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Abstract—Time series is an important form of data generated
by Internet-of-Things (IoT) devices. Closed-form continuous-time
(CFC) neural networks offer superior expressivity for modeling
time series data compared with recurrent neural networks.
Additionally, their lower training and inference overhead make
them well-suited for deployment on microcontroller-based IoT
devices. This paper introduces FedCFC, an on-device federated
learning network that operates based on the CFC models
distributed across IoT devices. FedCFC incorporates a novel
and communication-efficient aggregation strategy designed to
mitigate the effects of class distribution imbalances across the
participating IoT devices’ training data. The strategy is designed
based on a new property of CFC identified in this paper, i.e., the
insensitivity of a sub-model of CFC with respect to training data’s
class distribution shift. Extensive evaluation with multiple time
series datasets demonstrates that FedCFC attains comparable
or superior accuracy while achieving a 7.6x to 11x reduction
in communication overhead compared with recent federated
learning approaches designed to address the class distribution
skew problem. Furthermore, deployments of FedCFC on four
IoT platforms highlight its suitability for resource-constrained
devices with as little as 256 kB of memory or even less.

Index Terms—Continuous-time neural network, federated
learning, IoT, on-device machine learning.

I. INTRODUCTION

DVANCING a data collection-oriented Internet-of-

Things (IoT) network to a data processing network by
utilizing IoT devices’ computing capabilities is a desirable
move, due primarily to the high energy overhead of trans-
mitting raw data and the application constraints such as data
privacy. Among the various processing tasks, modeling and
inference from time series data using deep neural networks
have received significant attention [1], [2]. As time series
data is temporally structured, the processing models should
capture temporal dependencies effectively. However, conven-
tional feedforward neural networks (FNNs) primarily focus on
static input-output mappings and do not explicitly model the
temporal dimension. For instance, a neuron in a multilayer
perceptron (MLP) represents the relationship between inputs
and outputs in a steady-state manner, failing to account for
the transient dynamics that occur between two steady states.
To address this limitation, recurrent neural networks (RNNs)
incorporate feedback mechanisms to introduce neural network-
level dynamics, thereby improving performance on time series
modeling tasks. Despite their advantages, RNNs operate under
the assumption of discrete time steps with a fixed interval,
which presents challenges in real-world applications where
time series data may exhibit irregular sampling rates. Conse-
quently, heuristic preprocessing techniques such as up/down-
sampling and interpolation are often required to align the data
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with the model’s assumptions. These preprocessing steps not
only introduce computational overhead but may also lead to
information loss or distortions in the data representation.

This paper considers continuous-time neural networks (CT-
NNG5s) [3] that have neuron-level dynamics for time series data
modeling and processing at the IoT devices. Moreover, this
paper aims to develop the first continuous-time federated learn-
ing network, in which each IoT device learns from its local
data with a CT-NN and exchanges essential CT-NN update
information with a parameter server. The behavior of a neuron
in a CT-NN is governed by an ordinary differential equation
(ODE), where time is treated as an independent and explicit
variable. Since the ODE incorporates trainable parameters, the
neuron can dynamically adapt its internal states throughout the
learning process, enabling a more flexible representation of
temporal dependencies. Furthermore, CT-NNs support neural
network-level feedback, allowing the model to capture both
local neuron dynamics and global temporal structures in the
data. This synergistic integration of the dynamics at the two
levels enhances CT-NNs’ expressivity, making them more
effective than RNNs in learning complex time series patterns
[4]. Moreover, due to CT-NNs’ continuous-time formulation,
they can operate on any timestamped time series data without
imposing the requirement of regular sampling.

Despite these advantages, the deployment of CT-NNs is
often constrained by computational bottlenecks. In particular,
most ODEs lack closed-form solutions, necessitating the use of
numerical ODE solvers to propagate the neural network state
over time. These solvers introduce a significant computational
overhead, as the cost of forward inference is proportional
to the square of the number of prediction steps. In typical
implementations, this results in CT-NNs requiring 50X more
computation per training round than RNNs [5]. Encouragingly,
a recent study [6] obtains a closed-form approximate solution
to the ODE used by a class of CT-NNs called liguid time
constant (LTC) neural networks [4]. It also designs a closed-
form continuous-time (CFC) neural network based on three
FNN modules to approximate the closed-form solution while
preserving explicit consideration of continuous time, in that
the CFC network jointly processes the time series data and
the associated timestamps. Forwarding a CFC has a compute
overhead proportional to the prediction steps, which is typi-
cally two orders lower than those of ODE solvers.

CFC is promising for addressing two system challenges
faced by the implementations of machine learning algo-
rithms/models at resource-constrained IoT devices. First, its
native ability to process any timestamped time series data
addresses various system issues, including data intermittency
due to hardware/software faults, sampling interval jitters due to
uncertain operating system delays, and varied sampling rates
across different IoT devices. Second, CFC’s superior model
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expressivity implies a smaller memory footprint for a certain
accuracy level, thereby reducing the resource usage of model
training and making on-device learning readily implementable.
By combining these two strengths, CFC can process local time
series data in real-time directly on IoT devices, which is criti-
cal for applications that require immediate responses, such as
early detection of anomalies in industrial machinery operations
(e.g., vibration-based fault detection in manufacturing).

In this paper, we design a continuous-time on-device fed-
erated learning (FL) network called FedCFC, where the par-
ticipating IoT devices learn and run their CFC models. FL
enables neural network training on distributed client data
while preserving privacy by keeping raw data local. However,
conventional FL methods impose significant computational
and communication costs, posing challenges for deployment
on resource-limited IoT devices. A preliminary study [7]
shows that FL. can cause two orders of magnitude more
carbon emissions than centralized learning. CFC offers the
following direct advantages in reducing FL’s overheads. First,
owing to the lower resource requirements of CFC training,
we may push the frontier of FL applications from the high-
end edge computing devices (e.g., smartphones) to low-end
IoT devices based on microcontroller units (MCUs). Sec-
ond, CFC’s smaller model size reduces FL’s communication
overhead. Note that FL can be applied under the continual
learning setting to update the IoT devices’ models with new
data distributed on these devices. If the devices are battery-
based (e.g., wearable sensors), the model update computation
can be scheduled during the charging cycles.

FedCFC requires a logic star network, where the parameter
server is at the center of the network and the participating IoT
devices maintain connections with the parameter server during
the learning phase. It can operate on top of any communication
infrastructure and network topology. This paper primarily con-
siders a challenge from the data domain, i.e., the clients’ data
classes are not independent and identically distributed (non-
IID). This can be observed in many IoT sensing applications.
For instance, in a human activity recognition application, the
distribution of the inertial data samples among the activity
classes generally varies with the user. Similarly, in a voice-
based keyword spotting system, different users may contribute
recordings of only a subset of words. Such class distribution
skews can lead to substantial oscillations in the loss trajectory
and slow down the convergence when the vanilla FL aggre-
gation strategy FedAvg [8] is adopted. FedCFC develops a
new aggregation design for this non-IID setting. It is based
on a property of CFC identified in this paper, i.e., one of the
three CFC’s FNN modules learns task-wide common pattern
and is insensitive to the training data’s class distribution shift.
Therefore, FedCFC limits the scope of FL to this FNN module
only and leaves the other two FNN modules unfederated to
capture personal patterns. This design effectively balances
the needs of capturing commonality and retaining personality
under the non-IID setting. Moreover, FedCFC proposes a novel
geometric aggregation strategy called fBind, in which only the
loss gradient with respect to the last layer of the selected FNN
module is exchanged. This further reduces communications.

The main contributions of this paper are as follows:

o We propose a revised CFC model with improved numer-
ical stability. Our benchmark study and analysis identify
the insensitivity of a key module of CFC with respect
to the class distribution of training data. Based on the
insensitivity, we design FedCFC to federate the key
module only, with a new geometric aggregation algorithm
fBind to efficiently address the non-IID data problem.

o Evaluation shows that the FedCFC with fBind outper-
forms the FedCFC variants using aggregation strategies
of FedAvg [8], FedProx [9], and SCAFFOLD [10], where
the latter two were designed for the non-IID setting. On
three time series datasets, FedCFC achieves higher or
similar accuracy with 7.6x to 14x reduction in com-
munication overhead, compared with LotteryFL [11] and
BalanceFL [12].

e Our implementations of FedCFC with communication
module on four MCU-based IoT platforms show its less
than 256 kB memory footprint and thus its portability to
low-end devices. Code is released at https://github.com/
hhhddyy/FedCFC

Paper organization: §II presents background. §III presents
benchmarks and analysis for our improved CFC model. §IV,
§V, and §VI present design, evaluation, and on-device exper-
iments of FedCFC. §VII concludes this paper.

II. BACKGROUND

This section presents the related work in §II-A and then the
preliminaries about LTC [4] and CFC [6] in §1I-B.

A. Related Work

1) On-device training: While on-device training capability
is essential to federated learning and continual learning, it is
challenging for resource-constrained IoT devices. MDLdroid
[13] manages model structures and learning process to achieve
on-device training on smartphones with gigabytes dynamic
random access memory (DRAM). However, typical MCUs
have limited static random access memory (SRAM), in the
range of 10°kB to 10®kB. Therefore, on-device training on
MCUs is challenging. A survey [14] reviews the research
works on machine learning topics for MCU-class hardware,
including feature engineering, model design, and on-device
training. It points out that the existing on-device training stud-
ies either consider high-end edge devices such as Raspberry
Pi or simply limit the training to a few layers to meet the
resource constraints. Some recent efforts, such as [15], have
demonstrated the feasibility of on-device centralized training
within 256 kB SRAM by leveraging memory-efficient deep
learning techniques. This work will show that, with CFC, on-
device FL with 256 kB SRAM can be achieved.

2) Federated learning: After the introduction of the vanilla
FL strategy FedAvg [8], research attempts to address various
practical factors affecting FL. performance. The first category
of research works deals with computation and networking
issues of FL. For instance, the work [16] aims at reducing
computation and communication overheads of FL. with edge
computing clients. The work [17] aims at increasing FL’s
robustness to straggler clients.
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The second category of studies addresses the issues of
global class imbalance and/or local class skews. The former
refers to the non-uniform class distribution of all the data
in the FL system. The latter refers to that the clients’ class
distributions are distinct, which is often referred to as the
non-1ID data problem. Local class skews in general imply
global class imbalance. The works [18], [19] only address
global class imbalance. Approaches addressing the local class
skews problem in FL can be classified as data-centric, system-
centric, and personalized. Data-centric approaches [20], [12]
apply mechanisms like data sharing between clients, data
augmentation to enrich local data diversity, or local data self-
balancing. Client clustering [21] is a typical system-centric
approach, which selects similar clients to form federation.
However, data-centric and system-centric approaches often
require excessive communication and storage, making their
implementations on resource-constrained devices challenging.

Personalized FL, as surveyed in [22], addresses local class
imbalance, often via either adapting a global model trained
by FL to the local dataset (e.g., [23]) or applying specific
designs of aggregating heterogeneous local models (e.g., [11]).
However, the existing personalized FL approaches are in
general not designed for MCU-class hardware. This paper
exploits a key property of CFC to design a computation- and
communication-efficient personalized FL approach that can
work on MCU-class hardware.

The third category of studies addresses the FL clients’ data
distribution skews, i.e., the clients’ local datasets form differ-
ent domains. The work [24] reviews the existing approaches
to this issue and applies self-supervised learning to exploit
unlabeled local data to manage cross-client domain shifts.

B. Preliminaries on LTC and CFC Neural Networks

Notation convention in this paper is as follows. Take letter x
as an example. x denotes a scalar; X’ denotes a set; x denotes
a column vector; X[j] denotes the ith element of x; X denotes
a matrix; X{; denotes the ith row of X; X[, j] denotes the
(7, j)th element of matrix X; ® denotes Hadamard product.

An LTC of N neurons with M inputs is declared by the
following system of linear ODEs:

dx(t
% = —w O x(t) +s(t), (1)
s(t) = ¢ (x(1),i(t); W) © (a —x(1)) , @)
where ¢ € R is continuous time; x(¢) € R¥ is the hidden state
of the neural network; w = [1/71,1/7,...,1/7n]T € RY

with 7, as a time constant; the ¢th component of s(t) €
R represents a non-linear integration of all inputs to the
ith neuron; i(t) € RM is the input signal; a € RY is
constant; ¢(x(t),i(t); W) € RY is a positive, continuous,
monotonically increasing and bounded nonlinearity with learn-
able parameters V. For instance, if the tanh nonlinearity
is adopted, the ith component of ¢(x(t),i(t); W) can be
tanh (W[i] -x(t) + Vi - i(t) + bm), where the (i,7)th ele-
ment of the matrix W € RV*¥ is the weight of the directional
link from the jth neuron to the ith neuron; the (4, k)th element
of the matrix V € RV*M ig the weight of the directional link

(0

Eq. (2)

Fig. 1: LTC network (left) and CFC network (right). The
illustrated LTC has three presynaptic sources and two neurons.
The CFC network has two types of inputs, i.e., a vector i(t)
and a scalar ¢, and outputs a vector x(t). Further processing
(e.g., by an MLP) can be applied on x(¢) to generate a label.

from the kth input to the ¢th neuron; b € RY is bias. Thus,
W = {W,V,b}. When the topology of the directed graph
specified by W contains cycles, the LTC is recurrent. LTC has
a basis from biological neural systems. As illustrated by the
left part of Fig. 1, for the ith neuron, Eq. (1) characterizes the
dynamics of its membrane potential x[;(¢) given its synaptic
current sp;)(t) [25]; Eq. (2) describes the ith neuron’s dendritic
1ntegrat10n of its presynaptic sources to generate sp;(t) [25].
The model is said to have liquid (i.e., varying) t1me constant
because the system time constant varies with x(¢) and i(¢). The
system time constant is the reciprocal of the coefficient for the
term x(¢) in the ODE system specified by Egs. (1) and (2).
The time constant’s liquidity improves model’s expressivity
compared with the models with fixed time constants [4].

As discussed in §I, the forwarding and training processes
of a CT-NN are slow. A recent work [6] obtains a closed-form
approximate solution with known approximation bounds to the
scalar version (i.e., N = 1) of the ODE system in Egs. (1)
and (2): z(t) ~ (2(0) — a)e”WHeCOMEH(—j(#); W) + a.
The work [6] also describes an algorithm to stack the scalar
closed-form approximate solutions for the N dimensions of
x(t) to obtain a vector closed-form approximate solution:

X(t)zﬂ@e—[w+¢(X(t),i(t);W)]t®¢(_x( t), —i(t); W)+a, (3)
where a € RY and 3 € R" are constants. To facilitate the im-
plementation of Eq. (3) using modern deep learning toolboxs
(e.g., PyTorch), three FNN modules, i.e., f(x(t),i(t); W7),
g(x(t),i(t); WI), h(x(t),i(t);W"), are used to represent
the following three terms in Eq. (3), respectively: w +
o(x(t),i(t); W), ¢(—x(t), —i(t); W), and a. In the rest of
this paper, these three FNNs are called f, g, and h modules.
In addition, the exponential decay in Eq. (3) is replaced by a
reversed sigmoid. Thus, the CFC is given by

x(t)=o(— f(x(t),i(t); Wt) © g(x(2),i(t); W)
+ h(x(),i(t); Wh)- )

where o(-) is a sigmoid satisfying c(—oc) = 0 and o(0) = 1.
To improve trainability, the three FNN modules f, g, and h
share a few feedforward layers called backbone network. The
right part of Fig. 1 illustrates the structure of CFC.



III. PERFORMANCE AND PROPERTIES OF CFC

In this section, we propose a reformulated CFC in §III-A
to improve CFC’s numerical stability, which is important for
preventing training instability and performance degradation
under quantization on resource-limited IoT devices. The pre-
liminary version of this work [26] presented CFC’s better
model expressivity within 256 kB SRAM capacity. In §III-B,
we focus on conducting benchmark experiments to show the
following properties of CFC: low training and inference mem-
ory overhead on MCUs, robustness to sampling irregularity,
and faster convergence speed under federated learning setting.
Lastly, in §III-C, we show a new property of CFC, i.e.,
its f module’s insensitivity to the class distribution of the
training data. We also provide the theoretic understanding of
the insensitivity. The results in this section form a basis to
design FedCFC. The above properties make CFC well-suited
for on-device federated learning on resource-constrained IoT
devices.

A. Reformulated CFC for Improved Numerical Stability

If a model is numerical stable, small perturbations in input
data, parameters, or computational precision do not result
in disproportionate large errors. When deploying models on
resource-constrained MCUs, quantization that reduces data
precision is a technique commonly applied to reduce com-
pute overhead and latency. While CFC’s formulation enables
efficient computation by avoiding numerical ODE solvers, its
numerical stability requires improvement. Specifically, when
deploying a single-precision (FP32) CFC model with lower
precisions such as half precision (FP16) or 8-bit signed integer
(INT8), CFC experiences non-trivial accuracy drops. This
issue arises from the multiplicative dependency between the
learned decay function f(x(t),i(t);W/) and time ¢, which
is subsequently passed to the sigmoid o(-). With a lower
precision, rounding errors in f(x(t),i(t); W/) are amplified
by t before reaching the sigmoid. For instance, with FP32
precision, suppose f(x(t),i(t)) = 2.7183 and ¢ = 20,
then o(—54.366) ~ 2.96 x 10724, However, with INT8
quantization, f(x(t),i(t)) is rounded to 3 and we obtain
o(—60) ~ 8.76 x 10727, which is nearly 100x smaller than
the original output under the FP32 precision.

To address the issue, we place f function in the denominator
to prevent multiplicative amplification of precision errors and
ensure smoother dependency on f. Moreover, we replace
the sigmoid o(— f(x(t),i(t); W¥)t) with 1 — exp(—t/(1 +
f(x(t),i(t);W7))) to improve numerical stability while re-
taining smooth growth. The reformulated CFC is given by

x(t) = (1= o TTEOTIN ) © g(x(8),i(t); W)
+ h(x(t),i(t); W"). (5)

Unlike the multiplication operator, the division does not
bear the associative property, meaning that small rounding
errors are not directly amplified by ¢ but instead influence
the denominator in a more controlled manner. This ensures
that quantization-induced errors remain bounded and smoothly

4

2 [A R-CFC-FP16[Z CFC-FP16 2 Z R-CEC-INT8

o 2] o 3 O CFC-INT8

9 g

[} [a}

8 1 8 2

2 P / 2 I’ /
1

UCI-HAR PPG-DaLiA UCI-HAR PPG-DaLiA

(a) Accuracy drop after FP16 (b) Accuracy drop after INT8
quantization. quantization.

Fig. 2: Accuracy drop after quantization.

3 UCI-HAR PPG-DaLiA
L »-CFC % R-CFC * »-CFC % R-CFC
o e
g 2 -

- -

o -t e k= -+
1% ” ”
< == *”f

15 T T T T

5 10 5 10 15

Relative Noise Intensity % Relative Noise Intensity %

(a) Accuracy drop with noisy in- (b) Accuracy drop with noisy in-
put on UCI-HAR dataset. put on PPG-DaLiA datset.
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propagated. Moreover, the function 1 — ﬁ is more nu-

merically stable than the sigmoid because it avoids extreme
saturation regions and maintains smooth gradient behavior.

We present a benchmark to compare the numerical stability
between the reformulated CFC (R-CFC) and the original CFC.
We first evaluate the impact of quantization on accuracy,
followed by assessing the effect of input noise on accuracy.
In the first experiment, we use FP32 precision during training
and subsequently use FP16 or INTS precision during inference.
We evaluate on two human activity recognition datasets: the
PPG-DaLiA [27] dataset, which predicts activities based on
photoplethysmogram signals, and the UCI-HAR [28] dataset,
which uses motion acceleration for activity recognition. Fig. 2
shows that when quantized to FP16 precision, R-CFC experi-
ences accuracy drops of 1.6% and 2.7%, which are lower than
the 2.3% and 4.0% drops observed in CFC. With INTS8 pre-
cision, the numerical stability advantage of R-CFC becomes
more pronounced, with an average accuracy drop of 3.74%
compared with 6.32% for CFC. In the second experiment, we
add white noise with a relative intensity ranging from 5%
to 15% to the input of the two datasets. Fig. 3 shows that
R-CFC exhibits lower accuracy degradation compared with
CFC when handling noisy inputs. Additionally, in the absence
of noise, the accuracy difference between the two models on
both datasets remains within 0.6%. In the rest of this paper,
we will not distinguish between R-CFC and CFC, and we
will uniformly refer to them as CFC. However, by default,
our implementation corresponds to R-CFC.

B. Basic Properties of CFC

1) On-device training overhead: On-device training capa-
bility is essential to continual learning and federated learning.
However, on-device training often poses significant challenges
for resource-constrained IoT devices. This section provides
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a benchmark to show the advantages of CFC for imple-
menting on-device training, through the comparison with the
continuous kernel CNN (CKCNN) proposed for sequential
data processing [29]. Many time series models cannot be
trained on MCUs with 256 KB SRAM because their training
processes require much larger memory spaces. To enable a
fair comparison between CFC networks and stronger baselines
such as CKCNNs, we therefore use the Cortex-M7 core-
based STM32H750XB MCU, which is equipped with 2 MB
SRAM and a floating-point unit (FPU). All on-device training
algorithms are implemented using TinyEngine [15]. Each
parameter of CFC or CKCNN is represented by the FP16
format. We use the sequential CIFARI10 dataset, which is
constructed from the standard CIFAR10 by flattening each
32 x 32 RGB image into a one-dimensional sequence of pixels,
so that each image is represented as a time series of length
3072. We vary the sizes of the f, g, and h modules to generate
various CFC networks. Figs. 4a and 4b show the CFC’s test
accuracy and training times versus the SRAM usage during
the training. Training the entire CKCNN is infeasible on the
MCU due to limited SRAM. As a workaround, we measure
the overhead of CKCNN-based class-incremental learning.
Specifically, we pre-train the CKCNN on a workstation with
data in eight out of the ten classes of CIFARIO and then
fine-tune its kernel MLP module on the MCU with data in
the remaining two classes. We vary the number of the MLP
parameters fine-tuned to obtain the different data points shown
in Fig. 4a and 4b for CKCNN. We can see that CFC achieves
similar accuracy but with 3x and 2x reduction in SRAM
usage and time in on-device training.

TABLE I: Comparison of convergence speed under FL.

Model #Parameters ~ #Comm Rounds  #End Acc

CFC 31.9K 17 96.1
Neural ODE 31.7K 37 94.3

TCN 30.8K 21 96.4
Transformer 30.9K 27 94.2

2) On-device inference overhead: In this section, we eval-
uate the inference efficiency of CFC compared with RNNs
on MCUs with 256 KB SRAM. We measure inference la-
tency and energy consumption on the Cortex-M7 core-based
STM32H750XB MCU, with models deployed using FP16
quantization. The models are trained on sequential MNIST.
Fig. 5a shows that CFC achieves the highest throughput,
exceeding LTC by a factor of 7.2x. Fig. 5b presents the
energy consumption per inference, measured in millijoules
(mJ), where CFC exhibits the lowest energy consumption at
approximately 4 mJ, demonstrating its suitability for energy-
constrained applications. In contrast, LTC consumes 3x more
energy due to the computational overhead of numerical
solvers.

3) Processing irregularly sampled data: We consider a
scenario where sensor measurements in a trace are collected
with irregular sampling intervals. We evaluate on the Phy-
sioNet dataset [30] for heart attack detection using electro-
cardiograms and the Bosch CNC Machining (CNC) dataset
[31] for machine anomaly detection using acoustic signals.
The sampling intervals for these datasets vary on the scale
of minutes and seconds, with respective variations of 3.7 and
7.1. Our evaluation shows that if we use the average accuracy
achieved by the three RNNs as the baseline, CFC outperforms
RNNs by 11%, and 3% on the two datasets.

4) Convergence speed under FL: In this section, we evalu-
ate the training convergence speed of the CFC model under a
federated learning setting. We adopt FedAvg as the federated
algorithm and conduct experiments on the sequential MNIST
dataset. For comparison, we include i) a Neural ODE model,
where the differential function is parameterized by a 4-layer
MLP with 128 hidden units in the middle layers and solved us-
ing the RK4 algorithm, ii) a Temporal Convolutional Network
(TCN) with three 1D Conv blocks with dilations as 1,2,4
respectivly, 64 channels, and kernel size of 3, and iii) a Trans-
former baseline consisting of 1 encoder layer with 4 attention
heads, and a hidden dimension of 192. These configurations
keep the number of the parameters of all the 4 models around
31K. We consider 5 clients, each receiving one-fifth of the full
label-balanced training dataset. Training is terminated once the
local loss on each client decreases by less than 1% compared
with the previous communication round. As shown in Table I,
CFC converges in the fewest communication rounds while
maintaining competitive accuracy (96.1%), demonstrating its
efficiency for federated training. In contrast, the TCN and
Transformer require more rounds since they lack an explicit
time-continuity mechanism, and the Neural ODE converges
the slowest due to the overhead of iterative ODE solvers.
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C. A New Property: f Module’s Insensitivity to Label Distri-
bution Shift

This section presents a new property of CFC, i.e., f
module’s insensitivity with respect to the label distribution
shift of the training data. Let d(f) = 1 — exp(—137)-
This function maps the output of f module into the bounded
range (0,1). Thus, the §(f) acts as a gate on g module’s
contribution. When only the label distribution shifts but the
feature distribution remains unchanged, the optimal §(f) does
not vary. Accordingly, since J is bijective, f itself remains
unchanged. In what follows, we first define a formal measure
of the insensitivity and then present empirical benchmark
results. Finally, we provide a proof of insensitivity in the case
of scalar data.

1) Definitions: Denote an L-layer MLP trained with dataset
D by w(-;Wp), where Wp = {W;, Wy, ... W} and
W, € R™-1%" js the weight matrix of the connection from
the (¢ — 1)th layer with n;_; neurons to the ith layer with
n; neurons. Define IIp = Hz 1Wl Let Dy,Ds,...,Dp
denote P partitions of D, i.e., U 1 D, =D, where D, N D,
is unnecessarily empty. Let \I/(n ) denote the subspace
spanned by Ilp, . We define prmczpal angle to measure the
angular alignment between two subspaces.

Definition 1 (Principal angle). The angle between the sub-
spaces W (Ilp,) and ¥(IIp, ) is denoted by O(Ilp,,IIp,) =
[01,02,...,0], where k is the minimum between the di-
mensions of the two subspaces; 0 < 07 < 0y < .- <

O, < 90°. The 6; is recursively defined from ¢ = 1
S o [{ui vi)l ) *

to ¢ = k by 6, = arccos(”u;_wvi*H and u},v; =
argmin arccos | {3:¥l) - where u; and v; are an
UiV [ERIRZIDA ! ! y

column vectors of Tlp, and Ilp,_, respectively; for i € [2, k],
u; € U(IIp,) and v; € ¥(IIp,) satisfy u; L uj, v; L vy,
Vj € {1,...,i — 1}. The angle max ©(Ilp,,IIp, ) = Oy is
called principal angle.

MLP 7 is -
(D1, Ds,...,Dp} if

Definition 2  (f-sensitivity). An
sensitive on dataset partitions

SUPyy, ge[1,p] THAX O(Ilp,,Ip,) < 6.

The 6-sensitivity measures the sensitivity of an MLP with
respect to the training data provided. Assume two MLPs, 74
and g, are 0 4-sensitive and 6 g-sensitive, respectively, on the
same training dataset. If 04 > 0p, we say w4 is more sensitive
than 7p with respect to the training data provided.

2) Insensitivity of f module to label distribution shift: We
compare the sensitivity of CFC’s three FNN modules, f, g,
and h, as well as other neural networks to label distribution
shifts. Specifically, we compare the principal angles of the f,
g, and h modules concerned in the condition of Definition 2.
In particular, we focus on the sensitivity with respect to the
label distribution skew of training data. Specifically, the sets of
classes contained in the partitions D1, ..., Dp are distinct. We
use the following three datasets: UCI-HAR [28], PPG-DaLiA
[27], and URBANSOUNDSK [32]. UCI-HAR and PPG-
DalLiA have been introduced in §III-A. URBANSOUNDSK
includes acoustic traces collected from different locations
in urban areas. We use the traces to infer their collection
locations. From a dataset with K classes, we create 02K
partitions, where each partition contains data in two classes.
Then, we measure the principal angle between two instances
of a certain FNN module trained on any two partitions. This

generates %

of such 02 2 principal angles of each of f, g, and h. We
can see that the f module has the smallest principal angles in
any dataset. This suggests that f is less sensitive than g and
h. Empirically, the f modules with ReL.U activation for the
three datasets are 24°-, 33°-, and 36°-sensitive, respectively.
The conference paper of this work [26] also compared the
sensitivity of CFC’s f module and other neural networks
including CKCNN, vRNN, and GRU. It also showed that the
f’s insensitivity does not generalize to the cross-dataset cases.

principal angles. Fig. 6 shows the distribution

3) Theoretic understanding of module f’s insensitivity:

Proposition 1 (Bounded Gradient Sensitivity to Label Shift).
Consider two labeled datasets D1 and Do with data distri-
butions of p1(i(t),y) = p1(y)p1(i(V)]y) and p2(i(t),y) =
p2(y)p2(i(t)|y), respectively, where i(t)|L_, is the scalar
time series data for a time duration of T, y € [0,1] is
the corresponding label after min-max normalization. The
datasets have different label distributions (i.e., p1(y) # p2(y),
Yy) and bounded feature distribution shifts (i.e., |p1(i(t)|y) —
p2(i(t)|y)| < 7, Yy). Denoting by L; the loss of the CFC
model trained on D; and by Vs L; the gradient of L;
with respect to the f module’s parameters W/, we have
Vs L1 = Vs Lo| < THi 4 B2LL8—
are positive constants.

y where LH,Lf,Lg

Proof. In this proof, we omit the subscript ¢ when the
derivation is agnostic to ¢. The formal representation of
the gradient is Vs L = Egip),g)~p(ice),y) [Vwr L(i(2), y)]-
We have Vyysexp (—117) = 7tcxp((fi§()lz+f))vwff. By
applying the chain rule and decomposing the expecta-
tion, we have V5L >y p( ) - Ci, where C; =

Bi(t)~pi i) ) [(1+f)2vwff Vi
In the followmg, we prove that |C1 — Co| is bounded.

Let H(i(t)) = gf;;f Vi f - Vi L. As both (tff; and
Vi@ L are continuously dlfferentlable against i(¢), the func-
tion H (i(t)) is Lipschitz continuous [33]. Denote by Ly the
Lipschitz constant of H(i(t)). By applying the Kantorovich-

Rubinstein Duality theorem [34], we have |C; — Co| <




LgWi(p1(i(¢)|y), p2(i(t)|y)), where W is the Wasserstein-1
distance. Since Vy € [0,1], |p1(i(¢)|y) — p2(i(t)|y)] < 7, we
have Wi (p1(i(t)]y), p2(i(t)[y)) < 5 and |61 Co| < 751
In what follows, we prove that |C;| is bounded. Because the
f and L are Lipschitz-continuous, we have sup |Vyys f| = Ly
and sup \Vz(t)£| = L., where Ly and L. are the Lipschitz
constants of f and L, respectively. Define function G(f) =

(tfj_;;z As f > —1 which holds for most activation functions
including ReLU, tanh, and sigmoids, we have sup |G(f)| =
sup G(f) = sup G(* Gl < |G-

;2) _ 4e
2
Vs fl - Vi £] < %. Thus, we have:

Vs L1—=V s Lo| = Z p1(y)C1

y
<Z Ip1(y

—p2(y)Ca

()| IC1] + p2(y) - |C1 — Cal)

7—LH AL;Lre?
-2 ft > i) = pa(y)]
Y
TLu 8LfL£e_2
S p
After training completes, t = T-72Theref0re, we have
Vs L1 = Vs Lo] < TLTH—F%_ o

The above proposition implies that if 7 = 0 (i.e., no
feature distribution shift) and ' — oo (i.e., a sufficiently
large dataset), |Vyys L1 — VyysLa] = 0. Since the gradient
difference of the f-module is provably bounded by the label
distribution divergence, the variation of f’s weights across
clients is bounded. This establishes the insensitivity of the
f-module to label drift. The above analysis provides insight
into understanding the insensitivity of the f module against
the label distribution shift.

IV. CFC-BASED FEDERATED LEARNING NETWORK
A. Motivation

The basic properties of CFC shown in §1II-B suggest CFC’s
advantages on single IoT devices. A natural question next
is whether we can build an efficient FL network based on
CFC for an IoT network. FL well matches the distributed
nature of IoT networks and possesses a key advantage of
retaining the training data at IoT devices, which has a privacy-
preserving implication. A well-designed FL system can learn
more versatile models, as it uses wider training data. When
the training data at each client is limited, FL can increase the
model accuracy substantially compared with the case where
the clients train their models independently.

However, the local class skews (i.e., non-IID data) problem
[22] has challenged efficient FL designs. The problem is
formally stated as follows. For a set of clients C, let D, =
{(X,Y,)} denote client ¢’s local dataset, where ¢ € C, X, is
a data sample and Y, is the corresponding label. The D, can
be viewed as a partition of the global dataset D = | J, .. D.

In this paper, we assume that the conditional probablhty
distribution P(X.|Y, = y) is identical across all clients.
That is, the clients’ local datasets have no domain shifts. The

local class skews problem refers to that the prior probability
distribution P(Y,) varies with ¢. It impedes FL’s capability to
let each local model converge to the desired global optimal
model that minimizes the loss function on D. This is because
the losses computed by the clients with their local datasets
are distinct and therefore the local model updates can be
hardly harmonized. If vanilla FL strategy FedAvg is applied,
oscillations in the global model updates can be observed.

While the existing studies have proposed various FL strate-
gies to deal with the local class skews as discussed in §II-A,
the CFC f module’s insensitivity with respect to P(Y;) offers
an opportunity to design a simple yet effective FL strategy.
Specifically, the f module captures the task-wide pattern
common across the non-IID dataset partitions, while the g, h
modules capture the partition-specific patterns. This separation
inspires the basic idea of the proposed FedCFC, i.e., we
federate the f modules learned by the clients, while leaving
other parts of CFC unfederated. This configuration offers two
advantages. First, the federated learning for f can improve its
versatility while not facing significant oscillations supposedly,
since the local updates to f are likely harmonized owing to
f’s insensitivity. Second, leaving the ¢ and h unfederated
allows the local models to be personalized. Note that applying
existing non-IID FL strategies on g and h might bring some
further accuracy improvement. However, they also introduce
more computation and communication overheads, as shown in
§V.

B. Overview of the Federated Learning Network

A straw man solution is to apply FedAvg on the f modules,
which is called FedCFC-fAvg in this paper. In each commu-
nication round of FedCFC-fAvg, the server disseminates the
global f module. Then, each client sends back the update.
Although the local f modules across the clients with non-IID
data are nearly identical after the convergence of FedCFC-
fAvg, they traverse different trajectories during the FL process.
In this paper, we propose a more efficient FL strategy called
FedCFC-fBind, where “fBind” refers to the strategy that
explicitly binds the evolution trajectories of the clients’ f
modules. Its efficiency is from two aspects. First, it explicitly
preserves the insensitivity of f throughout the FL process.
This preservation aims at harmonizing the local updates to f,
speeding up the convergence. Second, different from FedCFC-
fAvg that exchanges the f module between the server and
client, FedCFC-fBind only exchanges the gradient of the f
module’s last layer, reducing communication overhead. Its
formalization and workflow are as follows.

Let W, W9, and W" denote the parameters of the f, g, and
h modules of client ¢’s CFC. Denote W, = {W{, W9, W},
Let L(D.,W,) denote the cross-entropy loss at client ¢. Each
round of FedCFC-fBind aims at solving

min
We VCGC veee

L(De, We) s.t. max (I, 11}, ) <0,Vp,q€eC,
(6)

where @(H%p,l‘[éq) is the principal angle between the f

modules of any two clients p and g. The constraint in Eq. (6)

preserves the insensitivity of the f module. Although the 6 in



Eq. (6) can adopt a setting according to the prior knowledge
about the f module’s #-volatility, it will not be needed in
a Lagrangian relaxation of Eq. (6) solved by FedCFC-fBind,
which will be presented in §1V-C shortly. In each communica-
tion round of FedCFC-fBind, the clients and parameter server
perform the following actions.

Client step: A client applies stochastic gradient descent
(SGD) to solve an unconstrained optimization problem relaxed
from Eq. (6). The relaxation uses regularization based on a
common update direction (CUD) and a common update mag-
nitude (CUM) received from the parameter server regarding
the f. The local model performs E local updates in each round.
This is called bound local updater. Then, the client reports the
local update direction (LUD) to the parameter server.

Server step: Based on the LUDs received from the clients,
the server applies an optimization-based geometric aggregation
algorithm called bound updates aggregator to generate the
next CUD and CUM, and disseminates them to the clients.

Through iterating the above steps, the clients’ f modules
keep aligned throughout the FL process. The next subsections
present the details of the client’s and server’s steps.

C. Client’s Bound Local Updater

Client ¢ applies SGD to update its f, aiming to minimize
the overall loss L. = l; + A\gRgq + A Ry + Ao Ry, Where [;
is the loss of the task (e.g., cross-entropy loss of classification
task); Rq, Ry, and R, are three regularization terms presented
below; the lambdas are hyperparameter weights. The above
unconstrained optimization encompasses the Lagrangian relax-
ation to Eq. (6). At the end of local update, client ¢ transmits
the gradient of L. with respect to the weights in the last layer
of f module, denoted by VL., as the LUD to the server.

The directional regularization term 74 is the cosine distance
betwe?,n Vil anc.1 CUD, i.e.,.Rd =1- %, Where
Vly is the gradient of [; with respect to the weights in the
last layer of module f and the CUD is disseminated by the
parameter server in the last round. Thus, R, encourages the
directional alignment between the local gradient update and
the CUD suggested by the server.

The magnitudinous regularization term R, is given by
R,, = max(0, ||V l;||]2 — CUM), where the CUM is dissem-
inated by the parameter server in the last round. Thus, R,,
encourages that the magnitude of the local gradient update
remains within CUM.

The R; and R,, together bind all clients’ local gradient
updates. However, they may lead to widespread inactive
neurons in the f module. This can impede the convergence
of the FL process. The active regularization term R, is
applied to increase the activity of neurons. It is given by
R, = Y(W/) —wv, where v is a desired activity threshold and
Y (W) is the mean activation of the neurons in the module
f. Specifically, T(W) = mink_; max;’, 0;j, where L is the
number of layers of the MLP f, n; is the width of the ith
layer, and o;; represents the output of the jth neuron of the
ith layer. Note that v is a hyperparameter.

The right part of Fig. 7 illustrates the local updates at two
clients in two communication rounds, where the two dotted

Clients
4 chl —> unregularized
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T
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Fig. 7: Illustrations of the server and client steps. Server: Given
gradients from three clients, the server sets CUD to be the
direction 7/ that maximizes the sum of cosine similarities with
the three client gradients, and CUM to be the average mag-
nitude of the three gradients. Clients: The drawing illustrates
the trajectories of two clients in two communication rounds.
The regularization penalizes direction deviation from CUD and
magnitude overstepping from CUM.

red arrows are two CUDs and the two dashed circles are two
CUMs received from the server. Solid arrow and dash arrow
represent the unregularized and regularized local updates.

D. Server’s Bound Updates Aggregator

The aggregator running at the parameter server determines
CUM and CUD based on the LUDs received from all clients,
ie., {VyL.|c € C}. The aggregator aims to harmonize the
clients’ local updates. The CUM is determined by CUM =
ﬁ > ccc IVyLe|l2. We aim to find a CUD to maximize the
overall cosine similarity between the CUD and the LUDs,
ie., CUD = argmaxy, 3 . To Lt This is illustrated
by the left part of Fig. 7. As it is non-convex optimization,
gradient-based methods can be easily stuck at local optimums.

We approach the above problem in a Hilbert space denoted
by HL. Specifically, we minimize the distance between the CUD
and the centroid of the LUDs in H, which is convex. Thus,
the key is to find the mapping function from the gradient
space (denoted by G) to H. In what follows, we present a
proposition, which is an application of the Moore Aronszajn
Theorem [35] to our context and will be used to develop the
solution to the original CUD determination problem.

Proposition 2. For any mapping T : G — H, there exists a
kernel function k(-,-) defined on domain G x G such that the

2
‘ﬁ ZVCEC r (va(') =T (’P)HH =
_ [ Ay eRIEIXICT A, e RICX
tr(AB), where A = [ As € R w(ap. ) Bc

RUCHDXACHD = A [i, 5] = w(VLi, VL), Asli,1] =
K/(vai,w)’ A3[1a]] = K(w7vaj)’

er ifi<icli<ICl;

Bli,jl =41 ifi>1Cl,j>|[C[;

2 otherwise.

ICl

Hilbert-space distance

Proof. Let (-, -}y denote the inner product operation defining
H. The Moore Aronszajn theorem [35] states that V(x,x’) €



Algorithm 1: FedCFC-fBind
Data: Local datasets D,, Vc € C
Result: Local models W.={W/ WJ Wh} vceC
Configuration: Learning rate 7); regularization weights
Ad> Am» Ag; Neuron activation threshold v
while not converged do
server: disseminates CUD and CUM to clients
for each client c in parallel do
Compute loss I; and gradients V ¢l;, V, lt, Vils
W9 «— W9 — nV Iy, Whewh— NVl
Ra1- %
R, 7T Wf
R, + max(O ||Vflt||2 — CUM)
L+l + MRy + ARy + Ao Ry and
compute VL,
W «W! — gV, L,
Upload VL, to server

server: CUM ¢ 53 . IV Le

2, compute CUD

G x G, VI', 3k, N = (I'(x),T(x))u.
Therefore, we have HﬁZcECI‘(VfLC)fl“('I/;)HH =
27 Lunaec(T(VrL), D(ViLy))  + (D), T(%))

RE(VL W) = R A(Vsly ViLo) +

(T)
k(,P) — \%I Y weec K(VyLe, ) = tr(AB) where the step
marked by (*) follows the Moore Aronszajn theorem. O

such that k(x,x

Now, we discuss how Proposition 2 is related to the original
objective of maximizing the overall cosine similarity between
the CUD and the LUDs. If x(-,-) in Proposition 2 satisfies
that x(x,x’) is a constant, from the step marked by (),
we have argmaxy, ) v.ce 5(VyLe,¥) = argming, tr(AB),
where the left-hand side of the above equation is a more
general form of the original objective. Note that the Gaussian
kernel is an example (-,-) meeting the constant condition.
Although, the objective function argmin,, tr(AB) for any
given (-, -) that satisfies the constant condition is still convex
optimization problem, searching for an appropriate kernel
function is conducted within a large, often infinite-dimensional
space.

We follow the relax-then-check strategy presented below to
avoid the direct search for the kernel function. The main idea
is that, instead of finding the kernel itself, we focus on directly
determining the outcome that this kernel would produce.

Relax: Ignore A’s internal structure and solve semi-definite
programming: {X*} = argminy cgci+1x e+ tr(XB). The
solution {X*} can be an infinite set.

Check: Check a sufficient number of X* within the latency
requirement imposed on the aggregator. For each X*, apply the

kernel principal component analysis [36] to determine the 1™
|Cl+1

by Z vi;1X*[|C|+1, j], where v; is the eigenvector of
]_

X* corresponding to the ith largest eigenvalue. The v that

best fits A with its internal structure defined by the cosine
similarity kernel is yielded as the CUD.

E. Entire FedCFC-fBind Process

Algorithm 1 shows the entire FedCFC-fBind process, in-
cluding the clients’ local updates for f, g, h, and the parameter
server’s aggregation.

V. PERFORMANCE EVALUATION
A. Evaluation Methodology and Settings

Our evaluation is conducted on the following three datasets:

o« HASC-PAC2016 [37] consists of 19,172 data samples
collected from an inertial measurement unit (IMU) worn
on the wrist for six-class human activity recognition. Each
recording lasts 300 seconds and corresponds to one of
six activity classes. For model training, each trace is
segmented into 3-second input samples.

o« NTU RGB+D [38] contains 3D skeletal motion data from
25 joints, covering 60 different human activities. Each
input sample comprises a sequence of 3,600 readings
across 25 joints, providing detailed motion information
for activity recognition. Out of 60 activity labels, 24
labels are used in our experiments.

¢ AMIGOS [39] includes electroencephalogram (EEQG)
and electrocardiogram (ECG) recordings from 40 partic-
ipants, annotated with six emotion recognition labels. A
sliding window approach with a 1-second window size
and 0.2-second overlap is used to segment traces into
input samples.

Our evaluation replicates two practical challenges encoun-
tered in real-world FL deployments. The first challenge is label
distribution shift. We consider two scenarios: class heterogene-
ity and local class skew. In the first scenario, each client’s
dataset contains only a small subset of the total classes. In
the second scenario, all clients have data from every class, but
the label distributions vary significantly across clients. This
paper presents results of the first scenario. Please refer to
our conference paper [26] for results of the second scenario.
The second challenge is scalability with the number of clients,
where many MCUs participate in FL but contribute only small
amounts of data due to their low data collection rates. Unlike
traditional FL settings where each client holds a substantial
local dataset, this paradigm involves a vast number of MCUs,
each providing limited but diverse data samples.

For each recreated situation, we compare the following
FedCFC variants and two existing non-IID FL approaches:

¢ FedCFC-fBind is our main proposal described in §IV.

o FedCFC-fAvg uses FedAvg [8] to aggregate f modules.

e FedCFC-fSCAFFOLD uses SCAFFOLD [10] to aggre-
gate local f modules. SCAFFOLD corrects local updates
using variance reduction to align local models with the
global model, thereby mitigating the effects of non-IID
data.

o FedCFC-fgh uses fBind to federate local f modules and
SCAFFOLD to federate the local g and /A modules.

e FedCFC-SCAFFOLD uses SCAFFOLD to aggregate
the local f, g, h modules.
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Fig. 8: Performance of FL approaches under three degrees of class heterogeneity . Top row: training accuracy vs.
communication rounds; Bottom row: test accuracy after FL. converges. The “FedCFC-" prefix is omitted in legends.

¢ FedCFC-FedRep uses FedRep [40] to aggregate the
local f,g,h modules. FedRep is a federated learning
algorithm that trains a shared global representation across
clients while keeping client-specific heads local for per-
sonalization.

o LotteryFL [11] is personalized FL that only federates a
sub-model. It is designed to address non-IID data.

o BalanceFL [12] is an FL approach that applies a local
self-balancing technique to deal with non-IID data issue.

All the aforementioned FL approaches are implemented
using PyTorch. For all FedCFC variants, the CFC model
comprises a single-layer backbone along with three two-layer
MLPs serving as the f, g, and h modules. It is important to
note that the on-device FedCFC implementation, discussed in
§VI, does not utilize PyTorch. In both implementations, the
batch size is set to one to ensure consistency and to facilitate
on-device training. The hyperparameters for our FedCFC-
fBind implementation are configured as follows: A\q = 0.6,
Am = 0.2, Ay = 0.2, v =1.59, and n = 0.01. Please refer to
our conference paper [26] for the sensitivity analysis on the
three regularization coefficients Ay, A,,, and A,.

B. Evaluation with Class Heterogeneity

In this section, we evaluate the performance of FedCFC-
fBind under class heterogeneity, where different clients are
assigned disjoint subsets of labels to simulate label distribution
shifts among clients in federated learning. In this set of
experiments, the dataset partition owned by each client only
covers a subset of the classes of the entire dataset. When
assigning the data samples to a total of 12 clients, we control
the degree of class heterogeneity among the clients, denoted
by ~y. Specifically, v = |D, N Dy|/|D,|. We adopt three
settings: 1) v = 1 means there is no label distribution shifts,
in which each client has data in all classes; 2) v = 0.5 means a
moderate label distribution shift case, in which any two clients’
dataset partitions have 50% overlap in terms of classes; 3)
v = 0 means the most severe label distribution shift case, in
which the clients’ dataset partitions are disjoint in terms of
classes. BalanceFL is skipped in this subsection, because it is

inapplicable in the v = 0.5 and v = 0 cases. In each round of
the experiment, we vary the classes each client obtains while
fixing the degree of class heterogeneity ~.

The three columns of Fig. 8 show the results under the three
~ settings. The top row shows the training accuracy versus the
number of communication rounds during the FL process. We
only plot the resulons of three approaches for clarity of the
figure. The smoothness of the trajectories is negatively affected
by the class heterogeneity among the clients. Nevertheless,
the trajectory of FedCFC-fBind is smoother than others. The
bottom row shows the test accuracy after FL converges. Here,
we assume that the convergence is achieved when all clients’
validation accuracy improvement is less than 0.05% of the
maximum validation accuracy for the first time. In Fig. §,
the horizontal red lines represent the test accuracy when CFC
is trained in the centralized manner. It shows that when the
data distribution is IID, the difference between the accuracy
of centralized training and the accuracy of FedCFC-fBind is
within 6%. In addition, FedCFC-fBind achieves higher test
accuracy on the three datasets, compared with all FedCFC
variants. FedCFC-fBind is also more robust to the class
heterogeneity. For instance, on the AMIGOS dataset, FedCFC-
fBind has a test accuracy drop of 3.04% when ~ decreases
from 1 to 0. Additionally, we increase the number of client
to 50 and conduct the same experiment on the NTU RGB-D
dataset. When « is 0, 0.5, and 1, the average test accuracy of
FedCFC-fBind only shows a drop of 3.9%, 3.19%, and 2.70%,
respectively. Among all compared approaches, FedCFC-fAvg
gives the lowest test accuracy, because FedAvg is a vanilla FL
strategy without non-IID considerations. This also suggests
that, specific designs in the FL strategy are needed to exploit
the f’s insensitivity. FedCFC-FedRep achieves similar accu-
racy compared with FedCFC-fAvg, because it may be difficult
to train a common representation for each of the f,g,h modules
among the clients. Compared with FedCFC-fBind, FedCFC-
fgh does not show advantages although it additionally applies
SCAFFOLD to federate g and h. This is due to the inherent
difficulty in federating heterogeneous models. Note that the
FedCFC-SCAFFOLD’s accuracy is lower than the FedCFC-
fSCAFFOLD’s accuracy. This is because the former federates



TABLE II: Convergence speed and communication overhead under three settings for the degree of class heterogeneity ~.

. N v =1 (IID) v=0.5 =0 (disjoint)
Approach Dataset Comm. Comm. Comm. Comm. Comm. Comm.
rounds vol. (kB) | rounds vol. (kB) | rounds vol. (kB)
HSAC 39 102.5 | /5 120.2 | 37 91.2
FedCFC-fBind NTU RGB+D | I3 119.7 | A4 100.6 | /9 177.1
AMIGOS oY 68.1 | 36 89.8 | I35 83.2
HSAC [___Th) 39925 | NN | 7000.7 | IS 9772.1
FedCFC-fgh NTU RGB+D | G4 6332.1 | N3O 10023.2 | O | 13622.1
AMIGOS 8 3779.1 | EEEG? 6017.4 | 5T 5729.2
HSAC 35 08.1 | IS0 123.1 | IS0 98.3
FedCFC-FedRep NTU RGB+D | I3 147.3 | IEEEES? 1102 | N2 192.6
AMIGOS 3 67.3 | IEEEEESS 82.8 | INEEEEENSS 103.4
HSAC |1 3477.1 | ISR 6213.3 | I3 8977.1
FedCFC-SCAFFOLD  NTU RGB+D | IEEEEES7 7051.1 | T/ 7981.6 | -6 9973.6
AMIGOS | kyl 3408.3 | IR 7321.4 | NEEEES9 6922.2
HSAC .7 4517.1 | 59 8783.2 | IO+ 19379.7
FedCFC-fAvg NTU RGB+D | 57 8351.1 | N7 11311.7 | I ) O+ 24321.7
AMIGOS k] 6147.3 | IS 7322.8 | N7 9847.2
HSAC |k 3318.7 | IEEN49 3988.2 | ST 5123.2
FedCFC-fSCAFFOLD NTU RGB+D | IEEEES1 41227 | IS4 4796.4 | NG9 6125.0
AMIGOS 33 2788.4 | 36 3072.8 | AR 4946.4
HSAC 7 1111.5 | I | 1188.3 | IS | 1569.7
LotteryFL NTU RGB+D | 72 1287.3 | () 1301.7 | O | 1688.0
AMIGOS I 984.9 | N6 912.6 | N6 1463.2

all f, g, h modules, while the latter only federates f modules.
The g and h modules are kept local to each client, which
allows them to better adapt to the local data distribution.

Table II shows the number of communication rounds to
achieve convergence and the associated per-client commu-
nication volume. We can see that FedCFC-fBind converges
faster. In summary, FedCFC-fBind speeds up the convergence
by 16.4%, 34.8%, and 45.5% with respect to the average of
other three FedCFC variants on all datasets, when v = 1,
v = 0.5, and v = 0, respectively. The speed-up ratios
with respect to LotteryFL are 35.5%, 33.4%, and 50.8%.
As FedCFC-fBind only transmits f’s last layer gradient, it
is communication-efficient. FedCFC-fBind reduces per-client
communication volume by 51x, 72x, and 96x with respect
to the average of the other three FedCFC variants on all
datasets, when v = 1, v = 0.5, and v = 0, respectively.
The reduction ratios with respect to LotteryFL are 11x, 12X,
and 14x. The lower communication overhead of FedCFC-
fBind makes it suitable for battery-based on-device FL be-
cause wireless transceiver is power-intensive. Note that the
communication overhead of FedCFC-FedRep is comparable
to that of FedCFC-fBind, but FedCFC-fBind achieves higher
accuracy and faster convergence speed.

C. Evaluation on Scalability Regarding Network Size

Due to power constraints and the nature of collected
data, MCU-based devices typically operate with a low data-
collection rate over time. As a result, many devices need to
participate in FL to aggregate sufficient training data. In this
section, we evaluate the impact of the number of participating
FL clients on the performance of FedCFC-fBind and other
FL approaches. We use two metrics: the final model accuracy
and the time used on the server in each federation round. We
use the NTU RGB+D dataset for evaluation. We control the
training data per round to a fixed batch size of 32 samples
and limit training to a single epoch. The number of clients
increases from 10 to 90.

Fig. 9a shows that FedCFC-fBind consistently achieves the
highest accuracy. Although all algorithms experience a decline
in accuracy when the number of clients exceeds 40 due to
increased model divergence caused by increased data hetero-
geneity, FedCFC-fBind exhibits only a 2.8% decrease in ac-
curacy, demonstrating its better scalability regarding network
size. Fig. 9b shows that as the number of clients increases,
the computational time of FedCFC-fBind remains comparable
to that of simpler baseline algorithms (i.e., FedProx). This is
primarily because FedCFC-fBind avoids transmitting the full
model weights, thereby reducing the computational overhead
associated with matrix operations. The worst-case compu-
tational complexity for solving semi-definite programming
problems described in §IV-D using Splitting Conic Solver
(SCS) [41] is O((|C| + 1)M), where |C| denotes the number
of clients, and M is a constant dependent on the internal
workings of the SCS solver. As a result, the computational
overhead of the FedCFC-fBind on the server side scales
polynomially with the number of clients |C|.

VI. ON-DEVICE EXPERIMENTS
A. Implementations and Deployments

Due to varying resource constraints across the deployed
platforms, we adapt the architectures of CFC’s three FNN
modules accordingly to ensure the model fits within the
available memory while maintaining a consistent hidden state
dimension x. The CFC model is pre-trained on a subset of
the dataset before INT8 quantization. The pre-training stage
involves the entire CFC model, including the f, g, and h
modules as well as the backbone. To better reflect realistic
deployment scenarios, we adopt an incremental learning set-
ting in which only a subset of labels from the full dataset is
initially available for training. As new label classes arrive,
the system continues training the model through on-device
federated learning, thereby simulating the continual adaptation
process commonly encountered in IoT applications. We



TABLE III: MCU specification and on-device training resource usage profile of FedCFC-fBind.

f,g,h . Initial End  Training Avg SRAM
Platform MCU rate (MHz) SRAM (KB) Hlayer CFC size (KB) acc acc  time (ms) usage (KB)
Nano Sense 64 256 2,2,2 6.7 0.73  0.86 347.55 159.76
Nano ESP32 240 320 2,2,2 6.8 0.72  0.85 254.47 159.42
M4 Express 120 192 2, 1,1 4.6 0.72  0.84 300.88 127.18
STM32F303 72 80 1, 1,1 3.7 0.71 0.79 249.82 81.67
40 B> t3ind = fah ~ 11.6% is primarily due to the necessary compromises imposed
>07 S oo 2304 fA\Ilng . fg CAF o by quantization and the use of smaller models to accommodate
3061 %20- 2 limited SRAM. Our profiling experiments demonstrate that
< o.5<>:3;1nd fAvg « f5CAF E 101 o FedCFC-fBind is adaptable and scalable for deployment on
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(a) Impact of the number of (b) Impact of clients number on
clients on the accuracy. federation time per round.

Fig. 9: Impact of the number of clients.

implement the CFC model and the weight update algorithm
in C programming language for the client. Table III summa-
rizes the MCU specifications. Specifically, we consider these
four MCUs for two reasons. First, they capture the device
heterogeneity that naturally arises in FL scenarios. Differences
in architecture, toolchains, and supported libraries reflect the
diversity that can cause training challenges in FL. For example,
as the optimized CMSIS-NN library is unavailable for Nano
ESP32, we fall back to portable C programming language
kernels to implement the necessary operations. Second, they
cover a wide spectrum of hardware capabilities, enabling us
to evaluate model efficiency and robustness under realistic
memory and computation constraints. The details of memory
allocation on the MCUs can be found in our conference paper
[26].

B. Evaluation of FedCFC-fBind on MCUs

To evaluate the performance of FedCFC-fBind on MCU-
based platforms, we train CFC under FL paradigm using a
network of 10 client nodes, including 7 Nano Sense devices
and one device from each of the three remaining platforms,
with a laptop acting as the parameter server. Clients communi-
cate with the server through BLE (Nano Sense), Wi-Fi (Nano
ESP32), and UART (Adafruit M4 Express and STM32F303).
The UCI-HAR dataset is used for training, with 40% reserved
for pre-training the CFC model. We assess the test accuracy
of the pre-trained and quantized CFC, the final test accuracy
of clients after FL, training time per communication round,
and SRAM usage. Each input sample consists of 125 sensor
readings over a 2.54-second interval. Table III presents the
results, showing that FedCFC-fBind maintains test accuracy
between 79% and 87% across the four platforms. The accuracy
is influenced by model size and available SRAM, highlighting
the trade-offs between computational efficiency and resource
constraints in MCU-based deployments. For reference, the
highest reported accuracy on the UCI-HAR dataset in the
literature is 90.6% [42]. The observed accuracy gap of 3.6% to

MCU-based platforms, even with 256 kB SRAM or lower,
making it a viable solution for resource-constrained systems.

We also measure the STM32F303 MCU’s energy consump-
tion profile. In its idle state, it draws a current of 14.3mA.
During the training phase, the MCU reaches a maximum
current of 25.7mA. In the testing phase, the average cur-
rent is about 22.4 mA. Operating on a 100 mAh battery, the
projected lifetime for back-to-back inference activities on the
STM32F303 MCU is about 268 minutes.

C. Case Study: Thermal Comfort Prediction on MCUs

In this section, we deploy a network of five Arduino Nano
Sense at 5 seats in an indoor office environment to construct a
personalized thermal comfort prediction model using built-in
temperature and light sensors on the Arduino. Thermal comfort
perception varies across individuals due to factors such as
gender, age, and clothing preferences. As a result, even under
the same indoor conditions, different individuals may have
distinct and often biased comfort preferences. Therefore, the
label distributions across users are highly imbalanced.

Data collection: Each Arduino device records the tempera-
ture every hour when a person is present at the corresponding
seat. During each sampling period, data is collected for five
minutes, and the occupant is asked to report their thermal
comfort level. Over a period of 12 days, we collected a
total of 342 samples. The distribution of thermal comfort
responses for each individual is shown in Fig. 10a. Note that
the collected data across different devices shows a noticeable
label distribution skew.

Training and inference: We first pre-train the CFC model
using 367 samples from the ASHRAE Thermal Comfort
Database [43], specifically selecting data from buildings of
the same type in our city. The selected features include
indoor temperature, outdoor temperature, outdoor humidity,
gender, and age. In addition, time is discretized into one-
minute intervals and used as an input feature. Subsequently,
we use 231 collected samples for on-device federated learning,
allowing the model to be further refined based on real-world
data from the deployed devices.

Results: Fig. 10b shows that after on-device training,
FedCFC-fBind achieves an average accuracy of 77.8%, outper-
forming FedCFC-fgh, which achieves an accuracy of 70.2%.
This result validates the effectiveness of our personalized FL
approach and demonstrates that our system can successfully
enable on-device FL in real-world scenarios.
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Fig. 10: Thermal comfort prediction with FedCFC.

VII. CONCLUSION

This paper highlights the advantages of CFC neural net-
works for processing time series data on resource-constrained
IoT devices. We introduce FedCFC, a CFC-based on-device
federated learning network. The design of FedCFC leverages
a property identified in this study—namely, the insensitivity
of its f sub-model with respect to variations in the training
data’s class distribution. To address the challenge of local
class skews among clients, we propose a novel geometric
aggregation strategy, fBind. Extensive evaluations and on-
device experiments demonstrate the superior performance of
FedCFC-fBind, as well as its adaptability for deployment on
low-end devices with as little as 256 kB of memory.
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