
ECSeg: Edge-Cloud Switched Image Segmentation
for Autonomous Vehicles

Siyuan Zhou, Duc Van Le, Rui Tan
College of Computing and Data Science, Nanyang Technological University, Singapore

Abstract—Existing autonomous vehicles have not utilized the
cloud computing for execution of their deep learning-based
driving tasks due to the long vehicle-to-cloud communication
latency. Meanwhile, the vehicles are in general equipped with
the resource-constrained edge computing devices which may be
unable to execute the compute-intensive deep learning models
in real time. The increasing data transmission speed of the
commercial mobile networks sheds light upon the feasibility
of using the cloud computing for autonomous driving. Our
city-scale real-world measurements show that the vehicles can
partially use the cloud computing via the fifth generation (5G)
mobile network with the low data transmission latency. In this
paper, we present the design and implementation of ECSeg, an
edge-cloud switched image segmentation system that dynamically
switches between the edge and cloud for executing the deep
learning-based semantic segmentation models to understand the
vehicle’s visual scenes in real time. The switching decision-making
is challenging due to the intricate interdependencies among
various factors including the dynamic wireless channel condition,
vehicle’s movement and visual scene change. To this end, we
employ deep reinforcement learning to learn an optimal switching
policy. Extensive evaluation based on both real-world experiments
and trace-driven simulations demonstrates that ECSeg achieves
superior image segmentation accuracy for autonomous vehicles,
compared with four baseline approaches.

I. INTRODUCTION

Autonomous vehicles (AVs) have substantial potential to
mitigate traffic congestion, enhance road safety, and curtail
carbon emissions. Deep learning (DL) has been increasingly
employed for various driving tasks of the AVs. For example,
the DL models [1]–[3] can be used for the vehicles to
understand their visual driving scenes correctly, facilitating the
safe driving navigation and accurate collision avoidance. To
avoid the long latency and privacy issues of data transmission,
the commercial AV platforms (e.g., Apollo [4]) are often
equipped with the resource-limited edge computing devices
to directly execute the DL-based autonomous driving tasks on
the vehicles. Meanwhile, the execution of deep models often
requires high demand on computing resources. Thus, current
AV design strategies adopt customized lightweight, on-board
deep models [5] which can be executed by the edge devices in
real time to achieve autonomous driving. This design choice
compromises the accuracy of the deep models. A possible
approach to address this problem is to increase the computing
capabilities of the edge devices which allow implementation of
complex deep models with high accuracy. However, the pow-
erful computing devices are energy-intensive, which reduces

This research is supported by Singapore Ministry of Education under its
AcRF Tier-1 grant RT14/22.

the vehicle’s battery system lifetime. It is also challenging for
the vehicle’s heat dissipation system to handle the tremendous
amount of heat dissipated by the energy-intensive computing
devices [6].

In this paper, we investigate the feasibility of using the cloud
computing for executing the DL-based autonomous driving
tasks. In particular, the cloud servers can provide the AVs with
sufficient computing capabilities without power limitation and
heat dissipation issues. To address the privacy concerns, the
data encryption approaches [7] can be implemented to secure
the AV’s sensitive information before transmitting the data to
the cloud server. Meanwhile, the increasing data transmission
speed of the commercial mobile networks sheds light upon
the opportunity of significantly reducing the vehicle-to-cloud
communication latency. Our city-scale real-world measure-
ments show that the fifth generation (5G) mobile network
can provide an average round-trip time (RTT) latency of
100 ms for transmitting the 500-KB data packets from the
moving vehicles to the remote cloud servers. Moreover, the
total power usage of the vehicular 5G communication and
computing operations constitutes less than 1% of the vehicle’s
total mechanical energy usage. Thus, we conjecture that clouds
connected via a mobile network can bring benefits to the AVs.

To further demonstrate the benefits of the cloud computing
for AVs, in this paper, we present the design of an edge-cloud
switched image segmentation system, called ECSeg which
aims to provide pixel-level understanding of the vehicle’s
visual driving scenes in real time. Specifically, ECSeg switches
between different deep models to obtain the segmentation
result of each image frame captured by the AV’s camera before
a certain deadline (e.g., the time when the next image frame is
captured). To achieve the goal, ECSeg has the following two
processing options. First, edge processing option executes a
lightweight convolutional neural network (CNN) model locally
on the AV’s edge computing device to obtain the segmentation
results of the image frames. Second, cloud processing option
compresses the raw images and transmits them to a cloud
server via the mobile network. Then, the cloud server executes
an advanced CNN model to process the images and sends the
results back to the vehicle.

Among the above two processing options of ECSeg, the
edge processing option can always provide the segmentation
result of the captured image frame in real time, however it has
low segmentation accuracy due to the use of the lightweight
CNN model. With the execution of the advanced CNN model,
the cloud processing option can provide the segmentation



result with higher accuracy to the vehicle. However, due to the
cloud data transmission latency, the vehicle may not always
obtain the segmentation result of a transmitted image frame
before the image’s processing deadline. To mitigate the long
cloud latency issue, the cloud processing option allows the
vehicle to only spend a certain time period to wait for the cloud
result of the current image frame (i.e., current driving scene).
We define the latest frame among the previous frames whose
cloud segmentation results have already arrived at the vehicle
as the source frame. If the vehicle does not receive the cloud
result of the current frame after the waiting period, it will use
the segmentation result of the source frame to interpolate the
result of the current frame. Specifically, we develop an optical
flow-based approach [8] to propagate the segmentation result
of the source frame to the current frame. We also introduce
a new metric, called delay-mitigated mean intersection over
union (mIoU) to assess accuracy of the image segmentation
results obtained by our developed propagation approach.

The delay-mitigated mIoU may be affected by changes in
the visual content between the source and current frames.
As the vehicle moves, the condition of the mobile network
connection may vary due to base station switching and radio
signal blockage [9]. Poor mobile network connection can cause
long vehicle-to-cloud communication latency. As a result, the
source frame can be far away by multiple image intervals
from the current frame, leading to significant content changes
between these two frames. Such changes reduce the delay-
mitigated mIoU of the current frame. For example, when a
new object that does not appear in the source frame enters
the current frame, the propagation approach fails to obtain the
segmentation result of this new object. Thus, the segmentation
accuracy of the cloud processing option can be lower than
that of the edge processing option. Therefore, ECSeg needs
to dynamically switch between edge and cloud processing
options such that the images can be processed within the
deadlines while maximizing the image segmentation accuracy.

The switching decision-making is challenging due to the
intricate interdependencies among various factors including
the dynamic mobile network channel condition, vehicle’s
movement and visual driving scene change. To this end,
we employ deep reinforcement learning (DRL) to learn a
good long-term switching policy. However, the typical online
training of the DRL requires excessive time to converge,
which may raise safety concerns for autonomous driving.
Moreover, there is a lack of image ground truth for determining
the immediate rewards during the online training phase. To
address these challenges, we adopt an offline training approach
which utilizes real-world data traces to train the DRL agent.
Finally, the trained agent is deployed for making the edge-
cloud switching decisions at runtime.

We extensively evaluate the performance of ECSeg in both
real-world experiments and trace-driven simulations. We also
compare our proposed DRL-based switching approach with
four baselines that incorporate efficient DL and knowledge
distillation approaches from existing research. The evaluation
results show that ECSeg can outperform the baselines with up

to 48.8% in terms of mIoU (i.e., segmentation accuracy). Our
main contributions can be summarized as follows:
● We design and implement an edge-cloud switched im-

age segmentation pipeline and conduct large-scale mea-
surements to evaluate the benefits of using the cloud
computing for AVs. Our design and experimental results
may be useful for the development of other edge-cloud
collaboration pipelines for AVs.

● We propose a new metric called delay-mitigated mIoU
for the cloud-based image segmentation in AVs. We
formulate the edge-cloud switching problem and adopt
a DRL-based approach to build the decision policy.

● We conduct extensive evaluations on real-world testbeds
to assess the effectiveness of our proposed approach.
Our results indicate that our approach outperforms the
baseline methods.

The remainder of this paper is organized as follows. §II
reviews related work. §III presents the measurement study. §IV
overviews ECSeg’s design. §V describes the cloud processing
option. §VI presents the DRL-based switching approach. §VII
presents the evaluation results. §VIII concludes this paper.

II. RELATED WORK

In this section, we review the existing studies on the
edge-based AVs, cloud-enabled sensing system, and RL-based
control policy.
∎ Edge-based AVs: Edge platforms have been adopted to

execute the DL-based driving tasks in the AVs [2], [3], [10].
For instance, the study in [2] employs a CNN model with early
downsampling and smaller convolutional filters to identify
road lanes in real time on a vehicle platform. The authors
in [10] adopt a sparse scaling factor algorithm to identify and
prune less important channels and weights of CNN models for
detecting vehicles and traffic signs, tailored for deployment
on vehicle-mounted computing platforms. Additionally, the
study in [3] proposes a knowledge transfer method to train
binary weight neural networks using a full-precision model
for object detection in autonomous driving. These customized
CNN models for resource-limited devices often compromise
accuracy, while we use high-accuracy advanced CNN models
supported by a cloud server.
∎ Cloud-enabled sensing system: Several existing cloud-

enabled systems [11]–[13] have been employed to enhance the
task performance on resource-limited devices. For example,
the study in [11] offloads tasks to the cloud server based on
the task buffer queuing state, transmission state, and local
processing state to minimize task latency and reduce power
consumption in mobile devices. ACCUMO [13] uses a large
CNN model on the cloud server and a lightweight local tracker
to adjust cloud results for a real-time augmented reality task.
Based on this, it employs model predictive control, using
predicted accuracy, to determine which tasks to offload to
the cloud for multiple tasks, optimizing overall accuracy. The
above approaches always offload tasks to cloud servers, which
can result in long latency when the wireless condition is poor.



In this paper, we develop an edge-cloud switched method that
shifts to edge processing when wireless condition is poor.

Similar to our work, DeepDecision [12] determines whether
to process images on the cloud using a large object detection
model or locally at the edge, based on network conditions and
hardware limitations, with the main objective of maximizing
the accuracy and frame rate. However, DeepDecision cannot
be directly applied to our AV scenario because it does not
consider the processing deadline for each frame. Additionally,
it does not account for how changes in the driving scene
affect the accuracy of cloud model. Our work aims to adopt
ECSeg, an edge-cloud switched method to maximize the
mIoU of image segmentation for AVs meeting the frame
processing deadline. We compare ECSeg with ACCUMO and
DeepDecision in §VII.
∎ RL-based control policy: Reinforcement learning (RL)

has been applied to decide the task offloading in the edge/cloud
computing systems [14]–[16]. The study [14] uses an online
DRL agent to decide whether to offload tasks to the cloud
server from multiple users, based on the users’ queue and
channel states, to optimize the age of information of the task.
FEAT [15] uses DRL to decide task offloading to edge servers,
based on task size, bandwidth, and hardware observations,
reducing latency and mobile device energy consumption, while
employing a steerer neural network to switch the DRL agent
based on changes in observation distribution. EFCam [16]
adopts the RL agent to adapt the wireless camera configuration
to maintain the high performance of visual sensing. Our
work shares a similar DRL-based control approach for a
switching strategy to improve segmentation accuracy in AVs
while considering the impacts of dynamic cloud latency and
driving scene changes.

III. MEASUREMENT STUDY

In this section, we conduct a set of city-scale measurement
experiments to study the vehicle-to-cloud communication la-
tency in various urban areas. Then, we investigate the execu-
tion accuracy and latency of the state-of-the-art deep image
segmentation models on the edge and cloud platforms. The
results provide insights to guide the design of our edge-cloud
switched segmentation approach.

A. Vehicle-to-Cloud Communication Latency

We conduct a set of real-world experiments to measure
the vehicle-to-cloud communication latency in various city ar-
eas. Specifically, we build a vehicular communication testbed
which consists of a smartphone with a 5G communication
service mounted on a vehicle. We use the Python socket
library to implement a client-server application that allows
a smartphone to transmit the data to a remote cloud server
using the TCP/IP protocol via the 5G mobile network. In
each experiment, the smartphone continuously transmits 500-
KB application data packets to a Google’s cloud server while
traveling on a vehicle with the movement speed up to 50 km/h.
Upon receiving each data packet, the cloud server sends a
1-byte acknowledgment packet back to the smartphone. We

Industrial
Residential

Campus
Downtown0.0

0.2

0.4

0.6

La
te

nc
y 

(s
)

Fig. 1. Vehicle-to-cloud latency.

0 2000 4000
Index

0

1

2

3

La
te

nc
y 

(s
)

Fig. 2. Campus latency trace.

measure the round-trip time (RTT) of all transmitted data
packets. The RTT of a data packet is defined as the time
that it takes to receive the acknowledgment packet after the
smartphone transmits the data packet.

Fig. 1 shows box plots for the distributions of the RTTs of
the data packets that are transmitted from the smartphone to
the cloud server over a duration of 1.5 hours in four typical city
areas: university campus, residential, downtown, and industrial
areas. From Fig. 1, all four areas have an average RTT within
a few hundred milliseconds with fluctuations. The downtown
area has the shortest average RTT of about 112 ms, while the
industrial area has the longest average of about 182 ms with
significant fluctuations. The reason is the downtown area has a
high density of 5G base stations, which reduces the data travel
time between the smartphone and base station. In contrast, the
industrial area may have fewer base stations. Fig. 2 presents
the RTT trace of the data packets in the university campus area.
As the vehicle moves, the RTT fluctuates and reaches up to
two seconds. This communication latency variability may be
due to the switching of 5G base stations and signal blockage
caused by buildings or other vehicles.

B. Image Segmentation Latency and Accuracy

We conduct profiling experiments to investigate the exe-
cution accuracy and latency of various deep learning-based
image segmentation models on both the edge and cloud plat-
forms. Specifically, we use an NVIDIA Jetson Orin [17] unit
with a 32-GB DRAM as the AV’s edge computing platform.
A workstation equipped with an RTX 8000 GPU serves as the
cloud platform. We implement eight image segmentation mod-
els with different sizes, including three lightweight models:
ESPNet [5], Fast-SCNN [18], and DeepLabv3+ [19], as well
as five large models: PSPNet-ResNet50 [20], Mask2Former-
swin-s [21], Mask2Former-swin-b [21], InternImage-XL [22].
and InternImage-H [22]. We use the images sized 2048 ×
1024×3 pixels from the Cityscapes dataset [23] to evaluate the
segmentation accuracy and latency of the implemented models.

Table I presents the number of parameters, memory size,
mIoU (i.e., accuracy) and latency of the segmentation models
executed on the edge and cloud platforms. The cloud latency is
the end-to-end latency for image data transmission and model
execution. We use the average RTT in the university campus
area (c.f. §III-A) as the transmission latency of each image.
The mIoU and latency numbers are the average values of the
models over 1,000 testing images. From Table I, the image
segmentation accuracy and latency in general increase with the



Tab. I
MODEL EXECUTION LATENCY.

Model Params (M) Size (MB) mIoU Latency (ms)

Edge Cloud

ESPNet 0.36 1.37 0.505 30 139
Fast-SCNN 1.45 5.53 0.682 65 136

DeepLabv3+-ResNet18 12 47.45 0.743 170 190
PSPNet-ResNet50 49 186.81 0.785 720 360

Mask2Former-swin-s 69 262.15 0.803 890 430
Mask2Former-swin-b 107 407.71 0.824 940 530

InternImage-XL 368 1402.78 0.836 1050 660
InternImage-H 1080 4119.87 0.841 N.A1 5270

1 The edge platform runs out of memory during inference.

model complexity and size. Without the need of transmitting
the images to the cloud, the edge platform can execute the
lightweight models and provide the segmentation results with
shorter latencies, compared with the cloud platform. On the
other hand, the cloud platform can provide the segmentation
results of large models with shorter end-to-end latency, even
when including the cloud communication latency.

C. Key Findings

From the above measurements, we can see that the cloud
server can execute the large models to provide higher mIoU
and shorter latency, compared with the edge platform. How-
ever, cloud transmission latency fluctuates with vehicle move-
ment, and the long transmission delays result in the long end-
to-end cloud latency. To prevent low mIoU caused by cloud
latency, we propose a strategy of switching between edge and
cloud processing options based on factors discussed in §V that
impact the cloud results’ mIoU.

IV. DESIGN OF ECSEG

We consider an AV that uses a camera system to periodically
capture its driving scene at every sampling interval, denoted by
T . ECSeg is designed to execute deep learning-based semantic
segmentation models to obtain the segmentation result of
each image frame before the time when the next frame is
captured. The image segmentation results provide pixel-level
understanding of the AV’s driving scenes which can be used
as inputs for the autonomous driving pipelines [24], [25]
to achieve accurate trajectory planning and safe navigation.
Fig. 3 overviews the design of ECSeg which has two options:
edge and cloud processing options for image segmentation as
follows.
∎ Edge processing option: This option executes a seg-

mentation model locally to obtain the segmentation results of
the captured image frames on the AV’s edge platform. Given
the limited computing resources of the edge platform, ECSeg
employs a lightweight CNN-based image segmentation model
as the local model such that the image segmentation result of
each image can be always obtained before its deadline.
∎ Cloud processing option: This option follows a stream-

ing mode to continuously transmit the image frames from the
vehicle to the cloud server via a mobile network. To reduce the
communication overheads, we implement a JPEG approach to
compress each image before transmitting it to the cloud server.

Fig. 3. Design overview of ECSeg.

Upon receiving the image data, the cloud server employs a
JPEG decompressor to reconstruct the original image. Then,
the cloud server executes the cloud model to process the
reconstructed image. To achieve high image segmentation
accuracy, an advanced CNN-based model with large size is
implemented as the cloud model in the cloud server. Finally,
the cloud image segmentation result is sent back to the vehicle.

Due to the long vehicle-to-cloud communication latency, the
cloud segmentation result of an image frame may not arrive
at the vehicle before the deadline. Thus, we also develop a
propagation approach which uses the received cloud result of
a previous frame as input to obtain the segmentation result for
the current frame. The detailed design of our segmentation
result propagation approach will be presented in §V.
∎ Switching: The edge processing option can always

provide the image segmentation result within the deadline.
However, it suffers from low segmentation accuracy due to
the use of the lightweight model. In contrast, the cloud
processing option can execute an advanced model to achieve
high accuracy, but has high latency uncertainty due to the
dynamic vehicle-to-cloud communication latency. Due to the
vehicle movement and poor wireless channel condition, the
communication latency can be long, which causes the cloud
segmentation results to become stale, decreasing the segmen-
tation accuracy. To maximize the segmentation accuracy, at the
edge platform, we implement a DRL-based controller which
aims to dynamically switch between the edge and cloud pro-
cessing options in response to changes of the communication
latency and driving scene. In §VI, we formally formulate the
switching problem and present our DRL-based solution.

V. CLOUD PROCESSING OPTION

A. Segmentation Result Propagation

Let x1, x2, x3, . . . denote a sequence of images captured by
the vehicle’s camera system at every fixed interval of T . We
also denote ti as the time when the image xi is captured and
then transmitted to the cloud server. The processing deadline
of xi is ti + T (i.e., the arrival time of the next image xi+1).
Due to the dynamic vehicle-to-cloud communication latency,
the vehicle may not receive the cloud segmentation result of
xi before the deadline ti+T . To address this deadline missing
issue, the vehicle only waits for the cloud result of xi for a
certain period, denoted by Tw, after ti. If the vehicle does not
receive the cloud result of xi within the waiting period Tw,



Fig. 4. Delay-mitigated mIoU.

we employ a propagation approach to obtain the segmentation
result of xi based on the cloud segmentation result of the latest
frame, denoted by xk, among the previous frames of xj (j < i)
whose cloud result has already arrived at the vehicle. Let Tp
denote the fixed execution latency of the propagation. Then,
the waiting period is calculated as Tw = T − Tp.

Now, we describe our approach to propagate the cloud
segmentation result of xk to the current frame xi where k < i.
The images xk and xi have the same size in terms of the
number of pixels, denoted by M . Let Pk = {Pk,1, . . . , Pk,M}
and Pi = {Pi,1, . . . , Pi,M} denote the sets of pixels of xk and
xi, respectively. We adopt a computer vision technique, called
optical flow which aims to determine the movement velocity of
the pixels from xk to xi. Specifically, it derives the movement
vectors, denoted by Fk→i = {F1, . . . , FM} which are used to
locate the pixels Pk of xk within xi. In this work, we adopt
the dense inverse search-based approach proposed in [8] to
derive Fk→i efficiently. Two pixels Pk,l ∈ Pk and Pi,h ∈ Pi
share the same segmentation class label if Pi,h = Pk,l + Fh.
Following this mapping method, the cloud segmentation class
labels of M pixels in the previous image xk are propagated to
M pixels of the current image xi. As a result, we can obtain
the cloud segmentation result of xi before its deadline.

B. Delay-mitigated mIoU

1) Definition: To assess the accuracy of the cloud seg-
mentation results obtained via propagation, we introduce a
segmentation accuracy metric, called delay-mitigated mean
intersection over union (mIoU). Fig. 4 shows an example of
delay-mitigated mIoU, where the ith image is transmitted to
the cloud and its cloud result arrives at the vehicle within the
interval between the jth and (j + 1)th images. Due to the
vehicle’s movement, the scene captured in the jth image may
shift from the ith image, causing the received cloud result
to mismatch with the jth image’s ground truth. We adopt
the propagation method, discussed in §V-A, to mitigate the
mismatch. As a result, the delay-mitigated mIoU for the jth

image is the mIoU between the propagated ith cloud result and
the ground truth of the jth image. When the pixel content of
the ith image differs significantly from that of the jth image,
the delay-mitigated mIoU may decrease.

2) Impact of image content changes: We conduct experi-
ments to investigate the impact of content changes between the
ith and jth images, referred to as image distance, on delay-
mitigated mIoU. Specifically, we use the average Euclidean

[0.0, 0.5)
[0.5, 1.0)

[1.0, 1.5)
[1.5, 2.0)

[2.0, 2.5)

Distance (102 pixels)

0.0
0.2
0.4
0.6
0.8
1.0

D
el

ay
-m

iti
ga

te
d 

m
Io

U

Fig. 5. Accuracy vs. image distance. Fig. 6. Accuracy vs. Latency.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Latency L (frames)

0

50

100

150

200

D
ist

an
ce

 (p
ix

el
s)

Fig. 7. Latency vs. image distance.

distance of each pixel in the movement vectors between two
segmented images by InternImage [22] to indicate the image
distance. The large image distance indicates fast-changing
scenes between two images, such as more objects entering
and exiting the scene, as well as rapid changes within the
scene itself. We divide image distances into five ranges:
[0,50), [50,100), [100,150), [150,200), and [200,250). We
select 267 images from the Cityscapes dataset [23], which
provides 2048×1024×3 resolution images with segmentation
ground truth, to compute the delay-mitigated mIoU within
these ranges. Fig. 5 shows the distribution of delay-mitigated
mIoU with different image distances. The mIoU values range
from 0.2 to 0.95. With the image distance increasing, the
mIoU decreases. This decline is due to larger distances, where
captured scene changes may include objects entering and
exiting. Thus, the propagation cannot mitigate the mismatch.

3) Impact of latency: We further conduct experiments to
investigate the impact of end-to-end cloud latency on the
delay-mitigated mIoU of received cloud results. Specifically,
we select 267 images to transmit to the cloud server, where
the InternImage serves as the cloud model to process these
images. We denote end-to-end cloud latency as L, measured
in the number of image intervals T , where 0 ≤ L ≤ 19.
L = 0 means that the cloud results can be received within the
interval of the transmitted image. For each transmitted image,
we compute the delay-mitigated mIoU after propagation for
L values ranging from 0 to 19, resulting in 5,340 values. The
delay-mitigated mIoU reflects the effectiveness of mismatch
mitigation through propagation. Additionally, we also compute
the mIoU between cloud results without propagation and the
ground truth over the same L range (0 to 19), referred to
as delay-affected mIoU. Fig. 6 shows the average delay-
affected and delay-mitigated mIoU across different L values.
The delay-mitigated mIoU is always higher than the delay-



affected mIoU, ranging from 0.4 to 0.82. The results show that
the propagation can mitigate the impacts of cloud latency. Both
mIoU values decrease with L. Fig. 7 shows the distribution
of image distance for various L values. Larger L values
correspond to a larger average image distance and a wider
range of image distances. This is attributed to the increased
likelihood of objects entering and exiting the scene between
frames as latency increases. The results show that longer cloud
latency may result in a lower delay-mitigated mIoU.

VI. DRL-BASED SWITCHING

A. Problem Statement

1) Optimization formulation: Time is divided into intervals
with identical duration of τ ≥ T seconds, which is referred to
as switching period. At the beginning of switching period,
called time step, the ECSeg selects the edge or cloud pro-
cessing options for image segmentation in response to the
changes of two exogenous stochastic factors, including the
time-varying cloud transmission latency, denoted by η(t), and
the vehicle’s driving scene variation, denoted by ξ(t). Denote
ηk = η(kτ) and ξk = ξ(kτ), where k ∈ Z≥0. Denote by η(k+1)τ

t=kτ
and ξ(k+1)τ

t=kτ the trace of η(t) and ξ(t) when t ∈ [kτ, (k+1)τ].
At the kth time step, we let π(ξk, ηk, . . . , ξ0, η0) denote the
policy that determines a switching decision, denoted by ωk,
based on the historical measurements of (ξk, ηk, . . . , ξ0, η0).
The ωk represents the decisions, including the edge and cloud
processing options, which jointly affect the delay-mitigated
accuracy during the switching period. For a time horizon of
K switching periods, the switching aims to solve the policy
optimization problem:

π∗ = argmax
π∈Π

Eξ,η [
1

K

K−1

∑
k=0

Ak (ωk, ξ(k+1)τ
t=kτ , η

(k+1)τ
t=kτ )] , (1)

where Π represents the policy space; ωk =
π(ξk, ηk, . . . , ξ0, η0); Eξ,η denotes the expectation over
the two stochastic processes of η(t) and ξ(t); the Ak(⋅)
denotes the delay-mitigated mIoU in the kth switching
period. Note that the switching period may have multiple
images, depending on the setting of the image frame rate.
The objective is to find the optimal policy π∗ that maximizes
the average delay-mitigated mIoU per switching period.

Solving the policy optimization problem in Eq. (1) faces
a basic challenge that the Ak(⋅) cannot be measured during
ECSeg’s online operations due to the unavailability of the
image segmentation ground truths. Thus, in this study, we
develop a learning-based controller to find the near-optimal
solution. Specifically, during the offline training phase, the
controller learns the optimal switching policy based on the
real data traces including the image frames labeled with
ground truths and cloud processing latencies collected from
the ECSeg. Then, the learned policy is applied to determine
the processing options during the online inference phase.

2) Markov property: When applied to image segmen-
tation in AVs, ECSeg aims to switch between edge and
cloud processing options based on image distance values

1.0 0.5 0.0 0.5 1.0
Probability Difference

0.00

0.05

0.10

0.15

0.20

D
ist

rib
ut

io
n

(a) Image distance.

1.0 0.5 0.0 0.5 1.0
Probability Difference

0.00

0.05

0.10

0.15

0.20

D
ist

rib
ut

io
n

(b) Cloud latency.

Fig. 8. Compliance of state transition with the Markov assumption.

and cloud transmission latencies. We conduct experiments
to assess whether the above two stochastic processes sat-
isfy the Markov assumption (MA), i.e., P [yk+1 ∣ yk] =
P [yk+1 ∣ yk, yk−1 . . . y0] , where yk represents the measure-
ment state at the kth time step. The MA suggests that the
probability distribution of the state transition from yk to
yk+1 is independent of the past states yk−1, . . . , y0. The MA
is a basic property of the systems where RL is applica-
ble [26]. When we assess the MA for the image segmentation
applications, we use the probability difference, denoted by
∆P = P [yk+1 ∣ yk] − P [yk+1 ∣ yk, . . . , yk−N ], where N ≥ 0,
as a MA compliance metric. A lower absolute value of ∆P
indicates better compliance. Fig. 8 shows the distributions of
∆P with N = 1 for the transitions of the image distance values
and the end-to-end cloud latencies in over 800 switching
periods, where each switching period τ is one second. From
Fig. 8, we can see that these two stochastic processes have
good compliance with the MA because their values of ∆P
concentrate at zero.

B. MDP Formulation

System state: The system state, denoted by x, is a vector
x = [l, u], where l represents the average mobile network
transmission latency in the last periods and the variable u
represents image distance in the last period. The u is computed
via the average pixel Euclidean distance of dense optical flow
between the palette-based segmented results of the first frame
and the last frame of the previous period. Computing u via
the segmented results can avoid environmental impacts such
as lighting, low texture, and contrast of adopting the dense
optical flow methods on the raw image. A large value of l
can decrease the delay-mitigated mIoU of the received cloud
results. The u indicates the image distance. A larger image
distance can result in a decrease in the delay-mitigated mIoU
of the received cloud results.

Moreover, vehicle parameters, such as the ego vehicle’s
speed, may affect the delay-mitigated mIoU of the received
cloud results. Intuitively, image distance between consecutive
frames may increase with the ego vehicle’s speed, leading to
a larger mismatch between the received cloud results and the
latest frame’s ground truth. However, a small τ value, such as
one second, can be set to monitor short-term image distances.
In this case, the short-term historical image distance already
incorporates the ego vehicle’s speed. The ego vehicle’s speed
is redundant information and may introduce noise, misleading
the switching controller.



Fig. 9. Workflow of DRL-based switching.

Switching action: The switching action, denoted by a ∈
{0,1}, represents the choice between cloud and edge process-
ing options to be executed in the current period.

Reward function: When an action a is performed at the
current time step and the system state is x, let Aτ(x, a) denote
the average delay-mitigated mIoU for image segmentation.
Aτ(x, a) varies in response to changes a and x.

C. DRL Training

We adopt the learning framework of a DRL algorithm,
called the proximal policy optimization (PPO) [27] to learn the
optimal switching policy. PPO directly learns from a stochastic
distribution, leading to more effective exploration, and adopts
a clipping mechanism to improve efficiency compared with
Deep Q-Network and Trust Region Policy Optimization. Un-
der the typical setting, a PPO agent learns the optimal policy
during the online interactions with the controlled system.
However, for the formulated switching problem, the online
DRL scheme faces the following two challenges. First, PPO
agent trials may result in poor segmentation accuracy, poten-
tially leading to safety concerns. Second, during the online
learning phase, the mIoU cannot be measured during online
learning due to the lack of ground-truth labels. To address
these challenges, we adopt an offline training approach as
illustrated in Fig. 9, which consists of three steps. First, we
collect the real data traces from the deployment environment.
Second, we use the real data traces collected in the first step
to drive the offline training of the PPO agent. Third, the well-
trained PPO agent is deployed to make decisions for switching.

VII. EVALUATION

This section introduces the system settings and execution
performance of ECSeg.

A. System Implementation and Experiment Settings

We conduct a series of experiments to investigate the per-
formance of ECSeg in a real-world testbed. Fig. 10 illustrates
the system setup. For image sensing, we use a See3Cam USB
camera [28] with a 13-megapixel CMOS sensor, capturing
images at 2048 × 1024 resolution at 17 Hz. We utilize a
laptop equipped with an NVIDIA GeForce RTX 3080 Ti
GPU as the edge platform mounted in the vehicle. For mobile
network connectivity on the laptop, we utilize the SIM8202G
module [29], which is a USB3.1 5G dongle equipped with

four antennas and the Qualcomm Snapdragon X55 RF-modem.
The cloud server is prototyped using a tower server with an
RTX 8000 GPU and an Intel Xeon Gold 6246 CPU located
in a university server room. We use Python 3.8’s Multi-
processing library to manage concurrent processes, including
image capturing, edge processing, and cloud processing. The
InternImage model serves as the cloud model, using TensorRT
8.2.5.1. The deep learning-based segmentation model and PPO
agents are implemented using PyTorch 1.11 and Tensorforce
0.6.5, respectively. The optical flow computing and image
propagation are implemented using OpenCV 4.5.0.

We use the testbed to collect a self-collected real-world
image dataset which comprises 12,036 road scene images
captured with a USB camera at 17 Hz. The deadline is set
to the image interval of 58.8 ms. During image capture, the
testbed is deployed on a car that travels across various urban
traffic conditions, including traffic jams, traffic lights, smooth
traffic, and pedestrian crossings. The images are labeled with
19 classes. Moreover, we use the segmentation results obtained
by executing the InternImage model as pseudo labels for the
collected image. In addition to the self-collected dataset, we
also use the Cityscapes dataset to evaluate our system.

We build a PPO-based DRL model with an input layer, three
hidden layers and an output layer. The three hidden layers has
128, 64, and 32 ReLUs, respectively. The Adam optimizer
with a learning rate of 10−3 is used for training. The PPO
agent is trained with a likelihood ratio clipping set at 0.25
to balance stability during the learning process. Moreover,
the switching period τ is set to 1 second. At the beginning
of every period, the DRL agent observes a system state x
including the image distance and cloud transmission latency.
Then, it selects an action a ∈ {0,1} to choose the edge or
cloud processing options. We employ ESPNet as the local
model and InternImage as the cloud model. During the offline
training phase, we utilize a trace-driven approach to accelerate
the training process of the PPO agent. Specifically, the PPO
agent makes decisions based on segmented image and latency
traces. Subsequently, the edge and cloud model results’ traces
are utilized to compute intermediate reward values.

The offline training is conducted for 300 episodes, each
of which includes 500 switching periods. In addition, we use
6,000 images from the Cityscapes dataset and 6,000 latency
samples measured in a moving vehicle over six hours to train
the PPO agent. Fig. 11 shows the PPO training traces of the
rewards with various state inputs, including the latency and
latency combined with image distance. Along the training
episodes, the reward trace increases and then becomes flat
under different inputs. The results show that the PPO agent
can converge after a certain number of training episodes, and
the agent with the state input combining latency and image
distance achieves better convergence performance compared
with single latency input.

B. Implementation Baselines

To assess the efficacy of the proposed ECSeg system, we
compare our ECSeg with four baseline methods as follows:



Fig. 10. Setup installed under a
car’s front windshield.

Fig. 11. Training results.

Edge: The vehicle always executes the ESPNet [5] model to
process all image frames without switching to the cloud pro-
cessing option. KD: The vehicle always executes a lightweight
model with five convolutional layers, trained using knowledge
distillation with a soft-label-based loss function, to process
all image frames without switching to the cloud processing
option. Offline: Switching between edge and cloud processing
options is based on thresholds for observed latency and image
distance. These thresholds are determined using offline data
traces [12]. MPC: Switching between edge and cloud pro-
cessing options is determined by a model predictive control
(MPC) method, similar to [13]. The MPC uses autoregressive
moving average (ARMA) models to predict cloud transmission
latencies and single-frame image distances, which are then
used to compute the average image distance of received cloud
results for the next switching period. An offline lookup table
maps the average image distance to the delay-mitigated mIoU.
To reduce computing overhead, the horizon length of MPC is
set to one. Based on the image distance, an offline polynomial
regression model estimates the delay-mitigated mIoU for the
future period. The action with the highest delay-mitigated
mIoU for the next switching period is selected.

C. Implementation Metrics

We adopt the following two metrics to evaluate our proposed
ECSeg and baseline approaches. Segmentation performance:
The average delay-mitigated mIoU is used as the metric to
assess the accuracy of the image segmentation. Boundary
detection performance: The image segmentation results can
serve as input for higher-level applications, such as boundary
detection in AVs. Boundary detection can help constrain AVs
to avoid the collision, ensuring driving safety [30]. In this
paper, we use boundary detection as a case study to investigate
the performance of the ECSeg for high-level applications. In
this case study, we use the metric of Hausdorff distance to
measure the similarity between the all moving object boundary
of the ground truth and the segmented results.

D. Execution Performance

1) Real-world experiments: Fig. 12(a) presents the delay-
mitigated mIoU for the proposed ECSeg and four baseline
approaches over a half-hour using the Cityscapes and self-
collected datasets. The edge approach can achieve 0.505 delay-
mitigated mIoU across all periods. The performance difference
between the Cityscapes and real-world datasets occurs because

(a) Segmentation performance. (b) Boundary performance.

Fig. 12. Results from the Cityscapes and real-world dataset experiment.

the real-world dataset uses pseudo labels as ground truths for
evaluation. These pseudo labels contain errors or misclassifi-
cations, leading to lower evaluation accuracy compared with
using actual ground truths. Compared with the four baseline
methods, our approach achieves the highest delay-mitigated
mIoU and outperforms KD by over 48.8% in Cityscapes
dataset. This is because the PPO agent makes good decisions
to utilize accurate cloud results when the mobile network
channel conditions are good. Our approach requires only
10 ms per decision, while the MPC method takes 400 ms,
making it unsuitable for timely decisions within the deadline.
Additionally, increasing the horizon length of the MPC leads
to exponential growth in compute time.

Fig. 12(b) presents the moving boundary detection accuracy
for the proposed ECSeg and four baseline approaches. The
results show a similar trend to the image segmentation per-
formance, with our approach achieving the lowest Hausdorff
distance compared with the other four approaches. This is
because the larger segmentation model deployed in the cloud
provides accurate segmented pixels for detecting small moving
objects. Moreover, our approach achieves a Hausdorff distance
that is over 60.5% shorter than that of the edge approach.

2) Energy overhead: We further investigate the energy
overhead of the mobile network communications and testbed.
We measure the energy overhead by monitoring the laptop’s
battery level changes. Specifically, the energy overhead is
computed as the difference between the initial and remaining
battery levels over a 30-minute period without charging. More-
over, we also measure the mobile network module’s energy
overhead using the same approach, when it continuously
transmits 500 KB of data to the cloud server for 30 minutes.
The average mechanical system energy consumption of an
electric car is about 0.15 kWh/km when driving in urban
areas at an average speed of 30 km/h [31]. The mobile
network module and the entire testbed consume only 0.0007
and 0.00267 kWh/km, respectively, which are less than 1%
and 2% of the car’s mechanical system energy consumption.
These results show that the energy consumption of the testbed
is negligible in the vehicle.

3) Evaluation in diverse cities: We conduct experiments to
investigate the performance of ECSeg in different cities. We
measure 20-minute cloud latency for one cloud server using
the approach in §III-A, in two cities: City 1, close to the server,
and City 2, over 1000 km away. In addition to the cloud geo-
distance, the cities may have different mobile network data



City 1 City 20.0

0.1

0.2

0.3

0.4

0.5
La

te
nc

y 
(s

)

Fig. 13. Communi-
cation latency in two
city.

Fig. 14. ECSeg per-
formance in two city.

50 100 200 300
Latency (ms)

0.2

0.4

0.6

0.8

D
el

ay
-m

iti
ga

te
d 

m
Io

U

ESPNet

Fig. 15. ECSeg perfor-
mance vs. latency.

transmission speeds, resulting in different latency. Note that
the evaluation in §VII is conducted in City 1. Fig. 13 shows
the box plots for the distributions of the data transmission
latency in the two cities. The average latency in City 1 is
about 110 ms, while in City 2 it is about 205 ms.

We evaluate ECSeg using these two latency traces on the
Cityscapes and real-world datasets. Fig. 14 shows the average
delay-mitigated mIoU for the two datasets under the two
latency traces. Compared with City 1, the PPO agent’s per-
formance drops in City 2 for both datasets. For the Cityscapes
dataset, the PPO agent’s performance is only 0.517, close to
the edge-based approach. This indicates that the PPO agent
selects the edge processing option most of the time.

We further investigate ECSeg performance under different
transmission latencies. Using the Cityscapes dataset and 10-
minute latency traces from City 1 with various artificial
biases, we simulate different latency situations. Fig. 15 shows
ECSeg’s mIoU under different average latency traces. The
mIoU drops with average latency. When the average latency
reaches 250 ms, ECSeg’s mIoU is almost the same as the edge
processing option because the PPO agent always selects the
edge option over the cloud option. Therefore, cities prefer to
have cloud servers within the city to support ECSeg.

VIII. CONCLUSION

This paper presents ECSeg, an edge-cloud switched image
segmentation system for AVs applications. We formulate a
switching problem aimed at maximizing the delay-mitigated
mIoU of image segmentation under dynamic variations in
mobile network conditions and image content changes. To
address this, we apply deep reinforcement learning to learn the
optimal switching policy for image segmentation processing.
Our results demonstrate that cloud computing can benefit AVs,
and ECSeg achieves a higher delay-mitigated mIoU for image
segmentation in autonomous driving applications compared
with four baseline approaches.

REFERENCES

[1] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, 2017.

[2] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and
L. Van Gool, “Towards end-to-end lane detection: an instance segmen-
tation approach,” in IEEE Intell. Veh. symposium, 2018.

[3] J. Xu, Y. Nie, P. Wang, and A. M. López, “Training a binary weight
object detector by knowledge transfer for autonomous driving,” in ICRA,
2019, pp. 2379–2384.

[4] “Apollo.” [Online]. Available: https://www.apollo.auto
[5] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,

“Espnet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in ECCV, 2018.

[6] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet Things J., vol. 8, no. 8, pp. 6469–6486, 2020.

[7] X. Zhang, S. Ji, H. Wang, and T. Wang, “Private, yet practical, multiparty
deep learning,” in ICDCS, 2017.

[8] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow
using dense inverse search,” in ECCV, 2016.

[9] A. Hassan, A. Narayanan, A. Zhang, W. Ye, R. Zhu, S. Jin, J. Carpenter,
Z. M. Mao, F. Qian, and Z.-L. Zhang, “Vivisecting mobility management
in 5g cellular networks,” in SIGCOMM, 2022.

[10] Y. Cai, T. Luan, H. Gao, H. Wang, L. Chen, Y. Li, M. A. Sotelo,
and Z. Li, “Yolov4-5d: An effective and efficient object detector for
autonomous driving,” IEEE Trans. Instrum. Meas., 2021.

[11] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal compu-
tation task scheduling for mobile-edge computing systems,” in IEEE
International Symposium Inf. Theory, 2016, pp. 1451–1455.

[12] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in INFOCOM, 2018.

[13] Z. J. Kong, Q. Xu, J. Meng, and Y. C. Hu, “Accumo: Accuracy-
centric multitask offloading in edge-assisted mobile augmented reality,”
in MobiCom, 2023.

[14] X. He, S. Wang, X. Wang, S. Xu, and J. Ren, “Age-based scheduling for
monitoring and control applications in mobile edge computing systems,”
in INFOCOM, 2022, pp. 1009–1018.

[15] T. Ren, Z. Hu, H. He, J. Niu, and X. Liu, “Feat: Towards fast
environment-adaptive task offloading and power allocation in mec,” in
INFOCOM, 2023, pp. 1–10.

[16] S. Zhou, D. Van Le, R. Tan, J. Q. Yang, and D. Ho, “Configuration-
adaptive wireless visual sensing system with deep reinforcement learn-
ing,” TMC, 2022.

[17] “Orin.” [Online]. Available: https://www.nvidia.com/en-sg/autonomous-
machines/embedded-systems/jetson-orin/

[18] R. Poudel, S. Liwicki, and R. Cipolla, “Fast-scnn: Fast semantic seg-
mentation network,” in British Mach. Vision Conference, 2019.

[19] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in ECCV, 2018.

[20] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017.

[21] B. Cheng, I. Misra, A. Schwing, A. Kirillov, and R. Girdhar, “Masked-
attention mask propagationer for universal image segmentation,” in
CVPR, 2022.

[22] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu,
L. Lu, H. Li et al., “Internimage: Exploring large-scale vision foundation
models with deformable convolutions,” in CVPR, 2023.

[23] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in CVPR, 2016.

[24] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, “Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet
strong baseline,” NIPS, vol. 35, pp. 6119–6132, 2022.

[25] Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du,
T. Lin, W. Wang et al., “Planning-oriented autonomous driving,” in
CVPR, 2023, pp. 17 853–17 862.

[26] C. Shi, R. Wan, R. Song, W. Lu, and L. Leng, “Does the markov decision
process fit the data: Testing for the markov property in sequential
decision making,” in ICML, 2020.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv, 2017.

[28] “See3cam camera.” [Online]. Available: https://www.e-consystems.com
[29] “5g module.” [Online]. Available: https://www.waveshare.com
[30] Z. Xu, Y. Sun, and M. Liu, “Topo-boundary: A benchmark dataset on

topological road-boundary detection using aerial images for autonomous
driving,” IEEE Trans. Robot. Autom., vol. 6, no. 4, pp. 7248–7255, 2021.

[31] W. Achariyaviriya, W. Wongsapai, K. Janpoom, T. Katongtung, Y. Mona,
N. Tippayawong, and P. Suttakul, “Estimating energy consumption of
battery electric vehicles using vehicle sensor data and machine learning
approaches,” Energies, vol. 16, no. 17, p. 6351, 2023.


