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Abstract—In this technical note, the trade-off between the
attack detectability and the performance degradation in stochas-
tic cyber-physical systems is investigated. We consider a linear
time-invariant system in which the attack detector performs
a hypothesis test on the innovation of the Kalman filter to
detect malicious tampering with the actuator signals. We adopt a
notion of attack stealthiness to quantify the degree of stealth by
limiting the maximum achievable exponents of both false alarm
probability and detection probability below certain thresholds.
And the conditions for any actuator attack to have a specific
level of stealthiness are derived. Additionally, we characterize
the upper bound of the performance degradation induced by
attacks with a given extent of stealthiness that produce inde-
pendent and identically distributed Gaussian innovations, and
design the attack which achieves the stated upper bound for
right-invertible systems. Finally, our results are illustrated via
numerical examples.

Index Terms—Cyber-physical system, Kalman filter, security.

I. INTRODUCTION

Cyber-physical systems (CPSs) are systems with tight inte-
gration of the computational and physical components, which
are currently widely used in modern society and attractive to
attackers due to their significance. Both academia research
[1, 2] and practical attack incidents such as the Stuxnet [3]
and the Maroochy water breach [4] have demonstrated the
feasibility of degrading the system performance by injecting
malicious data into the communication channels. Thus, it is
important to study the effects of data injection attack on
control systems and develop countermeasures.

Different from contingencies and accidental malfunctions,
the attacks aim to remain undetected while degrading the
performance of the system. There are a series of research
works [5–8] concentrating on the study of the well-crafted and
stealthy attacks for certain detectors such as the χ2 detector.
In these works, the attackers properly manipulate sensor
measurements or control commands based on the knowledge
of the system and the detector. In addition, a more stealthy
attack proposed in [9] strategically adapts to the time-varying
detection threshold. As these attacks are designed for a certain
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detector, it falls short of characterizing the fundamental aspects
of the attack, such as attack detectability. In practice, it is
usually difficult for the attackers to obtain detailed information
about the detectors. As a result, a notion of attack stealthiness
that is independent of the details of the attack detector has
received research attention recently.

In deterministic CPSs, to quantify the attack stealthiness
with zero knowledge of detectors, Pasqualetti et al. [2] and
Sundaram et al. [10] have shown that the modified sensor
measurements will be treated as normal if and only if they
excite the zero dynamics of the system. This zero-dynamics
tampering strategy is independent of the attack detection al-
gorithm. For stochastic control systems taking the process and
measurement noises into consideration, Bai et al. introduce a
notion of ε-stealthiness for false data injection (FDI) attacks on
actuators [11, 12] and sensors [13]. These studies relate the
attack stealthiness with the upper bound of the exponent of
false alarm probability among arbitrary detectors. Kung et al.
[14] study the difference of performance degradation induced
by ε-stealthy attacks in the scalar and higher dimensional
systems. Zhang et al. [15] consider the stealthiness in Linear
Quadratic Gaussian (LQG) control systems and design stealthy
FDI attacks over a finite time horizon. The work in [16]
extends the ε-stealthiness to innovation-based linear attacks
which are generated by manipulating sensor measurements and
shows that the worst-case linear attack is zero-mean Gaussian
distributed.

The Chernoff regime in information theories [17] demon-
strates that the probabilities of false alarm and detection can
converge exponentially fast at the same time when detec-
tors perform sequential hypothesis tests. The notion of ε-
stealthiness [11] in stochastic CPSs only considers the conver-
gence rate of false alarm probability to be less than a given
threshold. However, in most detectors that are widely used in
CPSs, e.g., χ2 detectors, the false alarm probability is usually
fixed (i.e., its convergence rate is zero) while the convergence
rate of detection probability could be large. It means that
the attack may not be stealthy to such detectors, since the
detection probability can converge to one very quickly while
the false alarm probability remains constant. In addition, given
the same level of ε-stealthiness, the attacks that result in faster
convergence of detection probabilities are less stealthy (see
Fig. 1). Therefore, we are motivated to consider a new notion
of (ε, δ)-stealthiness for data injection attacks which provides a
more general quantification of attack detectability in stochastic
CPSs. As both the actuation and measurement communication
channels are vulnerable in wireless [4] and wired [18] control
systems, studying security issues in either channel contributes
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to enhancing the security of CPSs. In this technical note,
we focus on analyzing the trade-off between the performance
degradation of the Kalman filter and the stealthiness level of
attacks when the actuator signals of a linear time-invariant
system are compromised. From our analysis and simulation
results, compared with the ε-stealthiness, the proposed (ε, δ)-
stealthiness presents a more fine-grained quantification of the
attack stealthiness especially when the parameters ε and δ are
within a certain range. The main contributions of this technical
note are as follows:

(1) We use the Kullback-Leibler Divergence (KLD) [19] to
characterize the attack stealthiness in stochastic CPSs
which considers the convergence rates of false alarm
probability and detection probability. Then, we derive
the conditions for an attack to be (ε, δ)-stealthy.

(2) For the attacked innovations that are modeled as inde-
pendent and identically distributed (i.i.d.) Gaussians, we
derive the upper bound of the minimum mean-square
estimation error (MMSE) of sensor measurements for
(ε, δ)-stealthy attacks.

(3) We design the (ε, δ)-stealthy attacks that achieve the
analytical maximum performance degradation in right-
invertible systems. We conduct simulations to illustrate
our results.

Notations: Rn is the n-dimensional Euclidean space. In
means an n×n identity matrix. tr(·) denotes the trace opera-
tion of a matrix. For any two vectors x = [x1, . . . , xn]T ∈ Rn
and y = [y1, . . . , yn]T ∈ Rn, x ≤ y (or x < y) means that
xi ≤ yi (or xi < yi) for all i = 1, . . . , n. And xji is used to
denote the sequence {xn}jn=i. A Gaussian process with mean
µ and covariance Σ is represented by N (µ,Σ). The KLD
between two random sequences rk1 and sk1 is defined by

DKL(rk1‖sk1) =

∫
ξk1∈Φ

frk1 (ξk1 ) log
frk1 (ξk1 )

fsk1 (ξk1 )
dξk1 , (1)

where Φ = {ξk1 |frk1 (ξk1 ) > 0}, and frk1 (·) and fsk1 (·) are the
joint probability density functions of rk1 and sk1 , respectively.

II. PROBLEM FORMULATION

A. System Model

Consider a discrete-time linear time-invariant (LTI) system:

xk+1 = Axk +Buk + wk,

yk = Cxk + vk,
(2)

where xk ∈ Rn is the system state, uk ∈ Rp is the actuator
signal, yk ∈ Rm is the sensor measurement, and A,B,C are
known time-invariant matrices of appropriate dimensions. The
wk ∈ Rn and vk ∈ Rm are uncorrelated zero-mean Gaussian
random noises with covariance Q ≥ 0 and R ≥ 0, respectively.
The initial state x1 ∼ N (0, P1), where P1 ≥ 0, is independent
of wk and vk for all k ≥ 1. We assume that the pairs (A,B)
and (A,

√
Q) are controllable and (A,C) is observable, and

the system {A,B,C} is right-invertible which is common in
linear systems with feedback control [20].

Denote yk1 = {y1, . . . , yk} as the measurements collected
by the sensors from time 1 to time k. To estimate the system

state, the Kalman filter is employed to perform the MMSE
estimation of xk from the historical sensor measurements
yk−1

1 . Based on the observability and controllability conditions
mentioned above, the Kalman filter converges exponentially
to a steady-state [21]. In the following, it is assumed that the
MMSE estimate x̂k is calculated by a steady-state Kalman
filter with the initial estimate x̂1 = 0, which is given as:

x̂k+1 = Ax̂k +Kzk +Buk,

K = APCT (CPCT +R)−1,

P = APAT −APCT (CPCT +R)−1CPAT +Q,

where the innovation zk , yk − Cx̂k is an i.i.d. Gaussian
process with mean zero and covariance Σz = CPCT +R.

B. Attack Model
Considering the vulnerability of communication links and

the ever-increasing attack capabilities, we employ an attack
model in which the attackers can replace the actuator signals
u∞1 with an arbitrary sequence ũ∞1 . The attack is designed
based on the available system knowledge. Denote Γk as the
set of obtainable system information of attackers at time k,
and Γk should satisfy the following assumptions:

(A1) the system parameters {A,B,C,Q,R} ∈ Γk,
(A2) the actuator signal uk ∈ Γk at all time k,
(A3) Γk is non-decreasing (i.e., Γk ⊆ Γk+1) and Γk is

independent of w∞k and v∞k+1 for all k.
Remark 1: Assumptions (A1) and (A2) are both reasonable

since sophisticated attackers can obtain the system knowledge
through first-principle modeling or system identification meth-
ods. The feasibility of compromising actuator signals has been
shown in the literature and incidents such as [3, 4, 18]. The
assumption (A3) stems from causality constraints.

Denote ˆ̃xk and ỹk as the state estimate and sensor measure-
ment under the attack ũk−1

1 , respectively. As the system does
not know ũ∞1 , the Kalman filter under the attack evolves as

ˆ̃xk+1 = Aˆ̃xk +Kz̃k +Buk, (3)

with corrupted innovation z̃k = ỹk−C ˆ̃xk. Notice that ˆ̃xk is no
longer the optimal MMSE estimate of the true state xk now.

The accuracy of the estimation or prediction of system states
and sensor measurements is important for applications such as
state-based control, monitoring and so on. Hence, we assume
that the attackers aim to degrade the system performance by
increasing the covariance of the error between the predicted
sensor data ˆ̃yk and the true value yk. Furthermore, we weight
each element of the error vector ˆ̃yk − yk to normalize the
relative attack impact among different elements of this error
vector, and consider

J = lim sup
k→∞

1

k

k∑
n=1

E
[(

ˆ̃yn − yn
)T

Σ−1
z

(
ˆ̃yn − yn

)]
as the performance metric [12]. This metric is the average
normalized error covariance of sensor measurements over an
infinite time horizon. In addition, J can also be formulated as

J = lim sup
k→∞

1

k

k∑
n=1

tr(P̃kW ) + tr(Σ−1
z R), (4)
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where P̃k = E[(ˆ̃xk − xk)(ˆ̃xk − xk)T ] and W = CTΣ−1
z C.

C. Detector Description

The system detectors resort to analyzing the received sensor
measurements to determine whether there is an attack in the
system. We formulate the problem of detecting attacks as a
sequential hypothesis testing problem. Specifically, at time k,
the detector obtains the sensor data yk1 = {y1, . . . , yk} and
performs the following binary hypothesis test:
H0 : No attack exists (the estimator receives yk1 ),
H1 : Attack exists (the estimator receives ỹk1 ).

Note that we do not impose any restriction on the detection
algorithm. For a given detector, we use detection probability
pDk and false alarm probability pFk at time k to measure its
detection performance, where pDk and pFk are given by

pDk = Pk(H1|H1), pFk = Pk(H1|H0).

As the sensors collect data continuously and the detector per-
forms a hypothesis test on all historical data, the convergence
of pFk and pDk is possible. Given an attack and a detector, we
denote E1 and E2 as the exponential convergence rates of pFk
and pDk as k →∞, respectively. Specifically, we have

E1 = lim sup
k→∞

−1

k
log pFk , E2 = lim sup

k→∞
−1

k
log(1− pDk ).

Note that E1 ≥ 0 and E2 ≥ 0 for all detectors and the
equality may hold, for example, E1 = 0 in the constant
false alarm probability detectors. Furthermore, we define the
optimal trade-off between E1 and E2 by E∗2 (E1) as follows:

E∗2 (E1) = sup{E2 : ∃k0,∀k ≥ k0,

∃ detector s.t. pFk < 2−kE1 , pDk > 1− 2−kE2},

where E∗2 (E1) is the maximum convergence rate of pDk among
the detectors whose exponential convergence rate of pFk is E1

as k →∞, and E∗2 (E1) is decreasing with respect to E1.

D. Motivation and Problem Statement

Without the knowledge of the aforementioned detectors,
e.g., the type or threshold of the detector, it is difficult for the
attackers to guarantee that the crafted attacks are undetectable.
The design of stealthy attacks will follow a random guessing
approach. If the designed attack sequence does not trigger the
alarm condition of the detector used, it can fortunately bypass
the detector. As a result, with the observation that the attackers
in the real world may wish to have long enough stealthy time
to achieve attack objectives instead of being noticed all the
time, it is reasonable to characterize the stealthiness of attacks
against any detector by the increasing rate of pDk or the decay
rate of pFk over time. Faster rates mean lower stealthiness.
The recently proposed ε-stealthiness, as Definition 1 shows,
connects the attack stealthiness with the convergence rate of
pFk based on detection and information theories.

Definition 1 (ε-stealthiness [11]): Let ε > 0 and 0 < θ < 1.
The attack ũ∞1 is ε-stealthy if for any detector that operates
with 0 < 1− pDk ≤ θ at all time k, the following holds:

lim sup
k→∞

−1

k
log pFk ≤ ε.
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Fig. 1. The detection probabilities for two attacks, where the normal Kalman
filter innovation: zk ∼ N0(0, 0.621), the innovation of attacker 1: z̃1k ∼
N1(0.6, 0.621) and the innovation of attacker 2: z̃2k ∼ N2(0, 1.5483). Both
attacks are ε-stealthy according to the mean and variance of z̃1k and z̃2k [11],
where ε = 0.2816. In addition, a detector in which pFk = 0.05 is adopted.

However, as it is stated in [17], the detector can make
decisions on E1 and E2 simultaneously where E2 ≤ E∗2 (E1).
Actually, the detectors that are widely used in real CPSs such
as the χ2 detector and CUmulative SUM (CUSUM) detector,
typically make the false alarm probability pFk constant over
time, i.e., E1 = 0. This engenders the possibility that the
detection probability pDk converges to one at the maximum
exponential convergence rate E∗2 (E1 = 0). In such case, the
attack may not be stealthy, unless E∗2 (E1 = 0) is less than an
acceptable value.

In addition, the ε-stealthiness may not be sufficient in char-
acterizing the extent of attack stealthiness. As Fig. 1 shows,
with the false alarm probability pFk fixed, the probabilities
of detecting the two attackers converge to one at different
rates. Since the detector works based on the Neyman-Pearson
Lemma [22] (i.e., the most powerful likelihood-ratio test with
constant false alarm probability), the detection probability pDk
at each time is the best achievable value. Clearly, attacker 2 is
more stealthy than attacker 1, although they are of the same
stealthiness level according to the definition of ε-stealthiness.

Thus, it motivates us to consider a more comprehensive
notion of (ε, δ)-stealthiness capturing both the convergence
rates E1 and E2. The (ε, δ)-stealthiness will be formally
defined in Section III. In addition, we assume that the objective
of the attacker is to maximize the performance metric J while
maintaining a specific level of stealthiness by replacing the
nominal actuator signals with a malicious attack sequence ũ∞1 .
Formally, the attacker aims to solve the following problem:

P0 : max J, s.t. the attack ũ∞1 is (ε, δ)-stealthy.

In this technical note, we will also study the performance
degradation caused by the defined stealthy attacks that gen-
erate i.i.d. Gaussian innovations and find the attack ũ∞1 that
achieves the largest performance degradation in right-invertible
systems.

III. DEFINITION AND CONDITIONS FOR STEALTHY ATTACK

In this section, we present the definition of attack stealthi-
ness in stochastic CPSs based on the convergence rates of false
alarm probability and detection probability. We also derive the
conditions for an attacker to achieve a particular extent of
stealthiness.
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A. Attack Stealthiness

For the same attack, different detectors have distinct de-
tection performance when performing hypothesis testing on
sensor data. In other words, the convergence rates (E1, E2)
among detectors may be different. Intuitively, an attacker is
strictly stealthy if no better detection performance than the
random guessing can be found among all detectors. Similarly,
for a given attack, if the convergence rates E1 and E2 are
upper-bounded with any detector, the attack possesses a certain
degree of stealthiness. We formalize this understanding as
Definition 2.

Definition 2 (Stealthy attacks): Considering the system (2)
and the detector mentioned in Section II-C, the attack ũ∞1 is

(1) strictly stealthy if no detector has the detection perfor-
mance that pFk < pDk for any k > 0.

(2) (ε, δ)-stealthy with ε > 0 and δ > 0, if all detectors
satisfy the following two conditions simultaneously:

(i) For 0 < θ1 < 1 and any detector that satisfies
0 < 1 − pDk ≤ θ1 for all time k, the false alarm
probability pFk converges to zero exponentially fast
with rate smaller than ε as k →∞, namely,

lim sup
k→∞

−1

k
log pFk ≤ ε.

(ii) For 0 < θ2 < 1 and any detector that satisfies 0 <
pFk ≤ θ2 for all time k, the detection probability
pDk converges to one exponentially fast with rate
smaller than δ as k →∞, namely,

lim sup
k→∞

−1

k
log(1− pDk ) ≤ δ.

In summary, Definition 2 means that for an attack to be
(ε, δ)-stealthy, both the maximum exponential convergence
rates of pFk and pDk of the attack among all possible detectors
need to be constrained below ε and δ, respectively.

B. Conditions for Stealthy Attack

According to Definition 2, we give the following theorem.
Theorem 1: For the system (2) with a detector making

hypothesis tests in Section II-C, the attack sequence ũ∞1 is
(1) strictly stealthy, if DKL(ỹk1‖yk1 ) = DKL(yk1‖ỹk1 ) = 0.
(2) (ε, δ)-stealthy for ε > 0 and δ > 0, if and only if

lim sup
k→∞

1

k
DKL(ỹk1‖yk1 ) ≤ ε, (5)

lim sup
k→∞

1

k
DKL(yk1‖ỹk1 ) ≤ δ. (6)

Proof: For the first statement, it is straightforward to
obtain the proof from the Neyman-Pearson Lemma.

For the second statement, from Lemmas 1 and 2 in [11],
(5) is the sufficient and necessary condition for an ε-stealthy
attack which meets Definition 1. Since part (i) of Definition 2
is consistent with Definition 1, (5) is part of the sufficient and
necessary conditions for (ε, δ)-stealthiness. Then, by changing
the original hypothesis to H∗0 = H1 and H∗1 = H0 where
H∗0 : No attack exists (the estimator receives ỹk1 ),
H∗1 : Attack exists (the estimator receives yk1 ),

the false alarm probability and detection probability of the
current hypothesis testing problem are pFk

∗
= Pk(H∗1 |H∗0 ) =

1 − pDk and pDk
∗

= Pk(H∗1 |H∗1 ) = 1 − pFk , respectively. Let
ε∗ = δ. For an attack to be ε∗-stealthy in such detectors, we
must have lim supk→∞− 1

k log(1− pDk ) ≤ δ when 0 < pFk ≤
θ2 < 1 holds at any time k, which coincides with part (ii) of
Definition 2. Similar to (5), (6) is the sufficient and necessary
condition for an attack to satisfy part (ii) of Definition 2. In
summary, by combining (5) and (6), the theorem follows.

Remark 2: Theorem 1 gives sufficient and necessary con-
ditions that can be used to check if the attack ũ∞1 is strictly
stealthy or (ε, δ)-stealthy. Note that the criteria in Theorem 1
can be applied to any attack sequence, i.e., regardless of the
distribution of ũk1 or ỹk1 . Through Theorem 1, one can find
that there is no attacker being (0, δ)-stealthy or (ε, 0)-stealthy
with ε > 0 and δ > 0, since, for example, DKL(yk1‖ỹk1 ) = 0
must hold if DKL(ỹk1‖yk1 ) = 0. Thus, the strictly stealthy
attack here is equivalent to the strictly stealthy attack in [11].
In addition, as z̃k and zk are invertible functions of ỹk and
yk respectively, we have DKL(ỹk1 ||yk1 ) = DKL(z̃k1 ||zk1 ) and
DKL(yk1 ||ỹk1 ) = DKL(zk1 ||z̃k1 ) for every k > 0 due to the
invariance property of the KLD [19].

IV. PERFORMANCE DEGRADATION UNDER ATTACKS

It is important to investigate the performance degradation
under (ε, δ)-stealthy attacks. In the rest of this technical note,
we consider that the innovation sequence z̃k1 induced by the
(ε, δ)-stealthy attack ũk−1

1 is an i.i.d. Gaussian process, i.e.,
z̃k ∼ N (µ,Σz̃). In the following, we first present the trade-
off between Dε and Dδ , which is critical to obtaining the
largest performance degradation. Then, the upper bound of
the performance degradation in the presence of stealthy attacks
is derived. Further, the (ε, δ)-stealthy attack that achieves the
obtained upper bound is designed for right-invertible systems.

A. Trade-off between Dε and Dδ

We define the following terms:

Ξ̃k = E[z̃kz̃
T
k ] = µµT + Σz̃, λ = [λ1, . . . , λm]T ,

Dε =
1

2

m∑
i=1

λi − 1− log λi, D
δ =

1

2

m∑
i=1

1

λi
− 1− log

1

λi
,

where λ is the vector of the eigenvalues of the matrix Ξ̃kΣ−1
z .

Note that Ξ̃k ≥ Σz̃ > 0 since µµT is positive semi-definite.
The following lemma is given as a preliminary.

Lemma 1 ([13], Lemma 10): For any x ≥ 0, we define

δ̄(x) = 2x+ 1 + log δ̄(x) where δ̄ : [0,∞)→ [1,∞),

δ(x) = 2x+ 1 + log δ(x) where δ : [0,∞)→ (0, 1].

Then, δ̄(x) and δ(x) are increasing concave and decreasing
convex functions, respectively, when x ≥ 0.

When (ε, δ)-stealthy attacks result in i.i.d. Gaussian innova-
tions, Dε and Dδ respectively represent the eigenvalue form
of (5) and (6) in Theorem 1 after certain derivation, which will
be described in detail in Section IV-B. In this subsection, the
trade-off between Dε and Dδ is provided in Lemma 2, which
lays the basis for deriving the largest performance degradation.



5

Lemma 2: Considering that the detectors mentioned in
Section II-C perform hypothesis tests between the normal
innovation zk ∼ N (0,Σz) and the corrupted innovation
z̃k ∼ N (µ,Σz̃) induced by (ε, δ)-stealthy attacks where ε > 0
and δ > 0. If Dε = ε, the feasible range of Dδ(ε) is given by

Dδ
min(ε) ≤ Dδ(ε) ≤ Dδ

max(ε),

Dδ
min(ε) = ε+

1

2

[
1

δ̄(ε)
− δ̄(ε) + 2 log δ̄(ε)

]
,

Dδ
max(ε) = ε+

m

2

[
1

δ̄( εm )
− δ̄

( ε
m

)
+ 2 log δ̄

( ε
m

)]
.

Proof: Our goal is to get the maximum and minimum of
Dδ subject to the constraint Dε = ε, which can be formulated
as Problem P1 based on the above formulas of Dε and Dδ:

P1 : max
λ

(min
λ

) Dδ −Dε =
1

2

m∑
i=1

(
1

λi
− λi + 2 log λi

)
,

s.t.
1

2

m∑
i=1

(λi − 1− log λi) = ε.

To achieve the goal, we transform Problem P1 by letting
λi = δ̄(εi) and si(εi) = 1

2

(
1

δ̄(εi)
− δ̄(εi) + 2 log δ̄(εi)

)
for

i = 1, 2, . . . ,m, and then calculate the maximum and mini-
mum, respectively. From Lemma 1, we have δ̄(x) ∈ (1,∞),
δ̄′(x) = 2δ̄(x)/(δ̄(x) − 1) and δ̄′′(x) = −4δ̄(x)/(δ̄(x) − 1)3

for x > 0. Then, for εi > 0, the following inequality holds:

s′′i (εi) =
1

2

[
2− 2δ̄(εi)

δ̄2(εi)
(δ̄′(εi))

2 − δ̄′′(εi)(1−
1

δ̄(εi)
)2

]
=

2

(1− δ̄(εi))δ̄(εi)
< 0.

Without loss of generality, assuming that φ1 = 0 and φ2 ≥ 0,
we have that ∀t ∈ [0, 1], si(tφ2 + (1− t)φ1) ≥ t · si(φ2) since
si(0) = 0 and s′′i (εi) < 0 on εi > 0. In summary, si(εi) is
concave on εi ≥ 0. To get Dδ

max(ε), we rewrite P1 as

P2 : max

m∑
i=1

si(εi), s.t.

m∑
i=1

εi = ε, εi ≥ 0.

Based on Jensen’s inequality, P2 is solved and Dδ
max(ε) is

obtained when λi = δ̄( εm ), εi = ε
m for i = 1, . . . ,m.

To obtain Dδ
min(ε), it is equivalent to solving the problem

P3 : max

m∑
i=1

−si(εi), s.t.

m∑
i=1

εi = ε, εi ≥ 0,

where −si(εi) is convex for εi ≥ 0 and the set of the constraint
is convex. Based on the maximum principle in Convex Analy-
sis [23], the optimal solution of P3 must exist on the boundary.
Without loss of generality, let the boundary of the constraint
set be Ω =

{∑m−1
i=1 εi = ε, εm = 0

}
, which is convex and can

be interpreted as a line segment in an m-dimensional space.
Consequently, P3 is still convex on Ω. Reusing the maximum
principle, the current constraint Ω is reduced to a set of points,
i.e., {εi = ε, εj = 0, j 6= i, j = 1, . . . ,m | i = 1, . . . ,m}, in
which each point leads to Dδ

min(ε).
Corollary 1: From Lemma 2, the following statements hold:

(i) given ε > 0 and δ > 0, if δ ≤ Dδ
min(ε), then Dε

max(δ) ≤ ε

follows, (ii) there exists an (ε, δ)-stealthy attack achieving both
the equality of (5) and (6) if δ ∈

[
Dδ

min(ε), Dδ
max(ε)

]
.

Proof: The statement (i) follows by fixing Dδ = δ and
repeating similar procedures in Lemma 2. As Dε and Dδ are
respectively the eigenvalue form of (5) and (6) when z̃k is i.i.d.
Gaussian, the statement (ii) is derived directly from Lemma 2
and Theorem 1.

Remark 3: Lemma 2 and Corollary 1 indicate that the (ε, δ)-
stealthiness presents a more fine-grained characterization of
attack stealthiness than the ε-stealthiness in [11]. Specifically,
fixing the maximum convergence rate of pFk to ε (i.e., Dε = ε),
the feasible maximum convergence rate of pDk belongs to the
interval

[
Dδ

min(ε), Dδ
max(ε)

]
when z̃k is i.i.d. Gaussian. The

attacks with the same ε and different δ ∈
[
Dδ

min(ε), Dδ
max(ε)

]
have distinct (ε, δ)-stealthiness levels, while they are ε-stealthy.

B. Performance degradation under (ε, δ)-stealthy attacks
To analyze the performance degradation induced by (ε, δ)-

stealthy attacks, firstly we have Ξ̃k = CP̃kC
T + R based on

the observation of z̃k = C(xk− ˆ̃xk)+vk and Assumption (A3)
in Section II-B. Then, based on (4), the performance metric
is given by

J
(a)
= lim sup

k→∞

1

k

k∑
n=1

tr(CP̃kC
TΣ−1

z ) + tr(RΣ−1
z )

(b)
= lim sup

k→∞

1

k

k∑
n=1

tr
(

Ξ̃kΣ−1
z

)
(c)
= tr(Ξ̃kΣ−1

z ) =

m∑
i=1

λi,

where (a) holds since the trace operator is invariant under the
cyclic permutations, and (b) and (c) follow due to the equation
Ξ̃k = CP̃kC

T +R and the i.i.d. property of z̃k, respectively.
For an attack to be (ε, δ)-stealthy, according to Theorem 1

and Remark 2, the following inequalities are obtained from
(5) and (6) respectively:

lim sup
k→∞

1

k
DKL(z̃k1‖zk1 ) = DKL(z̃k‖zk) ≤ ε, (7)

lim sup
k→∞

1

k
DKL(zk1‖z̃k1 ) = DKL(zk‖z̃k) ≤ δ. (8)

Taking (8) as an example, we expand the term DKL(zk‖z̃k)
according to the definition of the KLD and then have
1

m
tr(Ξ̃−1

k Σz)

=
2

m
DKL(zk‖z̃k) + 1 +

1

m
log |Ξ̃−1

k Σz|

− 1

m
tr
(

(Σ−1
z̃ − Ξ̃−1

k )Σz

)
− 1

m
DKL

(
N (0, Ξ̃k)‖N (0,Σz̃)

)
≤ 2

m
DKL(zk‖z̃k) + 1 +

1

m
log |Ξ̃−1

k Σz|,

where the inequality holds since Ξ̃k ≥ Σz̃ > 0 and every
KLD is non-negative. To achieve the equality, we need µ = 0.
Similarly, DKL(z̃k‖zk) satisfies the following:

1

m
tr(Ξ̃kΣ−1

z )

=
2

m
DKL(z̃k‖zk) + 1 +

1

m
log |Ξ̃kΣ−1

z | −
1

m
log |Ξ̃kΣ−1

z̃ |

≤ 2

m
DKL(z̃k‖zk) + 1 +

1

m
log |Ξ̃kΣ−1

z |.
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Considering a strictly stealthy attack and a normal case, the
resulting innovation is z̃k ∼ N (0,Σz) by Theorem 1 and zk ∼
N (0,Σz), respectively. In both cases, we have J = m since
each λi = 1 now. As the adversary aims to increase J , we
consider Ξ̃k ≥ Σz for attackers, which leads to λi ≥ 1 for i =
1, . . . ,m. As a result, we find that obtaining the upper bound
of the performance degradation under (ε, δ)-stealthy attacks
is equivalent to solving the following Problem P4, where (d)
and (e) are respectively obtained by translating (7) and (8)
with the eigenvalues of Ξ̃kΣ−1

z :

P4 : max
λ

F (λ) =

m∑
i=1

λi,

s.t. L(λ) =
1

2

m∑
i=1

λi − 1− log λi ≤ ε, (d)

U(λ) =
1

2

m∑
i=1

1

λi
− 1− log

1

λi
≤ δ, (e)

λi ≥ 1, i = 1, . . . ,m.

The convex property of Problem P4 is examined in the
following proposition. The proof is given in the Appendix.

Proposition 1: Problem P4 is a convex optimization prob-
lem when δ ≤ δ0, where δ0 = − 1

4 −
1
2 log 1

2 . Otherwise, it is
a non-convex problem.

Proposition 2: The optimal solution of P4 makes at least
one of the constraints (d) and (e) hold with equality.

Proof: Proposition 2 is true since in P4, both L(λ) in (d)
and U(λ) in (e) are increasing with λi ≥ 1 and the increase
of each λi will enlarge the objective function F (λ) of P4.

From Propositions 1 and 2, we have the following lemmas
with the proof of Lemma 4 given in the Appendix.

Lemma 3 ([12], Theorem 7): The optimal solution for
Problem P4 with the constraint (e) removed is given by
F (λ)max = mδ̄( εm ), when λi = δ̄( εm ) for i = 1, . . . ,m.

Lemma 4: If δ ≤ δ0, then the optimal solution of Prob-
lem P4 without the constraint (d) is given by F (λ)max =
m/δ( δm ), when λi = 1/δ( δm ) for i = 1, . . . ,m.

Based on Lemmas 2-4, we find that the largest performance
degradation under (ε, δ)-stealthy attacks depends on the rela-
tionship between ε and δ, where either (d) or (e) in P4 can be
neglected sometimes. By solving P4, the performance degra-
dation under (ε, δ)-stealthy attacks is provided in Theorem 2.

Theorem 2: Consider the system and detector above, and
the information set Γ∞1 satisfying assumptions (A1)-(A3).
For any (ε, δ)-stealthy attack ũ∞1 that is generated by Γ∞1
and produces i.i.d. Gaussian innovation z̃k ∼ N (µ,Σz̃), the
resulting estimation error of sensor measurements J satisfies

(1) If δ > Dδ
max(ε), then

J ≤ mδ̄( ε
m

) = tr(PW ) +m
(
δ̄(
ε

m
)− 1

)
+ tr(Σ−1

z R);

(2) If δ ≤ min
(
Dδ

max(ε), δ0
)
, then J ≤ mδ( δm )

−1
;

(3) If δ0 < δ ≤ Dδ
max(ε), then J is less than F (λ)max in P4,

where P4 is non-convex, but can be efficiently solved
by monotonic optimization methods in [24].

Proof: Given an (ε, δ)-stealthy attack, the constraint (e)
of Problem P4 can be removed if δ > Dδ

max(ε) since it is

satisfied definitely. As a consequence, by leveraging Lemma
3, the result of the first statement follows.

For the second statement, we will find the optimal solution
of P4 by proving that the constraint (d) is always fulfilled
and removable when δ ≤ min

(
Dδ

max(ε), δ0
)

= κ, and then
using Lemma 4. Firstly, we divide δ ≤ κ into two cases:
δ ≤ min

(
Dδ

min(ε), κ
)
, and δ ∈

(
Dδ

min(ε), κ
]

if Dδ
min(ε) < κ.

For the former case where the inequality δ ≤ Dδ
min(ε) is true,

Corollary 1 tells that Dε
max(δ) ≤ ε. Hence, the constraint (d)

is always satisfied. Subsequently, for arbitrary δ in the latter
case, there exists an ε0 such that δ = Dδ

max(ε0). Based on
Lemmas 3 and 4, the solution λ∗ with λ∗i = δ̄( ε0m ) = δ( δm )

−1

for i = 1, . . . ,m is optimal for P4 which achieves both the
equalities of (d) and (e) when the parameters are specified
as (ε0, δ). Further, since δ ≤ Dδ

max(ε) and the function
Dδ

max(x) is monotonically increasing on x ≥ 0, we have
ε ≥ ε0. Then, supposing that there exists a solution λ0 meeting
ε0 ≤ L(λ0) ≤ ε and U(λ0) = δ, we find F (λ0) ≤ F (λ∗)
since λ∗ is already the optimal solution of P4 subject to the
constraints U(λ) = δ and λi ≥ 1, i = 1, . . . ,m. Hence, P4

with (d) removed is equivalent to the original problem when
δ ≤ κ. Consequently, by using Lemma 4, the result follows.

And for δ0 < δ ≤ Dδ
max(ε), Proposition 1 shows that

P4 is non-convex. It is inherently difficult to provide the
optimal solution of a non-convex problem in an analytical
form. However, we find that in Problem P4, F (λ1) ≥ F (λ2)
if λ1 ≥ λ2 > 0 and so are L(λ) and U(λ), showing their
monotonically increasing property. Based on these properties,
P4 is a monotonic optimization problem according to the
corresponding definition in Section 2.2 of [24], whose optimal
solution can be approached by applying the Polyblock Outer
Approximation algorithm in [24]. Further, since the objective
function F (λ) is Lipschitz continuous, the algorithm is guar-
anteed to converge to an η-optimal (η > 0) solution in a finite
number of iterations. It means that the distance between the
optimal solution F (λ∗) and the obtained one F (λ̄) is smaller
than the given threshold η, i.e., |F (λ∗)− F (λ̄)| < η.

Remark 4: When z̃k is i.i.d. Gaussian, Theorem 2 extends
the results in [12], since for a given ε, our results coincide with
that in [12] when δ ≥ Dδ

max(ε). For δ < Dδ
max(ε), Theorem 2

gives a different upper bound of the performance degradation
for (ε, δ)-stealthy attacks, which are actually ε-stealthy in [12].

C. Optimal Attacks
In this subsection, we design the optimal attacks that result

in i.i.d. Gaussian innovations and achieve the upper bound
of the performance degradation given in Theorem 2 when
the system {A,B,C} is right-invertible. The following tool
lemma is given first, followed by the main results in Theorem
3.

Lemma 5 ([12], Lemma 10): The system {A−KC,B,C} is
also right-invertible if the system {A,B,C} is right-invertible.

Theorem 3: Consider the problem setup for the right-
invertible system {A,B,C} in Section II and denote
λ∗(ε, δ) = [λ∗1, . . . , λ

∗
m]T as the optimal or suboptimal so-

lution of P4. Then, the (ε, δ)-stealthy attack ũk = uk + πk
achieves the largest performance degradation given in Theo-
rem 2, where Λ∗ = diag(λ∗1, . . . , λ

∗
m) and πk is the output
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Fig. 2. The performance metric at each time slot Jk under the optimal or η-
optimal attack and the randomly generated attack when ε = 2 and δ = 0.54.

of the right inverse of the system (9) with i.i.d. sequence{
ξ∞1 |ξk ∼ N (0, (Λ∗ − Im)Σz)

}
as the input:

ek+1 = (A−KC)ek +Bπk, ξk = Cek, (9)

where x̂vk+1 = Ax̂vk + Kzvk + Bũk, ek = x̂vk − ˆ̃xk and ξk =
z̃k − zvk with i.i.d. zvk = ỹk − Cx̂vk ∼ N (0,Σz).

Proof: The proof that the attack ũk = uk+πk in Theorem
3 achieves the upper bound of the performance degradation
given in Theorem 2 is similar to the results in [12, 14]. Hence,
we omit this part of the proof due to the space limitation.

Next, we will show that the attack ũk as described above
is (ε, δ)-stealthy regardless of the relationship between ε and
δ. Considering δ > Dδ

max(ε), the attack ũk is generated when
λ∗i = δ̄( εm ) for i = 1, . . . ,m. Using (7) and (8) and expanding
DKL(z̃k‖zk) and DKL(zk‖z̃k) with λ∗i ’s, we have

DKL(z̃k‖zk) =
1

2

m∑
i=1

λ∗i − 1− log λ∗i = m · ε
m

= ε,

DKL(zk‖z̃k) =
1

2

m∑
i=1

1

λ∗i
− 1 + log λ∗i = Dδ

max(ε) < δ,

showing that the attack ũk is (ε, δ)-stealthy.
For δ ≤ min

(
Dδ

max(ε), δ0
)

= κ, an optimal attack is given
when λ∗i = 1/δ( δm ) for i = 1, . . . ,m. Based on Corollary 1
and Theorem 2, we have DKL(zk‖z̃k) = m · δm = δ and

DKL(z̃k‖zk) = Dε
max(δ) ≤ ε, if δ ≤ min

(
Dδ

min(ε), κ
)
,

DKL(z̃k‖zk) = ε0 ≤ ε, if δ ∈
(
Dδ

min(ε), κ
]
, δ̄(

ε0
m

) = 1/δ(
δ

m
).

As for δ0 < δ ≤ Dδ
max(ε), λ∗(ε, δ) is obtained by solving

Problem P4, for which the generated attack ũk must be (ε, δ)-
stealthy. At this point, the proof is complete.

V. NUMERICAL RESULTS

In this section, we demonstrate our results by conducting
several numerical simulations on the system with parameters

A =

[
1 1
0 1

]
, B = I2, C =

[
3 4
1 1

]
, Q = R =

[
0.6 0
0 0.3

]
,

which is a right-invertible system and used in [14]. We firstly
illustrate the superiority of the optimal or η-optimal attack in
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J m
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Fig. 3. The performance degradation induced by (ε, δ)-stealthy attacks with
ε fixed and δ varying.

Fig. 2. The parameters are selected as ε = 2 and δ = 0.54
and the results in the figure are obtained by conducting
1000 times simulations. During the time interval [0, 100], the
Kalman filter equipped in the system evolves into a steady-
state. Subsequently, the optimal or suboptimal attack (dotted
line) and the randomly generated attack (dashed line) are
applied, respectively, wherein the latter one we make at least
one of the constraints (d) and (e) in P4 hold with equality.
Obviously, the attack obtained based on Theorems 2 and 3
outperforms others. In addition, the convergence value of Jk
under the optimal or suboptimal attack (about 8) coincides
with the result in Theorem 2 (see Fig. 3).

Then, we analyze the performance degradation on the
estimation error of sensor measurements induced by (ε, δ)-
stealthy attacks with various stealth levels. The results of the
upper bound of the performance degradation Jmax given in
Theorem 2 are presented in Fig. 3, where the ε in each curve
is fixed to a different value. As observed from the figure, Jmax
is increasing with δ for a given ε until it reaches mδ̄( εm ),
which occurs because the constraint brought by the parameter
δ does not contribute to restricting the attack space when δ
exceeds Dδ

max. Additionally, applying attacks with a larger ε
does not necessarily means a higher Jmax, at least not lower,
but it would result in a larger performance loss eventually as
δ increases. The attacks with different ε have the same Jmax
when δ is small, since it is the parameter δ that serves to limit
the attack space. With δ increasing, ε begins to constrain the
feasible attack space. As a result, the attack with a larger ε
potentially has a larger Jmax since a broader attack space can
be provided.

To compare our proposed attack with the ε-stealthy attack
in [11, 12] when the corrupted innovation is an i.i.d. Gaussian
process, we take ε = 1.5 (dotted line and thin dashed line in
Fig. 3) as an example. Since ε-stealthiness does not rely on
δ, the ε-stealthy attack has a constant Jmax, which coincides
with that of (ε, δ)-stealthy attack when δ > Dδ

max(ε). When
the specified parameter δ ∈

[
Dδ

min(ε), Dδ
max(ε)

]
, the (ε, δ)-

stealthy attacks have lower Jmax though they are of the same
ε-stealthiness, indicating that the (ε, δ)-stealthiness can further
refine the ε-stealthiness. And for δ < Dδ

min(ε), the maximum
achievable exponent of pFk is smaller than ε. Strictly speaking,
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the (ε, δ)-stealthy attack is not ε-stealthy now, but ε0-stealthy
where ε0 < ε and δ̄( ε0m ) = δ( δm )−1, and thus its performance
degradation is smaller than that of all ε-stealthy attacks. In
summary, considering the system performance degradation,
our proposed notion describes the extent of attack stealthi-
ness in a more fine-grained way, especially when the given
parameters satisfy Dδ

min(ε) ≤ δ ≤ Dδ
max(ε).

VI. CONCLUSION

In this technical note, we have investigated the stealthi-
ness and performance of stealthy actuator signal attacks in
stochastic cyber-physical systems with detection algorithms
unknown. To quantify the detectability of attacks, a notion
of (ε, δ)-stealthiness has been proposed, which considers the
convergence rates of false alarm probability and detection
probability. Then, we have studied the attacks that produce
i.i.d. Gaussian innovations and characterized the largest per-
formance degradation on the estimation of sensor measure-
ments induced by (ε, δ)-stealthy attacks based on the trade-
off between the largest exponent of the two probabilities
in detectors. In addition, the attack achieving the largest
performance loss in right-invertible systems has been designed.
Based on our analysis and simulations, the (ε, δ)-stealthiness
better characterizes the extent of attack stealthiness.

APPENDIX

Proof of Proposition 1: It is equivalent for Problem P4

to change its objective to minλ−F (λ) =
∑m
i=1−λi, which is

convex. For the constraint (d), it is explicitly convex due to the
convexity of λi− 1− log λi for all λi ≥ 1. Since the function
1
λi

+log λi−1 is convex on the interval λi ∈ [1, 1
δ(δ) ] if δ ≤ δ0

where δ0 = − 1
4 −

1
2 log 1

2 , the constraint (e) is also convex.
Otherwise, the constraint (e) is non-convex. Consequently, P4

is a convex optimization problem only when δ ≤ δ0.
And we resort to a contradiction for the proof of the

infeasibility of translating P4 into a convex form. In another
word, we will show that the contraint (e) is never convex if
δ > δ0 while keeping the objective function convex. Assume
that there exists a function g(ϕ) =

∑m
i=1 gi(ϕi) = −F (λ)

with gi(ϕi) = −λi ∈ [− 1
δ(δ) ,−1] where gi(·) is convex

on ϕi. Note that ϕ = [ϕ1, . . . , ϕm]T . Hence, the convexity
of the objective function g(ϕ) still holds. Define hi(ϕi) =
−1/gi(ϕi) + log(−gi(ϕi))− 1, and its second derivative is

h′′i (ϕi) =− g′i(ϕi)
2
gi(ϕi)

−2
(

2gi(ϕi)
−1

+ 1
)

+ g′′i (ϕi)gi(ϕi)
−1
(
gi(ϕi)

−1
+ 1
)
.

Since the inequalities g′′i (ϕi) ≥ 0, gi(ϕi)
−1 ≤ 0 and

gi(ϕi)
−1

+ 1 ≥ 0 hold due to the convexity and range of
gi(ϕi), we have h′′i (ϕi) ≤ 0 on the interval − 1

δ(δ) ≤ gi(ϕi) ≤
− 1
δ(δ0) if δ > δ0. Then, denoting the set of constraint (e) as

Φ′ = {ϕ|
∑m
i=1 hi(ϕi) ≤ δ}, we can easily find that Φ′ is

non-convex. Therefore, the proof is complete.
Proof of Lemma 4: From Propositions 1 and 2, if δ ≤ δ0,

Problem P4 without the constraint (d) can be viewed as

max

m∑
i=1

δ(τi)
−1
, s.t.

m∑
i=1

τi = δ, τi ≥ 0, i = 1, . . . ,m,

if we let λi = δ(τi)
−1, where δ(τi)

−1 is concave on 0 ≤
τi ≤ δ ≤ δ0. Subsequently, based on Jensen’s inequality, the
optimal solution of P4 is obtained as F (λ)max = mδ( δm )

−1

when τi = δ
m for i = 1, . . . ,m.
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