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ABSTRACT
Closed-form continuous-time (CFC) neural networks have superior

expressivity in modeling time series data compared with recurrent

neural networks. CFC’s lower training and inference overheads

also make it appealing for microcontroller-based platforms. This

paper proposes FedCFC, which advances CFC from the centralized

learning setting to the federated learning paradigm. FedCFC fea-

tures a novel and communication-efficient aggregation strategy

to address the problem of class distribution skews across clients’

training data. The strategy is designed based on a new empirical

property of CFC identified in this paper, i.e., involatility of a sub-

network of CFC with respect to training data’s class distribution.

Extensive evaluation based on multiple time series datasets shows

that FedCFC achieves higher or similar accuracy with 7.6× to 11×
reduction in communication overhead, compared with recent feder-

ated learning approaches designed to address the class distribution

skew problem. Implementations of FedCFC on four microcontroller

platforms show its portability to low-end computing devices with

256kB memory and even less.

KEYWORDS
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1 INTRODUCTION
Deep neural networks have been increasingly used to model and

process time series data at the Internet-of-Things (IoT) devices. Ex-

amples include inertial data processing for activity recognition [15]

and navigation [52], radar data processing for object detection [25],

as well as physiological signal analysis [37]. However, the feedfor-

ward neural networks (FNNs) that have been widely used today

do not model the time dimension explicitly. For instance, a neuron

in a multilayer perceptron (MLP) models the relationship between

the input and output of a biological neuron in the steady state,

but does not model its dynamic transient behavior between two

steady states. Recurrent neural networks (RNNs) use feedback to

develop network-level dynamics and thus show better performance

in modeling time series data. However, as RNNs assume discrete

time steps with a fixed time interval, they require heuristic data pre-

processing (e.g., up/down-sampling and interpolation) to address

the deviations from the assumption, such as varied sampling rate

and irregular sampling.

This paper considers continuous-time neural networks (CT-NNs)

[49] that have neuron-level dynamics for time series data modeling

and processing at the IoT devices. Specifically, a neuron’s behavior
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is modeled by an ordinary differential equation (ODE) with con-

tinuous time as an independent and explicit variable. As the ODE

contains learnable parameters, the neuron can adjust its internal dy-

namics during the training of the CT-NN. In addition, as CT-NN also

supports network-level feedback, it can learn the dynamics in the

time series data through the synergy between the neuron-level and

network-level dynamics. Thus, CT-NNs have shown better model

expressivity than RNNs [12]. Moreover, due to CT-NNs’ continuous-

time formulation, they can operate on any timestamped time series

data without imposing the requirement of regular sampling with a

fixed sampling interval.

Despite the above advantages, CT-NNs have a speed bottleneck

that has been hindering its applications. Specifically, as most ODEs

have no closed-form solutions, forwarding a CT-NN in general

needs to use a numerical ODE solver that incurs compute overhead

proportional to the number of steps dividing the time dimension. En-

couragingly, a recent study [11] obtains a closed-form approximate

solution to the ODE used by a class of CT-NNs called liquid time
constant (LTC) neural networks [12]. It also designs a closed-form
continuous-time (CFC) neural network based on three FNN modules

to approximate the closed-form solution while preserving explicit

consideration of continuous time, in that the CFC network jointly

processes the time series data and the associated timestamps. For-

warding a CFC has a compute overhead proportional to the length

of the input time series, which is typically one to three orders lower

than those of ODE solvers.

CFC is promising for addressing two system challenges faced

by the implementations of machine learning algorithms/models at

resource-constrained IoT devices. First, its native ability to process

any timestamped time series data addresses various system issues,

including data intermittency due to hardware/software faults or

application nature (e.g., occlusion in object tracking), sampling

interval jitters due to uncertain operating system delays [26], and

varied sampling rates across different IoT devices. Second, CFC’s

superior model expressivity implies smaller memory footprint for a

certain accuracy level, thereby reducing the resource usage of model

training and making on-device learning readily implementable.

By combining these two strengths, CFC can process local time

series data in real time directly on the IoT devices, which is critical

for applications that require immediate responses, such as early

detection of anomalies in industry machines’ operations.

In this paper, we aim to advance CFC from the centralized learn-

ing setting [11] to the federated learning (FL) paradigm thatmatches

the decentralized nature of IoT systems. FL builds a neural network

that can model the data distributed on the clients and has a desirable

privacy-preserving feature of retaining the raw data at the clients.

However, the existing FL approaches incur high computational and

communication overheads. A preliminary study [34] shows that FL
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can cause two orders of magnitude more carbon emissions than

centralized learning. CFC offers the following direct advantages in

reducing FL’s overheads. First, owing to the lower resource require-

ments of CFC training, we may push the frontier of FL applications

from the high-end edge devices (e.g., smartphones) to low-end

IoT devices based on microcontroller units (MCUs). Second, CFC’s

smaller model size reduces FL’s communication overhead. Note that

FL can be applied under the continual learning setting to update

the IoT devices’ models with new data distributed on these devices.

If the devices are battery-based (e.g., wearable sensors), the model

update computation can be scheduled during the charging cycles.

This paper considers a practical setting that has challenged FL

designs, i.e., the clients’ data are not independent and identically

distributed (non-IID). This can be observed in many IoT sensing

applications. For instance, in a human activity recognition applica-

tion, the distribution of the inertial data samples among the activity

classes generally varies with the user. Such class distribution skews

can lead to substantial oscillations in the loss trajectory and slow

down the convergence when the vanilla FL aggregation strategy

FedAvg [27] is adopted. This paper presents a new FL design based

on CFC, called FedCFC, for the non-IID setting. It is based on a

key observation that, one of the three CFC’s FNN modules learns

task-wide common pattern and is involatile to the training data’s

class distribution. Therefore, we limit the scope of FL to this FNN

module only and leave the other two FNN modules unfederated

to capture personal patterns. This design effectively balances the

needs of capturing commonality and retaining personality under

the non-IID setting. Moreover, we propose a novel geometric aggre-

gation strategy called fBind, in which only the loss gradient with

respect to the last layer of the selected FNN module is exchanged.

This further reduces the communication overhead.

The main contributions of this paper are summarized as follows:

• Our benchmark study identifies the involatility of a key mod-

ule of CFC with respect to the class distribution of training

data. Based on the involatility, we design FedCFC to federate

the key module only, with a new geometric aggregation algo-

rithm fBind to efficiently address the non-IID data problem.

• Evaluation shows that the FedCFC with fBind outperforms

the FedCFC variants using aggregation strategies of FedAvg

[27], FedProx [23], and SCAFFOLD [18], where the latter two

were designed for the non-IID setting. On three time series

datasets, FedCFC achieves higher or similar accuracy with

7.6× to 14× reduction in communication overhead, compared

with LotteryFL [22] and BalanceFL [44].

• Our implementations of FedCFC with communication mod-

ule on four MCU-based platforms show its less than 256 kB

memory footprint and thus its portability to low-end devices.

Code is released at https://github.com/hhhddyy/FedCFC

Paper organization: §2 presents background. §3 presents bench-

marks for CFC, which provide insights into FedCFC design. §4, §5,

and §6 present design, evaluation, and on-device experiments of

FedCFC. §7 discusses several issues. §8 concludes this paper.

2 BACKGROUND
This section presents the related work in §2.1 and then the prelimi-

naries about LTC [12] and CFC [11] in §2.2.

2.1 Related Work
2.1.1 On-device training. While on-device training capability is

essential to federated learning and continual learning, it is challeng-

ing for resource-constrained IoT devices. MDLdroid [53] manages

model structures and learning process to achieve on-device training

on smartphones with gigabytes dynamic random access memory

(DRAM). However, typical MCUs have limited static random ac-

cess memory (SRAM), in the range of 10
0
kB to 10

3
kB. Therefore,

on-device training on MCUs is challenging. A survey [40] reviews

the research works by 2022 on various machine learning topics for

MCU-class hardware, including feature engineering, model design,

and on-device training. It points out that the existing on-device

training studies either consider high-end edge devices such as Rasp-

berry Pi or simply limit the training to a few layers to meet the

resource constraints. Later, the work [24] achieves on-device cen-

tralized training with 256 kB memory. This work will show that,

with CFC, on-device FL with 256 kB SRAM can be achieved.

2.1.2 Federated learning. After the introduction of the vanilla FL

strategy FedAvg [27], research attempts to address various practi-

cal factors affecting FL performance. The first category of research

works deals with computation and networking issues of FL. For

instance, the work [16] aims at reducing computation and commu-

nication overheads of FL with edge computing clients. The work

[35] aims at increasing FL’s robustness to straggler clients.

The second category of studies addresses the issues of global
class imbalance and/or local class skews. The former refers to the

non-uniform class distribution of all the data in the FL system. The

latter refers to that the clients’ class distributions are distinct, which

is often referred to as the non-IID data problem. Local class skews in

general imply global class imbalance. The works [6, 48] only address

global class imbalance. Approaches addressing the local class skews

problem in FL can be classified as data-centric, system-centric, and
personalized. Data-centric approaches [5, 14, 44] apply mechanisms

like data sharing between clients, data augmentation to enrich

local data diversity, or local data self-balancing. Client clustering

[33] is a typical system-centric approach, which selects similar

clients to form federation. However, data-centric and system-centric

approaches often require excessive communication and storage,

making their implementations on resource-constrained devices

challenging. Personalized FL, as surveyed in [45], addresses local

class imbalance, often via either adapting a global model trained

by FL to the local dataset (e.g., [8]) or applying specific designs of

aggregating heterogeneous local models (e.g., [22]). However, the

existing personalized FL approaches are in general not designed for

MCU-class hardware. This paper exploits a key property of CFC to

design a computation- and communication-efficient personalized

FL approach that can work on MCU-class hardware.

The third category of studies addresses the FL clients’ data distri-

bution skews, i.e., the clients’ local datasets form different domains.

A recent work [51] reviews the existing approaches to this issue

and applies self-supervised learning to exploit unlabeled local data

to better manage the cross-client domain shifts.

2.2 Preliminaries on LTC and CFC Networks
The notation convention in this paper is as follows. Take the letter

x as an example. 𝑥 denotes a scalar; X denotes a set; x denotes

https://github.com/hhhddyy/FedCFC
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Eq. (1)

Eq. (2)

x(t)

Fig. 1: LTC network (left) and CFC network (right). The illus-
trated LTC has three presynaptic sources and two neurons.
The CFC network has two types of inputs, i.e., a vector i(𝑡)
and a scalar 𝑡 , and outputs a vector x(𝑡). Further processing
(e.g., by an MLP) can be applied on x(𝑡) to generate a label.

a column vector; x[𝑖 ] denotes the 𝑖th element of x; X denotes a

matrix; X[𝑖 ] denotes the 𝑖th row of X; X[𝑖, 𝑗] denotes the (𝑖, 𝑗)th
element of matrix X; ⊙ denotes Hadamard product.

An LTC of 𝑁 neurons with𝑀 inputs is declared by the following

system of linear ordinary differential equations (ODEs):

dx(𝑡)
d𝑡

= −𝝎 ⊙ x(𝑡) + s(𝑡), (1)

s(𝑡) = 𝜙 (x(𝑡), i(𝑡);W) ⊙ (a − x(𝑡)) , (2)

where 𝑡 ∈ R is continuous time; x(𝑡) ∈ R𝑁 is the hidden state of

the network; 𝝎 = [1/𝜏1, 1/𝜏2, . . . , 1/𝜏𝑁 ]⊺ ∈ R𝑁 with 𝜏𝑖 as a time

constant; the 𝑖th component of s(𝑡) ∈ R𝑁 represents a non-linear

integration of all inputs to the 𝑖th neuron; i(𝑡) ∈ R𝑀 is the input

signal; a ∈ R𝑁 is constant; 𝜙 (x(𝑡), i(𝑡);W) ∈ R𝑁 is a positive,

continuous, monotonically increasing and bounded nonlinearity

with learnable parametersW. For instance, if the tanh nonlin-

earity is adopted, the 𝑖th component of 𝜙 (x(𝑡), i(𝑡);W) can be

tanh

(
W[𝑖 ] · x(𝑡) + V[𝑖 ] · i(𝑡) + b[𝑖 ]

)
, where the (𝑖, 𝑗)th element of

the matrix W ∈ R𝑁×𝑁 is the weight of the directional link from

the 𝑗th neuron to the 𝑖th neuron; the (𝑖, 𝑘)th element of the matrix

V ∈ R𝑁×𝑀 is the weight of the directional link from the 𝑘th input

to the 𝑖th neuron; b ∈ R𝑁 is bias. Thus,W = {W,V, b}. When the

topology of the directed graph specified by W contains cycles, the

LTC is recurrent. LTC has a basis from biological neural systems. As

illustrated by the left part of Fig. 1, for the 𝑖th neuron, Eq. (1) char-

acterizes the dynamics of its membrane potential x[𝑖 ] (𝑡) given its

synaptic current s[𝑖 ] (𝑡) [19, 20]; Eq. (2) describes the 𝑖th neuron’s

dendritic integration of its presynaptic sources to generate s[𝑖 ] (𝑡)
[19, 50]. The model is said to have liquid (i.e., varying) time con-

stant, because the system time constant varies with x(𝑡) and i(𝑡).
The system time constant is the reciprocal of the coefficient for the

term x(𝑡) in the ODE system specified by Eqs. (1) and (2). The time

constant’s liquidity improves the neural network’s expressivity

compared with those with fixed time constants [12].

As discussed in §1, the forwarding and training processes of a

CT-NN are slow. A recent work [11] obtains a closed-form approx-

imate solution with known approximation bounds to the scalar

version (i.e., 𝑁 = 1) of the ODE system in Eqs. (1) and (2): 𝑥 (𝑡) ≈
(𝑥 (0) − 𝑎)e−[𝜔+𝜙 (𝑖 (𝑡 ) ;W)]𝑡𝜙 (−𝑖 (𝑡);W) + 𝑎. The work [11] also

describes an algorithm to stack the scalar closed-form approximate

Table 1: Model size and test accuracy on sequential MNIST.

vRNN LSTM GRU bi-LSTM LTC CFC
Parameters 21k 82k 61k 164k 23k 44k

mFPOs 73 293 220 587 \ 159

Accuracy 0.83 0.86 0.85 0.85 0.94 0.94

solutions for the 𝑁 dimensions of x(𝑡) to obtain a vector closed-

form approximate solution as follows:

x(𝑡) ≈ 𝜷 ⊙ e
−[𝝎+𝜙 (x(𝑡 ),i(𝑡 ) ;W)]𝑡 ⊙ 𝜙 (−x(𝑡),−i(𝑡);W) + 𝜶 , (3)

where 𝜶 ∈ R𝑁 and 𝜷 ∈ R𝑁 are constants. To facilitate the imple-

mentation of Eq. (3) using modern deep learning toolboxs (e.g., Py-

Torch), three FNNmodules, i.e., 𝑓 (x(𝑡), i(𝑡);W 𝑓 ),𝑔(x(𝑡), i(𝑡);W𝑔),
ℎ(x(𝑡), i(𝑡);Wℎ), are used to represent the following three terms

in Eq. (3), respectively: 𝝎 + 𝜙 (x(𝑡), i(𝑡);W), 𝜙 (−x(𝑡),−i(𝑡);W),
and 𝜶 . In the rest of this paper, these three FNNs are called 𝑓 , 𝑔, and

ℎ modules. In addition, the exponential decay in Eq. (3) is replaced

by a reversed sigmoid. Thus, the CFC is given by

x(𝑡) ≈𝜎 (−𝑓 (x(𝑡), i(𝑡);W 𝑓 )𝑡)⊙𝑔(x(𝑡), i(𝑡);W𝑔)+ℎ(x(𝑡), i(𝑡);Wℎ),
where 𝜎 (·) is a sigmoid satisfying 𝜎 (−∞) = 0 and 𝜎 (0) = 1. To

improve trainability, the three FNN modules 𝑓 , 𝑔, and ℎ share a few

feedforward layers called backbone network. The right part of Fig. 1
illustrates the structure of CFC.

3 CFC BENCHMARKS
In this section, we conduct benchmark experiments to show the fol-

lowing properties of CFC: better model expressivity within 256 kB

SRAM capacity, low training overhead on MCUs, robustness to

sampling rate variation and sampling irregularity. Moreover, we

show a new property of CFC, i.e., its 𝑓 module is involatile with

respect to the class distribution of the training data provided. The

results in this section form a basis to design FedCFC.

3.1 Basic Properties of CFC
3.1.1 Model expressivity. First, we provide a benchmark to com-

pare the expressivity of LTC/CFC and RNNs in terms of the model

size and achieved accuracy.We consider the following RNNs: vanilla

RNN (vRNN), long short-term memory (LSTM) network, gated re-

current unit (GRU) [4], and bi-directional LSTM (bi-LSTM) [10].

We consider the task of recognizing handwritten digits from the

sequential MNIST dataset [21], which is derived from the standard

MNIST dataset by flattening each 28 × 28 image sample into a 784-

length sequence. Thus, each time step in the sequence gives a single

pixel’s grayscale value. By presenting the pixels one by one in a

sequence, a model is trained to recognize the temporal patterns

of the ten digits and achieve a classification result at the end of

the sequence. This is different from using a convolutional neural

network (CNN) to recognize the spatial distribution at one shot.

Each of the vRNN, LSTM, GRU, and LTC has a total of 128 hidden

neurons. For CFC, each of its 𝑓 , 𝑔, and ℎ modules is an MLP with a

single 128-neuron hidden layer.

Table 1 presents the size, inference computation overhead per

forward pass measured in mega floating-point operations (mFPOs),

and achieved test accuracy of the compared models. Note that

LTC’s computation overhead is variable during the inference phase,
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(a) Test accuracy vs. on-device
training SRAM usage.

(b) On-device training time vs.
SRAM usage.

Fig. 2: On-device training overhead of CFC and CKCNN on a
Cortex-M7 MCU. We train the entire CFC from scratch but
only fine-tune the kernel MLP of CKCNN due to memory
constraint of the MCU.

depending on the internal operations of the ODE solver. Thus, it is

skipped in Table 1. We can see that the RNNs’ accuracy saturates

at about 85% when the model size increases from vRNN’s 21k to

bi-LSTM’s 164k. LTC and CFC improve the accuracy to 94%. CFC’s

model size and computation overhead are two to four times lower

than the advanced RNNs (i.e., LSTM, GRU, and bi-LSTM). Although

LTC’s model size is only half of CFC’s, LTC’s forwarding latency

is about 3.6× of CFC’s. If we use 32 bits to represent a parameter,

the net size of CFC is 88 kB. Typically, the actual SRAM usage of a

model implemented with TensorFlow Lite Micro is 2× to 2.5× of

the net model size [31]. Thus, CFC can fit into 256 kB SRAM, which

is a typical memory size of the MCUs used in tiny IoT devices [24].

3.1.2 On-device training overhead. On-device training capability
is essential to continual learning and federated learning. However,

on-device training often poses significant challenges for resource-

constrained IoT devices. This section provides a benchmark to

show the advantages of CFC for implementing on-device training,

through the comparison with the continuous kernel CNN (CKCNN)

proposed for sequential data processing [38]. We train CFC net-

works and CKCNNs on the Cortex-M7 core-based STM32H750XB

MCU with 2MB SRAM and a floating point unit (FPU) using the

TinyEngine [24]. Each parameter of CFC or CKCNN is represented

by a 16-bit floating point number. We use the sequential CIFAR10

dataset, which is derived from the standard CIFAR10 by flattening

each image sample into a pixel sequence. We vary the sizes of the

𝑓 , 𝑔, and ℎ modules to generate various CFC networks. Figs. 2a

and 2b show the CFC’s test accuracy and training times versus the

SRAM usage during the training. Training the entire CKCNN is

infeasible on the MCU due to limited SRAM. As a workaround, we

measure the overhead of CKCNN-based class-incremental learning.

Specifically, we pre-train the CKCNN on a workstation with data

in eight out of the ten classes of CIFAR10 and then fine-tune its

kernel MLP module on the MCU with data in the remaining two

classes. We vary the number of the MLP parameters fine-tuned to

obtain the different data points shown in Fig. 2a and 2b for CKCNN.

We can see that CFC achieves similar accuracy but with 3× and 2×
reduction in SRAM usage and time in on-device training.

3.1.3 Dealing with varied sampling rates. We consider the case

where the sampling rates of the training and test time series data

(a) Validation loss curves of mod-
els trained with 50Hz data and
tested with 30Hz data.

(b) Accuracy of models trained
with 50Hz data and tested with
50Hz, 30Hz, and 100Hz data.

Fig. 3: Impact of sampling rate variation.

are different. We use the UCI Human Activity Recognition (HAR)

dataset [1] capturing six activities with smartphone’s inertial mea-

surement unit (IMU) sampled at 50Hz. We compare CFC, LTC,

vRNN, Lipschitz RNN [12], phased LSTM [30], and another CT-

NN called ODE-Nets [3]. Lipschitz RNN and phased LSTM were

proposed to improve robustness against input perturbations and

mitigate the impact of time irregularity, respectively. We train these

models with the original training data sampled at 50Hz. In addition

to the original 50Hz test data, we create 30Hz and 100Hz test data

by averaging-based downsampling and cubic spline interpolation-

based upsampling, respectively. Each input sample i(𝑡) consists of
readings in 2.54 seconds. Fig. 3a shows the validation loss curves

of the models trained with 50Hz data and tested with 30Hz data.

The absence of sharp fluctuations for CFC and LTC suggests that

their training processes are stable. Fig. 3b shows the accuracy of the

models tested with the 50Hz, 30Hz, and 100Hz data. The CT-NNs

(i.e., CFC, LTC, and ODE-Nets) show superior robustness against

the sampling rate variations, due to their native capability of pro-

cessing the timestamps derived from the sampling rate. Moreover,

CFC and LTC outperform ODE-Nets.

3.1.4 Processing irregularly sampled data. We consider the case

where the sensor measurements in a trace are collected with irreg-

ular intervals. We use the UCI Air Quality (AQ) dataset [47] for air

pollution detection, electrocardiogram from PhysioNet dataset [17]

for heart attack detection, Bosch CNC Machining (CNC) dataset

[46] for machine anomaly detection. The data traces in these three

datasets are sampled with irregular intervals. The sampling in UCI

AQ and PhysioNet is event-triggered. The sampling intervals in

CNC are influenced by network latency. The sampling intervals

for these three datasets are at the scales of hours, minutes, and

seconds, respectively. CT-NNs (i.e., CFC, LTC, and ODE-Nets) take

the timestamps as a part of the input.

Table 2 shows the accuracy of the compared models on the

three datasets. CFC and LTC achieve better modeling accuracy.

If we use the average accuracy achieved by the three RNNs as

the baseline, CFC outperforms RNNs by 15%, 11%, and 3% on the

three datasets with hours-, minutes-, and seconds-level sampling

intervals. Thus, CT-NNs show greater advantage in addressing

longer irregular sampling intervals. This is because RNNs highly

rely on the correlation between consecutive samples, but such

correlation tends to decrease with the sampling interval.
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Table 2: Model accuracy on irregularly sampled data.

CFC LTC vRNN

Phased

LSTM

Lips

RNN

ODE

Nets

UCI AQ 0.794 0.787 0.687 0.694 0.697 0.764

PhysioNet 0.827 0.842 0.723 0.771 0.734 0.822

CNC 0.897 0.893 0.852 0.884 0.881 0.842

3.2 A New Property: 𝑓 Module Involatility
This section presents a new empirical property of CFC, i.e., 𝑓 mod-

ule’s involatility with respect to the class distribution of the training

data. In what follows, we first define a measure of volatility. Then,

we present the benchmark results.

3.2.1 Definitions. Denote an 𝐿-layer MLP trained with dataset

D by 𝜋 (·;WD ), where WD = {W1,W2, . . . ,W𝐿} and W𝑖 ∈
R𝑛𝑖−1×𝑛𝑖 is the weight matrix of the connection from the (𝑖 − 1)th
layer with 𝑛𝑖−1 neurons to the 𝑖th layer with 𝑛𝑖 neurons. Define

𝚷D =
∏𝐿
𝑙=1

W𝑙 . Let D1,D2, . . . ,D𝑃 denote 𝑃 partitions of D,

i.e.,

⋃𝑃
𝑝=1D𝑝 = D, where D𝑝 ∩ D𝑞 is unnecessarily empty. Let

Ψ(𝚷D𝑝 ) denote the subspace spanned by𝚷D𝑝 . We define principal
angle to measure the angular alignment between two subspaces.

Definition 1 (Principal angle). The angle between the subspaces

Ψ(𝚷D𝑝 ) andΨ(𝚷D𝑞 ) is denoted byΘ(𝚷D𝑝 ,𝚷D𝑞 ) = [𝜃1, 𝜃2, . . . , 𝜃𝑘 ],
where 𝑘 is the minimum between the dimensions of the two sub-

spaces; 0 ≤ 𝜃1 ≤ 𝜃2 ≤ · · · ≤ 𝜃𝑘 ≤ 90°. The 𝜃𝑖 is recursively

defined from 𝑖 = 1 to 𝑖 = 𝑘 by 𝜃𝑖 = arccos

( | ⟨u∗𝑖 ,v∗𝑖 ⟩ |
∥u∗
𝑖
∥ ∥v∗

𝑖
∥

)
and u∗

𝑖
, v∗
𝑖
=

argminu𝑖 ,v𝑖 arccos
(
| ⟨u𝑖 ,v𝑖 ⟩ |
∥u𝑖 ∥ ∥v𝑖 ∥

)
, where u1 and v1 are any column vec-

tors of 𝚷D𝑝 and 𝚷D𝑞 , respectively; for 𝑖 ∈ [2, 𝑘], u𝑖 ∈ Ψ(𝚷D𝑝 )
and v𝑖 ∈ Ψ(𝚷D𝑞 ) satisfy u𝑖 ⊥ u∗

𝑗
, v𝑖 ⊥ v∗

𝑗
, ∀𝑗 ∈ {1, . . . , 𝑖 − 1}. The

angle maxΘ(𝚷D𝑝 ,𝚷D𝑞 ) = 𝜃𝑘 is called principal angle.

Definition 2 ((𝜖, 𝜃 )-volatility). An MLP 𝜋 is (𝜖, 𝜃 )-volatile on

dataset partitions {D1,D2, . . . ,D𝑃 } if (1) sup∀𝑝,𝑞∈[1,𝑃 ] ∥𝜋 (1;WD𝑝 )−
𝜋 (1;WD𝑞 )∥∞ ≤ 𝜖 and (2) sup∀𝑝,𝑞∈[1,𝑃 ] maxΘ(𝚷D𝑝 ,𝚷D𝑞 ) ≤ 𝜃 .

The (𝜖, 𝜃 )-volatility measures the sensitivity of an MLP with

respect to the training data provided. Assume two MLPs, 𝜋𝐴 and

𝜋𝐵 , are (𝜖𝐴, 𝜃𝐴)-volatile and (𝜖𝐵, 𝜃𝐵)-volatile, respectively, on the

same training dataset. If 𝜖𝐴 ≥ 𝜖𝐵 and 𝜃𝐴 ≥ 𝜃𝐵 , we say 𝜋𝐴 is more

volatile than 𝜋𝐵 with respect to the training data provided.

3.2.2 Involatility of 𝑓 module. We compare the volatility of CFC’s

three FNN modules, 𝑓 , 𝑔, and ℎ, as well as other neural networks.

First, we check Condition (1) of Definition 2. It is introduced

in [29] to assess the stability of MLP during training. Now, we

show that the analytical counterparts of the 𝑓 and 𝑔 modules

satisfy Condition (1) with the same 𝜖 level, where the analyti-

cal counterpart of the ℎ module cannot find a certain 𝜖 to ensure

Condition (1). The analytical counterpart of 𝑓 in Eq. (3) is 𝝎 +
𝜙 (x(𝑡), i(𝑡);W). Thus, when trained on two dataset partitions D𝑝
andD𝑞 , we have ∥ 𝑓 (·;WD𝑝 )−𝑓 (·;WD𝑞 )∥∞ = ∥𝜙 (x(𝑡), ·;WD𝑝 )−
𝜙 (x(𝑡), ·;WD𝑞 )∥∞ ≤ 𝜙max − 𝜙min, where 𝜙max and 𝜙min are the

maximum and minimum values of the bounded nonlinearity 𝜙 (·).
Thus, as long as 𝜖 ≥ 𝜙max−𝜙min, Condition (1) is satisfied for 𝑓 . The

same holds for𝑔with an analytical counterpart of𝜙 (−x(𝑡),−i(𝑡);W)
in Eq. (3). Differently, the analytical counterpart of ℎ in Eq. (3) is
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𝜶 , which is a constant vector that best fits the given training data.

There is no known upper bound for ∥𝜶D𝑝 − 𝜶D𝑞 ∥∞.
Then, we conduct benchmark experiments to compare the prin-

cipal angles of the 𝑓 , 𝑔, and ℎ modules concerned in Condition (2)

of Definition 2. In particular, we focus on the volatility with respect

to the class distribution of training data. Specifically, the sets of

classes contained in the partitions D1, . . . ,D𝑃 are distinct. We use

the following three datasets: UCI-HAR [1], PPG-DaLiA [36], and

URBANSOUND8K [41]. UCI-HAR has been introduced in §3.1.3.

PPG-DaLiA includes photoplethysmography (PPG) data captured

by sensors strapped on chest. URBANSOUND8K includes acoustic

traces collected from different locations in urban areas. We use

the traces to infer their collection locations. From a dataset with 𝐾

classes, we create𝐶𝐾
2
partitions, where each partition contains data

in two classes. Then, we measure the principal angle between two

instances of a certain FNN module trained on any two partitions.

This generates 𝐶
𝐶𝐾
2

2
principal angles. Fig. 4 shows the distribution

of such 𝐶
𝐶𝐾
2

2
principal angles of each of 𝑓 , 𝑔, and ℎ. We can see

that the 𝑓 module has the smallest principal angles in any dataset.

This suggests that 𝑓 is less volatile than 𝑔 and ℎ. Empirically, the 𝑓

modules with sigmoid activation for the three datasets are (1, 33°)-,
(1, 38°)-, and (1, 42°)-volatile, respectively.

We also compare the volatility of CFC’s 𝑓 module and other

neural networks including CKCNN, vRNN, and GRU. As the (𝜖, 𝜃 )-
volatility is defined for MLP only and thus inapplicable to these
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other neural networks, we employ the more general principal com-

ponent analysis (PCA) on the model weights. Fig. 5 shows the

scatter plot of the 𝐶𝐾
2

instances of a certain neural network in

the space spanned by the first two PCA components. The higher

concentration degree of the 𝑓 instances suggests its less volatility

compared with other neural networks.

Lastly, we investigate whether the 𝑓 module remains involatile

across datasets. Definition 1 can be extended to the cross-dataset

case by drawing D𝑝 and D𝑞 from different datasets’ partitions.

We use four datasets: chest PPG and wrist PPG from PPG-DaLiA,

URBANSOUND8K, and UCI-HAR. Each dataset is divided into nine

partitions. Fig. 6(a) shows the principal angles between the 𝑓 in-

stances trained from any two chest PPG partitions, which serves as

a baseline. Figs. 6(b)-(d) shows the cross-dataset results. We can see

that the 𝑓 module is no longer involatile across datasets. Note that

the chest PPG and wrist PPG datasets are for the same downstream

application of heartbeat rate monitoring, but with domain shifts

due to different sensor placements. In the rest of this paper, we

focus on the situation of non-IID classes without domain shifts.

4 FEDERATED LEARNINGWITH CFC
4.1 Motivation
The basic properties of CFC shown in §3.1 suggest CFC’s advantages

on single IoT devices. A natural question next is whether we can

build an efficient FL system based on CFC for an IoT network. FL

well matches the distributed nature of IoT networks and possesses

a key advantage of retaining the training data at IoT devices, which

has a privacy-preserving implication. A well-designed FL system

can learn more versatile models, as it uses wider training data.

When the training data at each client is limited, FL can increase the

model accuracy substantially compared with the case where the

clients train their models independently.

However, the local class skews (i.e., non-IID data) problem [45]

has challenged efficient FL designs. The problem is formally stated

as follows. For a set of clients C, let D𝑐 = {(X𝑐 , 𝑌𝑐 )} denote client
𝑐’s local dataset, where 𝑐 ∈ C, X𝑐 is a data sample and 𝑌𝑐 is the

corresponding label. The D𝑐 can be viewed as a partition of the

global dataset D =
⋃
𝑐∈C D𝑐 . In this paper, we assume that the

conditional probability distribution 𝑃 (X𝑐 |𝑌𝑐 = 𝑦) is identical across
all clients. That is, the clients’ local datasets have no domain shifts.

The local class skews problem refers to that the prior probability dis-

tribution 𝑃 (𝑌𝑐 ) varies with 𝑐 . It impedes FL’s capability to let each

local model converge to the desired global optimal model that min-

imizes the loss function on D. This is because the losses computed

by the clients with their local datasets are distinct and therefore

the local model updates can be hardly harmonized. If the vanilla FL

strategy FedAvg is applied, oscillations in the global model updates

can be observed. Note that this paper only focuses on the local class

skews problem. Addressing domain shifts among multiple datasets,

though important as well, is often studied separately [26, 51]. Real

IoT systems usually face both problems. Efficient solutions to the

local class skews problem form a basis to achieve the ultimate goal

of addressing the two problems together.

While the existing studies have proposed various FL strategies

to deal with the local class skews as discussed in §2.1, the CFC 𝑓

module’s involatility with respect to 𝑃 (𝑌𝑐 ) offers an opportunity to

design a simple yet effective FL strategy. Specifically, the 𝑓 module

captures the task-wide pattern common across the non-IID dataset

partitions, while the 𝑔, ℎ modules capture the partition-specific

patterns. This separation inspires the basic idea of the proposed

FedCFC, i.e., we federate the 𝑓 modules learned by the clients, while

leaving other parts of CFC unfederated. This configuration offers

two advantages. First, the federated learning for 𝑓 can improve

its versatility while not facing significant oscillations supposedly,

since the local updates to 𝑓 are likely harmonized owing to 𝑓 ’s

involatility. Second, leaving the 𝑔 and ℎ unfederated allows the

local models to be personalized. Note that applying existing non-

IID FL strategies on 𝑔 and ℎ might bring some further accuracy

improvement. However, they also introduce more computation and

communication overheads, as shown in §5.

4.2 Approach Overview
A straw man solution is to apply FedAvg on the 𝑓 modules, which

is called FedCFC-fAvg in the rest of this paper. In each communi-

cation round of FedCFC-fAvg, the server disseminates the global

𝑓 module. Then, each client sends back the update. Although the

local 𝑓 modules across the clients with non-IID data are nearly

identical after the convergence of FedCFC-fAvg, they traverse dif-

ferent trajectories during the FL process. In this paper, we propose

a more efficient FL strategy called FedCFC-fBind, where “fBind”

refers to the strategy that explicitly binds the evolution trajectories

of the clients’ 𝑓 modules. Its efficiency is from two aspects. First,

it explicitly preserves the involatility of 𝑓 throughout the FL pro-

cess. This preservation aims at harmonizing the local updates to

𝑓 , speeding up the convergence. Second, different from FedCFC-

fAvg that exchanges the 𝑓 module between the server and client,

FedCFC-fBind only exchanges the gradient of the last layer of the

𝑓 module, reducing the communication overhead. In what follows,

we formalize the objective of FedCFC-fBind and then provide an

overview of its workflow.

LetW 𝑓
𝑐 ,W

𝑔
𝑐 , andWℎ

𝑐 denote the parameters of the 𝑓 , 𝑔, and

ℎ modules of client 𝑐’s CFC. DenoteW𝑐 = {W 𝑓
𝑐 ,W

𝑔
𝑐 ,Wℎ

𝑐 }. Let
𝐿(D𝑐 ,W𝑐 ) denote the cross-entropy loss at client 𝑐 . Each round of

FedCFC-fBind aims at addressing the following problem:

min

W𝑐 ,∀𝑐∈C

∑
∀𝑐∈C

𝐿(D𝑐 ,W𝑐 ) s.t. maxΘ(𝚷𝑓

D𝑝,𝚷
𝑓

D𝑞 ) ≤𝜃,∀𝑝, 𝑞 ∈C, (4)

where Θ(𝚷𝑓

D𝑝 ,𝚷
𝑓

D𝑞 ) is the principal angle between the 𝑓 modules

of any two clients 𝑝 and 𝑞. The constraint in Eq. (4) preserves the

involatility of the 𝑓 module. Although the 𝜃 in Eq. (4) can adopt

a setting according to the prior knowledge about the 𝑓 module’s

empirical (𝜖, 𝜃 )-volatility, it will not be needed in a Lagrangian re-

laxation of Eq. (4) solved by FedCFC-fBind, which will be presented

in §4.3 shortly. In each communication round of FedCFC-fBind, the

clients and server perform the following actions.

Client step: A client applies stochastic gradient descent (SGD)

to solve an unconstrained optimization problem relaxed from Eq. (4).

The relaxation uses regularization based on a common update direc-

tion (CUD) and a common update magnitude (CUM) received from

the server regarding the 𝑓 . This is called bound local updater. Then,
the client reports the local update direction (LUD) to the server.
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Fig. 7: Illustrations of the server and client steps. Server:
Given gradients from three clients, the server sets CUD to
be the direction𝜓 that maximizes the sum of cosine similar-
ities with the three client gradients, and CUM to be the aver-
age magnitude of the three gradients. Clients: The drawing
illustrates the trajectories of two clients in two communi-
cation rounds. The regularization penalizes direction devia-
tion from CUD and magnitude overstepping from CUM.

Server step: Based on the LUDs received from all the clients,

the server applies an optimization-based geometric aggregation

algorithm called bound updates aggregator to generate the next

CUD and CUM, and disseminates them to the clients.

Through iterating the above steps, the clients’ 𝑓 modules keep

aligned throughout the FL process. The next subsections present

the details of the client’s and server’s steps.

4.3 Client’s Bound Local Updater
Client 𝑐 applies SGD to update its 𝑓 , aiming to minimize the overall

loss 𝐿𝑐 = 𝑙𝑡 + 𝜆𝑑𝑅𝑑 + 𝜆𝑚𝑅𝑚 + 𝜆𝑎𝑅𝑎 , where 𝑙𝑡 is the loss of the

task (e.g., cross-entropy loss of classification task); 𝑅𝑑 , 𝑅𝑚 , and 𝑅𝑎
are three regularization terms presented below; the lambdas are

weights and hyperparameters. The above unconstrained optimiza-

tion encompasses the Lagrangian relaxation to Eq. (4). At the end of

the local update, client 𝑐 transmits the gradient of 𝐿𝑐 with respect

to the weights in the last layer of 𝑓 module, denoted by ∇𝑓 𝐿𝑐 , as
the LUD to the server.

The directional regularization term 𝑅𝑑 is the cosine distance

between ∇𝑓 𝑙𝑡 and CUD, i.e., 𝑅𝑑 = 1 − ∇𝑓 𝑙𝑡 ·CUD
∥∇𝑓 𝑙𝑡 ∥2 ∥CUD∥2 , where ∇𝑓 𝑙𝑡

is the gradient of 𝑙𝑡 with respect to the weights in the last layer of

module 𝑓 and the CUD is disseminated by the server in the last

round. Thus, 𝑅𝑑 encourages the directional alignment between the

local gradient update and the CUD suggested by the server.

The magnitudinous regularization term 𝑅𝑚 is given by 𝑅𝑚 =

max(0, ∥∇𝑓 𝑙𝑡 ∥2 − CUM), where the CUM is disseminated by the

server in the last round. Thus, 𝑅𝑚 encourages that the magnitude

of the local gradient update remains within CUM.

The 𝑅𝑑 and 𝑅𝑚 together bind all clients’ local gradient updates.

However, they may lead to widespread inactive neurons in the 𝑓

module. This can impede the convergence of the FL process. The

active regularization term 𝑅𝑎 is applied to increase the activity of

neurons. It is given by 𝑅𝑎 = Υ(W 𝑓
𝑐 )−𝜐, where𝜐 is a desired activity

threshold and Υ(W 𝑓
𝑐 ) is the mean activation of the neurons in the

module 𝑓 . Specifically, Υ(W) = min
𝐿
𝑖=1

max
𝑛𝑖
𝑗=1

𝑜𝑖 𝑗 , where 𝐿 is the

number of layers of the MLP 𝑓 , 𝑛𝑖 is the width of the 𝑖th layer, and

𝑜𝑖 𝑗 represents the output of the 𝑗th neuron of the 𝑖th layer. Note

that 𝜐 is a hyperparameter.

The right part of Fig. 7 illustrates the local updates at two clients

in two communication rounds, where the two dotted red arrows are

two CUDs and the two dashed circles are two CUMs received from

the server. Solid arrow and dash arrow represent the unregularized

and regularized local updates.

4.4 Server’s Bound Updates Aggregator
The aggregator running at the server determines CUM and CUD

based on the LUDs received from all clients, i.e., {∇𝑓 𝐿𝑐 |𝑐 ∈ C}. The
aggregator aims to harmonize the clients’ local updates. The CUM

is determined by CUM = 1

|C |
∑
𝑐∈C ∥∇𝑓 𝐿𝑐 ∥2. We aim to find a CUD

to maximize the overall cosine similarity between the CUD and the

LUDs, i.e., CUD = argmax𝝍
∑
𝑐∈C

∇𝑓 𝐿𝑐 ·𝝍
∥∇𝑓 𝐿𝑐 ∥2 ∥𝝍 ∥2 . This is illustrated

by the left part of Fig. 7. As it is non-convex optimization, gradient-

based methods can be easily stuck at local optimums.

We approach the above problem in a Hilbert space. Specifically,

we minimize the distance between the CUD and the centroid of the

LUDs in the Hilbert space, which is convex. As a result, the key is to

find the mapping function from the gradient space (denoted by G)
to the Hilbert space (denoted by H). In what follows, we present a

corollary, which is an application of the Moore Aronszajn Theorem

[2] to our context and will be used to develop the solution to the

original CUD determination problem.

Corollary 1. For any mapping Γ : G → H, there exists a kernel
function 𝜅 (·, ·) defined on domain G × G such that the Hilbert-space

distance



 1

|C |
∑
∀𝑐∈C Γ

(
∇𝑓 𝐿𝑐

)
− Γ (𝝍)




2
H

= tr(AB), where A =[
A1 ∈ R |C |×|C | A2 ∈ R |C |×1
A3 ∈ R1×|C | 𝜅 (𝝍, 𝝍)

]
,B ∈ R( |C |+1)×( |C |+1) ,A1 [𝑖, 𝑗] =

𝜅 (∇𝑓 𝐿𝑖 ,∇𝑓 𝐿𝑗 ), A2 [𝑖, 1] = 𝜅 (∇𝑓 𝐿𝑖 , 𝝍), A3 [1, 𝑗] = 𝜅 (𝝍,∇𝑓 𝐿𝑗 ),

B[𝑖, 𝑗] =


1

|C |2 if 𝑖 ≤ |C|, 𝑗 ≤ |C|;
1 if 𝑖 > |C|, 𝑗 > |C|;
− 2

|C | otherwise.

Proof. Let ⟨·, ·⟩H denote the inner product operation defining

H. The Moore Aronszajn theorem [2] states that ∀(x, x′) ∈ G × G,
∀Γ, ∃𝜅, such that 𝜅 (x, x′) = ⟨Γ(x), Γ(x′)⟩H. Therefore, we have


 1

|C |
∑
∈C Γ(∇𝑓 𝐿𝑐 )−Γ(𝝍)




2
H
= 1

|C |2
∑
∀𝑝,𝑞∈C ⟨Γ(∇𝑓 𝐿𝑝 ), Γ(∇𝑓 𝐿𝑞)⟩+

⟨Γ(𝝍), Γ(𝝍)⟩− 2

|C |
∑
∀𝑐∈C
⟨Γ(∇𝑓 𝐿𝑐 ), Γ(𝝍)⟩

(*)

= 1

|C |2
∑

∀𝑝,𝑞∈C
𝜅 (∇𝑓 𝐿𝑝 ,∇𝑓 𝐿𝑞)+

𝜅 (𝝍, 𝝍)− 2

|C |
∑
∀𝑐∈C 𝜅 (∇𝑓 𝐿𝑐 , 𝝍)

(†)

= tr(AB), where the step marked

by (*) follows the Moore Aronszajn theorem. □

Now, we discuss how Corollary 1 is related to the original objec-

tive of maximizing the overall cosine similarity between the CUD

and the LUDs. Cosine similarity is a type of kernel function. If 𝜅 (·, ·)
in Corollary 1 satisfies that𝜅 (x, x′) is a constant (which holds for the
cosine similarity kernel 𝜅 (x, x′) = x·x′

∥x∥ ∥x′ ∥ ), from the step marked

by (†), we have argmax𝝍
∑
∀𝑐∈C 𝜅 (∇𝑓 𝐿𝑐 , 𝝍) = argmin𝝍 tr(AB),

where the left-hand side of the above equation is a more general

form of the original objective. However, argmin𝝍 tr(AB) for any
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Algorithm 1: FedCFC-fBind
Data: Local datasets D𝑐 , ∀𝑐 ∈ C
Result: Local CFC modelsW𝑐 = {W 𝑓

𝑐 ,W
𝑔
𝑐 ,Wℎ

𝑐 }, ∀𝑐 ∈ C
Configuration: Learning rate 𝜂; regularization weights 𝜆𝑑 ,

𝜆𝑚 , 𝜆𝑎 ; neuron activation threshold 𝜐

while not converged do
server: disseminates CUD and CUM to clients

for each client 𝑐 in parallel do
Compute task loss 𝑙𝑡 and gradients ∇𝑓 𝑙𝑡 , ∇𝑔𝑙𝑡 , ∇ℎ𝑙𝑡
W𝑔
𝑐 ←W

𝑔
𝑐 − 𝜂 ¤∇𝑔𝑙𝑡 , Wℎ

𝑐 ←Wℎ
𝑐 − 𝜂 ¤∇ℎ𝑙𝑡

𝑅𝑑 ← 1 − ∇𝑓 𝑙𝑡 ·CUD
∥∇𝑓 𝑙𝑡 ∥2 ∥CUD∥2 , 𝑅𝑎 ← Υ(W 𝑓

𝑐 ) − 𝜐
𝑅𝑚 ← max(0, ∥∇𝑓 𝑙𝑡 ∥2 − CUM)
𝐿𝑐 ← 𝑙𝑡 + 𝜆𝑑𝑅𝑑 + 𝜆𝑚𝑅𝑚 + 𝜆𝑎𝑅𝑎 and compute ∇𝑓 𝐿𝑐
W 𝑓
𝑐 ←W

𝑓
𝑐 − 𝜂 ¤∇𝑓 𝐿𝑐

Upload ∇𝑓 𝐿𝑐 to server

server: CUM← 1

|C |
∑
𝑐∈C ∥∇𝑓 𝐿𝑐 ∥2 and compute CUD

given 𝜅 (·, ·) (e.g., cosine similarity kernel) is still a non-convex op-

timization problem. Moreover, searching for an appropriate kernel

function is conducted within a large, often infinite-dimensional

space. We follow the relax-then-check strategy presented below

to avoid the direct search for the kernel function. The main idea

is that, instead of finding the kernel itself, we focus on directly

determining the outcome this kernel would produce.

Relax:We ignore the internal structure of A and solve the fol-

lowing semi-definite programming problem which is a sub-type

of linear programming: {X∗} = argminX∈R( |C|+1)×(|C|+1) tr(XB). The
solution {X∗} can be an infinite set.

Check:We check a sufficient number ofX∗ within the latency re-
quirement imposed on the aggregator. For eachX∗, we apply the ker-

nel PCAmethod [42] to determine the𝝍∗ by𝝍∗[𝑖 ] =
|C |+1∑
𝑗=1

v𝑖 [ 𝑗 ]X∗ [|C|+

1, 𝑗], where v𝑖 is the eigenvector of X∗ corresponding to the 𝑖th

largest eigenvalue. The 𝝍∗ that best fitsAwith its internal structure

defined by the cosine similarity kernel is yielded as the CUD.

4.5 Entire FedCFC-fBind Process
Algorithm 1 shows the entire FedCFC-fBind process, including the

clients’ local updates for 𝑓 , 𝑔, ℎ, and the server’s aggregation.

5 PERFORMANCE EVALUATION
5.1 Evaluation Methodology and Settings
Our evaluation uses the following three datasets:

• HASC-PAC2016 [13] includes 19,172 data samples collected

by IMU on wrist for human activity recognition. Each trace

lasts for 300 seconds and corresponds to one of 6 activities.

We divide a trace into 3-second input samples.

• NTU RGB+D [43] includes 3-dimensional skeleton data of

25 joints and contains 60 classes of human activities. Each

input sample consists of 3,600 readings for 25 joints.

• AMIGOS [28] includes electroencephalogram and electro-

cardiogram data from 40 subjects for emotion recognition. A

sliding window with 1-second window size and 0.2-second

overlapping is used to divide the trace into input samples.

Our evaluation recreates three practical challenges faced by real-

world deployments of FL. The first challenge is non-IID data. We

consider two scenarios of class heterogeneity and the more general

local class skews. Specifically, in the first scenario, each client’s

dataset partition only covers a small subset of the classes; in the

second scenario, each client’s dataset partition covers all classes

but the distribution of data among the classes is distinct from each

other. The second challenge is hardware heterogeneity among the

clients, which results in the model precision heterogeneity. The

third challenge is that the FL system encounters new classes after

deployment. For each recreated situation, we compare the following

FedCFC variants and two existing non-IID FL approaches:

• FedCFC-fBind is our main proposal described in §4.

• FedCFC-fAvg adopts FedAvg [27] to aggregate 𝑓 modules.

• FedCFC-fSCAF adopts SCAFFOLD [18] to aggregate local

𝑓 modules. SCAFFOLD corrects local updates using vari-

ance reduction to align local models with the global model,

thereby mitigating the effects of non-IID data.

• FedCFC-fProx uses FedProx [23] to aggregate 𝑓 modules.

• FedCFC-fgh uses fBind to federate local 𝑓 modules and

SCAFFOLD to federate the local 𝑔 and ℎ modules.

• LotteryFL [22] is a personalized FL approach that only fed-

erates a subnetwork. It is designed to address non-IID data.

• BalanceFL [44] is an FL approach that applies a local self-

balancing technique to deal with the non-IID data issue.

All the above FL approaches are implemented with PyTorch. For

all FedCFC variants, the CFC consists of a single-layer backbone and

three two-layer MLPs as the 𝑓 , 𝑔, and ℎ modules. Note that the on-

device FedCFC to be presented in §6 is implemented without using

PyTorch. For both implementations, the batch size is set to one,

for consistency and also facilitating the on-device training process.

The hyperparameters of our FedCFC-fBind implementation are

as follows: 𝜆𝑑 = 0.6, 𝜆𝑚 = 0.2, 𝜆𝑎 = 0.2, 𝜐 = 1.59, 𝜂 = 0.01. In

§5.6, we conduct a sensitivity analysis on the three regularization

coefficients 𝜆𝑑 , 𝜆𝑚 , and 𝜆𝑎 .

5.2 Evaluation with Class Heterogeneity
In this set of experiments, the dataset partition owned by each client

only covers a subset of the classes of the entire dataset.When assign-

ing the data samples to a total of 12 clients, we control the degree

of class heterogeneity among the clients, denoted by 𝛾 . Specifically,

𝛾 = |D𝑝 ∩ D𝑞 |/|D𝑝 |. We adopt three 𝛾 settings: 1) 𝛾 = 1 means

the IID case, in which each client has data in all classes; 2) 𝛾 = 0.5

means a moderate non-IID case, in which any two clients’ dataset

partitions have 50% overlap in terms of classes; 3) 𝛾 = 0 means the

most severe non-IID case, in which the clients’ dataset partitions are

disjoint in terms of classes. BalanceFL is skipped in this subsection,

because it is inapplicable in the 𝛾 = 0.5 and 𝛾 = 0 cases. In each

round of the experiment, we vary the classes each client obtains

while fixing the degree of class heterogeneity 𝛾 .

The three columns of Fig. 8 show the results under the three

𝛾 settings. The top row shows the training accuracy versus the
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(b) 𝛾 = 0.5
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(c) 𝛾 = 0 (disjoint)

Fig. 8: Performance of FL approaches under three degrees of class heterogeneity 𝛾 . Top row: training accuracy vs. communica-
tion rounds; Bottom row: test accuracy after FL converges. For FedCFC variants, the “FedCFC-” prefix is omitted in legends.

Table 3: Convergence speed and communication overhead under three settings for the degree of class heterogeneity 𝛾 .

Approach Dataset

𝛾 = 1 (IID) 𝛾=0.5 𝛾=0 (disjoint)

Comm.

rounds

Comm.

vol. (kB)

Comm.

rounds

Comm.

vol. (kB)

Comm.

rounds

Comm.

vol. (kB)

FedCFC-fBind
HSAC 37 92.5 41 100.2 37 93.7

NTU RGB+D 47 137.7 42 103.6 49 162.1

AMIGOS 31 79.1 34 87.8 37 92.2

FedCFC-fgh

HSAC 42 3992.5 71 7000.7 87 9772.1

NTU RGB+D 64 6332.1 89 10023.2 91 13622.1

AMIGOS 41 3779.1 62 6017.4 57 5729.2

FedCFC-fAvg

HSAC 47 4517.1 59 8788.2 99+ 19379.7

NTU RGB+D 57 8351.1 77 11311.7 99+ 24321.7

AMIGOS 39 6147.3 45 7322.8 67 9847.2

FedCFC-fProx

HSAC 37 3217.1 52 5478.3 59 8301.7

NTU RGB+D 47 6451.1 64 7101.7 70 10201.6

AMIGOS 35 3108.3 40 6828.2 59 6922.2

FedCFC-fSCAFFOLD

HSAC 39 3318.7 49 3988.2 57 5123.2

NTU RGB+D 51 4122.7 54 4796.4 69 6125.0

AMIGOS 33 2788.4 36 3072.8 48 4946.4

LotteryFL

HSAC 57 1111.5 61 1188.3 81 1569.7

NTU RGB+D 72 1287.3 70 1301.7 91 1688.0

AMIGOS 49 984.9 46 912.6 76 1463.2

number of communication rounds during the FL process. We only

plot the results of three approaches for clarity of the figure. The

smoothness of the trajectories is negatively affected by the class

heterogeneity among the clients. Nevertheless, the trajectory of

FedCFC-fBind is smoother than others. The bottom row shows the

test accuracy after FL converges. Here, we assume that the conver-

gence is achievedwhen all clients’ validation accuracy improvement

is less than 0.05% of the maximum validation accuracy for the first

time. In Fig. 8, the horizontal red lines represent the test accuracy

when CFC is trained in the centralized manner. It shows that when

the data distribution is IID, the difference between the accuracy of

centralized training and the accuracy of FedCFC-fBind is within

6%. In addition, FedCFC-fBind achieves higher test accuracy on the

three datasets, compared with all FedCFC variants and LotteryFL.

FedCFC-fBind is also more robust to the class heterogeneity. For

instance, on the AMIGOS dataset, FedCFC-fBind has a test accuracy

drop of 3.04% when 𝛾 decreases from 1 to 0. In contrast, LotteryFL

has a drop of 9.22%. Additionally, we increase the number of client

to 50 and conduct the same experiment on the NTU RGB-D dataset.

When 𝛾 is 0, 0.5, and 1, the average test accuracy of FedCFC-fBind

only shows a drop of 3.9%, 3.19%, and 2.70%, respectively. Among

all compared approaches, FedCFC-fAvg gives the lowest test ac-

curacy, because FedAvg is a vanilla FL strategy without non-IID

considerations. This also suggests that, specific designs in the FL

strategy are needed to exploit the 𝑓 ’s involatility. Compared with

FedCFC-fBind, FedCFC-fgh does not show advantages although it

additionally applies SCAFFOLD to federate 𝑔 and ℎ. This is due to

the inherent difficulty in federating volatile models.
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Fig. 9: Top: class distribution on three clients. Bottom: Cor-
responding class-specific test accuracy.

Fig. 10: Lowest class-specific test accuracy among ten clients.

Table 3 shows the number of communication rounds to achieve

convergence and the associated per-client communication vol-

ume. We can see that FedCFC-fBind converges faster. In summary,

FedCFC-fBind speeds up the convergence by 16.4%, 34.8%, and

45.5% with respect to the average of other three FedCFC variants

on all datasets, when 𝛾 = 1, 𝛾 = 0.5, and 𝛾 = 0, respectively. The

speed-up ratios with respect to LotteryFL are 35.5%, 33.4%, and

50.8%. As FedCFC-fBind only transmits 𝑓 ’s last layer gradient, it is

communication-efficient. FedCFC-fBind reduces per-client commu-

nication volume by 51×, 72×, and 96× with respect to the average

of the other three FedCFC variants on all datasets, when 𝛾 = 1,

𝛾 = 0.5, and 𝛾 = 0, respectively. The reduction ratios with respect

to LotteryFL are 11×, 12×, and 14×. The lower communication over-

head of FedCFC-fBind makes it suitable for battery-based on-device

FL because wireless transceiver is power-intensive.

5.3 Evaluation with Local Class Skews
We construct a subset of the HSAC-PAC2016 dataset using the data

division algorithm in BalanceFL. The constructed dataset has global

class imbalance characterized by a long-tail distribution. In addition,

a total of 10 clients have distinct class distributions. The top row

of Fig. 9 shows the class distributions of three clients. The bottom

row of Fig. 9 shows the class-specific test accuracy of each client’s

CFC model trained by FedCFC-fBind or by the client solely with its

local data without FL (referred to as CFC-local). The class-specific

test accuracy of FedCFC-fBind is more consistent across the classes,

compared with CFC-local. This is because, without FL, the model

overfits to the classes with abundant samples.

Fig. 10 shows the lowest class-specific test accuracy among the

10 clients. Thus, it highlights the worst-case performance of each

approach. FedCFC-fBind outperforms other approaches on 3 out

of 6 classes. On the remaining classes, FedCFC-fBind is close to

the best performing approach. Over all 6 classes, FedCFC-fBind

Fig. 11: Class-specific accuracy on a new class (depicted by
error bar) and average accuracy on the original 53 classes
(depicted by curve) versus the FL process depicted by x-axis
with each tick representing a newly introduced class.

achieves 1.3% and 7.1% higher accuracy on average and on max-

imum, compared with BalanceFL. The per-client communication

volumes of FedCFC-fBind, -fgh, -fAvg, -fSCAF, and BalanceFL in

kB are 114.5, 2877.4, 3855.3, 3022.1, and 877.4, respectively. Thus,

FedCFC-fBind reduces communication overhead by 7.6×, compared

with BalanceFL.

5.4 Evaluation of Class-Incremental FL
We consider a scenario of class-incremental FL which learns new

classes over time. Specifically, after a pre-trained CFC is deployed,

the model is incrementally fine-tuned when training samples in new

classes are obtained. For instance, users may wish to add their own

types of exercise for the smartwatch to identify. Our experiments

use the NTU RGB+D dataset with 60 classes. We use data in 53

classes for pre-training. Training samples in the remaining 7 classes

are used during the FL process. We use two methods to test the

accuracy of the local models when the training on a new class

completes. Fig. 11 shows the results, where the x-axis represents

the FL progress with the tics representing incrementally introduced

new classes. In the first test method, we use test data from the

same new class to check whether the local models capture the

new class. The class-specific accuracy results are the error bars

in Fig. 11 using the left y-axis, showing the distribution over the

clients. In the second method, we use test data from the original 53

classes to checkwhether the local models experience forgetting. The

accuracy results averaged over all the 53 classes and all clients are

the curves in Fig. 11 using the right y-axis. We can see that FedCFC

can learn new classes and fBind outperforms other aggregators.

Some forgetting effect can be observed. Specifically, the accuracy

drops for the original 53 classes are 7.1% for fBind and 14.3%, 17.2%,

10.1% for other aggregators. Future work can investigate training

new columns of 𝑓 , 𝑔, and ℎ to prevent the forgetting, as inspired by

the progressive neural networks [39].

5.5 Evaluation with Precision Heterogeneity
IoT devices, especially constrained by limited power supply or com-

puting resources, may have to adopt data representation formats

with lower precision to manage resource utilization. Such data pre-

cision heterogeneity imposes a challenge to on-device FL involving

diverse IoT devices. This is because the precision disparities can

lead to inconsistent loss landscape. We investigate the impact of

the data precision heterogeneity on various FedCFC variants.



FedCFC: On-Device Personalized Federated Learning with Closed-Form Continuous-Time Neural Networks IPSN ’24, May 13–16, 2024, Hong Kong, China

Fig. 12: Training accuracy vs. communication rounds with data precision heterogeneity. Suffix “-PC” denotes precision cluster.

We recreate a scenario of using FL to fine-tune the models that

have been deployed on IoT devices. We train a base CFC model

represented with float32 data type on a workstation using 10% of

the NTU RGB+D dataset. Then, we quantize the model to float16

and int8 data types. We deploy each of the float32, float16, and int8

models to four clients. To deal with data precision heterogeneity,

we introduce a mechanism called precision cluster. It organizes the
clients into clusters based on their data precision. Only the clients

with the same data precision are included into the same FL process.

Therefore, when precision cluster is applied, there are three FL

groups in our experiments.

Fig. 12 shows the training accuracy versus the number of com-

munication rounds during the FL process. When precision cluster

is not applied, FedCFC-fBind converges to the highest training ac-

curacy, compared with the other three FedCFC variants. However,

its trajectory is bumpier than that in Fig. 8(a). This suggests that

the data precision heterogeneity negatively affects FedCFC-fBind.

When precision cluster is applied, the trajectory labeled with the

“-PC” suffix is the average result of the three FL groups. We can

see that the precision cluster mechanism smooths the trajectory.

Moreover, it does not reduce the accuracy after the FL converges.

Therefore, the precision cluster is a simple yet effective approach

to deal with data precision heterogeneity.

5.6 Sensitivity on Regularization Coefficients
We vary the three regularization coefficients, 𝜆𝑑 , 𝜆𝑚 , and 𝜆𝑎 and

analyze their impacts on both the accuracy and computational cost.

Specifically, we vary one of them individually from 0 to 0.8, while

keeping the other two at 0.1. The experiment is conducted using the

HSAC dataset with 12 clients. Computation time is measured on an

Intel Core i7-11800H CPU. From Fig. 14(a), a non-zero regulariza-

tion coefficient results in a model accuracy increase of around 5%.

In addition, as shown in Fig. 14(b), the computation time per epoch

remains largely unaffected with variations within approximately

10 to 16 milliseconds when a regularization coefficient changes.

6 ON-DEVICE EXPERIMENTS
6.1 Implementations and Deployments
We implement FedCFC-fBind on the following fourMCU-based plat-

forms shown in Fig. 13: (1) Arduino Nano BLE Sense, (2) Arduino

Nano ESP32, (3) Adafruit M4 Express, (4) STM32F303. As these

platforms have different resource constraints, we choose proper ar-

chitectures for CFC’s three FNN modules for each platform to make

sure the CFC model can fit in, while maintaining the dimension

of hidden state x the same. We pre-train the CFC with a subset of

the used dataset. Then, we perform int8 quantization using STM32

CUBE.AI for STM32F303 and TensorFlow Lite Micro for the remain-

ing platforms. TensorFlow Lite Micro does not support on-device

training because it does not implement automatic differentiation.

To realize on-device training, we implement the CFC model and

model weight update algorithm for the client in the C language.

On the server side, we employ the Splitting Conic Solver (SCS)

[32] of the CVXPY library to solve the semidefinite programming

problem and compute the Common Update Direction (CUD). The

theoretical upper bound of the complexity of solving semidefinite

programming problems with SCS [32] is O((|C| + 1)𝑀 ), where |C|
is the number of clients and𝑀 is a constant related to SCS solver’s

internal mechanism. Therefore, the computation complexity on the

server side is polynomial with respect to the number of clients |C|.
When deploying the FedCFC-fBind implementation on a plat-

form, we store CFC in a heap. Although accessing heap is relatively

slow, using heap prevents memory overflow problems because the

program can directly modify heap content without saving interme-

diate values. After assigning memory space for loading the program

and CFC, we allocate one third of the remaining memory for stor-

ing intermediate variables for the gradient computation and model

update algorithms, and two thirds for all other supporting functions

such as wireless or UART communications. Table 4 summarizes the

MCU specification (clock rate and SRAM capacity), the number of

layers of CFC’s three modules, and CFC model size.

6.2 Experiment Results
The first set of experiments are conducted on a network of 10 client

nodes (7 Nano Sense nodes, and one node from each of the other

three platforms) and a laptop computer as the server node. The

communications of Nano Sense, Nano ESP32, and the remaining

two platforms with the laptop computer are via BLE, Wi-Fi, and

UART, respectively. We use the UCI-HAR dataset and 40% of it

for pre-training CFC. We measure the test accuracy of the initial

pre-trained and quantized CFC, the average test accuracy of the

clients’ CFC models at the end of the FL process, training time per

communication round, and the average SRAM usage and utiliza-

tion. Each input sample consists of 125 readings over 2.54 seconds.

The results are presented in Table 4. The accuracy achieved by

FedCFC-fBind on the four platforms ranges from 79% to 87% and

is correlated with the model size and SRAM usage. Note that the

highest accuracy achieved on the UCI-HAR dataset in literature is

90.6% [7]. The accuracy gaps of 3.6% to 11.6% are due to the manda-

tory compromises of using int8 quantization and smaller models to

fit into small SRAMs. Note that the quantization can lead to a dis-

crepancy between the direction of the model weight update and the
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Fig. 13: Platforms.

Table 4: MCU specification and on-device training resource usage profile of FedCFC-fBind.

Platform

MCU

rate (MHz)

SRAM

(kB)

f,g,h

#layer

CFC

size (kB)

Init

acc

End

acc

Training

time (ms)

Avg SRAM

usage (kB)

Avg SRAM

utilization

Nano Sense 64 256 2, 2, 2 6.7 0.73 0.87 373.13 149.76 59%

Nano ESP32 240 320 2, 2, 2 6.8 0.72 0.85 202.47 167.29 52%

M4 Express 120 192 2, 1, 1 4.6 0.72 0.84 311.37 139.88 73%

STM32F303 72 80 1, 1, 1 3.7 0.71 0.79 287.92 78.67 98%
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Fig. 14: Impact of regularization coefficients 𝜆𝑑 , 𝜆𝑚 , and 𝜆𝑎 .

actual gradient, compromising optimality of training. Overall, our

profiling experiments show that FedCFC-fBind has the adaptability

and flexibility for deployments on diverse MCU-based platforms

with 256 kB SRAM and even less.

The second set of experiments evaluate the impact of the number

of clients (i.e., |C|) on learning performance. We use up to 24 Nano

Sense nodes and the HASC-PAC2016 dataset. We use 20% of the

training data for pre-training and allocate 10% of the remaining

training data, randomly drawn, to each node for on-device FL. Each

input sample has 240 readings. An error bar in Fig. 15(a) shows the

distribution of the clients’ test accuracy. The test accuracy shows

an increasing trend when |C| increases from 4 to 12, because the

FL system accesses more data. Then, the system maintains accu-

racy when |C| increases from 12 to 24. The blue lines in the figure

represent the training accuracy obtained on the CPU of a work-

station computer using centralized learning. We can see that the

accuracy obainted on MCU has about 5% drop. Fig. 15(b) shows the

breakdown of the time needed by the entire FL process into client

part and server part. We can see a linear trend of the total training

time versus |C|. The client’s computation time is nearly constant.

Differently, the server’s computation time increases with |C|. This
is because the time complexity of the aggregation algorithm pre-

sented in §4.4 increases with |C|. Parallelized implementation of

the aggregator might suppress this increase. We also measure the

STM32F303 MCU’s energy consumption profile. In its idle state, it

draws a current of 14.3mA. During the training phase, the MCU

reaches a maximum current of 25.7mA. In the testing phase, the

average current is about 22.4mA. Operating on a 100mAh battery,

the projected lifetime for back-to-back inference activities on the

STM32F303 MCU is about 268 minutes.

Lastly, we conduct the class-incremental FL experiment described

in §5.4 on a network of 10 Nano Sense nodes. Compared with the

simulation results presented in Fig. 11, the on-device implemen-

tation has about 5% class-specific accuracy drop on new classes
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Fig. 15: Evaluation of the scalability of the FedCFC-fBind
federated learning system in terms of accuracy and latency.

and 1% average accuracy drop on the original 53 classes, which are

primarily attributed to the model quantization.

7 DISCUSSION
From Table 4, in our current design, some devices underutilize

their SRAM resources, while others nearly use up their SRAM. A

future work of designing an adaptive learning feature within the

CFC framework is interesting. This feature dynamically adjusts the

computation complexity and resource usage of the learning process,

tailoring to the specific capability of a device. Relationship between

CFC’s structure and model accuracy can be explored for optimizing

both the efficiency and accuracy of CFC implementations.

Building quantization awareness in CFC is also interesting for

future work. Quantization-aware training involves simulating the

lower precision arithmetic during the training process, allowing the

model to adapt to the quantization-induced perturbations. Different

MCUs require different quantization approaches [9]. As a result,

quantization-aware training can balance trade-off between model

complexity and the inherent limitations of edge devices.

Deploying sensors in real-world environments and conducting

on-device model training may face a number of practical challenges.

For example, the unpredictable nature of network delays and sensor

failures can result in varying quantities of data collected by different

sensors. Furthermore, the datasets collected by sensors may have

differences in the data distribution, in addition to the differences in

the label distribution. This may further challenge the convergence

of FL.

8 CONCLUSION
This paper demonstrates the appealing features of CFC neural net-

works for resource-constrained IoT devices in processing time se-

ries data. The proposed FedCFC advances CFC from the centralized

learning setting to the federated learning paradigm. The design of
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FedCFC is based on an empirical property of CFC identified in this

paper, i.e., its 𝑓 sub-network’s involatility with respect to training

data’s class distribution. This paper develops a novel geometric

aggregation strategy called fBind to deal with the clients’ local class

skews problem. Extensive evaluation and on-device experiments

show superior performance of FedCFC-fBind and its portability to

low-end devices with 256 kB memory and even less.
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