TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024 1

Edge-Cloud Switched Low-Carbon Image
Segmentation for Autonomous Vehicles
Siyuan Zhou, Duc Van Le, Senior Member, IEEE, and Rui Tan, Senior Member, IEEE

Abstract—Existing autonomous vehicles (AVs) utilize neither cloud computing for execution of their deep learning-based driving tasks
due to the long vehicle-to-cloud communication latency, nor solar energy to offset the energy usage of car-borne computing. They are
in general equipped with the resource-constrained edge computing devices which may be unable to execute the compute-intensive
deep learning models in real time. The increasing data transmission speed of the commercial mobile networks sheds light upon the
feasibility of using the cloud computing for autonomous driving, which is demonstrated by our city-scale real-world measurements over
the fifth generation (5G) mobile networks. Moroever, the cost and form factor declines of solar harvesting systems make the quest of
integrating them with AVs for improving carbon efficiency more promising. In this paper, we present the design and implementation of
ECSeg, an edge-cloud switched low-carbon image segmentation system for AVs equipped with roof-mounted solar panels. ECSeg
dynamically switches between edge and cloud processing to execute semantic segmentation models in real time while aiming to
decarbonize AV computing by maximizing the use of harvested solar energy. The switching decision is challenging due to the complex
interdependencies among various factors, including dynamic wireless channel conditions, vehicle motion, visual scene changes, and
available renewable energy. To tackle this, ECSeg employs deep reinforcement learning to learn an optimal switching policy. Extensive

evaluations based on real-world experiments and trace-driven simulations demonstrate that ECSeg outperforms six baseline
approaches, achieving 98.8% reduction in computing’s carbon emission, while maintaining high image segmentation accuracy,

compared with our earlier design without integrating the solar panel.

Index Terms—Image segmentation, cloud-assisted system, autonomous driving

1 INTRODUCTION

Autonomous vehicles (AVs) have substantial potential to
mitigate traffic congestion, enhance road safety, and curtail
carbon emissions. Deep learning (DL) has been increasingly
employed for various driving tasks of the AVs. For example,
the DL models [1]-[3] can be used for the vehicles to under-
stand their visual driving scenes correctly, facilitating the
safe driving navigation and accurate collision avoidance. To
avoid the long latency and privacy issues of data transmis-
sion, the commercial AV platforms (e.g., Apollo [4]) are often
equipped with the resource-limited edge computing devices
to directly execute the DL-based autonomous driving tasks
on the vehicles. Meanwhile, the execution of deep models
often imposes high demand on computing resources. Thus,
current AV design strategies adopt customized lightweight,
on-board deep models [5] which can be executed by the
edge devices in real time to achieve autonomous driving.
This design choice compromises the accuracy of the deep
models. A possible approach to address this problem is
to increase the computing capabilities of the edge devices
which allow implementation of complex deep models with
high accuracy. However, the powerful computing devices
are energy-intensive, which reduces the vehicle’s battery
system lifetime. It is also challenging for the vehicle’s heat
dissipation system to handle a high amount of heat dissi-
pated by the energy-intensive computing devices [6].

In this paper, we investigate the feasibility of using the
cloud computing for executing the DL-based autonomous
driving tasks. In particular, the cloud servers can pro-

Siyuan Zhou, Duc Van Le, and Rui Tan are with College of Computing and
Data Science, Nanyang Technological University, Singapore.

vide the AVs with sufficient computing capabilities without
power limitation and heat dissipation issues. To address the
privacy concerns, the data encryption approaches [7] can be
implemented to secure the AV’s sensitive information before
transmitting the data to the cloud server. Meanwhile, the in-
creasing data transmission speed of the commercial mobile
networks sheds light upon the opportunity of significantly
reducing the vehicle-to-cloud communication latency. Our
city-scale real-world measurements show that the fifth gen-
eration (5G) mobile network can provide an average round-
trip time (RTT) latency of 100 ms for transmitting the 500-KB
data packets from the moving vehicles to the remote cloud
servers. Thus, we conjecture that the clouds connected via
a mobile network can bring benefits to the AVs. Semantic
segmentation is more computationally intensive than other
vision-based tasks in autonomous driving. For example,
kernelized correlation filters (KCF) for object tracking can
reach approximately 170 FPS on a CPU [8], and object
detection models such as YOLOv4 can achieve 45.5 FPS on
an edge GPU [9]. These numbers suggest that detection and
tracking tasks can generally be executed efficiently on the
edge device with satisfactory accuracy. By contrast, semantic
segmentation imposes substantially higher computational
demands, which makes it a natural focus for studying the
benefits of cloud computing.

The AVs generally require an additional amount of en-
ergy for powering the sensing, communication, and com-
puting devices in their autonomous driving subsystem. A
study in [10] reported that the autonomous driving subsys-
tem can increase the vehicle’s greenhouse gas emissions by
3%-20% due to the increases in power use, drag, weight, and
data transmission. Thus, a low-carbon AV design is highly

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

desirable and important to the global transition to carbon
neutrality. In this paper, we also investigate the feasibility
of a low-carbon AV design in which the solar panels are
mounted on the AV’s roof. The solar panels convert sunlight
irradiance into electric energy for powering the computation
of AV.

To achieve the above two research objectives, in this
paper, we design an edge-cloud switched low-carbon image
segmentation system, called ECSeg which aims to provide
high-accuracy segmentation results of the vehicle’s visual
driving scenes in real time while minimizing the compu-
tation carbon emissions. Specifically, ECSeg switches be-
tween the following two processing options to obtain the
segmentation result of each image frame captured by the
AV’s camera before a certain deadline (e.g., the time when
the next image frame is captured). First, edge processing option
executes a lightweight convolutional neural network (CNN)
model locally on the AV’s edge computing device to obtain
the segmentation results of the image frames. Second, cloud
processing option compresses the raw images and transmits
them to a cloud server via the mobile network. Then, the
cloud server executes an advanced CNN model to process
the images and sends the results back to the vehicle. More-
over, ECSeg adopts a hybrid energy system in which the
solar energy harvested by the solar panels is mainly used
to power the edge and cloud processing options. When the
solar energy is not available, it will use the energy drawn
from the AV’s main battery.

Among the above two processing options of ECSeg,
the edge processing option can always provide the seg-
mentation result of the captured image frame in real time.
However, it has low segmentation accuracy due to the use
of the lightweight CNN model. With the execution of the
advanced CNN model, the cloud processing option achieve
higher segmentation accuracy. However, due to the cloud
data transmission latency, the vehicle may not always obtain
the segmentation result of a transmitted image frame before
the image’s processing deadline. To deal with this latency
issue, the cloud processing option allows the vehicle to only
spend a certain time period to wait for the cloud result of
the current image frame (i.e., current driving scene). We
define the source frame by the previous frames whose cloud
segmentation results have already arrived at the vehicle. If
the vehicle does not receive the cloud result of the current
frame after the waiting period, it uses the segmentation
result of the source frame as the basis of an extrapolation
process to estimate the result of the current frame. For the
extrapolation, we develop an optical flow-based approach
to propagate the segmentation result of the source frame
to the current frame. We adopt a metric, called delay-
mitigated mean intersection over union (mloU) to assess the
accuracy of the image segmentation results obtained by our
propagation approach.

The delay-mitigated mIoU may be affected by changes
in the visual content between the source and current frames.
As the vehicle moves, the condition of the mobile network
connection may vary due to base station switching and
radio signal blockage [11]. Poor mobile network connection
can cause long vehicle-to-cloud communication latency. As
a result, the source frame can be far away by multiple im-
age intervals from the current frame, leading to significant

2

content changes between these two frames. Such changes
reduce the delay-mitigated mloU of the current frame. For
example, when a new object that did not appear in the
source frame enters the current frame, the propagation
approach fails to obtain the segmentation result of this new
object. Thus, the segmentation accuracy of the cloud pro-
cessing option can be lower than that of the edge processing
option.

Moreover, the edge and cloud processing options also
have different energy patterns during their execution.
Specifically, the edge processing option uses a low and
stable amount of energy over time, while the cloud pro-
cessing option uses a higher and dynamic amount of energy
which is generally associated with increased communication
latency. When the solar energy is available, the use of the
cloud processing option should be maximized such that
the high segmentation accuracy can be achieved without
increasing the carbon emissions. Otherwise, the edge pro-
cessing option should be used to minimize the use of non-
renewable energy from the AV’s main battery. Therefore,
ECSeg needs to dynamically switch between the edge and
cloud processing options so that image segmentation accu-
racy can be maximized, while minimizing the use of non-
renewable energy to reduce carbon emissions.

However, switching decision-making is challenging due
to the intricate interdependencies among various factors,
including the dynamic mobile network channel condition,
vehicle’s movement, visual driving scene change, and the
availability of the solar energy. To this end, we employ
deep reinforcement learning (DRL) to learn a good long-
term switching policy. However, the typical online training
of the DRL agent requires time to converge. Before the con-
vergence, the DRL agent may make low-quality decisions
that undermine the performance and even safety of the
vehicle. Moreover, there is a lack of image ground truth
for determining the immediate rewards during the online
training phase. To address these challenges, we adopt an
offline training approach which utilizes real-world data
traces to train the DRL agent. Finally, the trained agent is
deployed for making the edge-cloud switching decisions at
runtime.

We extensively evaluate ECSeg through real-world ex-
periments and trace-driven simulations. We compare two
variants of our proposed DRL-based switching approach
with four baselines that incorporate efficient DL and knowl-
edge distillation approaches from existing research. Without
the use of solar energy, the first variant of our approach,
called accuracy-priority ECSeg can improve the mloU of
the AV’s image segmentation result up to 48.8%, compared
with the baseline. Furthermore, the second variant, called
low-carbon ECSeg can achieve a similar mloU while being
powered solely by the solar energy. Our main contributions
can be summarized as follows:

e We conduct large-scale measurements to evaluate the
benefits of using the cloud computing for AVs. Our de-
sign and experimental results may be useful for the de-
velopment of other edge-cloud collaboration pipelines
for AVs.

o We formulate the edge-cloud switching problem and
adopt a DRL-based approach to learn a good switching
policy for maximizing the AV’s image segmentation ac-

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

curacy under two different AV designs in the presence
and absence of the roof-mounted solar panels.

e We conduct extensive evaluations on real-world
testbeds to assess the effectiveness of our proposed
approach. Our results indicate that our approach out-
performs the baseline methods.

The remainder of this paper is organized as follows. §2
reviews related work. §3 presents the measurement study. §4
overviews ECSeg’s design. §5 describes the cloud process-
ing option. §6 presents the DRL-based switching approach.
§7 presents the evaluation results. §8 concludes this paper.

2 RELATED WORK

In this section, we review the existing studies on the edge-
based system, cloud-enabled sensing system, and RL-based
control policy.

m Edge-based system: Edge platforms have been
adopted to execute the DL-based driving tasks in the
AVs [2], [9], [12]. For instance, the study in [2] employs a
CNN model with early downsampling and smaller convo-
lutional filters to identify road lanes in real time on a vehicle
platform. The authors in [9] adopt a sparse scaling factor
algorithm to identify and prune less important channels
and weights of CNN models for detecting vehicles and
traffic signs, tailored for deployment on vehicle-mounted
computing platforms. Additionally, the study in [12] intro-
duces a usage-driven compression framework that identifies
frequently activated subpaths based on user behavior, and
selectively applies pruning, decomposition, and quantiza-
tion through automated search to compress deep models in
a demand-aware manner.

Regarding large language or vision-language models
(LLMs/VLMs) such as SAM [13], InternVL [14], and
DriveVLM [15], while these models demonstrate strong
generalization across diverse tasks, they are not well-suited
for real-time autonomous driving due to their high com-
putational overhead and long latency. Furthermore, most
VLMs are designed for high-level or interactive tasks, rather
than for low-latency inference in mission-critical environ-
ments. The LLMs such as SAM are designed for interac-
tive segmentation, where users provide manual pixel-level
prompts to obtain instance masks. However, SAM does not
generate semantic class labels and is not intended for class-
specific segmentation. In contrast, our application performs
segmentation that directly predicts class-specific results
from the input image without any prompts. To incorporate
SAM into the ECSeg framework, an additional prompt-
generation module would be required to supply prior label
information, which relies on strong prior knowledge. This
fundamental difference makes SAM unsuitable for direct
comparison or integration in our setting.

m Cloud-enabled sensing system: Several existing
cloud-enabled systems [16]-[18] have been employed to en-
hance the task performance on resource-limited devices. For
example, the study by [16] introduces DCSB, an edge-cloud
collaborative object detection framework that leverages a
lightweight difficulty discriminator and regional sampling
to adaptively offload hard cases to the cloud, thereby reduc-
ing bandwidth usage and latency while maintaining high
detection accuracy. ACCUMO [18] uses a large CNN model

3

on the cloud server and a lightweight local tracker to adjust
cloud results for a real-time augmented reality task. Based
on this, it employs model predictive control to determine
which tasks to offload to the cloud for multiple tasks. It uses
predicted accuracy to optimize overall accuracy. The above
approaches always offload tasks to cloud servers, which can
result in long latency when the wireless condition is poor. In
this paper, we develop an edge-cloud switched method that
shifts to edge processing when wireless condition is poor.

Similar to our work, DeepDecision [17] determines
whether to process images on the cloud using a large object
detection model or locally at the edge, based on network
conditions and hardware limitations, with the main objec-
tive of maximizing the accuracy and frame rate. However,
DeepDecision cannot be directly applied to our AV scenario
because it does not consider the processing deadline for each
frame. Additionally, it does not account for how changes in
the driving scene affect the accuracy of cloud model. We
compare ECSeg with ACCUMO and DeepDecision in §7.

m RL-based control policy: Reinforcement learning (RL)
has been applied to decide the task offloading in the
edge/cloud computing systems [19]-[21]. The study [19]
uses an online DRL agent to decide whether to offload
tasks to the cloud server from multiple users, based on
the users’ queue and channel states, to optimize the age of
information of the task. FEAT [20] uses DRL to decide task
offloading to edge servers, based on task size, bandwidth,
and hardware observations, reducing latency and mobile
device energy consumption, while employing a steerer neu-
ral network to switch the DRL agent based on changes in
observation distribution. EFCam [21] adopts the RL agent
to adapt the wireless camera configuration to maintain the
high performance of visual sensing. Our work shares a
similar DRL-based control approach for a switching strategy
to improve segmentation accuracy in AVs while considering
the impacts of dynamic cloud latency and driving scene
changes.

m Solar charging system: Several studies have explored
solar energy for system operation [22]-[24]. For instance,
the study in [22] proposes a reinforcement learning-based
system that adjusts duty-cycle parameters of sensors to
optimize the use of solar energy by observing environ-
mental information, ensuring the detection of critical events
under uncertain energy availability. The study [23] proposes
a path optimization algorithm that leverages street-view
image segmentation and shadow modeling to estimate solar
energy availability along roads, enabling the selection of
energy-saving routes for solar-powered vehicles in urban
environments. The study [24] proposes a solar vehicle de-
sign with low-cost flexible thin-film panels on all upward-
facing surfaces, and models the effects of panel orientation
and tilt to reduce grid load, transformer aging, and energy
use. The above studies focus more on optimizing solar
harvesting systems to maximize energy collection, while
our work focuses more on adapting the system to reduce
non-renewable energy usage under dynamic solar energy
availability.

The green edge computing has been explored in several
studies [25], [26]. For example, the study [25] proposes a
joint power allocation, channel assignment, and offloading
decision method to balance the trade-off between local

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

3T T
Tab. 1: Latency and accu-
@2t . racy of representative mod-
z els.
g
Sy T
Model mloU Lat. (E/C)
o 5000 T00 ESPNet 0505 30 /139
Index PSP-R50 0.785 720 / 360
. Intern-XL 0.836 1050 / 660
Fig. 1: Campus latency
trace.

processing delay and transmission power, which minimizes
the total energy consumption of mobile devices in multi-cell
multi-user mobile edge computing networks. In addition,
[26] develops a Lyapunov optimization-based offloading
framework that reduces long-term energy usage by balanc-
ing immediate task execution with resource preservation
under uncertain energy harvesting and task arrivals. Dif-
ferently, our work aims to minimize the reliance on non-
renewable energy and maximize semantic segmentation
performance, instead of optimizing for minimum energy
consumption.

3 MEASUREMENT STUDY
3.1 Cloud Latency Profiling

We conduct a set of real-world experiments to measure
the vehicle-to-cloud communication latency in various city
areas. Specifically, we build a vehicular communication
testbed which consists of a smartphone with a 5G commu-
nication service mounted on a vehicle. We use the Python
socket library to implement a client-server application that
allows a smartphone to transmit the data to a remote
cloud server using the TCP/IP protocol via the 5G mobile
network. In each experiment, the smartphone continuously
transmits 500-KB application data packets to a Google’s
cloud server while traveling on a vehicle with the movement
speed up to 50 km/h. Upon receiving each data packet,
the cloud server sends a 1-byte acknowledgment packet
back to the smartphone. We measure the round-trip time
(RTT) of all transmitted data packets. The RTT of a data
packet is defined as the time that it takes to receive the
acknowledgment packet after the smartphone transmits the
data packet. Fig. 1 presents the 1.5 hours RTT trace of the
data packets in the university campus area. As the vehicle
moves, the RTT fluctuates and reaches up to two seconds.
This communication latency variability may be due to the
switching of 5G base stations and signal blockage caused
by buildings or other vehicles. More details are provided in
Appendix A.1.

3.2 Segmentation Accuracy and Latency Profiling

We conduct profiling experiments to investigate the execu-
tion accuracy and latency of various deep learning-based
image segmentation models on both the edge and cloud
platforms. Specifically, we use an NVIDIA Jetson Orin [27]
unit with a 32-GB DRAM as the AV’s edge computing
platform. A workstation equipped with an RTX 8000 GPU
serves as the cloud platform. We implement eight image
segmentation models with different sizes, including three

I 1
W o 0T

3 1 1 1 1
\0.0,0.73 \02,()‘4\ \O.Aﬂo‘& \0,6,0@
Latency (s)

Fig. 2: Cloud option latency
and power usage. The dashed
line represents the power us-
age of the edge option.

Fig. 3: Solar panel sys-
tem.

lightweight models: ESPNet [5], as well as five large models:
PSPNet-ResNet50 [28], and InternImage-XL [29]. We use the
images sized 2048 x 1024 x 3 pixels from the Cityscapes
dataset [30] to evaluate the segmentation accuracy and
latency of the implemented models.

Table 1 presents the mloU (i.e., accuracy) and latency of
the segmentation models executed on the edge and cloud
platforms. The cloud latency is the end-to-end latency for
image data transmission and model execution. We use the
average RTT in the university campus area (c.f. §3.1) as
the transmission latency of each image. The mloU and
latency numbers are the average values of the models over
1,000 testing images. From Table 1, the image segmentation
accuracy and latency in general increase with the model
complexity and size. Without the need of transmitting the
images to the cloud, the edge platform can execute the
lightweight models and provide the segmentation results
with shorter latencies, compared with the cloud platform.
On the other hand, the cloud platform can provide the
segmentation results of large models with shorter end-to-
end latency, even when including the cloud communication
latency. More details are provided in Appendix A.2.

The above measurement results provide insights to
guide the design of our edge-cloud switched image seg-
mentation approach. Specifically, we can see that the cloud
server can execute the large models to provide higher
mloU and shorter average latency, compared with the edge
platform. However, the instantaneous cloud transmission
latency fluctuates with vehicle movement, and its high
value leads to reduction of mloU at the AV. To address
this issue, we propose a DRL-based approach for deciding
the switching between edge and cloud processing options
based on the dynamics of the real-time cloud latency and
AV’s driving scence. The detailed design of our proposed
switching approach will be present in §6.

3.3 Power Consumption of Edge and Cloud Options

We conduct experiments to study the energy usage for
executing the edge and cloud processing options of ECSeg.
Then, we investigate the energy harvesting performance of
our solar energy testbed. We use an NVIDIA Jetson Orin
unit as the AV’s edge platform in which the ESPNet is
implemented as the image segmentation model at the edge.
We conduct the experiment in which the edge platform uses
its GPU to execute the ESPNet to obtain the segmentation
results of 1,000 testing images at a frequency of 17 Hz over a
period of 30 minutes. The total energy of the edge platform

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

during the experiment is measured by the Orin’s built-in
power meter. The measurement results indicate that the
execution of the edge model uses an average power of 4.4
W which represents the average power use of the ECSeg’s
edge processing option.

The main energy consumers of cloud processing are
result propagation and data transmission, with design de-
tails presented in §5. Specifically, the edge platform uses
its CPU to execute the cloud result propagation process
at a frequency of 17 Hz for 30 minutes. The measured
average CPU power is 2.7 W over the 30-minute exper-
iment period, which is considered as the average power
usage for propagation. Moreover, to study the cloud data
transmission energy usage, we conduct the experiment in
which the edge platform uses the 5G dongle to continuously
transmit the 500KB data packets to the cloud server over
a period of 30 minutes while the vehicle is traveling at a
speed of 50 km/h. We use the Monsoon Power Meter to
measure the power usage traces of the 5G dongle as the
data transmission power usage. The RTT of the transmitted
packets is also measured as the cloud latency. At each time
instant, the power usage of the cloud option is the sum of
the 5G dongle’s power usage and the average power usage
of the cloud result propagation execution. Fig. 2 illustrates
the distribution of the power usage of the cloud option
under various cloud latency ranges. From Fig. 2, the cloud
option power usage varies from 3.2 W to 5.8 W. Moreover, it
generally increases with the cloud data transmission latency.
Furthermore, from Fig. 2, we can see that the cloud option
mostly uses less energy than the edge option when the
cloud latency is less than 0.4 seconds. Thus, to save the
energy, the AV’s image segmentation should switch to the
cloud option when the latency is low. Note that the cloud
option also generates a higher segmentation accuracy due to
the execution of the large image segmentation at the cloud
server.

3.4 Solar Energy Harvesting Performance

We also build a solar energy harvesting testbed as shown
in Fig. 3. Specifically, the testbed comprises monocrystalline
solar panels and a maximum power point tracking charge
controller that supports up to 10A of current to optimize
power extraction and regulate the charging process. Addi-
tionally, a lithium iron phosphate battery is used to store
the harvested solar energy. We test two types of solar panels
with the sizes of 560x900 mm and 500x480 mm, which
results in the peak harvesting powers of 100W and 50W,
respectively.

The generation of solar energy is a carbon-free process,
but the manufacturing and recycling of solar panels results
in carbon emissions. Thus, a key concern of using the
solar energy is that the embodied carbon emission of the
solar panel production process may outweigh the carbon
emission reduction achieved by the use of solar energy as
replacement of the non-renewable energy. To investigate this
concern, we analyze the carbon payback time (CPT) [31],
which is the time required for a system’s total carbon emis-
sions Crca from manufacturing, transport, installation and
recycling to be offset by its average annual carbon savings

Cac. The equation is given by CPT = % For example, in

5

the U.S., the Crca of a monocrystalline silicon solar panel
is measured at 127.3 kg CO; per square meter [32]. The Cac
for one square meter is 49.14 kg CO, [33], [34]. Using these
values, the CPT is calculated as 2.59 years. A study in [35]
reported that a solar panel can have a lifespan of over 25
years. With a CPT of 2.59 years, the use of a solar panel can
contribute zero carbon emission over a period of about 22.41
years after an initial period of 2.59 years.

We conduct a set of experiments to investigate the energy
harvesting rate of the solar panel in our testbed. Specifically,
we deploy two solar panels on a sunny balcony with the
direct sunlight at noon for 2.5 hours. During the experiment,
the solar charge controller records the charged electricity
level as the amount of harvested solar energy. Fig. 4(a)
presents the cumulative energy harvested by the 100 W and
50 W solar panels over the experiment period. We can see
that the 100 W panel can harvest an amount of about 200 Wh
over 2.5 hours, which nearly double that of the 50 W panel.
This result indicates the harvested energy proportionally
increases with the solar panel size under strong sunlight
conditions.

We also conduct experiments to investigate the energy
harvesting performance of the solar panel mounted on the
moving vehicle. Specifically, we mount the 100 W solar
panel on the open trunk of a lorry which continuously
travels through various environments such as tunnels, over-
passes, and open streets at a movement speed up to 60
km/h for 90 minutes. Fig. 4(b) shows the cumulative energy
harvested by the solar panel during the experiment and the
remaining solar energy after executing the edge and cloud
processing options over time. By the end of the journey,
the total harvested energy reaches 85 Wh. The remaining
solar energy for the edge and cloud options represents the
available energy when AV tasks consistently execute either
the edge or cloud processing option. Under a 100 W solar
panel, the remaining solar energy for both edge and cloud
options always stays above zero. This indicates that a 100
W solar panel, under good sunlight conditions, generates
sufficient energy to support both edge and cloud processing
options.

According to [36], the typical roof area of a passenger
vehicle is about 2.5 m?, which is sufficient to install five 100
W solar panels, yielding up to 500 W under bright sunlight.
Our measurements show that a 100 W panel produces about
56 Wh per hour during vehicle operation. Thus, a 2.5 m? roof
would produce roughly 280 Wh per hour.

3.5 Findings

Our measurement study provides three key observations.
First, vehicle-to-cloud latency is highly variable, which can
reach up to two seconds due to base station handover and
environmental obstructions. Second, the profiling results
of representative segmentation models show a trade-off
between accuracy and latency: lightweight models can be
executed efficiently on the edge with short latency at the cost
of low accuracy, whereas large models provide significantly
higher accuracy and achieve lower end-to-end latency when
executed in the cloud despite transmission delay. Third,
the cloud processing option incurs less power usage by
the vehicle than the edge processing option when com-
munication latency is low, and solar energy harvesting is

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

200,

—=— 100 W 80F —=— Harvested energy
F—=— 50W 1 = --=-- Edge remaining
260 e Cloud remaining /"
r 1 Baob
Q
=1
r 1 oot
o 1 | L] (0] o S T T T R R
0 50 100 150 0 10 20 30 40 50 60 70 80 90

Time (minutes)

Time (minutes)

(a) The solar panel is deployed
on a sunny balcony and harvest
the energy for 2.5 hours at noon.

(b) The 100 W solar panel is
mounted on a moving vehicle
for 90 minutes.

Fig. 4: Solar panel performance.

sufficient to sustain both edge and cloud processing options
in favorable conditions. These findings motivate our system
design. The variability of communication latency and the
accuracy-latency trade-off together show the need for an
edge—cloud switching mechanism that adaptively chooses
the processing venue between the edge and the cloud.
Under dynamic solar energy harvesting conditions, the
switching strategy also needs to consider energy availability
to reduce power consumption and lower carbon emissions.

4 DESIGN oF ECSEG

In our work, we treat the vehicle as an edge device that
both generates data and provides local computing capabil-
ity [37], in contrast to a terminal, which mainly serves as a
communication endpoint [38]. We consider an AV that uses
a camera system to periodically capture its driving scene at
every sampling interval, denoted by T". ECSeg is designed to
execute deep learning-based semantic segmentation models
to obtain the segmentation result of each image frame be-
fore the time when the next frame is captured. The image
segmentation results provide pixel-level understanding of
the AV’s driving scenes which can be used as inputs for the
autonomous driving pipelines [39], [40] to achieve accurate
trajectory planning and safe navigation.

A solar panel is mounted on the AV’s roof to contin-
uously convert the sunlight irradiance into the electrical
energy which is saved in a car-borne battery. The solar
energy from the battery is used to power the edge and cloud
processing options for executing the image segmentation
tasks of the AV. As the amount of harvested solar energy
varies over time and depends on the run-time weather
condition, the AV will use the energy from its main bat-
tery for the segmentation task execution when the solar
energy is not available. It is assumed that the main bat-
tery is pre-charged with the non-renewable energy sources.
To reduce the carbon emission, our proposed low-carbon
ECSeg employs DRL to dynamically switch between the
edge and cloud processing options such that the usage of
non-renewable energy is minimized while still maintaining
high segmentation accuracy. In the ideal case, the AV’s
segmentation task is expected to achieve the zero carbon
emission by operating with the solar energy only.

Fig. 5 overviews the design of low-carbon ECSeg which
has two options: edge and cloud processing options for
image segmentation as follows.

m Edge processing option: This option executes a seg-
mentation model locally to obtain the segmentation results

D Edge platform [:] Remote cloud

Cloud

> Compressor

Decompressor
; Compressor j L
-
Frames M
Q Received results
Movement
llll Cloud model
Latency
l Segmentation
Solar Output _ results)

Fig. 5: Design overview of ECSeg.

of the captured image frames on the AV’s edge platform.
Given the limited computing resources of the edge platform,
ECSeg employs a lightweight CNN-based image segmenta-
tion model as the local model such that the image segmen-
tation result of each image can be always obtained before its
deadline.

m Cloud processing option: This option follows a
streaming mode to continuously transmit the image frames
from the vehicle to the cloud server via a mobile network.
To reduce the communication overheads, we implement a
JPEG approach to compress each image before transmitting
it to the cloud server. Upon receiving the image data, the
cloud server employs a JPEG decompressor to reconstruct
the original image. Then, the cloud server executes the cloud
model to process the reconstructed image. To achieve high
image segmentation accuracy, an advanced CNN-based
model with large size is implemented as the cloud model
in the cloud server. Finally, the cloud image segmentation
result is sent back to the vehicle.

Due to the long vehicle-to-cloud communication latency,
the cloud segmentation result of an image frame may not
arrive at the vehicle before the deadline. Thus, we also
develop a propagation approach which uses the received
cloud result of a previous frame as input to obtain the
segmentation result for the current frame. The detailed
design of our segmentation result propagation approach
will be presented in §5.

m Switching: The edge processing option can always
provide the image segmentation result within the deadline.
However, it suffers from low segmentation accuracy due to
the use of the lightweight model. In contrast, the cloud pro-
cessing option can execute an advanced model to achieve
high accuracy, but has high latency uncertainty due to the
dynamic vehicle-to-cloud communication latency. Due to
the vehicle movement and poor wireless channel condition,
the communication latency can be long, which causes the
cloud segmentation results to become stale, decreasing the
segmentation accuracy. To maximize the segmentation ac-
curacy, at the edge platform, we implement a DRL-based
controller which aims to dynamically switch between the
edge and cloud processing options in response to changes of
the communication latency, driving scene and solar energy.
In §6, we formally formulate the switching problem and
present our DRL-based solution.

5 CLouD PROCESSING OPTION
5.1 Segmentation Result Propagation

Let x1,22,23,... denote a sequence of images captured by
the vehicle’s camera system at every fixed interval of T'. We

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

also denote ¢; as the time when the image x; is captured
and then transmitted to the cloud server. The processing
deadline of z; is ¢; +T (i.e., the arrival time of the next image
Zi+1). Due to the dynamic vehicle-to-cloud communication
latency, the vehicle may not receive the cloud segmentation
result of x; before the deadline ¢; + T. To address this
deadline missing issue, the vehicle only waits for the cloud
result of x; for a certain period, denoted by Ty, after ¢;. If
the vehicle does not receive the cloud result of x; within
the waiting period 1%, we employ a propagation approach
to obtain the segmentation result of x; based on the cloud
segmentation result of the latest frame, denoted by x,
among the previous frames of z; (j < ¢) whose cloud result
has already arrived at the vehicle. Let T}, denote the fixed
execution latency of the propagation. Then, the waiting
period is calculated as T’y = T" - T}

Now, we describe our approach to propagate the cloud
segmentation result of , to the current frame z; where k <
1. The images z;, and z; have the same size in terms of the
number of pixels, denoted by M. Let Py, = {Px.1,..., Pear}
and P; = {P;1,...,P; pm} denote the sets of pixels of zy,
and z;, respectively. We adopt a computer vision technique,
called optical flow which aims to determine the movement
velocity of the pixels from zj, to z;. Specifically, it derives the
movement vectors, denoted by Fj_,; = {F1,..., Far} which
are used to locate the pixels Py, of x;, within x;. In this work,
we adopt the dense inverse search-based approach pro-
posed in [41] to derive Fj._,; efficiently. Two pixels Py, ; € Py,
and P;j € P; share the same segmentation class label if
P; y, = Py ; + I}, Following this mapping method, the cloud
segmentation class labels of M pixels in the previous image
x}, are propagated to M pixels of the current image x;. As
a result, we can obtain the cloud segmentation result of z;
before its deadline.

5.2 Delay-mitigated mloU
5.2.1 Definition

To assess the accuracy of the cloud segmentation results
obtained via propagation, we introduce a segmentation
accuracy metric, called delay-mitigated mean intersection
over union (mloU). The delay-mitigated mloU is a variant
mloU used to evaluate the performance of image segmen-
tation models. It measures the average overlap between the
propagated predicted segmentation and the ground truth
across all classes, given by

delay-mitigated mlIoU = Z |Aen Be|

1
01|A UBc| ()

where C' is the total number of classes, Ac denotes the set
of pixels predicted as class c after propagation, based on
the original segmentation result A., and B. denotes the set
of ground-truth pixels belonging to class c. The numerator
represents the intersection, and the denominator represents
the union of the predicted and ground-truth regions for
class c. A higher delay-mitigated mloU indicates better
segmentation accuracy.

Fig. 6 shows an example of delay-mitigated mloU, where
the i"" image is transmitted to the cloud and its cloud result
arrives at the vehicle within the interval between the j*" and
(j+ 1)t images. Due to the vehicle’s movement, the scene

7

captured in the j" image may shift from the i" image,
causing the received cloud result to mismatch with the ;"
image’s ground truth. We adopt the propagation method,
discussed in §5.1, to mitigate the mismatch. As a result,
the delay-mitigated mIoU for the j'" image is the mIoU
between the propagated i cloud result and the ground
truth of the j'" image. When the pixel content of the "
image differs significantly from that of the j*" image, the
delay-mitigated mloU may decrease.

5.2.2 Impact of image content changes

We conduct experiments to investigate the impact of content
changes between the i*" and ;' images, referred to as image
distance, on delay-mitigated mloU. Specifically, we use the
average Euclidean distance of each pixel in the movement
vectors between two segmented images by Internlmage [29]
to indicate the image distance. The large image distance
indicates fast-changing scenes between two images, such as
more objects entering and exiting the scene, as well as rapid
changes within the scene itself. The experimental results
indicate that as the image distance increases, the mloU
decreases. This decline is attributed to larger distances,
where changes in the captured scene may involve objects
entering or exiting the field of view, leading to a mismatch
that propagation cannot mitigate. More details are provided
in Appendix B.1.

5.2.3 Impact of latency

We further conduct experiments to investigate the impact
of end-to-end cloud latency on the delay-mitigated mlIoU of
received cloud results. Specifically, we select 267 images to
transmit to the cloud server, where the Internlmage serves
as the cloud model to process these images. We denote end-
to-end cloud latency as L, measured in the number of image
intervals 7', where 0 < L < 19. L = 0 means that the cloud
results can be received within the interval of the transmitted
image. For each transmitted image, we compute the delay-
mitigated mloU after propagation for L values ranging from
0 to 19, resulting in 5,340 values. The delay-mitigated mloU
reflects the effectiveness of mismatch mitigation through
propagation. Additionally, we also compute the mloU be-
tween cloud results without propagation and the ground
truth over the same L range (0 to 19), referred to as delay-
affected mloU. Fig. 7 shows the average delay-affected and
delay-mitigated mloU across different L values. The delay-
mitigated mloU is always higher than the delay-affected
mloU, ranging from 0.4 to 0.82. The results show that the
propagation can mitigate the impacts of cloud latency. Both
mloU values decrease with L. More details are provided in
Appendix B.2.

We also conduct an experiment with controlled end-to-
end cloud latency to compare the performance of the cloud
and edge processing options in terms of mloU. Specifically,
we use the Cityscapes image traces at 17 FPS and select 267
frames with available ground-truth labels for evaluation.
For the cloud processing option, the whole trace is processed
by the cloud model with an artificially introduced latency
ranging from 60 ms to 960 ms. From the perspective of the
vehicle, the latest received cloud result is propagated to the
current frame for accuracy evaluation. For the edge process-
ing option, all images can be processed within each frame

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

th 1.0 T T T
m OA - results —=— delay-mitigated
nference | ™y A jth o
Cloud (I ground truth 0.8 —e— delay-affected |
Delay-mitig'ated mloU =)
206 1
= A 1 g
Edge Mismatch Match 04 r x %
ESPNet
- _l Time 0.2 1

1 1
5 10 15 19
Latency L (frames)

it" image j*" image (j + 1)" image

Fig. 6:
mloU.

Delay-mitigated Fig. 7: Accuracy vs. Latency.

100

50 1

Cloud superior ratio (%)

080 300 600 960
End-to-end cloud latency (ms)

Fig. 8: Ratio of frames where cloud processing outperforms
edge processing under different cloud latencies.

interval. Fig. 8 reports the ratio of the frames where the
cloud processing option achieves a higher mloU than edge
processing under different end-to-end latency settings. The
results show that, when the cloud latency is small, the cloud
processing option has a higher chance of outperforming
edge processing. As the cloud latency increases, this chance
gradually decreases because longer delays introduce greater
discrepancies between frames, including object entries and
exits, which reduce the accuracy of the propagated cloud
results. The mechanism presented in §6 will learn a policy
that jointly considers a number of factors including the pre-
dicted end-to-end cloud latency to identify the opportunities
where the cloud processing option would outperform the
edge processing option.

6 DRL-BASED SWITCHING

6.1
6.1.1

Time is divided into intervals with identical duration of
7 > T seconds, which is referred to as switching period.
At the beginning of switching period, called time step, the
ECSeg selects the edge or cloud processing options for
image segmentation in response to the changes of three
exogenous stochastic factors, including the time-varying
cloud transmission latency, denoted by 7(t), the harvested
solar energy, denoted by €(¢), and the vehicle’s driving
scene variation, denoted by &(t). Denote 1, = n(kt) ,

Problem Statement

Optimization formulation

er = €(kt) , and & = &£(kT), where k € Zso. Denote by
t(f,;l)T, Ef,:i)T, and 555:71)7 the trace of n(t), €(t), and

£(t) when t € [kr,(k + 1)7]. At the k' time step, we let
T(Eks €k Mk» - - - €05 €0, M0) denote the policy that determines
a switching decision, denoted by wy, based on the historical
measurements of (&, €k, Nk, - --,&0,€0,M0). The wy repre-
sents the decisions, including the edge and cloud processing
options, which jointly affect the delay-mitigated accuracy

8
0.20

02+ g
g £0.15 1 &
2 £0.10 {2
Bolf {1 E" =
a | A 0.05 41 &

0.0 LN 0.00 1 S

0
Probability Difference Probability Difference Probability Difference

(a) Image distance. (b) Cloud latency. (c) Solar energy.
Fig. 9: Compliance of state transition with the Markov

assumption.

and non-renewable energy usage during the switching pe-
riod. For a time horizon of K switching periods, the switch-
ing aims to solve the policy optimization problem:

" 1 K k k
m* = argmax E¢ | — > (Ak (Wk, t(=;;1)Ta]5:’;1)7)
mell K k=0
@
(k+1)r _(k+1)T
_)\Ek(wkvnt=k7— ’6t=k‘r))
where II represents the policy space; wy =
T(&ky €k, Mk - - -, 60, €0,M0); Ee e denotes the expectation

over the three stochastic processes of 7(t), €(t), and £(t);
the Aj(-) denotes the delay-mitigated mIoU in the k"
switching period; the FEj(-) denotes the non-renewable
energy usage in the k' switching period; the \ is a
configurable weight to balance the trade-off between the
delay-mitigated mloU and the non-renewable energy usage.
Note that the switching period may have multiple images,
depending on the setting of the image frame rate. The
objective is to find the optimal policy 7* that maximizes
the average delay-mitigated mloU while minimizes the
non-renewable energy usage per switching period.

Solving the policy optimization problem in Eq. (2) faces
a basic challenge that the Ay (-) cannot be measured during
ECSeg’s online operations due to the unavailability of the
image segmentation ground truths. Thus, in this study, we
develop a learning-based controller to find the near-optimal
solution. Specifically, during the offline training phase, the
controller learns the optimal switching policy based on the
real data traces including the image frames labeled with
ground truths, harvested solar energy from the testbed, and
cloud processing latencies collected from the ECSeg. Then,
the learned policy is applied to determine the processing
options during the online inference phase.

6.1.2 Markov property

When applied to image segmentation in AVs, ECSeg aims
to switch between edge and cloud processing options
based on image distance values, cloud transmission la-
tencies, and harvested solar energy. We conduct experi-
ments to assess whether the above two stochastic processes
satisfy the Markov assumption (MA), ie., P[yr+1 | yr] =
P{yk+1 | YksYk-1---Yo], where y; represents the measure-
ment state at the ™ time step. The MA suggests that the
probability distribution of the state transition from y; to
Yr+1 is independent of the past states yy_1, ..., yo. The MA is
a basic property of the systems where RL is applicable [42].
When we assess the MA for the image segmentation ap-
plications, we use the probability difference, denoted by

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

AP = Plygs1 | Y] = P[Yr+1 | Yks- - Yr-n], where N > 0,
as a MA compliance metric. A lower absolute value of AP
indicates better compliance. Fig. 9 shows the distributions
of AP with N =1 for the transitions of the image distance
values, the end-to-end cloud latencies, and harvested solar
energy in over 800 switching periods, where each switching
period 7 is one second. From Fig. 9, we can see that these
three stochastic processes have good compliance with the
MA because their values of AP concentrate at zero.

In our expectation, AP is close to zero because the
key factors that determine future behavior are all recent
and already captured in the current state. Specifically, the
image distance depends on the most recent visual input, the
cloud latency reflects the latest network condition, and the
harvested solar energy is closely related to the most recent
solar irradiance. Since these factors are already included in
the current state, earlier history does not provide additional
value for the prediction. Therefore, the Markov property is
approximately satisfied, implying that AP ~ 0. Although
the current state reflects recent inputs, AP may still deviate
from zero because sudden dynamics such as rapid changes
in motion distance, bursty network congestion, or abrupt
shifts in solar irradiance can introduce uncertainty in the
state transition. In these cases, earlier history may contain
residual information that improves the prediction of the
next state, resulting in a non-zero AP.

6.2 MDP Formulation

In this section, we present two MDP formulations for the
two variants of our proposed approach: accuracy-priority
ECSeg and low-carbon ECSeg. The two ECSeg variants are
designed for different hardware conditions. Specifically, the
accuracy-priority variant is applicable when solar panels are
not integrated, in which the system focuses on maximizing
segmentation accuracy under latency constraints. In con-
trast, if the vehicle is equipped with the solar panels, the
low-carbon variant can be used to leverage the harvested
solar energy to reduce the non-renewable energy usage
and lower carbon emissions. Specifically, the accuracy-
priority ECSeg mainly focuses on switching between the
edge and cloud processing options to maximize the AV’s
image segmentation accuracy without considering the solar
energy. It only uses the non-renewable energy from the AV’s
main battery to power the AV’s computation. Differently, the
low-carbon ECSeg considers the hybrid energy system and
aims to maximize the accuracy while also maximizing the
solar energy utilization to reduce the carbon emission.

6.2.1 Accuracy-Priority ECSeg

System state: At the time step k, the system state, denoted
by xy, is a vector &, = [lj, uy], where [, and uy, represent the
average mobile network transmission latency and the image
distance, respectively in the previous switching period. The
uy is computed via the average pixel Euclidean distance
of dense optical flow between the palette-based segmented
results of the first frame and the last frame of the previous
period. Computing uy, via the segmented results can avoid
environmental impacts such as lighting, low texture, and
contrast of adopting the dense optical flow methods on

9

the raw image. A large value of /;, can decrease the delay-
mitigated mloU of the received cloud results. The u,, indi-
cates the image distance. A larger image distance can result
in a decrease in the delay-mitigated mloU of the received
cloud results.

Moreover, vehicle parameters, such as the ego vehicle’s
speed, may affect the delay-mitigated mIoU of the received
cloud results. Intuitively, higher speeds increase the image
distance between consecutive frames, leading to greater
mismatches between the received cloud results and the
ground truth of the current frame. However, since image
distance already reflects the cumulative effect of the vehi-
cle’s movement over time, including its speed, explicitly
using the speed as an additional input becomes redundant
and may introduce noise into the switching controller.

Switching action: The switching action, denoted by
ay € {0,1}, represents the choice between cloud and edge
processing options to be executed in the current period.

Reward function: When an action a;, is performed at
the system state x, let Ay(xg,ar) denote the average
delay-mitigated mIoU for image segmentation over the k"
switching period. The immediate reward r; is defined based
on the delay-mitigated mIoU as follows: 7, = Ag(xk, ak).

6.2.2 Low-Carbon ECSeg

System state: The system state xj is a vector xj =
[k, Uk, €k, Br], where €, denotes the amount of energy
harvested by the solar panel during the previous period.
A larger ¢ indicates efficient energy harvesting, while a
smaller ¢ reflects limited energy harvesting. [, denotes
the remaining solar energy at the beginning of the current
period.

Switching action: The switching action aj, € {0, 1} repre-
sents the choice between cloud and edge processing options
to be executed in the current period.

Reward function: When an action aj, is performed at the
system state x}, let) (x},, a},) represent the non-renewable
energy usage for executing the selected action aj, during
period k. The immediate reward 7}, is defined based on the
non-renewable energy usage and the delay-mitigated mIoU
as follows: r;, = Ag(x},a;,) — A - N(Ex(x},a;)), where A
is configurable weight. A'(z) is a normalization function,
ie, N(z) = =2, where Zmax is the maximum value of z.
Recall that the AV only uses the non-renewable energy (i.e.,
Ey(z},,a;) > 0) when no solar energy is available. Thus, the
design objective of 7}, is to reduce the carbon emission by
minimizing the usage of non-renewable energy.

6.3 DRL Training

We adopt the learning framework of a DRL algorithm, called
the proximal policy optimization (PPO) [43] to learn the op-
timal switching policy. PPO directly learns from a stochas-
tic distribution, leading to more effective exploration, and
adopts a clipping mechanism to improve efficiency com-
pared with Deep Q-Network and Trust Region Policy Op-
timization. Under the typical setting, a PPO agent learns
the optimal policy during the online interactions with the
controlled system. However, for the formulated switching
problem, the online DRL scheme faces the following two

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

Runtime State

1
i

2z S - Laten races | (1) Datacollction |35
d@ Reward =
DRL Agent >
Testbed

Action A y
(2) Offline training

Runtime Action (3) Online control

Fig. 10: Workflow of DRL-based switching.

challenges. First, PPO agent trials may result in poor seg-
mentation accuracy, potentially leading to safety concerns.
Second, during the online learning phase, the mloU cannot
be measured during online learning due to the lack of
ground-truth labels. To address these challenges, we adopt
an offline training approach as illustrated in Fig. 10, which
consists of three steps. First, we collect the real data traces
from the deployment environment. Second, we use the real
data traces collected in the first step to drive the offline
training of the PPO agent. Third, the well-trained PPO agent
is deployed to make decisions for switching.

Real-world operating environments may differ from the
offline training environment. A possible solution is to adopt
a Tesla-like over-the-air (OTA) mechanism [44] that collects
image traces, latency statistics, and solar energy harvesting
data during operation. These data are uploaded to the cloud
server when the vehicle is parked. The uploaded data can
then be used to further train the deep reinforcement learning
agent in the cloud, after which the updated model is sent
back to the vehicle through OTA updates.

7 EVALUATION

This section first presents the experiment settings and eval-
uation results of accuracy-priority ECSeg, followed by those
of low-carbon ECSeg.

7.1 Experiment Settings
7.1.1 System implementation

We conduct a series of experiments to investigate the per-
formance of ECSeg in a real-world testbed. Fig. 11 illustrates
the system setup. For image sensing, we use a See3Cam USB
camera [45] with a 13-megapixel CMOS sensor, capturing
images at 2048 %1024 resolution at 17 Hz. We utilize a laptop
equipped with an NVIDIA GeForce RTX 3080 Ti GPU as the
edge platform mounted in the vehicle. For mobile network
connectivity on the laptop, we utilize the SIM8202G mod-
ule [46], which is a USB3.1 5G dongle equipped with four
antennas and the Qualcomm Snapdragon X55 RF-modem.
The cloud server is prototyped using a tower server with an
RTX 8000 GPU and an Intel Xeon Gold 6246 CPU located
in a university server room. We use Python 3.8’s Multipro-
cessing library to manage concurrent processes, including
image capturing, edge processing, and cloud processing.
The Internlmage model serves as the cloud model, using
TensorRT 8.2.5.1. The deep learning-based segmentation
model and PPO agents are implemented using PyTorch

10

1.11 and Tensorforce 0.6.5, respectively. The optical flow
computing and image propagation are implemented using
OpenCV 4.5.0.

We use the testbed to collect a self-collected real-world
image dataset which comprises 12,036 road scene images
captured with a USB camera at 17 Hz. The deadline is set
to the image interval of 58.8 ms. During image capture,
the testbed is deployed on a car that travels across various
urban traffic conditions, including traffic jams, traffic lights,
smooth traffic, and pedestrian crossings. The images are
labeled with 19 classes. Moreover, we use the segmentation
results obtained by executing the Internlmage model as
pseudo labels for the collected image. In addition to the self-
collected dataset, we also use the Cityscapes dataset [30] to
evaluate our system.

We build a PPO-based DRL model with an input layer,
three hidden layers and an output layer. The three hidden
layers has 128, 64, and 32 ReLUs, respectively. The Adam
optimizer with a learning rate of 1072 is used for training.
The PPO agent is trained with a likelihood ratio clipping
set at 0.25 to balance stability during the learning process.
Moreover, the switching period 7 is set to 1 second. At the
beginning of every period, the DRL agent observes a system
state x including the image distance and cloud transmission
latency. Then, it selects an action a € {0,1} to choose the
edge or cloud processing options. We employ ESPNet as the
local model and InternImage as the cloud model. During the
offline training phase, we utilize a trace-driven approach to
accelerate the training process of the PPO agent. Specifically,
the PPO agent makes decisions based on segmented image
and latency traces. Subsequently, the edge and cloud model
results’ traces are utilized to compute intermediate reward
values.

7.1.2 Comparison baselines

To assess the efficacy of the proposed ECSeg system, we
compare our ECSeg with four baseline methods as follows:
(1) Edge: The vehicle always executes the ESPNet [5] model
to process all image frames without switching to the cloud
processing option. (2) KD: The vehicle always executes a
lightweight model with five convolutional layers, trained
using knowledge distillation with a soft-label-based loss
function, to process all image frames without switching to
the cloud processing option. (3) Offline: Largely resembling
of DeepDecision proposed in [17]. Switching between edge
and cloud processing options is based on thresholds for
observed latency and image distance. These thresholds are
determined using offline data traces [17]. (4) MPC: Largely
resembling of ACCUMO proposed in [18]. Switching be-
tween edge and cloud processing options is determined by a
model predictive control (MPC) method, similar to [18]. The
MPC uses autoregressive moving average (ARMA) models
to predict cloud transmission latencies and single-frame im-
age distances, which are then used to compute the average
image distance of received cloud results for the next switch-
ing period. An offline lookup table maps the average image
distance to the delay-mitigated mloU. To reduce computing
overhead, the horizon length of MPC is set to one. Based on
the image distance, an offline polynomial regression model
estimates the delay-mitigated mloU for the future period.
The action with the highest delay-mitigated mloU for the

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

T T T T

3
:) i El 0.65
5G module p_la}f:inz E 0.60
L 5
P g 0.55
A\ = 1 > latency
=0.50 1 : : 1
] atency, image distance
1 1 1 Il
0 100 200 300
Episode

Fig. 11: Setup installed un-
der a car’s front wind-
shield.

Fig. 12: Training results.

next switching period is selected. The original DeepDecision
and ACCUMO adopt an image-offloading strategy where
input images are sent to the cloud and the system waits
for the returned cloud results. However, cloud latency may
exceed the image processing deadline, leading to missed
deadlines. To avoid deadline misses in their methods, we
adopt our propagation approach to generate the segmenta-
tion output by propagating the last available result when the
cloud latency exceeds the image processing deadline, and
only use their decision-making mechanism for comparison.

7.1.3 Performance metrics

We adopt the following two metrics to evaluate our pro-
posed ECSeg and baseline approaches. (1) Segmentation per-
formance: The average delay-mitigated mloU is used as the
metric to assess the accuracy of the image segmentation.
(2) Boundary detection performance: The image segmentation
results can serve as input for higher-level applications,
such as boundary detection in AVs. Boundary detection can
help constrain AVs to avoid the collision, ensuring driving
safety [47]. In this paper, we use boundary detection as a
case study to investigate the performance of the ECSeg for
high-level applications. In this case study, we use the metric
of Hausdorff distance to measure the similarity between the
all moving object boundary of the ground truth and the
segmented results.

7.2 Evaluation of Accuracy-Priority ECSeg
7.2.1 Training results

The offline training is conducted for 300 episodes, each of
which includes 500 switching periods. In addition, we use
6,000 images from the Cityscapes dataset and 6,000 latency
samples measured in a moving vehicle over six hours to
train the PPO agent. Fig. 12 shows the PPO training traces
of the rewards with various state inputs, including the
latency and latency combined with image distance. Along
the training episodes, the reward trace increases and then
becomes flat under different inputs. The results show that
the PPO agent can converge after a certain number of train-
ing episodes, and the agent with the state input combining
latency and image distance achieves better convergence
performance compared with single latency input.

7.2.2 Execution results

Fig. 13(a) presents the delay-mitigated mloU for the
proposed accuracy-priority ECSeg and four baseline ap-
proaches over a half-hour using the Cityscapes and self-
collected datasets. The edge approach can achieve 0.505

11

=)

T T T T T 800 T T T T

% 224 Cityscapes ° 271 Cityscapes
g 0.8 = Real-world £ 600 =] Real-world
3 7

Q -

o | <

506 & 400 .
B =}

L4 Z 200

) = | A
a02f - { -

KD Edge Offline MPC_Ours KD Edge Offline MPC_Ours

(a) Segmentation performance. (b) Boundary performance.
Fig. 13: Results from the Cityscapes and real-world dataset
experiment.

delay-mitigated mloU across all periods. The performance
difference between the Cityscapes and real-world datasets
occurs because the real-world dataset uses pseudo labels
as ground truths for evaluation. These pseudo labels con-
tain errors or misclassifications, leading to lower evalua-
tion accuracy compared with using actual ground truths.
Compared with the four baseline methods, our approach
achieves the highest delay-mitigated mloU and outperforms
KD by over 48.8% in Cityscapes dataset. This is because
the PPO agent makes good decisions to utilize accurate
cloud results when the mobile network channel conditions
are good. Our approach requires only 10 ms per decision,
while the MPC method takes 400 ms, making it unsuitable
for timely decisions within the deadline. Additionally, in-
creasing the horizon length of the MPC leads to exponential
growth in compute time.

Fig. 13(b) presents the moving boundary detection ac-
curacy for the proposed accuracy-priority ECSeg and four
baseline approaches. The results show a similar trend to
the image segmentation performance, with our approach
achieving the lowest Hausdorff distance compared with
the other four approaches. This is because the larger seg-
mentation model deployed in the cloud provides accurate
segmented pixels for detecting small moving objects. More-
over, our approach achieves a Hausdorff distance that is
over 60.5% shorter than that of the edge approach. Fig. 15
presents the average delay-mitigated mloU results of Of-
fline, MPC, and our method on the Cityscapes dataset un-
der varying latency conditions. Overall, the delay-mitigated
mloU decreases as latency increases. The mloU of the Of-
fline method drops from 0.78 to 0.45, highlighting that it
does not effectively adapt to dynamic latency fluctuation
due to the lack of a good switching policy.

We also extend our experiments to a 30 FPS setting.
Specifically, we create a higher-frame-rate version of our
self-collected dataset by reducing the frame interval from
58.8 ms to 33.3 ms. Then, we conduction additional exper-
iments that use the resulting 30 FPS trace to retrain and
evaluate our proposed DRL-based switching approach. As
shown in Fig. 14, our method still provides accuracy gains,
which result in a higher mloU compared with the edge-only
method.

Fig. 16 presents the visualization cloud processing re-
sults under various latency settings. For each case, we show
the groundtruth, cloud results with 0 ms and 900 ms latency,
and edge results. When the cloud latency reaches 900 ms,
cloud results can still outperform edge results in relatively

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

0.6 b

0.4F .

mioU

0.2 b

0.0 Edge

Ours

Fig. 14: mloU performance of 30 FPS.

Offline

3 §§ ' MPC
€06 g§
N :
0 4 é&"f“ 6%!
:)\ O\)
QQ‘ '\"’ '\'b‘ &'\rro
S M

Latency (s)

Fig. 15: mIoU performance under cloud latency.

static environments, as seen in Case a and Case b, where
the scene remains mostly unchanged and the delayed cloud
output remains accurate. In contrast, Case c illustrates a
negative case for cloud processing, where the environment
changes rapidly and the outdated cloud result becomes less
accurate than the edge output. These observations indicate
that the effectiveness of cloud processing is closely tied to
the dynamics of the driving environment. In fast-changing
scenes, new objects may enter or existing objects may leave
the frame during the latency period, making the propagated
cloud results unreliable. This highlights the necessity of
dynamically switching between edge and cloud processing
to ensure accurate and timely segmentation.

Casea -“m
I ‘
il “'—f il - ‘ o | ﬁ
‘ I d |

Cloud Latency = Oms

Case b '

Case ¢

Ground truth

Cloud Latency = 900ms Edge

Fig. 16: Visualization of segmentation results. Segmentation
errors are highlighted within white boxes.

7.2.3 Performance of ECSeg under different cloud latency
conditions

We conduct experiments to investigate the performance
of ECSeg in different cities. We measure 20-minute cloud
latency for one cloud server in two cities: City 1, close to

0.5 T T 1.0 T T 0.8 T T
2 Cityscapes 2
0.4r 1 £ |E=3 Real-world El
204l 1 gost 1 Qo6 8
5 5 ESPNet [A . %%
202f 1 E. _|pbF g X
3 F o6 . 04 .
o1k] = . mEny] B ESPNet
a 1 1 5}
0.0 ' 0.4 S)
O CiyT cye2 4 City 1 City 50100 200 300
Latency (ms)
Fig. 17: Commu- Fig. 18: ECSeg Fig. 19: ECSeg per-
nication latency performance in formance vs. la-
in two city. two city. tency.

12

the server, and City 2, over 1000 km away. In addition to
the cloud geo-distance, the cities may have different mobile
network data transmission speeds, resulting in different
latency. Note that the evaluation in §7 is conducted in City 1.
Fig. 17 shows the box plots for the distributions of the data
transmission latency in the two cities. The average latency
in City 1 is about 110 ms, while in City 2 it is about 205 ms.

We evaluate ECSeg using these two latency traces on
the Cityscapes and real-world datasets. Fig. 18 shows the
average delay-mitigated mloU for the two datasets under
the two latency traces. Compared with City 1, the PPO
agent’s performance drops in City 2 for both datasets. For
the Cityscapes dataset, the PPO agent’s performance is only
0.517, close to the edge-based approach. This indicates that
the PPO agent selects the edge processing option most of
the time.

We further investigate ECSeg performance under dif-
ferent transmission latencies. Using the Cityscapes dataset
and 10-minute latency traces from City 1 with various arti-
ficial biases, we simulate different latency situations. Fig. 19
shows ECSeg’s mloU under different average latency traces.
The mloU drops with average latency. When the average
latency reaches 250 ms, ECSeg’s mloU is almost the same as
the edge processing option because the PPO agent always
selects the edge option over the cloud option. Therefore,
cities prefer to have cloud servers within the city to support
ECSeg.

7.2.4 Impact of motion blur on delay-mitigated mloU

We also evaluate the impact of motion blur on delay-
mitigated mloU, using 267 images and a fixed cloud la-
tency of 300 ms. To investigate the impact of different blur
strengths on delay-mitigated mloU, we generate artificial
motion blur on 267 clean images from the Cityscapes dataset
by convolving them with horizontal blur kernels. Specif-
ically, we simulate motion blur by convolving the image
with horizontal kernels of size 1, 21, 41, 61 and 81 pixels.
A larger kernel size corresponds to stronger motion blur,
as it averages pixel values over a wider horizontal span.
Fig. 20(a) presents the delay-mitigated mloU under varying
motion blur kernel sizes. The results show a consistent
decrease in mloU as blur severity increases. Specifically,
as the kernel size increases from 1 to 81, the mloU drops
from 0.639 to 0.584, indicating that stronger motion blur
degrades optical flow accuracy and leads to larger error in
the propagated segmentation results. This degradation oc-
curs because heavier blur makes it more difficult to estimate
the precise movement velocity of pixels to be propagated,
thereby reducing the accuracy of the propagated output.

To understand whether the blur strength settings in
Fig. 20(a) are realistic, we have conducted an additional
experiment. Specifically, we estimate the motion blur
strength of 10,000 real-world images using a Radon-based
method [48]. We apply the Radon transform to the log-
magnitude Fourier spectrum of each image to estimate its
blur angle and motion kernel size, with the estimated length
serving as a quantitative indicator of motion blur strength.
Fig. 20(b) presents the distribution of the estimated motion
blur kernel sizes, which are mostly concentrated in the range
of 0 to 80 pixels. Therefore, the motion kernel size settings

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

064_ T T T | T T T
2 1500 .
E >
= - -
£062 2 1000 .
) g
hs 53
E | i =1
$\0A60 =~ 500 4
5
j)
=]

0 % 30 7 05 50 0

Motion kernel size (pixels)

Motion kernel size (pixels)

(b) Motion blur distribution.

(a) Effect of motion kernel size
on delay-mitigated mloU.

Fig. 20: Motion blur impact on delay-mitigated mloU.

o 0.70FT T T q =300

o

2 Z

& =

B 0.601 892,001

g, 2

= o

= =

= S 1 ook

£.0.50 A=14 gELOO

5 2

8 — A=2 g
1 1 1 1 @] 0.00LL L
0 100 200 301 070 100 200 300

Episode Episode

(a) Delay-mitigated mloU. (b) Non-renewable energy us-

age.

Fig. 21: Training results with various A.

adopted in our experiments as presented in Fig. 20(a) are
realistic.

7.3 Evaluation of Low-Carbon ECSeg

In this section, we compare our proposed low-carbon ECSeg
with several baseline approaches using various performance
metrics.

7.3.1

We use the real-world data traces collected from our testbed
to train the PPO agent offline. Specifically, we use 5,000
images from the Cityscapes dataset, 5,000 latency samples
and corresponding energy consumption collected from a
moving vehicle over one hour. The energy harvesting data
is recorded over two hours from a moving vehicle with
a solar panel. The offline training is conducted for 300
episodes, each of which includes 3600 switching periods.
The efficiency of harvested energy is related to the size of the
solar panel. To demonstrate the effectiveness of low-carbon
ECSeg, we scale down the solar energy traces harvested
from a 100 W solar panel to simulate those of an 8W
solar panel, which corresponds to a panel size of 0.04 m>.
Figs. 21(a) and (b) illustrate the training trajectories of the
delay-mitigated mloU and the non-renewable energy usage
over 300 epochs. Along with the training epochs, the delay-
mitigated mlIoU consistently increases and then becomes flat
across different A settings. When A = 2, the non-renewable
energy usage can almost reach zero at the end of training
period. The results show that the PPO agent converges after
a certain number of training epochs (e.g., 250).

Training results

7.3.2 Execution results

We evaluate the DRL execution performance of the pro-
posed low-carbon ECSeg for an AV equipped with solar

13

1.00r— T T T T T T T T
E % EZZZ2 Non-renewable usage
-E 0.75F - D4r E—3 Remain solar 4
2 z
& P
= 0.50F 4 %
g q‘g ok 0.015 i
= s
=0.25F B X -
a 7 .

7 7
Eogesc%%'w\% Mo oarM g oot

0 T T
\S
0 Oy go\“‘0 o Mg a7y s

(a) Image segmentation accu-
racy.

(b) Non-renewable energy us-
age and harvested solar energy
remaining after one hour.

Fig. 22: The performance results of two baselines and three
variants of low-carbon ECSeg with the solar panels sized
from 0.03 m2, 0.04 m2, 0.05 2. For the reward function ry of
the low-carbon ECSeg, the weight A = 2.

panels of different sizes: 0.03 m?, 0.04 m?, and 0.05 m?.
We compare the low-carbon ECSeg with the following two
baselines: (1) ECSeg is the proposed DRL-based switching
approach (c.f. §6) for selecting the edge and cloud process-
ing options of the AV without the solar energy usage; (2)
ECSeg-solar is the low-carbon ECSeg which is equipped
with a solar panel sized 0.04 m? but does not consider the
energy usage for selecting the edge or cloud action, i.e., the
weight X of the reward function ry, is set to zero.

Fig. 22 presents the delay-mitigated mloU and energy
usages of the proposed low-carbon ECSeg with various
solar panel sizes and two baseline approaches over one hour
using the Cityscapes dataset. From Fig. 22(a), three vari-
ants of the low-carbon ECSeg and two baseline approaches
achieve the similar delay-mitigated mloU (i.e., image seg-
mentation accuracy) values. From Fig. 22(a), ECSeg uses the
highest amount of the non-renewable energy since the AV is
not equipped with the solar panel for harvesting the renew-
able energy. The low-carbon ECSeg uses the less amount
of the non-renewable energy with the larger solar panel.
This is because the amount of energy harvested by the solar
panel increases the panel size. For example, with the solar
panel size of 0.05 m~, the harvested solar energy is always
sufficient for executing the AV’s image segmentation tasks
without the usage of non-renewable energy. These results
imply that the low-carbon ECSeg can minimize the carbon
emission by minimizing the usage of non-renewable energy
while maintaining the similar segmentation accuracy, com-
pared with the two baseline approaches. Moreover, with the
same solar panel size of 0.04 m?, the ECSeg-solar and low-
carbon ECSeg use 1.32 Wh and 0.015 Wh from the non-
renewable energy sources, respectively, over the execution
period of one hour. It means that the low-carbon ECSeg can
reduce the non-renewable energy by 98.8%, compared with
the ECSeg-solar.

We also evaluate the total carbon emission reduction
that can be achieved by deploying the low-carbon ECSeg
system. We estimate the total daily carbon emission of the
cars worldwide as: Eigal = Nears X Fiaved X Haaily, Where
Eiotal Tepresents the total daily carbon emission reduction
(8COs-eq), Ncars is the number of cars worldwide, Eg,yeq is
the carbon emission reduction per hour of operation (gCO,-
eq/h), and Hg,jy is the number of operating hours per day.
According to [49], there are approximately Neas = 1.475

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

=

e
RRRR

[
T
1

40

X I ITTTD
SRR

2!

Latitude (°)
)
S
T
SRR
5] =
T T

95
Irradiation (kWh/m”2)

X

LB

A
5 gwogw%\co\‘@w" w‘\c\oé uroe®

H m

Smgw"gao%\“’\‘fowo \,0“60%6\“‘00‘%“

(a) Latitude in varies cities. (b) Solar irradiation in different

cities.

Fig. 23: Latitude factors on solar panel performance.

billion cars operating worldwide in 2024. From Fig. 22(b),
the low-carbon ECSeg with the solar panel sized 0.04 m? can
reduce an amount of non-renewable energy by 5.135 Wh per
hour of operation, compared with the ECSeg approach. It is
assumed that the production of 1 kWh non-renewable en-
ergy approximately 390 gCOz-eq [32]. Then, the low-carbon
ECSeg can reduce the carbon emission Eg,yeq =2 gCO2-eq/h,
compared with the ECSeg. We assume ideal conditions
with sunny weather and good sunlight availability, where
solar irradiation provides an average of Hgay = 4.5 peak
sun hours per day [50]. Thus, our proposed low-carbon
ECSeg approach can achieve the total daily carbon emission
reduction Ejua1 = 13,275 tons of CO,-eq per day.

7.3.3 Solar energy harvesting in various cities

The performance of solar panels may vary across cities at
different latitudes. Due to the Earth’s axial tilt, cities at lower
latitudes receive higher solar irradiance. For instance, cities
near the equator receive more consistent solar irradiation
compared with those located closer to the poles. We col-
lect the solar irradiation data in five cities with different
latitudes from a global solar energy platform, called Global
Solar Atlas [51]. Fig. 23 presents the latitudes of five cities
located at approximately sea level and their corresponding
average daily global horizontal irradiation over a 10-year
period. As latitude increases, solar irradiation decreases due
to reduced direct sunlight. For example, the solar irradiation
in Bangkok (latitude 13.45°) is 1.98x that of Edinburgh
(latitude 55.57°).

In this section, we conduct an analysis to determine the
minimum solar panel size required for our proposed low-
carbon ECSeg to achieve zero carbon emission in various
cities across different latitudes. The harvested energy is pro-
portional to solar irradiation levels. To simulate harvested
solar energy traces in different cities, we convert the real-
world harvested solar energy traces collected from a data
collection city to different target cities. Specifically, we apply
the uniform scaling method [52] to scale the energy traces
from the data collection city to match the solar energy char-
acteristics of the target city. For each value in the harvested
energy trace of the data collection city, we multiply it by the
ratio of the target city’s solar irradiation level to that of the
data collection city. This ratio ensures that the scaled energy
traces reflect the solar energy potential of the target city.
Additionally, to account for differences in solar panel size,
we further adjust the scaled energy traces by proportionally
scaling the values according to the relative size of the solar
panel.

14
0.12 T T T T =0.03 T T
0.0k R E L2272 Cityscapes
. k]
g k3 Eﬂ E==1 Real-world
S < K3 5 0.02f :
<] & 8"
5] K % b
N 14 % @
@ K S s
= 0.05 kY < g
Q 1] o 0.01F
£ I o 2
s] 0%)
< g Z
KA X g
%2 % o
0.00 Z 0.00

Ciy T City 2.

g\x\%w(%;“%\‘o\%w obo“d%\“““‘%“

Fig. 25: Low-carbon EC-
Seg performance under in
different cities latency.

Fig. 24: Minimum panel size
required to achieve zero car-
bon emissions in different
cities.

Fig. 24 illustrates the minimum solar panel size re-
quired to achieve zero non-renewable energy consumption.
Bangkok requires the smallest solar panel size to eliminate
non-renewable energy usage due to its high solar irradia-
tion. Even in Edinburgh, where solar irradiation is lower,
the required panel size remains within the typical 5 m? car
roof area [53], making it feasible for installation.

7.3.4 Performance of low-carbon ECSeg under different
cloud latency conditions

We further conduct experiments to evaluate the perfor-
mance of low-carbon ECSeg under different mobile network
latency conditions in different cities. Based on the latency
results of City 1 and City 2 mentioned in §7.2.3, we evaluate
the two latency traces using the Cityscapes dataset, self-
collected, and harvested solar energy datasets. We assume
that City 1 and City 2 have the same solar irradiation
condition. The size of solar panel is set as the 0.04 m?. To
simulate the energy traces corresponding to specific latency
ranges in City 2, we employ a Gaussian model to estimate
energy consumption across different latency intervals: [0,
0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1). These models
are constructed based on real-world latency and energy
traces collected from City 1.

Fig. 25 shows the non-renewable energy usage over 1-
hours for the two image datasets. Both energy consumption
values are very low (0.01 Wh), nearly zero, indicating that
the low-carbon ECSeg system can achieve low-carbon emis-
sions under different latency traces.

8 CONCLUSION

This paper presents ECSeg, an edge-cloud switched image
segmentation system for autonomous vehicle (AV) appli-
cations. We formulate a switching problem to maximize
the delay-mitigated mloU of image segmentation, account-
ing for dynamic variations in mobile network conditions
and image content changes. Additionally, we use a solar
panel to charge the car-borne battery, avoiding the use of
non-renewable energy for edge and cloud processing to
reduce carbon emissions. To achieve this, we apply deep
reinforcement learning to learn the optimal switching policy
for image segmentation processing and carbon emission re-
duction. Our results demonstrate that cloud computing can
enhance AV performance, and low-carbon ECSeg achieves
a high delay-mitigated mloU for image segmentation in
autonomous driving applications while maintaining low
carbon emissions compared with baseline approaches.

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

In future work, our edge-cloud switching framework
can also be extended to other perception tasks, such as
object detection and depth estimation. For object detection,
a high-accuracy model can be deployed on the cloud, while
the edge device propagates the detected bounding boxes
across frames to mitigate cloud latency. Similarly, for depth
estimation, the cloud can execute a high-accuracy model,
and the estimated depth maps can be propagated on the
edge for latency mitigation.

ACKNOWLEDGMENT

This research is supported by Singapore Ministry of Educa-
tion under its AcRF Tier-1 grants RT14/22 and RG88/22.

REFERENCES

[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848, 2017.

[2] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Towards end-to-end lane detection: an instance
segmentation approach,” in IEEE Intell. Veh. symposium, 2018.

[3] J.Xu, Y. Nie, P. Wang, and A. M. Lépez, “Training a binary weight
object detector by knowledge transfer for autonomous driving,”
in ICRA, 2019, pp. 2379-2384.

[4] “Apollo.” [Online]. Available: https:/ /www.apollo.auto

[5] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“Espnet: Efficient spatial pyramid of dilated convolutions for
semantic segmentation,” in ECCV, 2018.

[6] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE IoT J., vol. 8, no. 8, pp. 6469-6486, 2020.

[7]1 X. Zhang, S. Ji, H. Wang, and T. Wang, “Private, yet practical,
multiparty deep learning,” in ICDCS, 2017.

[8] H.Kiani Galoogahi, A. Fagg, C. Huang, D. Ramanan, and S. Lucey,
“Need for speed: A benchmark for higher frame rate object track-
ing,” in Proceedings of the IEEE international conference on computer
vision, 2017, pp. 1125-1134.

[9] Y. Cai, T. Luan, H. Gao, H. Wang, L. Chen, Y. Li, M. A. Sotelo,
and Z. Li, “Yolov4-5d: An effective and efficient object detector for
autonomous driving,” 1EEE Trans. Instrum. Meas., 2021.

[10] J. H. Gawron, G. A. Keoleian, R. D. De Kleine, T. J. Wallington, and
H. C. Kim, “Life cycle assessment of connected and automated
vehicles: sensing and computing subsystem and vehicle level
effects,” Environmental Sci. & Techno., vol. 52, no. 5, pp. 3249-3256,
2018.

[11] A. Hassan, A. Narayanan, A. Zhang, W. Ye, R. Zhu, S. Jin,]J. Car-
penter, Z. M. Mao, F. Qian, and Z.-L. Zhang, “Vivisecting mobility
management in 5g cellular networks,” in SIGCOMM, 2022.

[12] S. Liu, J. Du, K. Nan, Z. Zhou, H. Liu, Z. Wang, and Y. Lin,
“Adadeep: A usage-driven, automated deep model compression
framework for enabling ubiquitous intelligent mobiles,” IEEE
Trans. Mobile Comput., vol. 20, no. 12, pp. 3282-3297, 2021.

[13] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo ef al., “Segment
anything,” ICCV, 2023.

[14] Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong,
Q. Zhang, X. Zhu, L. Lu et al., “Internvl: Scaling up vision foun-
dation models and aligning for generic visual-linguistic tasks,” in
CVPR, 2024, pp. 24185-24198.

[15] X. Tian,]J. Gu, B. Li, Y. Liu, Y. Wang, Z. Zhao, K. Zhan,
P. Jia, X. Lang, and H. Zhao, “Drivevlm: The convergence of
autonomous driving and large vision-language models,” in 8th
Annual Conference on Robot Learning, 2024.

[16] Z.Cao, Y. Cheng, Z. Zhou, Y. Chen, Y. Hu, A. Lu, J. Liu, and Z. Li,
“Edge-cloud collaborated object detection via bandwidth adaptive
difficult-case discriminator,” IEEE Trans. Mobile Comput., vol. 24,
no. 2, pp. 1181-1196, 2024.

[17] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A
mobile deep learning framework for edge video analytics,” in
INFOCOM, 2018.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

(32]

[33]

(34]

(35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

15

Z.]. Kong, Q. Xu, J. Meng, and Y. C. Hu, “Accumo: Accuracy-
centric multitask offloading in edge-assisted mobile augmented
reality,” in MobiCom, 2023.

X. He, S. Wang, X. Wang, S. Xu, and J. Ren, “Age-based scheduling
for monitoring and control applications in mobile edge computing
systems,” in INFOCOM, 2022, pp. 1009-1018.

T. Ren, Z. Hu, H. He, J. Niu, and X. Liu, “Feat: Towards fast
environment-adaptive task offloading and power allocation in
mec,” in INFOCOM, 2023, pp. 1-10.

S. Zhou, D. Van Le, R. Tan, J. Q. Yang, and D. Ho, “Configuration-
adaptive wireless visual sensing system with deep reinforcement
learning,” Trans. Mobile Comput., 2022.

F. Fraternali, B. Balaji, Y. Agarwal, and R. K. Gupta, “Aces:
Automatic configuration of energy harvesting sensors with rein-
forcement learning,” ACM Trans. Sensor Netw., vol. 16, no. 4, pp.
1-31, 2020.

J. Ku, S.-M. Kim, and H.-D. Park, “Energy-saving path planning
navigation for solar-powered vehicles considering shadows,” Re-
newable Energy, vol. 236, p. 121424, 2024.

M. H. Mobarak, R. N. Kleiman, and]. Bauman, “Solar-charged
electric vehicles: A comprehensive analysis of grid, driver, and
environmental benefits,” IEEE Trans. Transport. Electrific., vol. 7,
no. 2, pp. 579-603, 2020.

M. Masoudi and C. Cavdar, “Device vs edge computing for mobile
services: Delay-aware decision making to minimize power con-
sumption,” IEEE Transactions on Mobile Computing, vol. 20, no. 12,
pp. 3324-3337, 2020.

D. Zhang, L. Tan, J. Ren, M. K. Awad, S. Zhang, Y. Zhang, and P.-J.
Wan, “Near-optimal and truthful online auction for computation
offloading in green edge-computing systems,” IEEE Transactions
on Mobile Computing, vol. 19, no. 4, pp. 880-893, 2019.

“Orin.” [Online]. Available: https://www.nvidia.com/en-
sg/autonomous-machines /embedded-systems/jetson-orin/

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017.

W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu,
L. Lu, H. Li et al., “Internimage: Exploring large-scale vision foun-
dation models with deformable convolutions,” in CVPR, 2023.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in CVPR, 2016.

J. G. G. Jonker, M. Junginger, and A. Faaij, “Carbon payback period
and carbon offset parity point of wood pellet production in the
south-eastern united states,” Gcb Bioenergy, vol. 6, no. 4, pp. 371-
389, 2014.

Y. Gan, A. Elgowainy, Z. Lu, J. C. Kelly, M. Wang, R. D. Boardman,
and J. Marcinkoski, “Greenhouse gas emissions embodied in the
us solar photovoltaic supply chain,” Environmental Research Lett.,
vol. 18, no. 10, p. 104012, 2023.

“Carbon of electric.” [Online]. Available:
https:/ /www.eia.gov/tools/faqs

J. Peng, L. Lu, and H. Yang, “Review on life cycle assessment of
energy payback and greenhouse gas emission of solar photovoltaic
systems,” Renewable Sustain. Energy Rev., vol. 19, pp. 255-274, 2013.
M. S. Chowdhury, K. S. Rahman, T. Chowdhury, N. Nuthamma-
chot, K. Techato, M. Akhtaruzzaman, S. K. Tiong, K. Sopian, and
N. Amin, “An overview of solar photovoltaic panels” end-of-life
material recycling,” Energy Strategy Rev., vol. 27, p. 100431, 2020.
S. El Himer, M. Ouaissa, and M. Ouaissa, “Systems for car-roof
application,” Artificial Intelligence of Things for Smart Green Energy
Management, vol. 446, p. 67, 2022.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637-646, 2016.

T. ANDREW S and W. DAVID], “Computer networks fifth edi-
tion,” 2011.

P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: A simple
yet strong baseline,” NIPS, vol. 35, pp. 6119-6132, 2022.

Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang et al., “Planning-oriented autonomous driving,”
in CVPR, 2023, pp. 17 853-17 862.

T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow
using dense inverse search,” in ECCV, 2016.

C. Shi, R. Wan, R. Song, W. Lu, and L. Leng, “Does the markov
decision process fit the data: Testing for the markov property in
sequential decision making,” in ICML, 2020.

TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX 2024

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv, 2017.

[44] “Tesla software updates,” 2025. [Online]. Available:
https:/ /www.tesla.com/en-sg/support/software-updates/

[45] “See3cam camera.” [Online]. Available: https://www.e-
consystems.com

[46] “5g module.” [Online]. Available: https:/ /www.waveshare.com

[47] Z.Xu, Y. Sun, and M. Liu, “Topo-boundary: A benchmark dataset
on topological road-boundary detection using aerial images for
autonomous driving,” IEEE Trans. Robot. Autom., vol. 6, no. 4, pp.
7248-7255, 2021.

[48] S.Tiwari, V. P. Shukla, A. Singh, and S. Biradar, “Review of motion
blur estimation techniques,” J. Image Graphics, vol. 1, no. 4, pp.
176-184, 2013.

[49] “world health organization.” [Online]. Avail-
able: https://www.whichcar.com.au/news/how-many-cars-are-
there-in-the-world

[50] P. Megantoro, M. A. Syahbani, I. H. Sukmawan, S. D. Perkasa, and
P. Vigneshwaran, “Effect of peak sun hour on energy productivity
of solar photovoltaic power system,” Bulletin Electr. Eng. Inform.,
vol. 11, no. 5, pp. 2442-2449, 2022.

[51] “atlas.” [Online]. Available: https:/ /globalsolaratlas.info/map

[52] “scaling.” [Online]. Available:
https:/ /en.wikipedia.org/wiki/scaling-geometry

[53] G. Minak, “Solar energy-powered boats: State of the art and
perspectives,” J. Marine Sci. Eng., vol. 11, no. 8, p. 1519, 2023.

Siyuan Zhou received his Ph.D. degree from
the College of Computing and Data Sci-
ence (CCDS), Nanyang Technological University
(NTU), Singapore. He received his B.Eng. de-
gree in communication engineering from Soo-
chow University, China, in 2018, and the M.S.
degree in electrical engineering from the Na-
tional University of Singapore in 2019. His re-
search interests include cyber-physical systems
(CPS), the Internet of Things (loT), and edge
artificial intelligence (Edge Al).

Duc Van Le (Senior Member, IEEE) received
the BEng (Distinction) degree in electronics and
telecommunications engineering from Le Quy
Don Technical University, Vietnam, in 2011, and
the PhD degree in computer engineering from
University of Ulsan, South Korea, in 2016. He
is currently a Postdoctoral Fellow with School
of Electrical Engineering and Telecommunica-
tions, University of New South Wales (UNSW),
Australia. From 2016 to 2024, he was a Senior
Research Fellow with Nanyang Technological
University (NTU), and a Research Fellow with National University of Sin-
gapore (NUS). His research interests include sensor networks, Internet
of Things, cyber-physical systems, and applied machine learning. He
was a recipient of the ACM/IEEE ICCPS’23 Best Paper Award.

16

Rui Tan is a Full Professor at College of Com-
puting and Data Science, Nanyang Technolog-
ical University, Singapore. Previously, he was
a Research Scientist (2012-2015) and a Se-
nior Research Scientist (2015) at Advanced
Digital Sciences Center of University of lllinois
at Urbana-Champaign, and a postdoctoral Re-
search Associate (2010-2012) at Michigan State
University. He received the Ph.D. (2010) degree
in computer science from City University of Hong
Kong, the B.S. (2004) and M.S. (2007) degrees
from Shanghai Jiao Tong University. His research interests include
cyber-physical systems and Internet of things. He is the recipient of
Best Demo Award from SenSys’24, Best Paper Awards from ICCPS’23
and IPSN’'17. He served as Associate Editor of IEEE Transactions on
Mobile Computing and ACM Transactions on Sensor Networks, TPC Co-
Chair of e-Energy’23, EWSN’'24, SenSys’'24, and General Co-Chair of e-
Energy’24 and RTCSA'25. He received the Distinguished TPC Member
recognition from SenSys in 2025 and from INFOCOM in 2017, 2020,
and 2022. He is a Senior Member of IEEE.

