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Configuration-Adaptive Wireless Visual Sensing
System with Deep Reinforcement Learning

Siyuan Zhou, Duc Van Le, Rui Tan, Joy Qiping Yang, and Daren Ho

Abstract—Visual sensing has been increasingly employed in various industrial applications including manufacturing process
monitoring and worker safety monitoring. This paper presents the design and implementation of a wireless camera system, namely,
EFCam, which uses low-power wireless communications and edge-fog computing to achieve cordless and energy-efficient visual
sensing. The camera performs image pre-processing and offloads the data to a resourceful fog node for advanced processing using
deep models. EFCam admits dynamic configurations of several parameters that form a configuration space. It aims to adapt the
configuration to maintain desired visual sensing performance of the deep model at the fog node with minimum energy consumption of
the camera in image capture, pre-processing, and data communications, under dynamic variations of the monitored process, the
application requirement, and wireless channel conditions. However, the adaptation is challenging due to the complex relationships
among the involved factors. To address the complexity, we apply deep reinforcement learning to learn the optimal adaptation policy
when a fog node supports one or more wireless cameras. Extensive evaluation based on trace-driven simulations and experiments
show that EFCam complies with the accuracy and latency requirements with lower energy consumption for a real industrial product
object tracking application, compared with five baseline approaches incorporating hysteresis-based and event-triggered adaptation.

Index Terms—Wireless visual sensing, fog computing, computation offloading, deep reinforcement learning.
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1 INTRODUCTION

Wireless cameras have been widely deployed for various
visual sensing applications [1]. Without relying on cables for
power supply and network connection, the wireless cameras
can be deployed easily to monitor the locations of interest
with wider coverage and/or more view angles. Specifically,
they can enable event-based ad hoc deployments. Such fea-
tures make wireless cameras promising for various moni-
toring tasks in the industrial context. For instance, in the
scheme of reconfigurable manufacturing system [2] that can
adjust the layout, capacity, and configuration of the produc-
tion resources in response to changes in market demands or
regulatory requirements, the ad hoc deployments of wireless
cameras for configuration validation and calibration are
desirable. Moreover, in a factory, the wireless cameras can
be deployed for monitoring social distancing and worker
safety (e.g., detecting falls) in an ad hoc fashion.

An visual sensing system in general involves compute-
intensive image processing. Deep learning has been increas-
ingly used for industrial computer vision applications [3].
However, the execution of deep models imposes high
demand on computing resources. On the other hand, to
achieve the cordless setting, the wireless cameras are often
powered by batteries with finite capacities. Energy har-
vesting is generally infeasible in the indoor environments.
Therefore, running the compute-intensive deep models on
the wireless cameras is not desirable since otherwise bulky
batteries or wired power supply will be needed.
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In this paper, we design a system called Edge-Fog Cam-
era (EFCam) that leverages wireless camera at the network
edge and a resourceful fog node to achieve a cordless
and energy-efficient visual sensing system. EFCam uses a
battery-powered wireless camera ESP32-CAM [4] to per-
form image sensing,s generates smaller representations of
the captured images, and offloads the advanced processing
of the representations using deep models to the fog node. In
EFCam, the geographical proximity of the wall-powered fog
node to the data-generating wireless cameras at the network
edge is in favor of the delay-critical industrial tasks, vis-à-
vis the remote cloud that often suffers large jitters and long
delays.

EFCam has various system parameters including the
frame capture rate, image resolution, and pre-processing
modes whose configurations affect the image processing
accuracy and latency, and the camera’s energy consump-
tion. Existing studies [5]–[10] have designed various low-
power wireless visual sensing systems. Similar to EFCam,
those systems also have system parameters that need to be
adaptively configured in response to the variations of the
monitored process dynamics, application requirements, and
wireless channel conditions for energy-efficient sensing and
performance compliance. In particular, the configuration
adaptation is desired in industrial settings due to the fol-
lowing reasons. First, the industrial application performance
requirements and power saving opportunities may vary
at run time. For instance, in a system for product object
recognition and tracking, the frame rate should increase
when the interested product objects appear in the field
of view. Otherwise, the frame rate can be kept minimum
to reduce image processing overheads and save power.
Second, the industrial spaces typically have time-varying
and noisy wireless channels due to the moving parts of
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production lines, vehicles and workers, as well as electro-
magnetic emissions from the electrified machinery. As a
result, the industrial visual sensing system needs to deal
with changeable data transmission performance when the
wireless camera offloads its data processing to the fog node.

Adapting the configuration of the visual sensing systems
is largely unexplored. The existing works have applied the
hysteresis-based approach [5] and the motion detection sen-
sors [11] to adjust the configuration of the camera parame-
ters to save power. However, the hysteresis-based approach
often suffers inferior performance under various exogenous
variations, while the motion-triggered approach increases
the system cost and energy consumption due to the need of
additional motion sensors. Thus, in this paper, we propose
a novel configuration adaptation scheme for EFCam to
achieve good visual sensing performance with low camera
energy consumption. We formally formulate a configuration
adaptation problem that aims at maintaining the end-to-end
visual sensing latency and accuracy within their respective
bounds with the minimum expected energy consumption of
the camera, under the dynamics of the monitored process,
application performance requirements, and wireless channel
conditions. The configuration includes the image frame rate,
resolution, and the mode and parameters of the image pre-
processing.

The key challenge in solving the formulated configura-
tion adaptation problem is the lack of closed-form models
describing the intricate relationships among the various
concerned factors of the problem. To address this challenge,
we apply deep reinforcement learning (DRL) to learn the op-
timal adaptation policy. However, the typical online training
of the DRL agent takes excessive time. Instead, we develop
computational models for the latency and camera energy
consumption of image pre-processing and data transmis-
sions given the wireless channel condition. Then, we use
these models to drive offline training of the DRL agent.
Finally, the trained agent is commissioned to adapt the
configuration of EFCam at run time.

The preliminary version of this work [12] presented the
design of EFCam in which a single wireless camera is sup-
ported by a fog node. As today’s wireless cameras become
cheaper and smaller in form factors, a number of cameras
can be deployed in the interested space to achieve better
monitoring coverage. Thus, a multi-camera system in which
a single fog supports multiple cameras is desirable. This
paper also presents the extended EFCam design to support
multiple cameras. Specifically, multiple wireless cameras
can transmit their image data to the fog node for advanced
processing. The DRL agent running at the fog node adapts
the configuration of all cameras.

We implement both the single-camera and multi-camera
EFCam for an industrial product object recognition and
tracking system. We perform extensive evaluation via sim-
ulations and testbed experiments. Specifically, we collect
an image object dataset from the product manufacturing
line to drive the design of the image pre-processing and
recognition deep models. We also collect data traces of Blue-
tooth Low Energy transmission delay and camera energy
consumption in the factory. We compare the DRL-based con-
figuration adaptation with five baseline approaches incor-
porating hysteresis-based and event-triggered adaptation in

the existing works. The evaluation results show that EFCam
complies with the sensing performance requirements with
less energy consumption for both single-camera and multi-
camera systems.

In summary, the main contributions of this work are:

● We design and implement a deep learning (DL)-
based image processing pipeline on an off-the-shelf
wireless camera ESP32-CAM. Our design and exper-
imental results can be useful to the developments of
other visual sensing systems that use ESP32-CAM or
similar camera platforms.

● We formulate the camera configuration adaptation
problem and identify the relevant challenges in the
industrial visual settings. Then, we propose a DRL-
based approach for both the single-camera and multi-
camera systems to address the identified challenges
and find the efficient configuration policy.

● We conduct extensive evaluation on real-world
testbeds to evaluate the effectiveness of the proposed
approach for industrial visual sensing applications.
We also compare the proposed approach with multi-
ple baseline adaptation approaches.

Paper organization: §2 reviews related work. §3 de-
scribes EFCam’s design and implementation. §4 studies the
impact of EFCam configuration on its performance. §5 and
§6 present design and evaluation of single-camera EFCam.
§7 presents multi-camera EFCam. §8 concludes this paper.

2 RELATED WORK

In this section, we review the related works on the low-
power visual sensing systems, camera configuration, and
reinforcement learning (RL)-based video quality control.

∎ Low-power visual sensing systems: Multiple existing
studies [5]–[10], [13]–[16] focused on the design of the low-
power camera systems. For instance, the studies in [13]–[16]
focused on developing low-power camera sensors which are
equipped with early-processing capabilities to extract mean-
ingful features of the raw images for further processing by
advanced computer vision models. Such early-processing
helps avoid image processing on redundant visual infor-
mation, and thus reduces the camera energy consumption.
For instance, Vazquez et al. [13] implemented a sensing
front-end chip with embedded pre-processors on the focal-
plane of the image sensors to extract and convert low-level
features of the analog visual signal to a digital format. The
use of these front-end chips leads to reduced camera energy
consumption for analog-to-digital conversion (ADC). Got-
tardi et al. [14] used mixed-signal circuits to extract visual
spatial-contrast and perform basic image processing at the
sensor level to reduce the data output size.

The works in [5]–[10] prototyped various wireless visual
sensing systems which leverage the low-power image cap-
turing and/or local image processing to reduce the camera
energy consumption. For instance, the authors in [5], [8]
adopted a visual sensing approach that directly pipelines
analog pixels straight from the camera to the wireless radio,
which helps eliminate the need of the power-consuming
hardware components (e.g., ADCs, codecs) as well as the
memory for storing the images. However, the disadvantage
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Fig. 1. EFCam system overview. A fog node can support multiple low-power wireless cameras at the network edge.

of this approach is that the image frame rate of the camera is
limited by the data transmission throughput of the wireless
link. To address this issue, Josephson et al. [5] introduced a
pixel-level compression technique to further reduce the size
of the image data to be transmitted via the wireless link.
In summary, above existing studies on smart visual sensing
systems mainly focused on the design of low-power image
sensors and/or local image processing techniques to reduce
energy consumption. Differently, our work aims to adapt
the configuration of a wireless visual sensing system to
minimize the camera energy consumption while the visual
sensing application requirements can be met.

∎ Camera configuration adaptation: Several existing
camera systems [5], [11], [17] can adjust the configuration
of the system parameters to save power. For instance, the
work in [5] proposed a hysteresis-based control approach
that adjusts the frame rate and resolution of the camera to
save power while maintaining a certain accuracy for a face
detection task. However, as shown by our experiments in
§6, the hysteresis-based approach has inferior performance
under various exogenous variations. EFCam applies the
model-free DRL [18] to learn the optimal configuration
adaptation policy for the camera in response to the ex-
ogenous variations. The commercial security/surveillance
camera products [11], [17] can also dynamically adjust their
parameters based on the measurements of built-in motion
sensors. For example, the Wi-Fi security camera described
in [17] uses an infrared (IR) sensor to trigger video record-
ing. Specifically, the camera stays in a sleep mode to save
power. Once the IR sensor detects a motion (e.g., a moving
person) in the camera’s field of view, the camera wakes up
and records the video at a fixed frame rate. Other security
cameras on the market such as [19] are equipped with
other types of sensors such as microwave and ultrasonic
sensors for motion detection. Differently, EFCam applies
a learning-based configuration approach to improve the
camera’s energy efficiency without the need of additional
motion sensors. Note that the motion sensors increase the
cost and power usage of the camera.

∎ RL-based video quality control: RL has been recently
applied for control of the video quality in video streaming
systems [20], [21]. For instance, Pensieve [20] employs a
data-driven DRL framework which aims at adapting the
video bitrate with the main objective of mitigating the risk of
frame stalling while maximizing the bandwidth utilization.
OnRL [21] is an online RL scheme for multi-user real-time

mobile video telephony. OnRL is based on a two-stage
iterative RL frameworks in which the first stage character-
izes individual users and the second stage aggregates the
characteristics to strike a balance between individualized
experience and swarm intelligence. While our work and the
existing studies [20], [21] share the similar control approach
based on RL for the camera configuration to maintain the
high performance of visual sensing, we address different
dynamics and constraints of the application requirements
and wireless environment conditions.

3 EFCAM DESIGN & PROBLEM FORMULATION

In this section, we describe the design to achieve a cordless
and energy-efficient visual sensing system for industrial
applications. Fig. 1 overviews EFCam which has two main
components: the low-power wireless camera and the fog
node. The camera performs low-power image sensing, local
processing for image feature extraction or compression, and
data transmission. The fog node reconstructs images, per-
forms advanced visual sensing using the deep model, and a
DRL-based controller for system configuration adaptation.
A single fog node can support multiple low-power wireless
cameras. This section describes the design and implementa-
tion details of EFCam.

3.1 Background and Hardware
For the camera, we choose ESP32-CAM [4], an off-the-
shelf battery-powered wireless camera sized 40 × 27 mm
as illustrated in Fig. 1(a). The ESP32-CAM consists of an
OV2640 camera module, a low-power 32-bit MCU that can
be clocked up to 240 MHz, 520KB internal SRAM memory,
and 4MB external PSRAM memory. To reduce the wireless
communication overheads, our design uses the deep model-
based techniques to locally process the raw images at the
camera before offloading the remaining computation to the
fog node. Moreover, we intend to use the deep model-
based local processing techniques which reduce the size
of the data to be transmitted while preserving necessary
information for the deep model-based processing at the fog
node. Thus, it is desirable for the camera platform to support
deployment of lightweight deep models. From our survey,
the ESP32-CAM is a suitable platform that supports the Ten-
sorFlow Lite (TFLite) Micro, a deep learning library tailored
for MCUs. Note that the OpenMV Cam platform [22] also
supports the TensorFlow Lite Micro, but it does not have a
radio for wireless data transmissions.



TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2022 4

3.2 Processing Pipeline

Now, we present the detailed implementation of the end-to-
end image processing pipeline of EFCam, which includes
image sensing, scaling, local processing, and the image
reconstruction and recognition at the fog node.

∎ Image sensing and scaling: As shown in Fig. 1,
the camera first sets a sensing schedule which defines the
frame rate of the camera module. The camera uses an
image sensing method that writes image frames to the
SRAM memory. The ESP32-CAM supports image capture
with eight resolution levels from 160 × 120 to 1600 × 1200.
Our experiments on various datasets show that the image
solution greatly affects the visual sensing performance and
camera power usage. We implement a bilinear scaling-based
image resizing method to provide the image resolutions
which are not natively supported by the camera sensor.

∎ Image local processing and reconstruction: To re-
duce wireless communication overheads, we implement
two local image pre-processing techniques as follows. JPEG
compression: It is a commonly used lossy image compression
method [23]. EFCam supports multiple JPEG modes with
the quality index from 0 to 80. A high quality index leads
to better quality of decompressed images. Autoencoder: It
is a deep learning-based image compression method. An
autoencoder has two parts: encoder and decoder. The en-
coder is implemented in the camera to extract the high-
level representation of a raw image while the decoder is
deployed at the fog node to reconstruct the image based on
the received data representation. The design of autoencoder
is application-specific and needs training.

∎ Data transmission: Bluetooth Low Energy (BLE) is
used for the communications between the camera and the
fog node due to its low energy consumption [24]. In partic-
ular, we implement a connection-based BLE mode in which
the camera and the fog node perform as BLE peripheral
and central, respectively. Specifically, we adopt the Generic
Attribute Profile (GATT) protocol for managing the data
exchange transactions at the application layer. More details
can be found in Appendix B.

∎ Advanced image processing: In the fog node, we
implement convolutional neural network (CNN) models to
process the images that are reconstructed by the decoder
or JPEG decompressor based on the data received from
the camera. EFCam’s image processing framework follows
an offloading approach that shifts the complex CNN-based
image processing from the resource-constrained edge sensor
to the resourceful fog node. Recently, the deep model com-
pression has emerged as a promising approach to enable the
deployment of the complex CNN models on the resource-
constrained devices [25]. Compared with offloading, model
compression may further reduce the image processing delay
and energy consumption, since the data transmission is
avoided. However, in general, it is non-trivial to balance the
trade-off between the model size and accuracy reduction,
subject to that the compressed model can fit into the device’s
limited memory. Thus, in this study, we adopt computation
offloading, in which we perform local image processing (i.e.,
the JPEG compression or encoder) and use the low-energy
communication (i.e., BLE) to reduce the communication
energy consumption.

3.3 Formulation of Configuration Adaptation

Time is divided into intervals with identical duration of
τ seconds, which is referred to as adaptation period. The
beginning time instant of an adaptation period is called a
time step. For the industrial product object recognition and
tracking, the EFCam adapts the camera’s configuration in
response to the changes of the exogenous stochastic fac-
tors, including the time-varying industrial wireless quality,
denoted by η(t), and the appearance of product objects
in the camera’s field of view, denoted by ξ(t). Note that
ξ(t) ∈ {0,1}. Denote ηk = η(kτ) and ξk = ξ(kτ), where
k ∈ Z≥0. Denote by η(k+1)τ

t=kτ and ξ(k+1)τ
t=kτ the traces of η(t)

and ξ(t) when t ∈ [kτ, (k + 1)τ]. At the kth time step, we
let π(ξk, ηk, . . . , ξ0, η0) denote the policy that determines
a configuration, denoted by ωk, based on the historical
measurements of (ξk, ηk, . . . , ξ0, η0). The configuration ωk
represents the combined setting of multiple parameters,
including the image frame rate, resolution, local processing
choice among JPEG compressors and autoencoders, BLE
connection parameter, and MCU frequency, which jointly
affect the camera’s energy usage, sensing accuracy and la-
tency during the next adaptation period. For a time horizon
of K adaptation periods, the configuration adaptation aims
to solve the following policy optimization problem:

π∗ =argmin
π∈Π

Eξ,η [
1

K

K−1

∑
k=0

Ek (ωk, ξ(k+1)τ
t=kτ , η(k+1)τ

t=kτ )] , (1)

s.t. Eξ,η [Ak (ωk, ξ(k+1)τ
t=kτ , η(k+1)τ

t=kτ )]≥Areq, ∀k ∈[0,K − 1],

Eξ,η [Lk (ωk, ξ(k+1)τ
t=kτ , η(k+1)τ

t=kτ )]≤Lreq, ∀k ∈[0,K − 1],

where Π represents the policy space; ωk =
π(ξk, ηk, . . . , ξ0, η0); Eξ,η[⋅] denotes the expectation
over the two stochastic processes of ξ(t) and η(t); the
Ek(⋅), Ak(⋅), and Lk(⋅) denote the camera’s total energy
usage, image processing accuracy and latency, respectively,
in the kth adaptation period; the Areq and Lreq are the
required accuracy and latency levels. Note that the camera
may capture multiple images over an adaptation period,
depending on the setting of the image frame rate. The
objective is to find the optimal policy π∗ that minimizes
the camera’s expected average energy usage per adaptation
period while maintaining the expected Ak(⋅) above the Areq

and the expected Lk(⋅) below the Lreq.
Solving the policy optimization problem in Eq. (1) faces a

basic challenge that the accuracy Ak(⋅) cannot be measured
during the EFCam’s online operations due to the unavail-
ability of the sensing ground truths. Thus, in this study, we
develop a learning-based configuration controller to address
the optimization problem in Eq. (1). Specifically, during
the offline training phase, the controller learns the optimal
configuration policy based on the real data traces including
the camera’s power usages, image samples labelled with
ground truths, and the image processing latency collected
from the EFcam. Then, the learned policy is applied to
adapt the configuration during the online inference phase.
In §5 and §7, we will present the proposed learning-based
approaches for adapting the configuration of the single-
camera and multi-camera EFCam systems, respectively.
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Fig. 2. BLE RSSI traces in different environments.

4 EFCAM SYSTEM PROFILING

As discussed in §3, the proposed EFCam has multiple
tunable parameters. In this section, we conduct profiling ex-
periments to study the separate impact of these parameters
on visual sensing performance and energy consumption.
The results provide insights to guide the design of the
configuration adaptation solution.

4.1 Profiling Methodology

We conduct the profiling based on four image datasets
which are MNIST [26], CIFAR-10 [27], Casting [28], and
Product. Among these four datasets, we use the MNIST
and CIFAR-10 datasets to understand the performance of
EFCam on general visual sensing applications. The Casting
and Product datasets represent the industrial visual sensing
applications. Specifically, the Casting [28] is an industrial
image dataset of 7,348 grayscale images showing top views
of submersible pump impellers in a manufacturing casting
process. The Product is a dataset containing 15,544 images
of industrial product parts collected by us in a factory.
Specifically, we used the ESP32-CAM to capture an image
of product parts moving on a convey belt every one second.
The images are labelled with four classes which indicate the
number of the product parts appearing in the field of view,
which is from 0 to 3. More details about these four datasets
can be found in Appendix A.1.

4.2 Impacts of Image Compression and Resolution

We first conduct experiments to evaluate the impacts of
the JPEG and autoencoder modes on visual sensing per-
formance. Specifically, we design and train four convolu-
tional autoencoder networks for image feature extraction
and reconstruction for the above four datasets, respectively.
Each autoencoder network contains an encoder with three
convolution layers and a decoder with nine convolution
layers. The rectified linear units (ReLUs) are used as the
activation function for convolution layers in both the en-
coder and decoder, while the sigmoid activation is used
at the output layers. Specifically, the encoder and decoder
are deployed at the camera and fog node, respectively. The
accuracy, data output size, and latency of the proposed
EFCam under various configurations for the parameters of
JPEG and autoencoder models are presented and analyzed
in Appendix A.2. From the collected experiment results, we
draw the following observations.

Observation 1: Given the same resolution, the classi-
fication accuracy and output data size increase with the
compute complexity of the autoencoder network and JPEG

(a) CPU frequency. (b) Idle and deep sleep.

Fig. 3. Impacts of MCU frequency & idle/sleep.

quality index. The selection of the autoencoder or the JPEG
should be adapted at run time.

We also conduct experiments to study the impacts of
image resolution on the classification accuracy and com-
pression time under the autoencoder networks and JPEG
compression. The detailed results and analysis are presented
in Appendix A.3. From the experiment results, we have the
following observation.

Observation 2: When the image resolution is less than
a certain level, the JPEG mode has higher classification
accuracy than the autoencoder. Otherwise, the autoencoder
achieves better accuracy. When the image resolution in-
creases, the autoencoder results in higher output size and
longer compression time.

4.3 Wireless Performance Benchmarks

We conduct experiments to investigate the BLE channel
condition and its impact on the data transmission perfor-
mance in various environments. In each experiment, the
camera continuously transmits 400-bytes application data
packets to the fog node. The BLE connection interval tci is
set to 10 ms, The BLE transmitting power at the camera
and fog node is set to be 0 dBm. The camera and the fog
node are separated for about 2 meters. We perform the data
transmission experiments in three environments which are
factory, home, and office.

Fig. 2 shows the traces of the received signal strength
indicator (RSSI) of the radio signal sensed by the fog node
over a time duration of four hours in the three environ-
ments. We conduct experiments to evaluate the transmission
delay and energy consumption of the proposed EFCam
under the three environments whose wireless quality is
represented by the RSSI traces in Fig. 2. More details can
be found in Appendix A.4. From the experimental results,
we draw the following observation.

Observation 3: The wireless channel condition in the
factory environment can fluctuate significantly over time,
which leads to highly variable packet transmission delay
and energy consumption.

We also conduct experiments to evaluate the impacts of
the configuration for the BLE connection interval and packet
size on the transmission delay and energy consumption.
Our experimental results show that the BLE connection
interval and packet size can be configured at a fixed value
to achieve the lowest transmission delay and energy con-
sumption. More details can be found in Appendix B.
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4.4 MCU Frequency and Idle/Sleep Mode
The clock frequency of the camera’s MCU can be set to 80,
160, and 240 MHz. We conduct experiments to investigate
the impact of the clock frequency configuration on the
performance of the on-camera image processing.

Fig. 3(a) shows the average inference time and energy
consumed by the camera to process 100 CIFAR-10 im-
ages using the JPEG-10 and encoder network. As shown
in Fig. 3(a), the higher clock frequency results in lower
inference time and energy consumption. This is because
with higher clock frequency, the MCU takes shorter time
to execute the computation tasks of the image compression
or feature extraction. For example, as shown in Fig. 3(a),
the inference times of the autoencoder under the three clock
frequency settings are 61, 34, and 27 ms, respectively. The
corresponding camera powers are 440, 530, and 610 mW,
respectively. As a result, the average energy consumed for
executing the encoder under these three frequencies are
0.0074, 0.005, and 0.0045 mWh, respectively. Thus, EFCam
sets the camera’s MCU frequency to 240 MHz.

The ESP32-CAM supports a deep sleep mode. We consider
an additional idle mode in which the MCU frequency is set
to the lowest value of 80 MHz. Fig. 3(b) shows the camera’s
average power over a time duration of one second and
wake-up time under the two modes. The wake-up time is
defined as the time duration spent to turn on all components
of the camera including MCU and BLE radio. As shown in
Fig. 3(b), the idle mode consumes a higher power but has
a shorter wake-up time of about 0.0005 seconds only, since
every camera component is still on in this mode. The deep
sleep mode consumes a lower power and needs a longer
wake-up time of up to about four seconds, since every
camera component is turned off in this mode.

From Fig. 3(b), when there is no pending task, the camera
should be set to the idle or deep sleep mode, depending on
the idle time. For example, when the idle time is less than
five seconds, the idle node is selected. Otherwise, the deep
sleep mode is chosen to save more power. However, the
current version of ESP32-CAM cannot rebuild the BLE con-
nection after waking up from the deep sleep. Therefore, in
our current implementation of EFCam, we do not consider
the deep sleep. The camera is set to the idle mode when it
has no pending tasks.

4.5 Assessment of Markov Property
When EFCam is applied for industrial product object recog-
nition and tracking, it aims to adapt the camera’s con-
figuration in response to the evolution of the appearance
of the product objects and the wireless channel quality
in the industrial environment. We conduct experiments
to assess whether the above two stochastic processes sat-
isfy the Markov assumption (MA), i.e., P [yk+1 ∣ yk] =
P [yk+1 ∣ yk, yk−1 . . . y0] , where yk represents the process
state at the kth time step. The MA suggests that the prob-
ability distribution of the state transition from yk to yk+1

is independent of the past states yk−1, . . . , y0. The MA is a
basic property of the systems where RL is applicable [29].
When we assess the MA for the industrial product ob-
ject recognition application, we use the probability differ-
ence, denoted by ∆P = P [yk+1 ∣ yk]−P [yk+1 ∣ yk, . . . , yk−N ],

(a) Object appearance. (b) Wireless channel quality.

Fig. 4. Compliance of state transition with the Markov assumption.

whereN ≥ 0, as an MA compliance metric. A lower absolute
value of ∆P indicates better compliance. Fig. 4 shows the
distributions of ∆P with N = 1 for the transitions of the
product object’s appearance in the Product dataset and the
wireless quality in an industrial environment over 12,000
adaptation periods, where each adaptation period τ is five
seconds. From Fig. 4, we can see that these two stochastic
processes have good compliance with the MA because their
values of ∆P concentrate at zero. In particular, the process
of the appearance of the product object has higher MA
compliance, because its state mostly remains the same over
two consecutive adaptation periods.

4.6 Implications of Profiling Results

From the above profiling results and observations, the MCU
frequency and BLE connection settings can be fixed at
certain values that result in the least energy consumption
and latency. On the other hand, the configurations for the
image resolution, frame rate, and local processing method
(i.e., the JPEG and autoencoder modes) should be adapted
over time. Thus, EFCam adapts the configuration of these
parameters. Moreover, due to the good MA compliance
of the two exogenous factors, we model the configuration
adaptation as a Markov decision process (MDP), and adopt
the DRL to learn the optimal configuration policy based on
the observed states of the product object appearance and the
wireless channel quality. The detailed MDP formulations are
presented in §5.1 and §7.1 for the single-camera and multi-
camera EFCam systems.

5 ADAPTATION OF SINGLE-CAMERA SYSTEM

This section formulates the problem of adapting the config-
uration of a single camera as an MDP. Then, we propose
a DRL-based solution. Lastly, we present the details of the
DRL agent training.

5.1 Single-Camera MDP Formulation

Since the more general policy optimization problem in
Eq. (1) is reduced to MDP, we can focus on learning a
simplified policy of ωk = π(ξk, ηk). In addition, we apply
Lagrangian relaxation [30] to convert the constrained policy
optimization problem in Eq. (1) to an unconstrained one
with a new objective function of

Eξ,η[
∑K−1k=0 Ek

K
+β1(Areq−

∑K−1k=0 Ak
K

)+β2(
∑K−1k=0 Lk
K

−Lreq)],
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Fig. 5. Image sensing workflow for industrial product object tracking.

where β1, β2 ≥ 0 are Lagrangian multipliers. The MDP ad-
dressing the above unconstrained policy optimization prob-
lem can be represented by the 4-tuple (X ,A, r, P ), where X
and A are the state and action spaces, respectively, r is the
reward function, and P is the system transition probability.
We define the immediate state, action, and reward function
as follows.

System state: The system state, denoted by x ∈ X , is
a vector xk = [ξk, ηk], where ξk ∈ {0,1} represents the
appearance of the product object and ηk is the RSSI of the
wireless channel at the kth time step. Since the ground-truth
value of ξk cannot be obtained during the online inference
phase, we use the image processing result of whether the
object is detected in the last frame captured in the previous
adaptation period to represent the ξk. Note that the camera
may capture multiple image frames in an adaptation period.

Configuration action: Let f ∈ [fmin, fmax] denote the
number of frames per adaptation period τ , where fmin and
fmax are the minimum and maximum number of image
frames required by the application, respectively. The camera
performs the image scaling to resize the captured images to
a resolution, denoted by r ∈ [rmin, rmax], where the rmin and
rmax denote the minimum and maximum resolutions, re-
spectively. We denote c as the local image processing mode
(i.e., the JPEG with a quality index and autoencoder network
with a setting for its hyperparameters). The configuration
action, denoted by a ∈ A, is a vector a = [f, r, c].

Reward function: When an action ak is performed at
the kth time step with a system state of xk, let ek(xk, ak)
denote the total energy consumed by the camera for the
image sensing, scaling, local processing, and data transmis-
sion over the kth adaptation period; let lmax(xk, ak) denote
the maximum image processing latency during the period
capturing f images; let φk denote the number of images
that are captured and correctly recognized during the kth

adaptation period. We define a penalty function as follows:

pk(xk, ak) = λ1 ⋅N(lmax(xk, ak)−lth)+λ2 ⋅N(φreq,k−φk), (2)

where lth is the upper bound threshold for the maximum
latency, φreq,k is the number of correctly recognized images
required over the kth adaptation period, λ1 and λ2 are
configurable weights, N(x) is a normalization function, i.e.,
N(x) = max(x,0)

xmax
, where xmax is the maximum value of x.

From the definition of pk(xk, ak), if the maximum latency
lmax(xk, ak) does not exceed the lth and the φk(xk, ak) is
higher than φreq,k, which means that no delays exceed
the threshold and enough images are captured and rec-
ognized correctly, no penalty is applied. The immediate
reward, denoted by rk(xk, ak), is defined as rk(xk, ak) =
−ek(xk, ak) − pk(xk, ak). Thus, the reward accounts for the

Fig. 6. Workflow of DRL-based adaptation.

energy consumption and the degree of violating the latency
and accuracy requirements.

We now use the case study application of industrial
product object tracking as an example to illustrate the set-
ting of the reward function. We define φreq,k as the required
number of correctly recognized images in the current period
of τ . It is calculated as φreq,k = 1 + ρreq ⋅∆t, where ρreq is the
required frame rate and ∆t is a time duration that the objects
appear in the camera’s view during the period of τ . Fig. 5
shows an example that the ∆t in the ith and jth adaptation
periods equal to τ seconds and zero, respectively. As a
result, the accuracy requirement φreq,k in the two adaptation
periods are 1+ ρreq ⋅ τ and 1, respectively. The φreq,k is equal
to or higher than one to make sure that at least one image is
correctly recognized in an adaptation period.

Objective: The main objective is to find an optimal
policy π∗ that selects action a based on state x at every time
step to maximize the expected long-term reward, denoted
by Eξ,η[∑K−1

k=0 γkrk], where γ ∈ [0,1] is the discount factor.

5.2 DLR-based Solution

We adopt DRL to learn the optimal configuration adapta-
tion policy. Under the typical setting, a DRL agent learns
the optimal policy during the online interactions with the
controlled system. However, for the formulated configura-
tion adaptation problem, the online DRL scheme faces the
following two challenges. First, it may take a long time to
converge, which may lead to the camera’s excessive battery
energy consumption. Second, during the online learning
phase, measuring the camera’s power and image processing
accuracy is cumbersome or even infeasible. Specifically,
the camera is not capable of metering its power in real
time. Moreover, the image classification accuracy cannot be
measured during online learning due to the lack of ground-
truth labels. To address these challenges, we adopt an offline
training approach as illustrated in Fig. 6, which consists of
three steps. First, we model the image processing latency
and energy consumption based on real data traces collected
from the deployment environment. This step is detailed in
§5.2.1. Second, we use the real data traces and models built
in the first step to drive the offline training of the DRL agent.
This step is detailed in §5.2.2. Third, after the completion of
the offline training, the DRL agent is commissioned to adapt
the configuration of EFCam for industrial visual sensing.
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(a) Reward. (b) Accuracy. (c) Latency. (d) Power with idle. (e) Power with deep sleep.

Fig. 7. Training and execution results under various settings of λ2, λ1 = 1 and lth = 500ms. (a) Traces of training reward ; (b)-(e) Execution results.
The red line in (c) represents the lth.

5.2.1 Modeling latency and energy consumption
This section models the image processing latency and cam-
era energy consumption. The resulted models will be used
for driving the offline training of the DRL agent. Denote by
l(x, a) and e(x, a) the image processing latency and camera
energy consumption, respectively, when an action a is taken
at state x. They can be expressed as: l(x, a) = lr + lc +
∑ni=1 lp,i(η)+ lfog, and e(x, a) = (lr+ lc)po+∑ni=1 ep,i(η)+eidle,
where lr , lc, lp,i(η), and lfog are the image scaling, com-
pression, packet transmission time for ith packet, and fog
image processing latency, respectively; po is the camera’s
operating power; eidle is energy consumed in the idle mode;
ep,i(η) is energy consumed for transmission ith packet; and
n is the number of packets used to deliver an image to the
fog node. The lr, lc, and lfog can be determined by offline
measurements. Using real measurements, we fit Gaussian
distributions to model the lp,i(η) and ep,i(η). Details can be
found in Appendix C.

5.2.2 Offline training of DRL agent
We adopt the learning framework in [18] to train offline
a deep Q-network (DQN) for the configuration adaptation
agent to capture a good policy. Specifically, the DQN is
trained through interacting with a simulated EFCam envi-
ronment for several episodes, each of which consists of T
adaptation periods. The simulation is driven by real data
traces. An episode starts with a state chosen randomly from
the training data that includes real traces of the RSSI and
sequential object images. Then, at the kth time step, an
action ak is selected for state xk according to the ε-greedy
algorithm. Given the selected action ak, the images from the
image traces are fed to the compression or feature extraction
module. Then, the CNNs are used to classify the recon-
structed images (cf. §4). The ξk+1 is set to the classification
result of the last image captured in the current adaptation
period, while the ηk+1 is taken from the RSSI trace. To
calculate the immediate reward rk, the latency and power
consumption are estimated using the models developed in
§5.2.1. The φk and φreq,k are calculated using the image clas-
sification results and real image traces, respectively. During
the learning phase, two mechanisms, i.e., experience replay
and target Q-network, are used to update the weights of the
DQN every time step. Specifically, at every time step k, a
transition tuple (xk, ak, rk, xk +1) is stored in the experience
replay memory. The weights of the primary Q-network
are updated using a mini-batch of M transitions which is

randomly sampled from the replay memory. The weights of
the target Q-network are periodically set to the weights of
the primary Q-network.

6 EVALUATION OF SINGLE-CAMERA SYSTEM

This section evaluates the DRL-based configuration adapta-
tion for the vision-based product object tracking application,
via both trace-driven simulations and testbed experiments.

6.1 Offline DRL Training and Performance
6.1.1 DRL and simulation settings
We build a fully connected deep neural network as the DQN
that consists of an input layer, three hidden layers, and a
linear output layer. Three hidden layers has 128, 64, and
32 ReLUs, respectively. The DRL agent takes as input the
system state x = [ξ, η] and chooses the action a = [f, r, c]
from a discrete action space: f is from {1, 2, 3, 4, 5}; r is
from {16×16,24×24,32×32}; c is selected from three JPEG
compression modes with the image quality index of 0, 40, 80,
and the three autoencoder models developed in §4. For the
offline training of DQN, we use the Adam optimizer with
the learning rate of 0.0001. The ε of the ε-greedy method
decreases linearly from 1 to 0.1 during the learning phase.
The adaptation period τ is five seconds.

We use our Product dataset to drive the evaluation of
the industrial vision-based product object tracking applica-
tion system. In addition, we use real traces of 15,967 RSSI
samples measured in a factory over 4.5 hours, as illustrated
in Fig. 2 to model the condition of the industrial wireless
environment. In particular, the first 10,000 RSSI and 10,000
image samples are used for training and the remaining data
for evaluating the trained DRL agent. For the performance
requirements, we set the ρreq to 0.8, and lth to 500 ms.

6.1.2 Training of DRL agent
The offline training is conducted for 400 epochs, each of
which includes T = 500 adaptation periods. We evaluate
the convergence of the DRL agent training under vari-
ous settings for λ1 and λ2, which affect the trade-off be-
tween the energy consumption and compliance with the
latency/accuracy requirements. Fig. 7(a) shows the DQN
training traces of average rewards when the λ2 is from
10 to 15 and λ1 = 10. Along with the training epochs,
the reward always increases and then becomes flat under
different settings of λ2. We also train the DRL agent under
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(a) Accuracy. (b) Latency. (c) Power.

Fig. 8. Impacts of the deep sleep (λ1=1, λ2=10, lth=500ms).

various settings for the λ1, lth and ρreq. The results show
that the DRL agent can converge after a certain number of
training epochs (e.g., 400) with the reward learning curves
similar to that shown in Fig. 7(a).

6.1.3 DRL execution performance
We evaluate the performance of the trained DRL agent for
adapting the configuration of EFCam in trace-driven simu-
lations over a period of 1,000 adaptation periods. Fig. 7(b)-
(d) show the accuracy compliance (i.e., ∑k=999

k=0 φk

∑k=999
k=0

φreq,k
), box

plots for the distribution of latency and average camera
power over the 1,000 adaptation periods under various
settings for λ2 from 3 to 15. Higher accuracy compliance
indicates that more images are correctly recognized to meet
the application’s accuracy requirement. From Fig. 7(b), the
accuracy compliance increases with λ2. The DRL approach
can adapt the camera’s configuration to meet the accuracy
requirement, i.e., ∑k=999

k=1 φk

∑k=999
k=0

φreq,k
≥ 1 under λ2 ≥ 10. From

Fig. 7(c), the latency is mostly below the lth under vari-
ous λ2 settings. Moreover, as shown in Fig. 7(d) and (e),
the camera power consumption increases with λ2. This is
because, with higher λ2, the camera increases the frame
rate and resolution and selects the JPEG or autoencoder
mode such that more images are recognized correctly. Thus,
the camera consumes more power for data processing and
transmission.

As mentioned in §4.4, the ESP32-CAM cannot establish
the BLE connection after waking up from deep sleep. Thus,
we train the DRL agent with an assumption that the camera
is set to the idle mode when it has no pending tasks. Fig. 7(d)
shows the camera’s power with the idle mode. Fig. 7(e)
presents the power if we can set the camera to the deep
sleep mode.

6.2 DRL with Deep Sleep
This section conducts simulation experiments to investigate
the performance of EFCam when the camera can be config-
ured to the deep sleep mode. In particular, the DRL agent
considers an additional action variable that determines the
selection of the deep sleep or the idle mode when the camera
has no pending tasks. Fig. 8 compares the average accuracy
compliance, latency distribution, and average camera power
consumption of two trained DRL agents without and with
the deep sleep over 500 adaptation periods. The setting of
τ varies from 10 seconds to 20 seconds. Without the deep
sleep, the camera is always set to the idle mode when it has
no pending tasks. From Fig. 8(a), the deep sleep leads to
the lower accuracy compliance. The reason is that when the

Fig. 9. Results in real experiments with the single-camera testbed. (a)-
(d) show the accuracy, the latency, the average power consumptions
with the idle and the deep sleep, respectively.

deep sleep is selected, the camera may not wake up in time
to capture all required images over the adaptation period.
Note that when the τ = 20 seconds, the DRL agent with the
deep sleep can still meet the accuracy compliance require-
ment of 1. Moreover, from Fig. 8(c), the deep sleep results
in lower energy consumption. This is because as shown in
Fig. 3(b), the idle mode consumes higher power than the
deep sleep mode. Thus, adapting the camera between the
idle mode and the deep sleep mode can reduce the power
usage while maintaining the required accuracy and latency.

6.3 Testbed Experiments

We conduct a set of experiments to investigate the per-
formance of EFCam in a real office environment. At the
camera, we use C++ and APIs provided by the ESP32-
CAM to implement the image scaling, JPEG compression,
encoder of the autoencoder, BLE-based data transmission,
and parameter configuration. The fog node is prototyped by
a Raspberry Pi 4 single-board computer, in which the JPEG
decompressor, decoder of the autoencoder, CNN image
classifiers and DRL agent are implemented in Python 3.7
using TensorFlow 2.3 and PyTorch 1.6. The implementation
of these models requires a total of 13.6 MB memory which
cannot be provided by the ESP32-CAM with 4.52 MB RAM
only. Thus, offloading the CNN computation to the fog is
required. We perform experiments in a lab in which the
wireless camera and fog node are separated for about 2
meters. We use our Product images to drive the evaluation.
At the fog node, the DRL agent trained with λ1 = 1, λ2 = 10,
and lth = 500 ms.

To evaluate the effectiveness of the proposed EFCam,
we compare our DRL-based approach with four baseline
approaches which are variants of a hysteresis-based camera
configuration adaptation approach proposed in [5]. Specif-
ically, the first two baseline approaches always select the
maximum resolution (i.e., r = rmax) and the maximum
number of captured images (i.e., f = fmax), and adapt the
image pre-processing mode c as follows:
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(a) Packet transmission delay. (b) BLE RSSI values.

Fig. 10. Impacts of number of cameras on BLE connection performance.

● The prioritized-latency (PL-1) baseline approach se-
lects the c that leads to the shortest latency.

● The prioritized-accuracy (PA-1) baseline approach se-
lects the c that leads to the largest number of correctly
recognized images φ.

The remaining two baseline approaches are PL-2 and PA-
2, which additionally adapt the configuration for the f .
Specifically, with the PL-2 and PA-2 approaches, the initial
configuration of the f is set to fmax. At the beginning of each
adaptation period, if ξ = 0, f is decreased by 1. Otherwise,
f is increased by 1 until it reaches to fmax.

Fig. 9 shows the accuracy compliance, box plots for
the latency, and average power consumption of the camera
under our DRL approach and four baseline schemes over an
experiment period of one hour. The PA-1 approach achieves
the highest accuracy compliance but leads to the longest
latency and requires the highest power consumption. The
reason is that to achieve higher accuracy, the PA-1 approach
always selects the autoencoders for image compression at
the camera, which results in the long compression latency.
Moreover, the PA-1 and PA-2 overprovision the accuracy
performance (i.e., the accuracy compliance is higher than
one) at the cost of high power consumption. On the other
hand, the PL-2 has the shortest latency but the lowest accu-
racy compliance. This is because with the PL-2 approach,
the camera always selects the JPEG compression mode
which leads to lower compression latency but low image
quality. Compared with the four baseline approaches, the
proposed DRL approach mostly meets the accuracy and
latency requirements and consumes the least power. These
results imply that the proposed DRL approach can strike a
good trade-off to achieve more energy savings and higher
sensing performance compliance levels.

Note that in our real experiments, we set the camera to
the low-frequency idle model when it has no pending tasks.
The averages of the power measurements are presented in
Fig. 9(c). If the camera’s power in the idle mode is replaced
by the power of the deep sleep mode, the average power
is reduced as shown in Fig. 9(c). The above results show
the superiority of our DRL approach, compared with the
hysteresis-based baseline approaches.

7 ADAPTATION OF MULTI-CAMERA SYSTEM

This section presents the design and evaluation of the multi-
camera EFCam, in which the fog node runs multiple CNN
models to process images received from multiple cameras.
The fog node also runs a DRL agent to adapt the config-
uration of all cameras at run time. In what follows, we
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Fig. 11. Histograms and fitted Gaussian distributions for the average
image processing latency of the fog node.

formulate an MDP problem of adapting the configuration
of multiple cameras. Then, we present profiling experiments
to study the impact of the number of cameras on the visual
sensing delay and BLE connection performance. Lastly, we
present the evaluation results.

7.1 Multi-Camera MDP Formulation
Let m denote the number of cameras. We extend the MDP
problem formulated in §5.1 for the configuration adaption
of multiple cameras as follows.

System state: The system state, denoted by xmul, is a
vector xmul = [ξmul, η], where ξmul = [ξ1, . . . , ξm] represents
the image processing results of m cameras, and η is the RSSI
of the wireless channel. For the industrial product object
tracking, the ξi (i = 1, . . . ,m) is 1 if an object is detected in
the last frame of the camera i. Otherwise, the ξi is zero.

Action: The action is amul = [a1, . . . , am] where ai =
[fi, ri, ci] is a configuration action for camera i. Note that
the fi, ri, and ci denote the selected frame rate, image
resolution, and local image processing mode of camera i.

Reward function: When an action amul is performed at a
system state of xmul, let ek(xmul, amul) denote the total energy
usage of all cameras for the image sensing, local processing
and data transmission, over the kth adaptation period. We
define a penalty function: pmul(xmul, amul) = ∑mi=1 pi, where
pi is the camera i’s penalty that is calculated using Eq. (2).
Similar to the single-camera EFCam, the immediate reward
rmul is defined based on the total energy usage and the
penalty for all cameras as follow: rmul = −ek(xmul, amul) −
pmul(xmul, amul).

7.2 System Profiling and Modeling
We conduct real experiments to investigate the BLE RSSI,
transmission delay and energy consumption, and the fog
image processing delay in the multi-camera EFCam. The
measurements are used to fit the latency and energy con-
sumption models for driving the offline training of the
multi-camera DRL agent. In the experiments, each camera
captures images, and then uses the autoencoder to generate
the image representation data. The image data are divided
into multiple 400-bytes packets for transmission to the fog
node. The number of cameras varies from 1 to 3. Fig. 10(a)
shows the per-packet average delay over a period during
which each camera continuously transmits a total of 10,000
packets to the fog node. The packet transmission delay
increases with the number of cameras. This is because
multiple cameras compete for the wireless channel. Thus,
with more cameras, it takes a longer time for each camera to
complete the transmissions of a certain number of packets.
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(a) Reward. (b) Accuracy. (c) Latency. (d) Power with idle. (e) Power with deep sleep.

Fig. 12. DRL training and execution results of 2-camera EFCam under various settings of τ . (a) Traces of training reward ; (b)-(e) Execution results.
The dotted line in (c) represents the lth = 600s; λ1 = 1 and λ2 = 6.

From Fig. 10(a), the packet transmission delay can be
modeled as a function of m, denoted by f(m). We fit a
linear function to model the f(m), as represented by the
line in Fig. 10(a). The transmission delay is also affected
by the wireless channel condition. As mentioned in §5.2.1,
we fit different Gaussian distributions to model the packet
transmission latency l(η) when a single camera transmits
the data packet to the fog node when the RSSI is η. Let
lmul(m,η) denote the packet transmission latency when m
cameras simultaneously transmit the data packets to the
fog node under the RSSI η. We model the lmul(m,η) as a
function of m and l(η), i.e., lmul(m,η) = f(m)l(η). We also
adopt the similar approach to model the packet transmission
energy consumption. Fig. 10(b) shows the BLE RSSI values
from two different cameras to the fog node over 300 seconds.
Two BLE connections have the similar RSSI value. Thus, we
use the RSSI from a camera’s BLE connection as an indicator
for the wireless channel condition in the MDP formulation.

The fog node runs m concurrent threads to perform
image reconstruction and CNN-based classification for im-
ages from m cameras. Let lfog(m,u) denote the average
image processing latency for the fog node to simultane-
ously process u different images. As m cameras may have
different frame rates, we have 1 ≤ u ≤ m. Given a pair of
(m,u), we conduct an experiment in which the fog node
processes u images at every two seconds over a duration
of 1,000. Then, we fit Gaussian distributions to model the
lfog(m,u) based on 500 measured samples of lfog(m,u).
Fig. 11 shows histograms and fitted Gaussian distributions
for the lfog(m,u) with m = 3 and u ∈ [1,3]. From Fig. 11,
we can see that the histogram and fitted density function of
lfog(m,u) are different under each setting of (m,u).

7.3 Performance Evaluation
In this subsection, we first present the DRL training and
execution results of the multi-camera EFCam. Then, the
testbed experiment results are presented.

7.3.1 DRL training and execution
Fig. 12(a) shows the training traces of the average rewards
over 800 epochs when the fog node supports two cameras.
The different curves correspond to τ settings of 5, 10, and
15 seconds. The accuracy requirement ρreq is set to 0.8 while
the latency threshold lth is set to 600 ms. The λ1 and λ2

are set to 1 and 6, respectively. From Fig. 12(a), along with
the training epochs, the reward always increases and then

Fig. 13. Results in real experiments with two-camera testbed in office
environments. (a)-(d) show the accuracy compliance, latency distribu-
tion, average powers with the idle and deep sleep modes. For DRL, λ1
= 1, λ2 = 6, lth = 600ms.

becomes flat over various settings of τ . The results show that
the multi-camera DRL agent converges after certain training
epochs.

Figs. 12(b)-(e) show the accuracy compliance, latency
distribution and camera’s power over 1,000 adaptation pe-
riods, where the period τ varies from 5 seconds to 20
seconds. When the τ is higher than 5 seconds, the DRL
agent overprovisions the accuracy performance at the cost
of higher latency and power consumption. This is because
with a higher τ , the DRL may not track well the variations
of the accuracy requirement and the wireless condition. In
particular, upon detection of the object in the previous adap-
tation period, the DRL agent may select a higher frame rate
and image resolution such that the appearance of the object
in the next adaptation period can be accurately recognized.
With long adaptation periods, these settings may be kept
when the object has already disappeared in the camera’s
field of view. As a result, with the larger τ , the camera
consumes more power to capture and process unnecessary
images. More images also lead to higher transmission and
fog image processing latency.
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Fig. 14. Results in real factory experiments with two-camera testbed in
industrial factory. (a)-(d) show the accuracy compliance, latency distri-
bution, average powers with the idle and deep sleep modes. For DRL,
λ1=1, λ2 = 6, lth = 600ms.

7.3.2 Testbed experiments

This subsection evaluates the performance of the multi-
camera DRL agent on the real testbed in both office and
industrial environments. The testbed includes two ESP32-
CAMs and a fog node prototyped by a Raspberry Pi. The fog
node runs three concurrent Python threads. Specifically, the
first two threads maintain the BLE connection, and perform
image reconstruction and CNN-based classification for the
images transmitted from the two cameras. The third thread
runs the DRL agent for adapting the configuration of the
two cameras.

In addition to the four baseline approaches of PL-1, PA-
1, PL-2, and PA-2 as defined in §6.3, we also compare the
performance of our multi-camera DRL approach with an
event-triggered (ET) approach. Specifically, we follow the
motion-triggered configuration adaptation of the existing
commercial security cameras [11], [17] to design the ET
approach. The camera captures an image with the highest
resolution of 32 × 32 at the beginning of every adaptation
period. If the object is detected in the captured image, the
camera keeps capturing images at the highest frame rate for
the remaining time of the period. Otherwise, the camera is
set to the sleep mode to save power.

We conduct experiments in the office lab and factory.
Specifically, in the factory, we deploy the testbed on an
industrial production line which includes robot arms, ink-
filled equipments, and automatic conveyor belts. These
equipment simultaneously operates with our testbed during
the experiments. Figs. 13 and 14 show the accuracy compli-
ance, box plots for the latency, and average power usage of
the two cameras under the proposed DRL and five baseline
approaches over an experiment period of one hour in both
environments. For the proposed approach, the DRL agent is
trained with τ = 5 seconds, λ1 = 1, λ2 = 6, and lth = 600 ms.
From Figs. 13 and 14, we can see that in both office lab and
factory, the PA-1 approach still achieves the highest accuracy
compliance but leads to the longest latency and the highest
power consumption. The ET approach overprovisions the

Fig. 15. Classification accuracy with the Tiny ImageNet dataset.

accuracy performance at the cost of longer latency and high
power consumption, compared with the PL-2 and PA-2
approaches. Compared with the five baseline approaches,
the proposed DRL approach still meets the required image
processing accuracy and latency while consuming the least
power.

7.3.3 Performance with a general vision application
Previous evaluation results show the performance of the
proposed DRL and baseline approaches for a real industrial
product object tracking application, which is the primary
application focus of this paper. We also conduct simulations
based on a large-scale image dataset to further evaluate the
performance of all approaches for a general object detection
and recognition application. In particular, we use the Tiny
ImageNet dataset [31] that consists of 100,000 color images
in 200 classes with 500 images per class.

We design a convolutional autoencoder network which
consists of a 3-layer encoder and a 9-layer decoder for
image feature extraction and reconstruction at the camera
and fog node, respectively. ReLUs are used as the activation
function for convolution layers in both the encoder and
decoder. A CNN consisting of nine convolutional layers
with ReLU neurons and a global average pooling output
layer is designed to classify the reconstructed images at the
fog node. We select 10,000 images in 20 classes of the Tiny
ImageNet dataset to train and test the designed autoencoder
and CNN. The selected images are divided into the training
and testing datasets by a ratio of 9:1. Fig. 15 shows the
classification accuracy on the testing images under various
image resolutions. The JPEG with quality index of 10 and
encoder with the size of filters in convolution and output
layers sf = so = 3 are used. The last bar type represents the
classification accuracy on the raw Tiny ImageNet images
with a resolution of 64 × 64 pixels. From Fig. 15, with the
same resolution below 24 × 24 pixels, the JPEG leads to
a higher accuracy than that of the autoencoder. When the
resolution is higher than 24 × 24 pixels, the accuracy of the
autoencoder is higher than that of JPEG. Moreover, without
the image pre-processing using the autoencoder or JPEG,
the designed CNN can achieve the highest accuracy of
51.4%. Note that the state-of-the-art classification accuracy
for the Tiny ImageNet dataset is 67%, which is achieved by a
complex CNN called UPANets [31]. Our 9-layer CNN incurs
less computation overhead to the fog node and achieves a
decent classification accuracy.

To evaluate the performance of the EFCam for adapting
the camera configuration, we use the Tiny ImageNet dataset
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Fig. 16. Results in simulations with a two-camera system using Tiny
ImageNet dataset. (a)-(d) show the accuracy compliance, latency distri-
bution, average powers with the idle and deep sleep modes. For DRL,
λ1=1, λ2 = 10, lth = 650ms. The dotted line in (b) represents the lth.

to generate a trace consisting of 4,000 image frames that
simulates the appearance series of the interested objects
in the camera’s view over time. For each frame, an object
appears with a probability of 0.4 and stays in the camera’s
view for a time period of T that is sampled from the
Gaussian distribution with the mean of 5 s and the standard
deviation of 2 s. Otherwise, with a probability of 0.6, we use
a static background image to represent the camera’s view.
Note that the appeared object is randomly selected from the
Tiny ImageNet dataset.

The traces of object appearances and RSSI values col-
lected in the factory (cf. Fig. 2) are used to train the DRL
agent for a two-camera system for 800 epochs, each of which
contains 500 adaptation periods of τ = 5s. Fig. 16 shows
the execution results of the proposed DRL and five baseline
approaches over 1,000 adaptation periods. From Fig. 16, we
can see that our DRL approach still meets the accuracy and
latency requirements while consuming the lowest power,
compared with the five baseline approaches. These results
show the effectiveness of the proposed DRL approach for
a general object detection and recognition application that
requires semantic understanding of more complex patterns.

8 CONCLUSION

This paper designed and implemented EFCam, an industrial
wireless camera system which uses low-power wireless
communication and edge-fog computing to achieve cord-
less and energy-efficient visual sensing. We formulated a
configuration adaptation problem that aims to minimize
the energy consumption of one or more wireless cameras,
while maintaining the visual sensing performance of the
deep model at the fog node, under dynamic variations of
application requirement and wireless channel conditions.
We applied deep reinforcement learning to learn the optimal
adaptation policy for the configuration of one or more
wireless cameras supported by a single fog node. Extensive
evaluation shows that the DRL-based adaptation approach
achieves higher accuracy and shorter latency with lower

energy consumption for an industrial product object track-
ing application, compared with five baselines incorporating
hysteresis-based and event-triggered adaptation.
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APPENDIX A
SYSTEM PROFILING

A.1 Profiling Methodology
We investigate how the configuration of EFCam affects
various types of the visual sensing tasks. Thus, we conduct
the profiling based on four image datasets as follows.

• MNIST [2] consists of 60,000 grayscale images of
handwritten digits between 0 and 9.

• CIFAR-10 [3] contains 60,000 color images in 10
classes, such as airplance, bird, car, ship, and etc.

• Casting [1] is an industrial image dataset of 7,348
grayscale images capturing top views of submersible
pump impeller in a manufacturing casting process.
The dataset has two classes: the defective class of
images with various types of defects in the pump
impellers (e.g., the pinholes, shrinkage and mould
material defects), and the defect-free class of images.
Fig. 1 shows some examples.

• Product is a dataset containing 15,544 images of in-
dustrial product parts collected by ourselves in a
factory1. Specifically, we used the ESP32-CAM to
capture an image of product parts moving on a con-
vey belt every one second. The images are labelled
with four classes which indicate the number of the
product parts appearing in the field of view, which is
from 0 to 3.

We use the MNIST and CIFAR-10 datasets to understand
the performance of EFCam on general visual sensing ap-
plications. The Casting and Product datasets represent the

1. Sample images of the product parts are omitted due to the confi-
dentiality request from our industrial partner.

(a) JPEG modes (b) Encoders (sf :so)

Fig. 2. Impacts of image compression on classification accuracy and
data output size. Bars and lines present the accuracy and output size.

industrial visual sensing applications which are the primary
application focus of this paper. We evaluate EFCam in terms
of three metrics: the camera energy consumption, visual
sensing accuracy and latency. We use a Monsoon power
meter to measure the camera’s power.

A.2 Impacts of Image Compression

We first conduct experiments to evaluate the impacts of
the JPEG and autoencoder modes on visual sensing per-
formance. Specifically, we design and train four convolu-
tional autoencoder networks for image feature extraction
and reconstruction for the above four datasets, respectively.
Each autoencoder network contains an encoder with three
convolution layers and a decoder with nine convolution
layers. The rectified linear units (ReLUs) are used as the ac-
tivation function for convolution layers in both encoder and
decoder, while the sigmoid activation is used at the output
layers. Specifically, the encoder and decoder are deployed
at the camera and fog node, respectively. To further reduce
the data transmission overheads, we truncate each single
precision floating point number in the output data of the
encoder to one byte. For image classification, we train four
convolution neural networks (CNNs) for the four datasets.
The CNNs for CIFAR-10, MNIST, Casting, and Product
datasets are trained with 50000, 60000, 6633, and 10879
samples, respectively. These trained CNNs are tested using
10000, 10000, 715, and 4665 images that are reconstructed
by the respective decoder from the image presentation. We
set the resolution for the Casting and Product images to
be 32 × 32, and for CIFAR-10 and MNIST images to be
32× 32× 3 and 28× 28, respectively.

Let sf and so denote the size of filters in convolution
and output layers of the encoder, respectively. The sf char-
acterizes the amount of computing resource required to
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(a) CIFAR-10. (b) Product.

Fig. 3. Performance comparison between JPEG and autoencoder. The
bars and lines present the output size and compression delay.

(a) Casting (b) Product

Fig. 4. Impacts of image resolution on image classification accuracy
under JPEG-10 and encoder with sf = so = 3.

extract the image feature at the wireless camera, while the
so characterizes the amount of the data transmitted via BLE.
We evaluate the impacts of the configuration for JPEG com-
pressor and autoencoder on the classification accuracy and
the size of output data. Fig. 2 shows the accuracy and output
size under the JPEG with the quality index from 0 to 80 and
encoder networks with the size of filters in convolution (sf )
and output (so) layers of the encoder from 3 to 9 on the
four datasets. Note that for autoencoder network, the sf
characterizes the amount of computing resource required
to extract the image feature at the wireless camera, while
the so characterizes the amount of the data transmitted via
BLE. From Fig. 2, the accuracy for the CIFAR-10 dataset
and the output size for the four datasets increase with
the JPEG index, and sf and so of the encoders. This is
because a higher JPEG index and a larger size of the encoder
filters reduce the loss of information caused by the image
compression and feature extraction, respectively. As a result,
the reconstructed images have a higher quality which leads
to a higher classification accuracy by the CNNs. Under the
same dataset, the output size of the JPEG modes are mostly
larger than those of the autoencoder networks.

Fig. 3 compares the performance of the JPEG and autoen-
coder on CIRFAR-10 and Product datasets. For CIRFAR-10,
to achieve the same accuracy, the encoder always outputs
a lower data size but requires a longer compression time.
However, for the Product dataset, with the accuracy higher
96%, the autoencoder leads to a similar or higher data size,
compared with the JPEG. Note that the large output data
size usually results in increased transmission delay and
energy consumption, which are also affected by the wireless
channel condition. Thus, these results imply that the image
local processing mode should be configured according to the
required accuracy, delay, the energy budget, and the time-
varying wireless channel condition.

(a) Casting (b) Product

Fig. 5. Impacts of image resolution on output size and compression time
under JPEG-10 and encoder with sf = so = 3 The bars and lines
represent output size and compression time, respectively.

Fig. 6. BLE RSSI traces in different environments.

A.3 Impacts of Image Resolution

We also conduct experiments to study the impacts of image
resolution on the classification accuracy and compression
time under the autoencoder networks and JPEG compres-
sion. Fig. 4 shows the accuracy under various image reso-
lutions from 16 × 16 to 64 × 64 pixels for two industrial
image datasets (i.e., Casting and Product). The JPEG with
quality index of 10 (denoted as JPEG-10) and encoder with
sf = so = 3 are used. We test the accuracy on the same
CNN network previously trained on 32x32 original images.
For images at lower resolutions, we perform image scaling
before feeding them into the network. From Fig. 4, the
accuracy under both JPEG and autoencoder increases with
the image resolution. This is because the image with higher
resolution contains more useful visual information, leading
to a higher quality of the reconstructed image at the fog
node. Moreover, with the same resolution below 24 × 24
pixels, the JPEG leads to a higher accuracy than that of the
autoencoder. When the resolution is higher than 24 × 24
pixels, the accuracy of the autoencoder is slightly higher
than that of JPEG. Fig. 5 shows output size and compression
time of the JPEG and autoencoder under various image
resolutions. Under the JPEG mode, the output size and
compression time remain almost constant when the reso-
lution varies. Differently, under the autoencoder mode, the
output size and camera computation time increase with the
resolution.

A.4 Wireless Performance Benchmarks

Fig. 6 shows the traces of the received signal strength indi-
cator (RSSI) of the radio signal sensed by the fog node over
a time duration of four hours in the three environments.
During the experiments, we measure the RSSI every one
second. Each data point in Fig. 6 presents the averaged
RSSI over one minute. From Fig. 6, the factory environment
always has lower RSSIs, compared with the home and office
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(a) Packet transmission delay (b) Packet energy consumption

Fig. 7. Performance of BLE data transmission in different environment
conditions. The box, line, triangle, upper and lower whiskers represent
middle 50%, median, average, ranges for the bottom 25% and the top
25% of the samples, respectively.

environments. In the factory environment, the RSSI fluctu-
ates from −75dB to −60dB over the experiment period of
four hours; in the home and office environments, the RSSI is
mostly around −60dB. The reason is that the factory space
contains large metal objects such as machines and moving
manufacturing components which may cause strong multi-
path fading propagation effects. In addition, the size of the
home, office, and factory spaces are about 10m2, 200m2,
1000m2, respectively. The reflections from the surrounding
walls in a smaller space can typically enhance RSSI. Fig. 6
also shows that the RSSI decreases with the indoor space
size.

Fig. 7 shows box plots for the distributions of the round-
trip transmission delay and energy consumption of the data
packets that are transmitted from the camera to the fog node
over a duration of four hours under three environments.
Note that the round-trip transmission delay is the time from
the camera transmits the application packet to the camera
receives the acknowledgement. The packet transmission
energy consumption is the total amount of energy that the
camera consumes during the round-trip delay. From Fig. 7,
the packet energy consumption and delay in the factory
environment fluctuates in wider ranges than those under
the home and office environments. Moreover, the factory
environment has the highest maximum packet transmis-
sion delay and energy consumption. These results indicate
that the data transmissions in the factory environment are
subject to more fluctuating delay and energy consumption,
compared with the office and home environments. The
reason is that when the wireless channel condition is poor,
the camera may need to retransmit the packet for multiple
times before the successful delivery. Moreover, with the
time-varying and noisy wireless channel in the factory, the
number of retransmission times is more variable.

APPENDIX B
BLE DATA TRANSMISSION

In the proposed EFCam, the BLE technology is used for the
communications between the camera and the fog node due
to its low energy consumption [4]. In particular, we imple-
ment a connection-based BLE mode in which the camera
and the fog node perform as BLE peripheral and central,
respectively, as illustrated in Fig. 8. A BLE connection begins
with a setup time duration of tcs in which the camera
broadcasts three advertising short packets to establish a

Peripheral

Camera

Central

Edge

Advertising

Scanning

Connection Setup Connection Event 0 Connection Event 1

Connectionless Packet Data Packet Keep-alive Packet

Fig. 8. Connection-based BLE Mode.

(a) Packet size = 400 Bytes. (b) tci = 10 ms.

Fig. 9. Impacts of connection interval and packet size on the delay and
energy usages for transmitting a packet (a) and the whole 800-byte
image (b). The error bars represent minimum and maximum values.

connection with the fog node. Note that multiple wireless
cameras can connect to a single fog node. Then, the commu-
nication occurs in non-overlapping connection interval of
tci, during which the camera and fog node exchange packets
that may carry application data as shown in Fig. 8. In case
no pending application data to be sent, they exchange keep-
alive packets containing the mandatory link-layer header
only for the maximum connection event duration of tce. In
each connection interval, both devices turn off their radios
after all data packets are exchanged or the time budget tce
runs out.

The most important parameter of the BLE connection is
the connection interval tci whose configuration affects the
data transmission latency and energy consumption [4]. In
general, a short tci increases the overall data transmission
throughput and reduces the latency, which, however, incurs
higher energy consumption due to frequent wake-ups. The
long tci has opposite effects on the throughput, latency and
energy consumption. Existing study [5] proposed various
methods to adapt the configuration for the tci at run time to
maintain a high BLE data transmission quality in dynamic
wireless environments. However, the runtime adaptation of
the tci is not advisable for resource-constrained wireless
cameras in delay-sensitive industrial visual sensing appli-
cations. This is because to configure a new setting of tci,
the camera needs to establish a new BLE connection with
the fog node, which lasts for a duration tcs as illustrated in
Fig. 8. Our experiments show that the tcs is about 4 seconds.
Thus, the adaptation of the tci at run time causes significant
energy consumption and latency in broadcasting advertis-
ing packets. Therefore, in EFCam, the tci is configured with
a fixed value.

We conduct experiments to valuate the impacts of the
configurations for the BLE connection interval tci and packet
size on the transmission delay and energy consumption in
the factory environment. Fig. 9(a) shows the average appli-
cation packet transmission energy consumption and delay
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(a) Latency (b) Energy consumption

Fig. 10. Impacts of the RSSI on packet transmission latency and energy
consumption. The line and belt represent the mean value and the ±3
standard deviation of the fitted Gaussian distributions, respectively.

of 400-byte packets continuously transmitted to the fog node
over a duration of 25 minutes when the tci varies from 10 to
40 ms. As shown in Fig. 9(a), the packet transmission delay
increases with the tci, while the average packet transmission
energy consumption mostly remain over variation of tci. In
the connection-based BLE mode, in case no pending packets
at the MAC layer at the beginning of a connection event
with an interval tci, the camera transmits the keep-alive
packets, during which new application packets arriving at
the MAC layer are stored in the buffer and will be sent to
the fog node at the beginning of next connection interval.
Thus, the average transmission delay of such application
packets increases with the tci since the higher tci leads to
longer waiting times in the buffer. As a result, the average
packet transmission delay increases with the tci as shown in
Fig. 9(a). On the other hand, under the GATT protocol, dur-
ing the time when the camera waits for the acknowledge-
ment of a transmitted packet, it transmits keep-alive packets
if a new connection event begins. A shorter tci results in a
higher number of transmitted keep-alive packets. However,
the size of these packets is about 10 bytes. Thus, the average
packet transmission energy consumption is almost constant
over various tci setttings. Fig. 9(b) presents the image trans-
mission delay and energy consumption when the packet
size varies from 100 bytes to 400 bytes. In our experiments,
each 800-byte image is divided into multiple packets for
transmission. From Fig. 9(b), the image transmission delay
and energy consumption decrease with the packet size.
From the above results, the connection interval of 10ms and
packet size of 400 bytes are the optimal settings among the
tested ones.

From these measurement results, we set the tci and
packet size to 10 ms and 400 bytes in our evaluation
experiments.

APPENDIX C
MODELING TRANSMISSION LATENCY AND ENERGY
CONSUMPTION

Figs. 10 (a) and (b) show the error bars of the packet
transmission delay lp,i(η) and energy consumption ep,i(η),
versus the RSSI η over a duration of four hours during
which the wireless camera continuously transmits 400-byte
data packets to the fog node in the factory. From Fig. 10,
when the RSSI η is lower than −60dB, the lp,i(η) and ep,i(η)
each follows the same distribution regardless of the RSSI.
When the RSSI η is above −60dB, their distributions vary
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Fig. 11. Histograms and fitted Gaussian distributions for packet trans-
mission latency under different RSSI levels. Results for the RSSI levels
greater than −59 dB are not shown.
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Fig. 12. Histograms and fitted Gaussian distributions for the camera
energy consumption under different RSSI levels. Results for the RSSI
levels greater than −59 dB are not shown.

with the RSSI. Thus, we fit two distributions for the lp,i(η)
and ep,i(η) using all the data with η < −60dB. Then, for
each η that is greater than or equal to 60dB, we fit two
separate distributions for the lp,i(η) and ep,i(η). Figs. 11 and
12 show the histograms of real lp,i(η) and ep,i(η) data and
the fitted density functions, when η < −60dB, η = −60dB,
and η = −59dB. The histograms for other η levels that are
greater than −59dB are not shown. From Figs. 11 and 12,
we can see that the histogram and fitted density function of
lp,i(η) and ep,i(η) are different under each of the RSSI levels.
For instance, under the RSSI less than -60 dB, the lp,i(η)
are fitted to a Gaussian distribution of N(0.084, 0.0422).
When the RSSI is −60dB and −59dB, the fitted Gaussian
distributions are N(0.0907, 0.0632) and N(0.0784, 0.05072),
respectively.
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