSD for another camera (Arducam AR1820HS),
revealing a similar pattern. These results suggest that the time-domain spikes may be indicative of
framing moments. The sniffer uses a threshold to detect the time-domain spikes. Upon detecting a
spike, the sniffer transmits a packet to the LED controller via two Nordic nRF24L01+ transceivers
operating in the 2.4GHz ISM band, which then prompts the replay of the light signals upon packet
detection. By cross-validation across two AR023ZWDR cameras, we show that the sniffed time-
domain spikes can be used to synchronize the LED with the camera’s framing moment with proper
profiling. Details including the synchronization validation can be found in our prior work [17].

5 Evaluation
We evaluate GhostStripe’s attack effectiveness by testing it against the camera on a moving vehicle
in the outdoor testbed. Throughout this section, we use the abbreviation GS to refer to GhostStripe.

5.1 Testbed Setups
Outdoor testbed:We use Leopard Imaging AR023ZWDR as the victim camera, which is the default
main camera in Baidu Apollo’s hardware reference design [7]. It is built upon the ONSEMI AR023Z
rolling shutter image sensor with a size of 5.78mm × 3.26mm, 1928 × 1088 active pixels. Each
scanline has a readout time 𝑡𝑟𝑜 of 30 𝜇s. Its focal length is 12mm. We use a real road section and a
real car, as shown in Fig. 7a. We deploy most common traffic signs [2] including “stop”, “yield”, and
“speed limit” with size and altitude conforming to the Manual on Uniform Traffic Control Devices
(MUCTD) [6]. To evaluate the impact of traffic sign textures, we also include a “stop” sign coated
with a highly reflective sheeting. We mount the victim camera under the front windshield of the
car. The sign-car distance for the camera to perceive the whole sign is from 10m to 32m.
Lab testbed:We also build a lab testbed in 1:10 scale as shown in Fig. 7b to isolate the impact

of uncontrollable environment factors and provide better understanding of the impacts of several
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Fig. 7. Testbed setups.

factors on GS. The total length of the testbed is 3.6m. To control ambient illumination condition,
we set up two studio lamps with tunable intensity to project light onto the testbed. The color
temperature of the lamps is 5600 K, which is similar to normal sunlight. In addition to the four
common signs described above, which use red as their primary color, we include two additional
signs with more diverse colors, i.e., “priority road” (yellow) and “ahead only” (blue). In addition to
the AR023ZWDR camera, we also include an Arducam AR1820HS for lab testing. The AR1820HS is
built on the ONSEMI AR1820HS rolling shutter sensor, which measures 6.14mm × 4.60mm and
contains 4912× 3864 active pixels. We test it under the 1920× 1080 resolution mode, which supports
a typical frame rate of 29 FPS. The scanline readout time is 𝑡𝑟𝑜 = 27 𝜇s. We equip this camera with
lenses of different focal lengths (3.9mm, 6mm, 12.5mm and 25mm).

Traffic sign recognition models. We integrate the YOLO object detector [41] and an AlexNet-
based 8-layer convolutional neural network traffic sign classifier. We train the classifier on the
German Traffic Sign Recognition Benchmark (GTSRB) dataset [46]. The trained model achieves a
95.35% accuracy on the GTSRB testing set. When tested on video frames taken for the signs deployed
in our testbeds without attack, it achieves 100% accuracy across various camera poses, distances,
and illumination conditions considered in our experiments. To evaluate the attack generality and
transferability across different victim models, we also employ a ResNet-based classifier, which
achieves 97.24% accuracy on the GTSRB testing set and 100% accuracy on our collected attack-free
data.

GhostStripe Implementation.We implement GhostStripe by following the workflow presented
in Section 4.2. The replay of a given 𝑓 (𝑡) is implemented by pulse-width modulation (PWM) for
the LED’s power supply using an Arduino Due. We integrate 30 Marktech XM-L RGB LED units to
emit the attack light. We implement an essential victim vehicle localization function based on a
LightWare SF30/C LiDAR rangefinder placed the road side. More details on the LED driver and the
vehicle tracker can be found in our prior work [17].

5.2 Evaluation Metrics & Baselines
We use the following metrics to characterize attack effectiveness: (1) Misclassification rate (MR):
The ratio of frames where the traffic sign is incorrectly identified, divided by the total number of
frames. (2) Primary misclassification class rate (PMCR): The primary misclassification class is
defined as the most frequently misclassified class when GS1 is deployed, or the targeted class when
GS2 is deployed. PMCR is the ratio of frames where the traffic sign is misclassified as the primary
misclassification class to the total number of frames. (3) Entropy: We employ Shannon entropy to
quantify the randomness of classification results within a time window. In this section, we compute
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the entropy values within 1.5 s time windows, adopted from the window size for decision making
used in Baidu Apollo’s traffic light recognition. Lower entropy values signify increased stability in
classification results.

We employ the following baseline attack approaches: (1) Random: Employs randomly appearing
colored stripes. (2) Primitive [44]: Generates the colored stripes with an offset-robust design which
is also used in GS1 as described in Section 4.3, without timing control for stable attack. (3) GS2-still:
A variant of GS2 designed for a specific victim location without vehicle movement adaptation, used
to assess the impact of vehicle movement adaptation on attack performance.

5.3 Evaluation on Outdoor Testbed
5.3.1 Impact on detection. We assess GS’s impact on traffic sign detection (i.e., the step prior
to classification). We measure the Intersection over Union (IoU) between detection results with
and without attack at different vehicle-sign distances, as shown in Fig 9. The detector achieves
consistently high IoU of around 0.94 during the GS attack. When using these detection results to
select cropouts from clean images when the attack is temporarily switched off, all cropouts are
correctly classified. Thus, GS has negligible impact on the traffic sign detector.

5.3.2 Overall attack performance. We evaluate GS against a moving vehicle using the most rep-
resentative sign “stop” as an example. In this subsection, the attack is based on 𝑡𝑒𝑥𝑝 = 1/1000 s.
During the offline attack optimization phase, Random rarely deviates classification results from
the ground truth. With Primitive and GS1 which share the same attack signals optimized for the
entire offset range, the untargeted attack succeeds at 87.2% in the white-box setting and 81.1% in
the black-box setting. For GS2, we choose the “priority road” sign as the target class. GS2 achieves
100% targeted attack success rate in both white-box and black-box settings.
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Fig. 10. Comparison between GS1 and GS2.

Then, we test the attacks on the testbed during normal daytime hours (9 am to 5 pm) under partly
cloudy weather conditions. The vehicle drives along the road at around 10, km/h, recording video
footage containing the traffic sign under attack. Fig. 8 summarizes the overall attack performances.
Random is ineffective, with both MR and PMCR nearly zero. Primitive achieves a mean MR of 54.5%
and PMCR of 22.4%, but with a high mean entropy of 2.55, indicating unstable classification results
within each 1.5, s window due to varied stripe patterns on the sign cropout across frames.

Both GS1 and GS2 perform effectively, regardless of whether they are generated with white-box
or black-box (indicated as “WB” and “BB” in Fig. 8, respectively) DNN knowledge. GS2 exhibits
the highest performance in targeted attacks, achieving mean PMCRs of 83.2% under the white-
box setting, and 82.4% under the black-box setting. Here the PMCRs of white-box setting show
more variation than black-box setting. This is likely due to the varying testing conditions across
trials. While the white-box attack requires more information, its main benefit lies in optimization
efficiency. After successful training, white-box attack is not necessarily more effective than black-
box at runtime, as effectiveness depends on testing conditions. GS1 demonstrates a high success
rate in untargeted attacks, with mean and median MRs of 81.5% and 96.8% under the white-box
setting and 73.4% and 88.7% under the black-box setting. Note that the primary misclassification
class in GS1 may vary across trials as different perturbation offsets may result in different classes.
Although the PMCRs of GS1 hover at around 50%, which are lower than GS2, they are still higher
than other methods. The relatively low PMCR of GS1 compared with GS2 is explained as follows.
During the GS1’s offline attack signal optimization, the vertical offset 𝜙 is sampled from a wide
range. As such, adjacent offsets may not result in the same class. Consequently, at runtime, when
slight misalignments occur between the designed stripes and the sign cropout in the victim FoV,
the misclassification results may vary. However, the relatively stable stripe pattern in GS1 still
contributes to overall attack stability, as indicated by the slight entropy increase compared with
GS2.

We also compare GS1 and GS2 in Fig. 10. For GS2, the minimum MR and PMCR, and maximum
mean entropy are 89.5%, 56.6%, and 1.28. On GS1’s cumulative distribution function (CDF) curves,
the corresponding probabilities are 49%, 65%, and 83%, as illustrated in Fig. 10b and 10c. The
interpretation of these results are as follows. In terms of MR, GS1 performs no worse than GS2 in
100% − 49% = 51% cases for spoofing traffic sign to any other class during one run. In terms of
PMCR, GS1 performs no worse than GS2 in 100% − 65% = 35% cases for spoofing traffic sign to a
primary misclassification class during one run, although this class is not controllable. In terms of
entropy within each time window, GS1 performs no worse than GS2 in 83% cases.

GS2-still achieves 48.2% mean MR, 35.3% PMCR, and 0.50 mean entropy. The performance drop
compared with GS2 is because when the stripes fall on the traffic sign in the FoV, the attack is
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Fig. 11. Example of attack results on the consecutive frames when the vehicle passes the road section.

30 25 20 15 10
distance to sign (m)

0.2
0.4
0.6
0.8
1.0

ra
tio

MR PMCR

Fig. 12. Impact of sign-vehicle distance.

10 20 30
speed (km/h)

0.6

1.0

m
ea
n
PM

CR

PMCR entropy

0

1

m
ea
n
en
tro

py

Fig. 13. Impact of victim vehicle’s speed.

targeted; otherwise, the results are unpredictable. This shows the benefit of continuous vehicle
tracking and movement adaptation, for enhancing attack effectiveness compared with a static
attack targeting a specific position.

5.3.3 Visualization of attack effectiveness. We illustrate the attack effectiveness of the attack results
by drawing the classification results when the vehicle drives through the road section, as shown in
Fig. 11. GS1-median and GS2-median denote the result traces in the runs where GS1’s and GS2’s
PMCRs are around their respective median levels. GS1-best and GS2-best denote the best result
traces of GS1 and GS2 in all runs. Both GS1 and GS2 achieve relatively stable attack effectiveness.
In the best cases, GS1 and GS2 can achieve attack success rates of over 94% and 97%, respectively,
in misleading the victim to the primary misclassification class stably. In contrast, baseline attack
methods show ineffectiveness and/or result randomness.

5.3.4 Impact of distance. We use GS2 to understand the impact of the distance between the sign and
moving vehicle on the attack effectiveness. We divide the road section into 22 one-meter segments
and calculating the metrics for each. Fig. 12 shows the results. When the camera first perceives the
sign, MR reaches 77.6% while PMCR is 46.7%. As the vehicle approaches the sign, both MR and
PMCR increase, exceeding 97% and 80% within 25 meters. The decrease in attack effectiveness at
greater distances is likely due to reduced attack light intensity. Additionally, at greater distances,
the smaller 𝑁𝑠𝑖𝑔𝑛 makes the stripes on the sign more vague due to the reduced time difference
between the exposure of adjacent vertical portions, causing the light signal to affect these portions
more similarly. The performance degradation may be mitigated by increasing attack light intensity.
Besides, perception results closer to the sign may be more critical for driving decisions, as newer
perception results may override earlier ones.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2025.



111:16 Dongfang Guo, Yuting Wu, Yimin Dai, Pengfei Zhou, Xin Lou, and Rui Tan.

Table 1. GS1’s effectiveness on most common traffic signs.

Original MR
White-box Black-box

Stop 89.8% 81.9%
Yield 54.8% 0%

Speed limit 30km/h 92.3% 73.3%
Speed limit 80km/h 75.0% 70.8%

5.3.5 Impact of movement speed. We use GS2 to study the impact of vehicle movement speed
on the attack effectiveness. We test with speeds at around 10, 20, and 30 km/h, separately. Fig. 13
shows the mean PMCR and entropy vesus vehicle speed. We do not observe noticeable relationship
between the attack performance and speed.

5.3.6 Sign classes & white/black-box attack. We evaluate the feasibility of GS against different
groundtruth and targeted classes in a stationary setting at a sign-camera distance of 16m. We select
the most common signs, including “stop”, “yield” and “speed limit” [2]. Table 1 lists the overall
attack effectiveness of GS1 on these traffic signs. Table 2 lists the target classes that are semantically
conflicting with white-box PMCRs over 60% in GS2. The target classes for GS2 are not arbitrary for
each original sign due to the constraints of the perturbations’ stripy forms. The results show that it
is possible for the attacker to design specific attack scenarios (e.g., speed-up attack, sudden-braking
attack, sign-ignoring attack) against the victim according to the expected attack consequence.

We also examine the relationship between inter-class similarity and target class feasibility. Table 2
lists and ranks the target classes confidences achieved from the victim model’s output when the
original sign is attack-free and correctly classified. The attack-free confidences of each target
class can then be a representation of the inter-class similarity in the latent space extracted by the
victim model. The higher the attack-free confidence, the more similar the target class is towards
the original class. Table 2 ranks the target class confidences achieved from the victim model’s
output when the original sign is attack-free and correctly classified. These attack-free confidences
represent inter-class similarity in the latent space extracted by the victim model. Higher attack-
free confidence indicates greater similarity to the original class. Results show that the inter-class
similarity may be related to target class feasibility. For example, for all four original signs, the
most similar classes (ranked 2nd) are feasible targets. It is harder to compromise the “yield” sign,
likely due to its distinct inverted triangle shape different from others, as indicated by the very low
confidence across other classes (e.g., the ranked 2nd confidence is already as low as 4.7 × 10−17).
However, achieving high confidence or rank is not necessary for a feasible target class. This is
because the stripy perturbation significantly disturbs the original image, introducing substantial
variation in the features in the embedded space. The attacker can determine the feasible set of target
signs by training for each semantically-conflicting sign and select the applicable ones according to
the expected attack scenarios.
Table 2 also compares the attack effectiveness obtained under the white-box and black-box

settings. The training of a black-box attack is more challenging to converge to some targeted classes
than white-box attack. This is because the black-box attack faces more constraints such as stripe
widths and counts. However, it is still notably feasible as it achieves high attack success rates on
several targeted classes.

5.3.7 Attack transferability to unknown victim model. To study the dependency on the attacker’s
knowledge of the victim model, we evaluate attack transferability from a targeted victim model to
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Table 2. GS2’s effectiveness on most common traffic signs.

Original Target PMCR Attack-free confidence
White-box Black-box Rank Confidence

Speed limit 80km/h 100% 99.2% 2 6.9 × 10−3
Stop Speed limit 30km/h 99.1% 99.9% 4 2.1 × 10−5

Speed limit 20km/h 70.6% 71.7% 6 9.4 × 10−6
Right-of-way 96.6% 92.8% 8 4.6 × 10−6
Priority road 99.3% 98.9% 27 3.7 × 10−10

End of no passing 72.8% 22.4% 29 1.3 × 10−10
Yield

Priority road 97.3% 10.1% 2 4.7 × 10−17

Keep right 98.1% 99.6% 2 1.2 × 10−5
End of speed limit 80km/h 97.2% 97.5% 3 8.3 × 10−7

Speed limit 80km/h 100% 99.9% 4 2.2 × 10−7
Speed limit
30km/h

Speed limit 50km/h 96.0% 94.1% 5 1.2 × 10−7
End of speed and passing limits 96.8% 76.4% 7 3.6 × 10−9

Right-of-way 88.3% 20.2% 16 1.8 × 10−11
Speed limit 60km/h 84.0% 25.9% 18 1.3 × 10−11
End of no passing 88.5% 95.1% 20 8.2 × 10−12
Children crossing 97.4% 92.3% 24 8.9 × 10−13

No vehicle >3.5 tons 62.1% 64.3% 27 3.4 × 10−13
Speed limit 50km/h 96.9% 99.6% 2 2.2 × 10−3
Speed limit 30km/h 99.9% 100% 3 2.1 × 10−3
Speed limit 60km/h 91.2% 70.9% 4 2.3 × 10−5

Yield 86.2% 6.2% 7 5.6 × 10−7
Speed limit
80km/h

Speed limit 20km/h 98.6% 90.7% 11 3.4 × 10−7
No vehicles 74.6% 0% 12 3.3 × 10−7

End of Speed limit 80km/h 90.6% 90.3% 16 2.5 × 10−7
No passing 61.9% 9.1% 18 1.7 × 10−7
Keep right 95.5% 98.0% 19 1.3 × 10−7

Children crossing 94.9% 100% 21 3.6 × 10−8
Stop 99.6% 10.9% 22 2.4 × 10−8

Slippery road 72.7% 15.4% 28 3.9 × 10−9
Bicycles crossing 92.5% 9.6% 31 2.6 × 10−9
Narrows right 89.9% 60.4% 32 9.9 × 10−10

another model that is unknown and inaccessible to the attacker. Specifically, we test a ResNet-based
traffic sign classifier (inaccessible to the attacker) using the traffic sign cropouts collected in the
trials in Section 5.3.2, where the attacks were optimized on the AlexNet-based classifier. Fig. 14
shows the attack effectiveness on the known (blue) and unknown (red) victim classifiers. Both
MR and PMCR decrease when the victim model is unknown to the attacker, as indicated by the
overall drops in the red boxes. Interestingly, while the transferability of GS2 drops significantly
in both metrics, GS1 maintains relatively higher effectiveness. This difference is mainly due to
their optimization strategies and runtime settings. GS2 is optimized for a specific target class and
operates within a restricted range of offsets, making it harder to achieve the targeted attack when
transferred to an unknown model. In contrast, GS1 allows arbitrary offsets and resulting classes
under a non-targeted optimization strategy, providing greater flexibility to achieve untargeted
attacks at random offsets and thus exhibiting better transferability to an unknown model. These
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Fig. 14. Attack transferability to unknown victim classifier.
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Fig. 15. Impact of traffic sign texture.

results suggest that GS1 is more feasible when the victim model is unknown and inaccessible to the
attacker.

5.3.8 Impact of traffic sign texture. Traffic signs may have different plate surface textures (e.g.,
matte-printed stickers and reflective sheeting) [20, 33]. To investigate the effect of a traffic sign’s
surface reflectivity on attack performance, we compare two types of “stop” signs: a matte sign
without reflective coating and one with reflective sheeting. We collect traffic sign cropouts while
deploying GS2 at various distances in a stationary setup, alternating between the two sign textures.
Fig. 15 shows the attack effectiveness against the two textures. Under relatively darker ambient
conditions, GS achieves similarly high effectiveness on both sign types. However, under brighter
conditions, GS’s effectiveness decreases more notably on the reflective sign as distance increases.
This reduction in effectiveness possibly arises from two factors. First, the reflective sign has a
more directional reflection characteristic, causing less attack illumination from the prototyped LED
(installed near the sign’s bottom edge) to reach the victim camera at greater distances. Second, with
bright ambient light, the reflective sign captures and reflects more ambient light, which increasingly
overwhelms the relatively dimmer attack illumination at larger distances. These findings suggest
that attacking highly reflective traffic signs may require stronger attack setups, such as spotlight
projections with higher intensity and reduced angles of incidence.

5.3.9 Effectiveness against anomaly detection. We conduct experiments to understand whether GS
can keep covert against an entropy-based anomaly detector. We design the detector by profiling the
entropy characteristics of the sign classifier on the GTSRB dataset. We generate pseudo-prediction
sequences and calculate entropy values in sliding windows of 45 frames. Fig. 16a shows the CDF of
the simulated entropy, which we use to indicate the entropy boundary without attack. In other
words, when using an entropy value as the detection threshold, the difference between 1 and the
corresponding CDF is likely representative of the false detection rate, which characterizes the
unnecessary troubleshooting overhead incurred to the human driver by the detection.
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Fig. 16. Entropy profiling for anomaly detection and attack opportunity against anomaly detection.

We assume the attack can bypass the anomaly detection only when all sliding windows have
entropy values smaller than the threshold. Otherwise, the anomaly may be detected by the system
to trigger the fail-safe mechanism. Fig. 16b shows the attack bypass rates under different false
detection rates on attack-free sequences for different methods. When the false detection rate is
less than 0.2%, GS2 achieves 73.3% bypass rate. When the false detection rate is 5.3% and 19.5%, the
bypass rate are around 30.3% and 13.4%. GS1 achieves bypass rates of 55.6%, 27.8%, and 4% when
the false detection rate is at 0.2%, 1% and 15%. On the contrary, other baselines can hardly bypass
the anomaly detection. Results show that GS has considerable opportunities to bypass the anomaly
detection due to its design to achieve stable attack.

5.4 Evaluation on Lab Testbed
We investigate the impacts of various factors on our lab testbed. In this subsection, unless otherwise
specified, we plan the attack based on a camera exposure time of 1/1000 s and sign-camera distance
of 2m on the testbed, which is equivalent to 20m in real world.

5.4.1 Exposure requirement. We use GS2 to test with exposure time 𝑡𝑒𝑥𝑝 ranging from 1/2000 s to
1/250 s at different sign-camera distances. As shown in Fig. 17a, when 𝑡𝑒𝑥𝑝 is small (i.e., ≤ 1/750 s),
the PMCR is always high across a range of sign-camera distance. When 𝑡𝑒𝑥𝑝 = 1/500 s in Fig. 17b, the
PMCR is high when the equivalent sign-camera distance is shorter than 17.5m.When 𝑡𝑒𝑥𝑝 = 1/250 s
in Fig. 17c, the targeted attack fails at any distance as PMCR is always zero, and MR only remains
high within short distances. This is because when 𝑡𝑒𝑥𝑝 is larger, adjacent scanlines have a larger
ratio of time overlaps being exposed. With larger 𝑡𝑒𝑥𝑝 or smaller 𝑁𝑠𝑖𝑔𝑛 , the colored stripes in a
perturbation become more vague and thus less effective. These results suggest that GS requires
short 𝑡𝑒𝑥𝑝 (e.g., <1/500 s on AR023ZWDR) at the vehicle camera to ensure successful attacks along
a long distance. As autonomous vehicles are highly motion-involved, to freeze the rapid changes in
the surrounding environment, a short 𝑡𝑒𝑥𝑝 less than 1/500 s is usually required to avoid motion
blur [1]. Thus, the exposure requirement does not impede GS.

5.4.2 Impact of exposure estimation bias. We use GS2 to study the tolerance to exposure estimation
bias. We prepare the attacks for different exposure times 𝑡𝑒𝑥𝑝 , i.e., 1/750 s, 1/1000 s, 1/1500 s, and
1/2000 s. Then, we test them with different actual 𝑡𝑒𝑥𝑝 on the victim camera. Fig. 18 shows the
PMCR under exposure estimation bias. All four attack exposure settings perform well within wide
ranges of the actual exposure, showing the robust attack effectiveness against exposure bias. The
exposure bias can affect the differences between the desired and actual perturbation sharpness,
size and the overall image brightness. First, when the actual 𝑡𝑒𝑥𝑝 is larger than 1/500 s, the attack
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Fig. 17. Effectiveness vs. sign-camera distance under different 𝑡𝑒𝑥𝑝 .
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PMCR is low due to the poor perturbation sharpness. Second, the perturbation size defined by the
duration attack window is affected by the bias in 𝑡𝑒𝑥𝑝 . When the actual 𝑡𝑒𝑥𝑝 is within the working
range (i.e., < 1/500 s), as the 𝑡𝑒𝑥𝑝 is already small, the introduced size error is usually small and
tolerable. Third, camera exposure affects the amount of input light, resulting in differences in image
brightness between training data and run-time images. Large mismatches in exposure may cause
large brightness difference and reduce the attack effectiveness.

5.4.3 Impact of lighting conditions. As it is hard to control the ambient light outdoors, we use
controllable light sources indoors to study the relationship between the attack performance and
lighting conditions. We use two studio lamps to change the ambient light level to mimic differ-
ent light levels outdoors. Fig. 19 shows the attack effectiveness under different ambient lighting
conditions measured on the traffic signs with reference to outdoor conditions [47]. With stronger
ambient light, the attack performance decreases. This degradation occurs because the attack light
is overwhelmed by the ambient light. Therefore, with brighter ambient light, the attack light needs
higher power. Besides, this suggests that the attacker may need to consider the time and location
when planning the attack, e.g., avoid those where direct sunlight shines on the sign (usually over
100,000 lux). Note that in §5.3, we have demonstrated the attack effectiveness of GS under normal
daytime ambient light conditions.

5.4.4 More results on another victim classifier & sign colors. We evaluate the feasibility and gener-
ality of GS by testing it with another victim classifier and additional traffic sign classes featuring
different colors. Specifically, we use a ResNet-based classifier as the victim model and include
another two representative traffic signs, “priority road” and “ahead only”, which have yellow and
blue as their primary colors, respectively. Table 3 summarizes the attack effectiveness against the
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Table 3. GS’s effectiveness against ResNet-based classifier & different sign colors.

Original MR for GS1 Target of GS2 PMCR for GS2
WB BB WB BB

Stop 100% 99.2%

Priority road 100% 0%
Speed limit 30km/h 93.2% 36.9%

Double curve 90.7% 86.5%
Speed limit 20km/h 63.2% 0%

Yield 27.3% 0% Speed limit 30km/h 97.8% 0%
Priority road 91.4% 0%

Speed limit 30km/h 71.6% 36.7%

Stop 100% 85.8%
Speed limit 70km/h 100% 100%
Speed limit 80km/h 95.8% 100%

Priority road 93.4% 96.6%
No vehicles 81.0% 85.8%

Speed limit 50km/h 75.7% 30.5%
Go straight or right 74.1% 43.2%

Speed limit 80km/h 100% 80.8%
Speed limit 60km/h 100% 100%
Speed limit 50km/h 89.6% 98.4%
Speed limit 30km/h 78.1% 0%

Priority road 82.7% 70.5%
Stop 100% 90.5%

No entry 100% 100%
Bicycles crossing 99.3% 5.9%

Ahead only 91.5% 82.4%
Go straight or right 100% 83.2%
Turn right ahead 99.6% 94.1%
Children crossing 99.4% 0%

ResNet-based classifier and various traffic sign colors. The results demonstrate that GS is feasible
against different victim models and traffic sign colors.

5.4.5 Effectiveness against another camera & impact of focal length. We use the Arducam AR1820HS
mobile camera and GS2 to demonstrate attack effectiveness across different cameras and to study
the impact of camera focal length 𝑍 𝑓 . During the test, we switch the lens of the AR1820HS, using
focal lengths of 3.9mm, 6mm, 12.5mm and 25mm. Fig. 20 shows the PMCR under different focal
length settings. Beyond the Leopard Imaging AR023ZWDR evaluated earlier, GS remains effective
against the Arducam AR1820HS. However, the attack performance decreases as the focal length
becomes smaller. This is because a smaller 𝑍 𝑓 results in a smaller 𝑁sign, making the stripe patterns
less distinguishable, as discussed in the impact of distance in Section5.3.4. These results suggest
that cameras with larger focal lengths are more vulnerable to GS.

6 Countermeasures
In this section, we first propose GhostBuster, a software-based front-end add-on defense module
designed to detect threats from GhostStripe and restore clean traffic sign images from compro-
mised ones. Additionally, we discuss other possible countermeasures on the level of hardware and
autonomous driving system.

6.1 GhostBuster Design
Fig. 21 provides an overview of the GhostBuster’s defense strategy. GhostBuster acts as a front-end
add-on module for the traffic sign classifier and includes a perturbation detector and a sign restorer
to counteract GhostStripe. Under normal conditions, when no threat from GhostStripe is detected
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Fig. 21. GhostBuster’s defense pipeline.

by the perturbation detector, the traffic sign cropout is fed directly to the traffic sign classifier. If
the detector identifies a potential GhostStripe compromise, the traffic sign cropout is processed by
the sign restorer to eliminate the colorful and stripy perturbation before being sent to the classifier
for inference.

6.1.1 Perturbation detector. In this section, we explore two methods (i.e., image characteristic
analysis and deep learning) to detect GhostStripe’s perturbations in the traffic sign cropouts.

Pattern correlation-based detection.We propose a detection scheme by analyzing the special
image characteristic caused by GhostStripe. The workflow is shown in Fig. 22a. In the GhostStripe-
affected images, we observe that at the borders between adjacent color stripes, pixel values in
rows in the chroma channels (U and V in the YUV color model, as shown in Fig. 22a- 1○) exhibit
continuous ascending or descending trends. Then, we compute vertical differential images in both
up-down and down-up directions, and binarize these images by distinguishing between positive
and non-positive values, as shown in Fig. 22a- 2○. Note that we employ differential operation in
two vertical directions and keeping the positive values, rather than solely relying on one direction
and taking the absolute value. This is to mitigate noise (as shown as the scattered white points
in Fig. 22a- 2○) aggregation across the entire image when using the latter method. After that,
we perform a 1-D correlation along the vertical axis on the binarized differential images with a
horizontal all-1-row to detect the stripe boundaries, indicated as the white stripes in the correlation
results in Fig. 22a- 3○. In contrast, the chroma of an attack-free traffic sign is relatively uniform in
the vertical direction, and thus hardly generates stripy patterns after the processing, as shown in
Fig. 22b. By aggregating and thresholding the correlation results, the detector suggests that the
input sign cropout is compromised by GhostStripe or not.
Deep learning-based detection. Another possible way to detect the attack is to train a deep

learning-based classifier to distinguish the traffic signs compromised by GhostStripe. We employ a
convolution neural network, which comprises two convolutional layers, each followed by ReLU
activation and max-pooling operations. Subsequently, the feature maps are flattened and fed into
two fully connected layers, culminating in a final layer that produces binary class predictions,
inferring the input image is compromised by GhostStripe or not.

6.1.2 Sign restorer. The objective of the sign restorer is to remove GhostStripe-induced color
stripes from the traffic sign cropout, thereby reconstructing the natural appearance of the captured
traffic sign for classification. Although invisible in the real world, GhostStripe’s perturbations can
drastically distort the compromised traffic signs in captured images, making restoration challenging.
Therefore, we consider the restoration as an image-to-image translation problem, transforming
images with colorful and horizontally stripy distortions into relatively uniform images with limited
and natural colors and distinct sign contours.
We employ CycleGAN [61] as the restorer. CycleGAN uses a Generative Adversarial Network

(GAN) architecture designed for unpaired image-to-image translation. It employs two generator-
discriminator pairs: one for translating images from the source domain (GhostStripe-affected signs)
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Fig. 22. Pattern correlation-based perturbation detection.

to the target domain (clean signs), and another for the reverse translation. The network also uses
cycle-consistency loss to ensure that an image translated to the target domain and then back to the
source domain remains unchanged, preserving the structural integrity of the original image. This
dual GAN approach allows CycleGAN to learn the mapping between the two domains, maintaining
the underlying structure of the traffic sign while modifying the surface appearance to remove the
perturbations. Through this adversarial process, the generator learns to produce more realistic and
accurate restorations. The trained generator for translating from the source domain to the target
domain then serves as the restorer.

6.2 GhostBuster Implementation and Evaluation
6.2.1 Datasets. We use the following two datasets to train (or profile) and test the detector and
restorer in GhostBuster: (1) Synthesized dataset: We simulate GhostStripe-affected traffic signs
using attack-free traffic signs collected from our outdoor testbed. This is achieved by overlaying
various color stripes under different camera and attack settings, including varying camera exposure
rates, sign sizes in the images, and stripe counts. The dataset comprises 400 attack-free images and
400 GhostStripe-affected images, divided into training, validation, and testing subsets with ratios
of 60%, 20%, and 20%, respectively. The former two subsets are used for profiling the parameters in
pattern correlation-based detector, and training the deep-learning based detector and restorer. (2)
Real-world dataset: we also utilize traffic sign images collected from our real-road evaluation in
Section 5 as a real-world testing set.
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Table 4. Performance of the proposed attack detection methods.

Detection methods Synthesized Real-world
TPR FPR TPR FPR

Pattern correlation-based 96.6% 0% 95.9% 1.5%
Deep learning-based 100% 0% 73.8% 0%

6.2.2 Implementation and evaluation. Implementation of perturbation detectors. (1) For the
pattern correlation-based method, we empirically set the correlation output threshold at 0.85
and consider images compromised by GhostStripe if the total rows of detected stripes in the
four differential images exceed 10% of the image height. To mitigate the influence of “intrinsic
stripes” from long horizontal borders of some traffic signs, we discard the top and bottom 20% of the
correlation results. (2) For the deep learning-based method, we train the network with cross-entropy
loss and Adam optimizer at a learning rate of 10−3 for 10 epoches.
Implementation of sign restorer. We follow the implementation of CycleGAN [61] with a

generator architecture based on ResNet with 9 residual blocks, and a discriminator architecture
based on a 70 × 70 PatchGAN [21]. We train the CycleGAN with Adam optimizer with a initial
learning rate of 2 × 10−4 for 100 epoches, and linearly decaying learning rates to zero for another
100 epochs.

Performance of perturbation detectors. Table. 4 summarizes the performance of the detection
methods. On the synthesized dataset, the pattern correlation-based detection achieves a 96.6% true
positive rate (TPR) on GhostStripe-affected images and a 0% false positive rate (FPR) on attack-free
images. On the real-world outdoor testbed dataset, the TPR and FPR are 95.9% and 1.5%, respectively.
The deep learning-based detection achieves a 100% TPR and 0% FPR on the synthesized dataset.
However, when tested with real-world images, the TPR drops to 73.8%. The observed performance
disparity in deep learning-based method can be attributed to the inherent differences between
the synthesized training data and real-world scenarios. This shows the fundamental characteristic
of data-driven approaches: their efficacy is profoundly influenced by the representativeness of
the training data. However, collecting sufficient and diverse real-world data under various attack
conditions can be labor-intensive. The pattern correlation-basedmethod, on the other hand, captures
the underlying characteristics of the attack and demonstrates better generalizability in real-world
scenarios compared to the deep learning-based method. Therefore, we adopt the pattern correlation-
based one as our perturbation detector.
Performance of sign restorer. Fig. 23 illustrates the effects of the sign restorer. As shown

in Fig. 23a, the GhostStripe-induced distortion is significantly suppressed. When testing on real-
world images affected by GhostStripe perturbations that lead to misclassification, 70.8% of the
restored images were correctly classified as their original classes by the traffic sign classifier. While
the classifier’s performance is not fully recovered (likely due to minor residual distortions), this
demonstrates the restorer’s effectiveness in mitigating the impact of GhostStripe and enhancing
the recognizability of compromised traffic signs. Furthermore, to account for false positives from
the perturbation detector, we evaluated the restorer’s impact on real-world attack-free images. As
shown in Fig. 23b, the restorer only alters the color tint of the traffic sign, while the sign still appear
natural. When tested with the classifier, the restorer-processed clean images were 100% correctly
classified. This indicates that this minimal alteration did not affect the classifier’s ability to correctly
identify attack-free traffic signs, and the restorer preserves the integrity of already clean images.
Overall performance of GhostBuster. We test the overall performance of GhostBuster on

the frame sequences collected in the driving trials in Section 5. We execute GhostBuster across
all the frames, i.e., run the pattern correlation-based detector, restore the clean sign from the
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GS-affected sign Restored

(a) GS-affected sign.

Clean sign Restorer-processed

(b) Attack-free sign.

Fig. 23. The processing effect of the restorer on GhostStripe-affected and attack-free traffic signs.
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Fig. 24. Comparisons of GhostStripe’s effectiveness on real-world trials with and without GhostBuster.
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Fig. 25. Latencies of GhostBuster on Jetson Orin.

perturbation-detected frames, and check the classification results on the GhostBuster-rectified
frame sequences. Fig. 24 compares the MR and PMCR with and without GhostBuster. Results show
that GhostBuster can largely reduce the attack effectiveness of GhostStripe. For example, in 5.8% of
the trials, the MR is 0 (100% correct classification and GhostStripe are totally defensed); in 27.4%
and 52.9% of the trials, the MR is less than 10% and 20%, respectively. Future work improving the
restorer’s performance (e.g., improving the image-to-image translation model/training process,
generating more representative training datasets) will be meaningful.

Computational overhead of GhostBuster. We implement GhostBuster on an NVIDIA Jetson
AGX Orin at a 50 W power setting, which is commonly used as a central computing platform on
autonomous vehicles. Fig. 25 presents the latency measurements of GhostBuster’s two modules.
The pattern correlation-based perturbation detector has a mean latency of 7.7ms. Given a typical
camera frame rate of 30 FPS (i.e., frame interval of 33ms), the detector supports real-time processing
at 30 FPS. It can be executed regularly (i.e., every few frames or even per frame), when a traffic
sign is detected and needs to be recognized. The sign restorer requires more time, with a mean
latency of 16.7ms. When the presence of GhostStripe is detected, the total time overhead for
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running both modules is 24.4ms. Upon detecting GhostStripe, the autonomous driving system
can alert the human driver. Before the driver takes over, the sign restorer temporarily recovers
the clean traffic sign for recognition, allowing the vehicle to continue autonomous operation.
Because a traffic sign’s meaning remains constant, the restorer can be executed every few frames
to conserve computational resources. This strategy allows GhostBuster to counter the threat
without exhausting computational resources, while still engaging a human driver when necessary.
Additional measures, such as selecting appropriate computing hardware and further optimizing the
defense implementation, can also be employed to ensure GhostBuster meets real-time requirements.

6.3 Other Hardware/System-level Enhancement
There are several other countermeasures that may be applied to counteract the GhostStripe attack.

Camera exposure mechanism. A straightforward way is to replace the widely used rolling
shutter cameras by global shutter cameras. Another countermeasure is to shuffle or randomize
the sequence of scanline exposure [16, 48], which spreads the attack pattern to various scanlines
different from the desired perturbation. However, such countermeasures impose new requirements
and extra costs on the manufacturers of autonomous vehicles and cameras, and may not be feasible
for all autonomous vehicles.

System-level redundancy.Multi-camera coordination may help mitigate the attack effect. Since
GhostStripe targets a single camera, it is usually ineffective against other cameras with different
specifications. However, many autonomous vehicle systems use hierarchical camera coordination.
For instance, Baidu Apollo prioritizes the telephoto camera for traffic light recognition and uses
a wide-angle camera as a backup [5]. In this case, attackers can still focus on the main camera.
This strategy is further supported by results in Section 5.4.5, which reveal that telephoto cameras
(with larger focal lengths) are more vulnerable to GhostStripe. Another countermeasure is using
High-Definition (HD) maps to assist traffic sign perception, providing semantics and locations of
traffic signs. However, creating, updating, and scaling HD maps and labeling all traffic signs is
costly and time-consuming [4], reducing the desirability of this approach. Moreover, maps may not
cover all areas, and may not adapt to changes in traffic signs due to ad hoc construction or special
events.

7 Attack against Traffic Sign Detector
Whilewe focus on compromising the traffic sign classifier in this paper, we also explore GhostStripe’s
attack effectiveness against the front-end traffic sign detector, abbreviated as GS-D. We use the
YOLOv5s object detector [24] as the victim detector model and “stop” as the sign to be compromised.

7.1 Attack Vector Optimization
The overall design against the detector is similar to the one against the classifier, despite the
differences in the attack vector optimization. The optimization workflow is summarized in Fig. 26.
In GS-D, one more step is to overlay the compromised traffic sign in the FoV as the victim model
input, and uses a different loss function. Specifically, we collect the attack-free camera FoV 𝐼𝑓 𝑜𝑣,𝑎𝑚𝑏

when the victim camera approaches the attack-free traffic sign. Then, we use the victim detector
to detect the groundtruth location (𝑢𝑠𝑖𝑔𝑛, 𝑣𝑠𝑖𝑔𝑛), width and height (𝑊𝑠𝑖𝑔𝑛, 𝑁𝑠𝑖𝑔𝑛) of the traffic sign
𝐼𝑠𝑖𝑔𝑛,𝑎𝑚𝑏 within each attack-free FoV 𝐼𝑓 𝑜𝑣,𝑎𝑚𝑏 . Each 𝐼𝑠𝑖𝑔𝑛,𝑎𝑚𝑏 cropout undergoes a brightness en-
hancement process to mimic the effect of full-intensity LED lighting, transforming it into 𝐼𝑠𝑖𝑔𝑛,𝑓 𝑢𝑙𝑙 ,
to obtain the synthesized 𝐼𝑠𝑖𝑔𝑛,𝑎𝑡𝑡 by substracting 𝐼𝑠𝑖𝑔𝑛,𝑓 𝑢𝑙𝑙 by 𝐼𝑠𝑖𝑔𝑛,𝑎𝑚𝑏 . We follow the training pro-
cedure described in Section 4.3 to optimize the 𝑓0 (𝑡). In each training frame, according to the
actual 𝑁𝑠𝑖𝑔𝑛 , the 𝑓0 (𝑡) will be upscaled to 𝑓 (𝑡) and simulate the compromised traffic sign 𝐼

𝜙

𝑠𝑖𝑔𝑛
.
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Fig. 26. Workflow of attack optimization against traffic sign detector.

Subsequently, within each FoV image 𝐼𝑓 𝑜𝑣,𝑎𝑚𝑏 , the attack-free traffic sign is replaced by the compro-
mised version. This is achieved by overlaying 𝐼𝜙

𝑠𝑖𝑔𝑛
onto the corresponding region within 𝐼𝑓 𝑜𝑣,𝑎𝑚𝑏

at the ground truth location (𝑢𝑠𝑖𝑔𝑛, 𝑣𝑠𝑖𝑔𝑛). The resulting image, denoted as 𝐼𝜙
𝑓 𝑜𝑣

, represents the
FoV under attack, and is fed into the detector for attack optimization. The optimization goal is
to jointly decrease the class and Intersection over Union (IoU) prediction performance of the de-
tector, by solving argmax𝑓0 (𝑡 ) E𝜙

[
ℓ𝑐𝑙𝑠 (D(𝐼𝜙

𝑓 𝑜𝑣
), 𝑗) × ℓ𝑜𝑏 𝑗 (D(𝐼𝜙

𝑓 𝑜𝑣
),𝑈 )

]
, where D(·) is the detector,

𝑗 is the groundtruth class, 𝑈 is the groundtruth IoU, ℓ𝑐𝑙𝑠 (D(𝐼 (𝑢, 𝑣)), 𝑗) is the classification loss
for the groundtruth class 𝑗 , ℓ𝑜𝑏 𝑗 (D(𝐼 (𝑢, 𝑣)),𝑈 ) is the objectness loss (IoU prediction loss) for the
groundtruth IoU, when the detector is fed with 𝐼 (𝑢, 𝑣).

7.2 Proof-of-Concept Evaluation
We evaluate GhostStripe against the detector in simulation using GS2 under a white-box setting. We
prepare attack vectors for different victim camera exposure times. The testing data is synthesized
from video clips (different from the training data) taken by the victim camera approaching the
traffic sign, following the process described in Section 7.1 and Fig. 26. We use the default confidence
threshold in YOLOv5s (0.25) for successful detection. We define the attack success rate (ASR) of
GS-D as the ratio of frames where the traffic sign is not successfully detected under attack to the
total frames.
Fig. 27a presents the ASR of GS-D against the detector at different exposure rate. The overall

attack effectiveness of GS-D is lower than GhostStripe against the classifier. In Fig. 27b, we also
visualize the attack results across frames when the camera approaches the traffic sign. The impact
of distance shows a similar trend with the classifier as discussed in Section 5.3.4, as the attack is
more effective at shorter distances. Besides, the shorter the exposure time, the more effective the
attack. This is because when 𝑡𝑒𝑥𝑝 is larger, adjacent scanlines have a larger ratio of time overlaps
being exposed. With larger 𝑡𝑒𝑥𝑝 or smaller 𝑁𝑠𝑖𝑔𝑛 (due to longer distance), the colored stripes become
more vague and thus less effective. Compared to GS against the classifier, GS-D requires shorter
𝑡𝑒𝑥𝑝 and distance to be effective. This further indicates that spoofing the detector on the global FoV
input requires more prominent perturbations (sharper stripes) on the traffic sign.
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Fig. 27. Results on GS-D.

8 Limitations and Discussions
Physical access for sniffer installation. The requirement of physical access for sniffer installation
may limit GhostStripe2’s opportunity. A determined adversary could potentially obtain the physical
access by collaborating with an auto-care provider for installation. Alternatively, attackers may
resort to GhostStripe1 for untargeted attacks. Exploring real-time remote sensing or eavesdropping
for camera operation is an interesting future work direction.

Attacker’s prior knowledge of the victim vehicle. Although Section 5.3.7 shows that GS1 can
transfer attack effectiveness to an inaccessible victim DNN, it remains preferable for the attacker
to have black-box access or white-box knowledge to carry out more controllable and efficient
attacks. GhostStripe requires knowledge of the victim camera’s parameters, which can typically be
obtained through datasheets or reverse engineering. However, if such specifications are unavailable,
it becomes challenging for GhostStripe to launch effective attacks, as the system customizes the
light signal modulation based on the camera’s operation.
Attack practicability under different conditions. Our prototype achieves similar scales as

prior works [10, 22, 54] and show high attack chances. For longer ranges and stronger ambient
light conditions, the attacker may need to adopt brighter LEDs and more efficient light projection
setups. For very high victim vehicle speed, the system latencies (e.g., from vehicle tracker and
camera sniffer to the LED controller) may need to be further reduced.
Autonomous driving system-level evaluation. It is interesting to understand whether the

misled traffic sign recognition results, which may not be fully stable, can lead to safety incidents.
Simulations are likely the safest method to study this. However, to the best of our knowledge,
publicly available driving agents only handle traffic lights, not traffic signs sensed at run time. Future
work addressing this gap, which requires the construction of a full-fledged publicly accessible
driving agent, is meaningful.

Other car-borne cameras. In the real-road implementation, we evaluate the Leopard Imaging
AR023ZWDR camera because it is the default main camera used in Baidu Apollo autonomous
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driving system [7] and the only one used for vehicles. We also demonstrate the attack on the
Arducam AR1820HS camera in Section 5.4.5, further supporting the generality of the attack across
rolling shutter cameras. Evaluating the proposed attack against more car-borne cameras is of great
interest.
GhostBuster’s false alarms due to unintentional light interference. Flickering ambient

light can also induce RSE and produce color stripes in the camera’s FoV, potentially triggering false
alarms in GhostBuster’s perturbation detector. However, it has been revealed that unintentional
RSE stripes may also degrade image-based recognition [29]. Therefore, GhostBuster may also help
enhance the reliability of traffic sign recognition under such cases. Note that in our urban site
survey, we have not observed RSE stripes on traffic signs induced by flickering road lights. In rare
scenarios where ambient flickering lights do interfere with imaging, front-end de-striping methods
or stripe-robust perception models may be needed to maintain normal perception functionality,
and prevent frequent execution of GhostBuster’s restorer.

GhostBuster’s effectiveness against other types of attacks. GhostBuster is designed specif-
ically to defend against the GhostStripe attack. Its design assumes colored stripy perturbations
applied to traffic signs. As a result, GhostBuster is mainly effective against GhostStripe (and possibly
other attacks that create similar stripe-based perturbations, e.g., through projection or translucent
films). While its detect-and-recover principle may inspire broader defenses, GhostBuster is not
a universal solution to all adversarial perturbations. Future work may extend this framework to
more physical adversarial attacks with different perturbation characteristics.

9 Conclusion
This paper presents GhostStripe, an attack system that exploits the RSE of CMOS cameras to
generate adversarial stripes that mislead traffic sign recognition in autonomous vehicles. To achieve
a stable attack, GhostStripe controls the timing of the LED’s modulated light emission to adapt to
the camera’s operations and the victim vehicle’s movement. In our experiments, we demonstrate
that GhostStripe can consistently spoof traffic sign recognition, producing semantically conflicting
results across consecutive frames. Such attacks could trigger life-threatening consequences for the
victim vehicle and its surrounding environment. To counteract this attack, we propose GhostBuster,
a defense module designed to detect and mitigate the threats posed by GhostStripe. Additionally,
we discuss other potential countermeasures at the levels of camera sensor and autonomous driving
system.
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