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Existing wearable sensing models often struggle with domain shifts and class label scarcity. Contrastive learning is a
promising technique to address class label scarcity, which however captures domain-related features and suffers from low-
quality negatives. To address both problems, we propose ContrastSense, a domain-invariant contrastive learning scheme for a
realistic wearable sensing scenario where domain shifts and class label scarcity are presented simultaneously. To capture
domain-invariant information, ContrastSense exploits unlabeled data and domain labels specifying user IDs or devices
to minimize the discrepancy across domains. To improve the quality of negatives, time and domain labels are leveraged
to select samples and refine negatives. In addition, ContrastSense designs a parameter-wise penalty to preserve domain-
invariant knowledge during fine-tuning to further maintain model robustness. Extensive experiments show that ContrastSense
outperforms the state-of-the-art baselines by 8.9% on human activity recognition with inertial measurement units and 5.6%
on gesture recognition with electromyography when presented with domain shifts across users. Besides, when presented
with different kinds of domain shifts across devices, on-body positions, and datasets, ContrastSense achieves consistent
improvements compared with the best baselines.
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1 Introduction
The increasing prevalence of wearable sensing devices, such as smartwatches, smart glasses, activity trackers,
augmented/virtual reality headsets, etc., has facilitated the ubiquitous collection of human data, giving rise to
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Fig. 1. In-the-wild wearable sensing with domain shifts and scarce class labels. Each cylinder refers to a domain, such as one
user, device, on-body position when wearing the device.

numerous sensing tasks such as human activity recognition and tracking. These sensing tasks have significantly
contributed to applications such as intelligent healthcare, smart home systems, and human-computer interaction
[27, 32, 57, 68]. To unleash the full potential of wearable sensing data, deep learning techniques have been widely
adopted, leading to notable advancements in performance [12, 29, 66].
The adoption of wearable sensing in real-world scenarios, however, still faces a major challenge since the

wearable sensing data collected from different domains, i.e., different users, devices, on-body positions, or datasets,
are heterogeneous [11]. Domain shifts, i.e., the data distribution difference across domains in such a case, would
lead to performance degradation when applying learning models across domains [10, 25]. The problem is further
challenged by the scarcity of class labels, as annotating wearable sensing data could be expensive and time-
consuming [48, 52, 61]. As a result, class labels are generally only available in a few domains and their amount is
limited, which leads to insufficient training of existing supervised learning models [39, 65].
As depicted in Fig. 1, this paper considers an in-the-wild scenario for wearable sensing: there exist many

domains concerning different users, devices, on-body positions, or datasets. The data collection overhead and
privacy concerns restrict access to some domains, which are called the source domains. In the source domains,
most data are unlabeled and only few labeled data are available. On the other hand, all other domains are
inaccessible during the learning phase, which are called the target domains. The objective is to transfer wearable
sensing models trained from source domains to the target domains with high performance. This paper focuses on
classification tasks with wearable sensors in this scenario.

Most existing deep-learning approaches are ill-suited for such an in-the-wild wearable sensing scenario. Recent
domain adaptation techniques aim at adapting features from source domains to target domains [2, 8, 14, 63, 64].
Nevertheless, most existing solutions require labeled or unlabeled data from target domains, which are not
accessible in the considered scenario in Fig. 1 due to privacy concerns [42]. Without requiring any target domain
data, domain generalization learns domain-invariant features among source domains, which are assumed invariant
among target domains as well [31, 35, 42]. However, most existing domain generalization approaches rely on
abundant labeled data in the source domains for supervised model training, which is not available considering
the expensive annotation process [65].
To handle class label scarcity, self-supervised learning methods have gained research attention [15, 65], as

they can utilize unlabeled data to capture general representations. In particular, Contrastive Learning (CL) has
achieved good performance in various fields [16, 38, 39]. In CL, data that are augmented from the same samples
are positives, while data from different samples are negatives. The model would learn high-level features by
discriminating positives from negatives. Later, the encoder is fine-tuned for downstream tasks with limited labeled
data. However, applying CL directly to in-the-wild wearable sensing poses two challenges. The first challenge is
caused by domain shifts. As CL typically ignores the domain shifts, the model often has degraded performance

, Vol. 1, No. 1, Article . Publication date: October 2024.



ContrastSense • 3

when applied to the target domains. The second challenge is the adjacent negatives problem. Considering the
continuity of human activities or status, adjacent samples might share high similarities and be from the same
class. However, in the original setting of CL, these adjacent samples are treated as negatives. As a result, their
features are repealed from each other, leading to less effective features [58].
To address the above two challenges, we identify two unique opportunities inherent to wearable sensor data

that can be effectively utilized. While class labels require significant annotation efforts, domain labels that specify
the user ID or device type of the collected data and time labels that record when the data samples are collected
can be easily obtained. The source of the data can be acquired during data collection with proper anonymity,
whereas timestamps are commonly available along with sensor readings.

By exploiting both opportunities, this paper proposes a novel wearable sensing framework, ContrastSense,
which trains models effectively to address the domain shifts and adjacent negatives problems. Three novel
components are designed and integrated: (i) Domain labels are utilized to derive Contrastive Domain Loss (CDL)
that measures the similarity of features from different domains. By maximizing CDL, the encoder is trained
to minimize the discrepancy between domains thus extracting generalizable features. (ii) A novel contrastive
loss, SInfo loss, is proposed with negative selection. The SInfo loss only selects samples outside a nearby time
window using time labels, avoiding the inclusion of adjacent negatives from the same class. Additionally, easy-
to-discriminate samples from different domains are excluded, minimizing the risk of learning domain-related
features. (iii) During fine-tuning, a parameter-wise penalty is proposed to constrain the training of the encoder
to maintain generalizability.

Extensive experiments on two kinds of sensing modalities and tasks are performed, including human activity
recognition with inertial measurement units (IMU) and gesture recognition with electromyography (EMG). The
results suggest that when presented with domain shifts across users, ContrastSense outperforms state-of-the-
art models by 8.9% and 5.6% average F1 scores on the two tasks, respectively. Additionally, ContrastSense is
evaluated on different kinds of settings and domain shifts, including devices, on-body positions, and datasets,
and consistently outperforms the best baselines. When presented with multiple domain shifts simultaneously
across different datasets, ContrastSense outperforms the best baseline by 9.0% and 4.3% average F1 scores on the
two tasks, respectively. The main contributions of this paper are summarized as follows:
(1) This paper considers a novel and realistic wearable sensing scenario where domain shifts and class label

scarcity are presented simultaneously. To the best of our knowledge, this is the first work that studies
domain generalization with class label scarcity for in-the-wild wearable sensing applications.

(2) This paper proposes a general learning framework for different wearable sensors, ContrastSense, that
leverages domain and time labels to achieve domain-invariant CL for generalizable features across domains
with practical overhead.

(3) The framework is evaluated on different kinds of wearable sensors, tasks, and domains. The results
suggest that ContrastSense outperforms the state-of-the-art baselines. The code is available at https:
//github.com/MaginaDai/ContrastSense-Public.

The rest of the paper is organized as follows. Section 2 presents related works. Section 3 defines the problem
and motivates this study with experimental evidence. Section 4 presents the preliminary of CL and the framework
of ContrastSense. Section 5 details the designs of ContrastSense. Section 6 presents the experiment results. Section
7 discusses the limitations and future works. Section 8 concludes this paper.

2 Related Works

2.1 Domain Adaptation and Generalization
Domain adaptation refers to the process of adapting models trained on the source domains to the target domains,
using labeled or unlabeled data from the target domains for training [2, 14, 63, 64]. Specifically, CMUDA [2]
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conducts domain adversarial training on source and target domains to align their features. However, those target
domain data are unavailable in our proposed scenario. Different from domain adaptation, domain generalization
methods focus on learning domain-invariant features only using data from the source domains. To achieve this,
data augmentations, domain-invariant learning, and meta-learning techniques have been extensively studied
[30, 35, 41, 67]. However, most existing methods assume that the source domains contain sufficient high-quality
labeled data, which may be unrealistic for in-the-wild wearable sensing [39, 48]. ContrastSense is able to extract
domain-invariant features primarily with unlabeled data from the source domains, distinguishing it from existing
domain generalization methods.

2.2 Self-supervised Learning
Self-supervised learning represents a category of training methods that generate labels for unlabeled data
autonomously to overcome class label scarcity [33]. It mainly includes Generative Learning and Contrastive
Learning (CL). Generative Learning focuses on reconstructing missing parts of the unlabeled data [33, 65]. For
example, LIMU-BERT [65] designs a lightweight BERT-like model to reconstruct masked IMU data for temporal
feature extraction. CL augments samples into positive-negative pairs, and the models are trained to distinguish
positives from negatives. Several existing CL frameworks, such as SimCLR [3], MoCo [16], and SimSiam [4],
have achieved state-of-the-art performance on various tasks. However, existing self-supervised learning methods
generally do not account for domain shifts, which can lead to significant performance degradation when applied
to unseen domains. This paper aims to address the limitations of CL and apply it to in-the-wild wearable sensing.

2.3 Contrastive Learning for Wearable Sensing
CL has also been leveraged to address class label scarcity in wearable sensing [15, 21, 24, 39]. For example,
Cosmo [39] captures common and complementary features from different modalities via contrastive fusion
learning. CPCHAR [15] conducts contrastive pretraining on the unlabeled data by predicting the nearby features.
Additionally, some works focus on negative selection in CL for wearable sensing [21, 58]. Notably, ColloSSL [21]
selects negative devices and samples based on a sampling algorithm to calculate a multi-view contrastive loss.
However, these approaches still encounter significant challenges, primarily due to domain shifts and the selection
of adjacent negatives, when applied to in-the-wild wearable sensing.

2.4 Summary of Existing Works
As summarized in Table 1, existing domain adaptation and generalization approaches like [2, 41, 67] can extract
generalized features from labeled data. However, the class label scarcity may cause the sampled distribution
to deviate from the actual domain distribution, resulting in less representative domain-invariant features. Self-
supervised learning approaches like CPCHAR [15] or LIMU-BERT [65] can mitigate the impact of class label
scarcity. Nonetheless, assuming the unlabeled data is independent and identically distributed (i.i.d.), they overlook
the domain shifts and therefore cannot extract generalizable features across domains. Besides, many approaches
require access to target domain data during training, which is impractical in contexts where data privacy is a
concern. To the best of our knowledge, the proposed framework, ContrastSense, is the first work that studies
domain generalization with class label scarcity for in-the-wild wearable sensing applications.

3 Motivation
This section formally defines the problem and then presents the limitations of existing domain-invariant and
self-supervised learning with experimental evidence. The Heterogeneity Human Activity Recognition (HHAR)
dataset [50] is used, which consists of data collected from nine users and three types of smartphones.
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Table 1. Limitations of existing works and the contributions of ContrastSense.

Methods Address Address Target Domain Evaluated across
Domain Shifts Class Label Scarcity Inaccessibility Sensing Modalities

LIMU-BERT [65] ✗ ✓ ✗ ✗
MoCoHAR [59] ✗ ✓ ✗ ✗
CPCHAR [15] ✗ ✓ ✓ ✗

ClusterHAR [58] ✗ ✓ ✓ ✗
ColloSSL [21] ✗ ✓ ✓ ✗
ConSSL [28] ✗ ✓ ✓ ✗

FMUDA/CMUDA [2] ✓ ✗ ✗ ✗
GILE [41] ✓ ✗ ✓ ✗

CALDA [63] ✓ ✗ ✗ ✓
Mixup [67] ✓ ✗ ✓ ✓

ContrastSense ✓ ✓ ✓ ✓

3.1 Problem Statement
Among a large amount of domains, only some domains are accessible for training due to the data collection
overhead and privacy concerns. Such accessible domains form the source domains set D𝑆 , whereas the other
unavailable domains form the target domains setD𝑇 . The percentage of the domains inD𝑆 among all domains is
𝛼 . Given the expense for labeling data, only some domains withinD𝑆 are labeled for training, forming the labeled
source domains set D𝐿𝑆 . The percentage of the domains in D𝐿𝑆 among D𝑆 is 𝛽 . D𝐿𝑆 contains only 𝑛 shots of
labeled samples, e.g., 10 shots in total. The term 𝑛 shots refers to that there are 𝑛 samples for each class. The
remaining domains within D𝑆 contain unlabeled data and form unlabeled source domains set D𝑈𝑆 . The objective
is to effectively utilize both the labeled and unlabeled data in D𝐿𝑆 and D𝑈𝑆 to train sensing models that could
generalize to D𝑇 when the data from D𝑇 are not accessible for training.

3.2 Impact of Class Label Scarcity
The IMU data collected from different users, on-body positions, or devices exhibit domain shifts. Variations in
motion speeds and strength levels among users, such as the slower running pace of the elderly when compared
with the young, contribute to such domain shifts. The use of different devices and different wearing positions
may also result in varying levels of accuracy, sensitivity, and selection rate, leading to distribution discrepancies
[11, 50]. In this section, we focus on data heterogeneity across users as an example.
While domain adaptation and generalization approaches may alleviate the impact of domain shifts [35, 72],

most of them suffer from class label scarcity of in-the-wild wearable sensing. To investigate the impact of class
label scarcity, we perform an experiment with setting A, where 𝛼 = 25% domains (users) are randomly selected as
D𝑆 and 𝛽 = 50% source domains are labeled. Three domain adaptation and generalization methods are evaluated,
i.e., CMUDA [2], GILE [41], and Mixup [67]. Please see Section 6.2 for a detailed introduction to the methods.
Fig. 2(a) shows that, compared with training with fully labeled data, the performance of all three models

significantly drops when 𝑛 is small. The performance of GILE and CMUDA degrades more notably as both were
designed with the assumption that the source domains have sufficient labels, and they learn the domain-invariant
features in a supervised or semi-supervised way. The performance of Mixup drops by 14% when 𝑛 is smaller than
50 since class label scarcity makes the data synthesizing less effective. The above results show the significant
impact of the scarcity of class labels on existing domain adaptation and generalization approaches.
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(b) Visualization of domain shifts.
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Fig. 2. Motivation study. (a) The performances of the three models drop with the absence of fully labeled data for supervision.
(b) Features from three users are visualized in different colors. Besides, features from different classes are presented in
different shapes. User 1 (green) is labeled while users 2 (blue) and 3 (orange) are unlabeled. The green lines are the decision
boundary of the classifier trained with the labeled data of user 1. (c) The performances of CPCHAR [15] and LIMU-BERT
[65] degrade when presented with a larger domain shift.

3.3 Impact of Domain Shifts
Though existing self-supervised learning can handle class label scarcity, they might capture the domain-related
features during training, leading to performance degradation when presented with domain shifts. The hidden
feature from the auto-regressor of a CL method, CPCHAR [15], is visualized in the 2D plane using t-distributed
stochastic neighbor embedding (t-SNE) [54]. Fig. 2(b) plots the features of three users with different colors, where
users 1 and 2 are from source domains and user 3 is from target domains.While the classifier can accurately classify
the features of user 1 (green color), it fails to classify the features of user 2 and user 3 due to the domain shifts
across different users. Therefore, the distribution shifts among different domains may impair the performance of
self-supervised learning when transferred from the source to the target domains.
To further investigate the impact of domain shifts on self-supervised learning, two different experiment

settings are examined: (i) In setting A, 𝛼% is varied and 𝑛 is fixed to 50, which is to present the label scarcity
and domain shifts simultaneously; (ii) In setting B, unlabeled data and 50 shots of labeled data are randomly
extracted from all domains (including D𝑆 and D𝑇 ) for fine-tuning, which only present the models with label
scarcity. The number of unlabeled data is the same under the two settings. Fig. 2(c) shows the performance of
two state-of-the-art self-supervised learning methods, CPCHAR [15] and LIMU-BERT [65] with the above two
settings. When presented with limited shots but no domain shifts in setting B, CPCHAR and LIMU-BERT achieve
high performance since they have access to both source and target domain data. This indicates their ability to
handle label scarcity. However, both learning methods suffer from large performance drops in setting A as 𝛼
decreases due to the impact of domain shifts. We have also conducted experiments with 𝑛 = 10 and 𝑛 = 100, and
similar trends have been observed. For example, when 𝑛 = 10 (𝑛 = 100) in setting A, the F1 scores of CPCHAR
decrease from 80.83% (95.25%) when 𝛼 = 65% to 54.19% (53.37%) when 𝛼 = 25%. The results show that domain
shifts significantly affect the model performance. Specifically, when fewer domains are available for training,
more performance degradation is observed when applied to target domains.
The above experimental evidence shows the limitations of domain adaptation and generalization methods

on handling label scarcity and the limitations of existing self-supervised learning methods on handling domain
shifts, which motivates our work, ContrastSense.
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Fig. 3. ContrastSense framework. The left part (blue color) is the general CL procedure while the right part (orange color),
including Contrastive Domain Loss, SInfo Loss with Negative Selection, and Parameter-wise Penalty, presents the key
components in ContrastSense.

4 From Contrastive Learning to ContrastSense

4.1 Contrastive Learning and Its Limitations
To deal with the class label scarcity problem, this paper adopts Contrastive Learning (CL), which can extract
high-level features from unlabeled data. CL involves pretraining and fine-tuning stages, as shown in Fig. 3 (the
left part). During pretraining, data augmentations are applied to transform each data sample into two views,
which are positives to each other, while other views from different data samples are negatives. Two branches of
encoders and projectors extract features from these views, which are then used to discriminate between positives
and negatives. To optimize the process, InfoNCE loss [38] is widely adopted:

𝐿𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 = −
∑︁𝐾

𝑘=1
log

exp(𝑧𝑘 · 𝑧𝑞+/𝜏)∑2𝐾
𝑞=1 𝐼 [𝑞≠𝑘 ] exp(𝑧𝑘 · 𝑧𝑞/𝜏)

, (1)

where 𝐾 is the batch size. There are 2𝐾 features in total since each sample is augmented to two views and then
encoded to features. The 𝑧𝑞+ and 𝑧𝑘 are positive features, while the other 2𝐾 − 2 features are negatives to 𝑧𝑘 .
The 𝐼 [𝑞≠𝑘 ] is an indicator function, which is equal to 1 only when 𝑞 ≠ 𝑘 . Otherwise, it is equal to 0. The 𝜏 is a
temperature coefficient. Through minimizing 𝐿𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 , the model learns to pull 𝑧𝑞+ and 𝑧𝑘 closer and push the
negatives away in the feature space. If the negatives are from categories that are different from the positives, the
model would learn the difference between categories, which is beneficial to activity recognition.
During fine-tuning, the high-level features learned by positives-negatives discrimination are specialized

with a classifier for wearable sensing tasks. The cross-entropy loss can be adopted to optimize the process. CL
has achieved superior performance in many fields, such as computer vision and natural language processing
[3, 16, 43, 46], and has been applied to wearable sensing [15, 21, 39, 61]. Despite its effectiveness, however, CL
may suffer from certain limitations when applied to wearable sensing.
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Limitations of Contrastive Learning in Wearable Sensing. First, CL may learn domain-specific features
from sensor data, which could undermine its generalizability [69]. When negatives are sampled from multiple
source domains D𝑆 , the encoder may learn to use domain shifts to distinguish positives from negatives of other
domains during pretraining. For instance, data collected from different users with distinct walking frequencies
may exhibit significant domain discrepancies. Consequently, the model could rely on these domain-specific
characteristics to improve positives-negatives classification. However, such knowledge might not be applicable
to target domains without such characteristics. Even if the pretrained model is robust to domain shifts with some
designs, they might forget the knowledge during fine-tuning. The reason is that the scarcely labeled data are
from limited labeled source domains D𝐿𝑆 . When they are used to fine-tune the model, they would cause the
model to overfit to D𝐿𝑆 , and again, learn some domain-specific features.
Second, CL randomly samples sensor data and considers all views augmented from different data samples as

negatives, which could include some negatives that are adjacent to the positives and share a high similarity. This
inclusion of adjacent negatives might hinder the model from learning high-quality features. For example, when a
data sample 𝑥𝑡 at time 𝑡 is sampled along with some adjacent samples, such as 𝑥𝑡−1 and 𝑥𝑡+1, they are treated as
negatives to 𝑥𝑡 in CL. However, in the context of wearable sensing, human activities and status are consecutive
and can persist for short or long periods [1, 60], making adjacent frames more likely to belong to the same class.
As a result, their features should be clustered rather than pushed away for better downstream task performance
[5]. Therefore, it is essential to exclude these adjacent negatives from the CL process.

4.2 Overview of ContrastSense
To simultaneously handle class label scarcity and domain shifts, ContrastSense includes three key designs as
depicted in Fig. 3 (the right part) to overcome the limitations of CL and make CL domain-invariant.
(1) Contrastive Domain Loss (CDL). Based on the domain labels, CDL treats features from the same

(different) domains as positives (negatives). In this way, models are driven by CDL to discriminate features
by domains and extract the discrepancies between domains. CDL is then integrated with CL and maximized
to extract domain-invariant features. Moreover, to improve the effectiveness of features, CDL utilizes
samples from domain queues, which is a data structure storing a large number of features from each domain
with acceptable memory usage (Section 5.1).

(2) SInfo Loss with Negative Selection. SInfo loss exploits domain and time labels and carefully selects
negative samples from domain queues to improve the robustness of features and avoid adjacent negatives.
Time labels are leveraged to select non-nearby samples as negatives. Besides, SInfo loss discards some that
are easy to discriminate to avoid capturing domain-related features using domain labels (Section 5.2).

(3) Parameter-wise Penalty. A parameter-wise penalty is incorporated into the fine-tuning based on the
importance of each parameter, which serves as a constraint to fine-tune the model. In this way, more
important parameters to domain-invariant features would be tuned less to preserve the domain-invariant
knowledge (Section 5.3).

The above three components are integrated into the two stages in Fig. 3. During the domain-invariant
pretraining, SInfo loss is minimized to extract high-level features by discriminating positives and selected
negatives, whereas CDL is maximized to drive those features domain-invariant. During the domain-invariant
fine-tuning, the parameter-wise penalty is incorporated to keep the generalizability of the encoder.

5 Detailed Design of ContrastSense

5.1 Contrastive Domain Loss
Contrastive Domain Loss (CDL) drives the model to learn domain-invariant features with the unlabeled data
from D𝑆 in a contrastive way. Specifically, the wearable sensing data samples from the same domain are defined
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as positives while data samples from different domains are negatives to each other. The similarity across positive
features is maximized while the similarity across negative features is minimized. CDL is defined as:

𝐿𝐶𝐷𝐿 = −
∑︁
𝑘∈𝐾

1
|𝑄𝑖 (𝑥𝑘 ) |

∑︁
𝑑∈𝑄𝑖 (𝑥𝑘 )

log
exp(𝑧𝑘 · 𝑧𝑑/𝜏)∑

𝑞∈𝑄 𝐼 [𝑞≠𝑘 ] exp(𝑧𝑘 · 𝑧𝑞/𝜏)
, (2)

where 𝑄𝑖 (𝑥𝑘 ) refers to a collection of features that are from the same domain as data sample 𝑥𝑘 , and the size of
the collection is |𝑄𝑖 (𝑥𝑘 ) |. The 𝑄 is a collection of features from all source domains. The 𝑧𝑘 is the feature of data
sample 𝑥𝑘 . The dot product between 𝑧𝑘 and its positive feature 𝑧𝑑 calculates their similarity. By clustering the
positives with each other while pushing the negatives away, the model would learn the domain-related features,
which is, however, contradictory to our goal. Therefore, CDL is maximized to learn domain-invariant features.

While existing supervised domain generalization methods [22, 35, 41, 51] merely utilize scarcely labeled data
in 𝐷𝐿𝑆 , CDL learns domain-invariant features from unlabeled data in D𝑆 . Compared with few shots of labeled
data, a large amount of unlabeled data from D𝐿𝑆 could provide more accurate sample distributions on D𝐿𝑆 . In
addition, CDL incorporates data from more domains, i.e., D𝑈𝑆 , which enables the domain-invariant features to
be more representative. Existing works [9, 41, 72] require a domain classifier and the number of domains as prior
knowledge in order to determine the architectures of the domain classifier. But when new domains are available,
their networks need to be changed. CDL does not require a domain classifier, which simplifies the model design.
Besides, it can be extended to new domains without changing the networks.

Domain Queues. To construct the feature collection𝑄𝑖 (𝑥𝑘 ) for data 𝑥𝑘 , we may simply sample a batch of data
and collect data based on their domain labels. A large batch size𝐾 may provide more realistic domain distributions.
However, it uses a large memory space as 𝐾 goes large. ContrastSense employs a set of domain queues using
domain labels, which not only provide a more memory-efficient way of constructing feature collections but also
better capture more realistic domain distributions.
The domain queues set 𝑄 includes a set of domain-wise sub-queues: 𝑄 = {𝑄𝑛, 𝑛 = 1, 2, · · · , |𝑄 |}, where |𝑄 | is

the number of the sub-queues. Notably, |𝑄 | might be smaller than |D𝑆 | due to the randomness of data sampling.
Each time a batch of features is extracted, features from the 𝑖−th domain are enqueued to 𝑄𝑖 , and an equal
number of features at the front of the domain queues are dequeued. The number of features stored in the domain
queues is maintained constant at𝑀 , which is four times larger than 𝐾 . The domain queues serve two primary
objectives. Firstly, utilizing more samples from the domain queues for CDL than a data batch could provide a more
accurate domain distribution. Secondly, the domain queues prevent encoding samples from scratch, optimizing
memory usage during the pretraining phase. An experimental analysis of the memory usage is provided in Section
6.4. However, the challenge arises as the encoders undergo constant updates, potentially causing the features
stored in the domain queues to become outdated compared to the features in the current batch. To mitigate this,
ContrastSense employs a momentum update mechanism [16], which is described in Section 5.4.

5.2 SInfo Loss with Negative Selection
To extract discriminative high-level features, a novel contrastive loss, SInfo loss 𝐿𝑆𝐼𝑛𝑓 𝑜 , is proposed to discriminate
positives and selected negatives from the domain queues:

𝐿𝑆𝐼𝑛𝑓 𝑜 = −
∑︁
𝑘∈𝐾

log
exp(𝑧𝑘 · 𝑧𝑞+/𝜏)∑

𝑞∈𝑄𝑠 𝐼 [𝑞≠𝑘 ] exp(𝑧𝑘 · 𝑧𝑞/𝜏)
, (3)

where 𝑄𝑠 = {𝑄𝑠𝑛, 𝑛 = 1, · · · , |𝑄 |} represents the domain queues after the negative selection. The domain queues
retain an extensive collection of features, which are suitable for use as negatives. Compared withmerely employing
negatives from a data batch in Eq. (1), utilizing more negatives from the domain queues challenges the ability of
the model to identify the positive for 𝑧𝑘 , thus enhancing the quality of the learned high-level features [3, 16].
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Fig. 4. Negative selection for SInfo loss in ContrastSense. The time window selection picks non-nearby samples based on
time labels, while the similarity-based selection discards some samples from different domains using domain labels.

Moreover, SInfo loss has a dedicated procedure for selecting features in the domain queues as negatives, rather
than indiscriminately using all features. This negative selection process prevents low-quality negatives from
interfering with the contrast process, leading to more effective and robust features.
Heuristics for Negative Selection. ContrastSense employs two key heuristics to select negatives. First, to

avoid using adjacent samples, time labels that indicate the time proximity between samples are employed to
identify adjacent ones. Their features are then excluded from the negatives. Second, for samples from different
domains, only a subset that is hard to discriminate from the positive is chosen. Negatives that are easy to
distinguish from the positives have limited contribution to the loss and gradient during model updates [47], but
may inadvertently teach the model some domain-specific knowledge. By omitting such samples using domain
labels, the model could learn more robust features. Incorporating both heuristics, the negative selection for SInfo
loss unfolds in two phases: time window selection followed by similarity-based selection, as depicted in Fig. 4.

Time Window Selection. To select negatives for feature 𝑧𝑘 from domain 𝐷𝑖 , its time label is compared with
the time labels of features in the domain queue 𝑄𝑖 . A time window is applied to identify nearby samples. The
features of those samples within the window are excluded from the selection process:

𝑄𝑡 = {𝑧𝑞 |𝑡 (𝑧𝑞) ∉ [𝑡 (𝑧𝑘 ) −𝑇 /2, 𝑡 (𝑧𝑘 ) +𝑇 /2],∀𝑧𝑞 ∈ 𝑄}, (4)

where 𝑇 is the time window length. The 𝑡 (·) is to get the time label for 𝑧𝑞 . The 𝑄𝑡 is the sampled domain queues.
In some real-life scenarios, sudden changes in activities or status may occur, where the previous same-class
assumption does not hold. To address this, a shorter time window can be selected for sequences with more
frequent changes.

Similarity-based Selection. Subsequently, the similarities between the features from different domains and
𝑧𝑘 are calculated, based on which the top 𝑟% most similar features are selected for contrast.

𝑄𝑠𝑛 = {𝑧𝑞 |𝑟𝑎𝑛𝑘 (𝑠𝑖𝑚(𝑧𝑞, 𝑧𝑘 )) > 𝑟, 𝑧𝑞 ∈ 𝑄𝑡𝑛}, 𝑛 ≠ 𝑖, (5)

where 𝑠𝑖𝑚(𝑧𝑞, 𝑧𝑘 ) refers to the cosine similarity between 𝑧𝑞 and 𝑧𝑘 . The 𝑟𝑎𝑛𝑘 (·) returns the ranking of 𝑧𝑞 . For
example, it returns 0.99 if 𝑧𝑞 is the most similar feature among 100 features. The 𝑄𝑡𝑛 is the 𝑛−th domain queue
after the time window selection. The top 𝑟% of similar features are selected for positives-negatives discrimination
driven by SInfo loss, promoting the acquisition of effective and domain-invariant features. While the ranking
process needs to be performed per domain queue for each positive sample, the training time only increases
slightly from 1.57s to 1.60s per epoch, since the ranking for the queues can be conducted parallelly.
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5.3 Parameter-wise Penalty
After the domain-invariant pretraining, the encoder 𝑓 is fine-tuned using scarcely labeled wearable sensing data
fromD𝐿𝑆 , along with one classifier to specialize the high-level features for downstream tasks. During fine-tuning,
preserving domain-invariant knowledge is crucial for generalizability across diverse domains. To illustrate, when
the model is fine-tuned for human activity recognition, the model can hardly generalize to the users in the wild
if it overfits the users from D𝐿𝑆 . To preserve the domain-invariant knowledge, the parameter-wise penalty is
proposed to determine the extent to which each parameter in the encoder can be adjusted during fine-tuning. It
assigns a penalty based on the criticality of parameters for preserving domain-invariant features. Parameters that
are more critical for maintaining domain invariance receive higher penalties when adjusted.
To estimate the level of importance of each parameter on domain-invariant feature extraction, the fisher

information matrix 𝐹 is derived from the pre-trained encoder 𝑓 :

𝐹 (𝑖) =
(
𝜕𝐿𝐶𝐷𝐿

𝜕𝜃 𝑓 (𝑖)

)2
, (6)

where 𝐹 (𝑖) is one element in 𝐹 for parameter 𝜃 𝑓 (𝑖). If 𝜃 𝑓 (𝑖) influences the quality of domain-invariant features to
a large extent, then the first-order derivative of CDL to 𝜃 𝑓 (𝑖) would be large. When 𝜃 𝑓 (𝑖) is tuned, a larger 𝐹 (𝑖)
would lead to a larger penalty:

𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =
∑︁

𝑖
𝐹 (𝑖) · (𝜃 𝑓 ′ (𝑖) − 𝜃 𝑓 (𝑖))2, (7)

where 𝜃 𝑓 ′ refers to the updated parameters in the encoder. The 𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦 estimates the deviation of the fine-tuned
encoder to the pretrained encoder and assign parameter-wise penalty based on their importance rather than a
consistent penalty to all parameters. Therefore, parameters that are important to domain alignment have smaller
flexibility to be tuned. In this way, ContrastSense specializes the high-level features for downstream wearable
sensing tasks and at the same time maintains the domain-invariant knowledge in the encoder.
In contrast to the elastic weight consolidation approach that protects all previous task-related knowledge

during continual learning [26], the parameter-wise penalty in ContrastSense only preserves the domain-invariant
knowledge learned by CDL. This is because the high-level knowledge learned with SInfo loss is to discriminate
positives from negatives, which should be refined for downstream classification tasks rather than preserved.

5.4 Domain-invariant Contrastive Learning
As depicted in Fig. 3, the three components are integrated into the ContrastSense framework for domain-invariant
pretraining and fine-tuning, in order to obtain wearable sensing models for in-the-wild adoption.

5.4.1 Domain-invariant Pretraining. Based on CDL and SInfo Loss, the loss 𝐿𝑝𝑡 for domain-invariant pretraining
is derived as follows:

𝐿𝑝𝑡 = 𝐿𝑆𝐼𝑛𝑓 𝑜 − 𝜆1𝐿𝐶𝐷𝐿, (8)
where 𝜆1 is a weight coefficient. The 𝐿𝑆𝐼𝑛𝑓 𝑜 is minimized to extract discriminative features by differentiating
between positives and negatives sampled from the domain queues, whereas 𝐿𝐶𝐷𝐿 is maximized to facilitate
domain-invariant feature extraction.

Data Augmentations. In each batch, unlabeled data 𝑥 sampled from DS is augmented into 𝑥𝑘 and 𝑥𝑞+. Data
augmentations in [48] are adopted for IMU data, including rotation, negating, flipping, scaling, time warping,
and adding noise. The same data augmentations are applied to EMG data, with the exclusion of the rotation
augmentation, as it is not suitable for EMG signals.
Feature Extraction. Two branches of feature encoders 𝑓 and 𝑓𝑚 extract high-level representations from 𝑥𝑘

and 𝑥𝑞+, which are subsequently projected to another feature space for calculating 𝐿𝑝𝑡 by projectors 𝑔 and 𝑔𝑚
[3]. The obtained features can thus be represented by 𝑧𝑘 = 𝑔 · 𝑓 (𝑥𝑘 ) and 𝑧𝑞+ = 𝑔𝑚 · 𝑓𝑚 (𝑥𝑞+). The Euclidean norm
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of 𝑧𝑘 and 𝑧𝑞+ are normalized to one. The features output by 𝑔𝑚 is enqueued to the domain queues 𝑄 , while the
features output by 𝑔 serves as queries to the queues for their negatives to derive 𝐿𝐶𝐷𝐿 and 𝐿𝑆𝐼𝑛𝑓 𝑜 .

Momentum update. The features in previous batches output by 𝑓𝑚 and 𝑝𝑚 are stored in the domain queues
for CDL and SInfo calculation, which, however, could be inconsistent with the features in the current batches due
to model update. To ensure feature consistency in the domain queues, ContrastSense adopts a standard technique
in CL, momentum update [16], to update the encoder 𝑓𝑚 and projector 𝑝𝑚 . While the encoder 𝑓 and projector 𝑝
are updated via gradient descent, the momentum update for 𝑓𝑚 and 𝑝𝑚 is given by: 𝜃𝐹𝑚 ←𝑚 · 𝜃𝐹𝑚 + (1 −𝑚) · 𝜃𝐹 ,
where 𝐹 = {𝑓 , 𝑔}. The 𝜃𝐹𝑚 refers to the parameters of 𝑓𝑚 or 𝑔𝑚 , and 𝜃𝐹 represents the parameters of 𝑓 or 𝑔. The
𝑚 is the momentum ratio that is close to 1, which slows down the update speed of 𝑓𝑚 and 𝑔𝑚 and mitigates the
feature inconsistency. The selection of𝑚 is further discussed in Section 6.4.
The design of the encoders for IMU in ContrastSense follows that of DeepSense [66], but in addition, the

residual connection between layers [17] and the self-attention layers [55] are included to extract high-level
features. The encoder in [6] is adopted to extract features from EMG, which consists of two convolutional layers.
The projectors are Multi-layer Perceptions (MLP) with three linear layers.

5.4.2 Domain-invariant Fine-tuning. After the pretraining, the encoder 𝑓 would be saved along with its fisher
information matrix. Then the domain-invariant fine-tuning is evoked to specialize the encoder for wearable
sensing tasks along with one classifier. The classifier has one GRU layer followed by two linear layers. The loss
𝐿𝑓 𝑡 for domain-invariant fine-tuning is described as follows:

𝐿𝑓 𝑡 = 𝐿𝑐𝑙 𝑓 + 𝜆2𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦, (9)

where 𝐿𝑐𝑙 𝑓 is the cross-entropy loss, which is calculated based on the output of the classifier. The 𝜆2 is a weight
coefficient. During the domain-invariant fine-tuning, the loss 𝐿𝑐𝑙 𝑓 can specialize the high-level features for the
downstream tasks, and 𝐿𝑝𝑒𝑛𝑎𝑙𝑡𝑦 assigns a parameter-wise penalty to preserve the domain-invariant knowledge.
After the fine-tuning, the encoder and the classifier are saved for inference on the data in the target domains.

6 Experiments

6.1 Experiment Setup
To present the effectiveness of ContrastSense, two kinds of modalities and tasks are selected, i.e., human activity
recognition (HAR) with IMU and gesture recognition (GR) with EMG. Different cross-domain scenarios over users,
devices, on-body positions, and datasets are adopted to train and evaluate ContrastSense. The considered cases
includes cross-user, cross-device, cross-position, cross-user-device, cross-user-position, and cross-dataset scenarios. In
the cross-user (cross-device or cross-position) scenario, different users (devices or positions) are considered as
different domains. In the cross-user-device and cross-user-position scenarios, one user with different devices or
different on-body positions are considered as different domains. In the cross-dataset scenario, the datasets are
treated as domains, in which cases multiple domain shifts are presented simultaneously. A quantitative analysis
of the degrees of domain shifts in each scenario is provided in Appendix A.
We randomly select 𝛼% domains as the training set, 15% domains for validation, and the rest domains for

testing. The 𝑛 shots of labels from 𝛽% domains in the training set are used for fine-tuning. For example, in the
cross-user scenario, models are trained on the unlabeled data from 𝛼% of users and 𝑛 shots of labeled data from
𝛼 × 𝛽% of users and then tested on the users in the test set. To provide a thorough assessment of the model
performance, a wide range of experiments are conducted under varied 𝛼 , 𝛽 , and 𝑛, which present the models
with varying levels of domain shifts and class label scarcity. Five different random splits are generated, and the
average results are reported.
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6.2 Human Activity Recognition with Inertial Measurement Units
6.2.1 Datasets. ContrastSense is evaluated with four public datasets on HAR with IMU, i.e., HHAR, MotionSense,
Shoaib, and HASC-PAC2016 datasets. MotionSense and HASC-PAC2016 are abbreviated as Motion and HASC,
respectively. Being widely adopted by existing works [65, 70, 71], they cover a wide range of users, devices, and
on-body positions, and to the best of our knowledge, the HASC dataset is the largest real-world dataset for HAR.
The following introduces the details of each dataset:

Motion dataset [37]. It contains 24 users with different genders, ages, heights, and weights. One iPhone 6s
is put into the front pockets of users to collect accelerometers and gyroscopes data for six activities at a 50Hz
sampling rate. This dataset mainly involves user heterogeneity.
HHAR dataset [50]. It collects IMU sensing data for six activities from nine users and three types of

smartphones. Data from accelerometers and gyroscopes are sampled at the highest frequency permitted by the
devices rather than a fixed one. This dataset mainly involves user and device heterogeneity.
Shoaib dataset [49]. It collects IMU data from five different body positions on ten subjects, including the

wrist, upper arm, belt, and left and right pockets. Samsung Galaxy smartphones are used to collect seven different
activities at a 50Hz frequency. This dataset mainly involves user and on-body position heterogeneity.
HASC dataset [19]. It contains real-life motion data from 64 people and 18 devices across 5 years. Users

perform unconstrained activities consecutively, and the wearing positions of devices could be changed during the
test. Devices including smartphones, smartwatches, and commercial wearable sensors are included. Six activities
are considered in our study and the data numbers of those activities are highly imbalanced. This dataset is the
largest and has the highest scale of heterogeneity across users, devices, and on-body positions.

All four datasets include walking, upstairs, and downstairs activities. In addition, the Motion dataset contains
jogging, sitting, and standing activities; the HHAR dataset collects data for biking, sitting, and standing; the
Shoaib dataset includes jogging, sitting, standing, and biking activities; the HASC dataset has jumping, jogging,
and staying activities. The accelerometers and gyroscopes are used for HAR, and the window length is set to 200
without overlapping. Data with different frequencies are resampled to 50Hz.

6.2.2 Baselines. The performance of ContrastSense is compared with eight state-of-the-art domain adaptation
and generalization and self-supervised learning approaches designed for HAR:
FMUDA and CMUDA [2] are two semi-supervised domain adaptation methods for HAR. FMUDA matches

features by minimizing maximum mean discrepancy across different domains. CMUDA adopts the domain
adversarial neural networks to align features.

Mixup [67] is a classific data augmentation approach for domain generalization. It generates artificial data by
mixing data from different distributions in a linear way.

GILE [41] is one domain generalization approach that learns domain-invariant and domain-specific features
with an Independent Excitation mechanism for cross-user HAR.

LIMU-BERT [65] is one generative learning method on IMU sensing with scarce labels, which designs
a lightweight BERT-like model with a self-attention mechanism to extract high-level temporal features. It is
abbreviated as LIMU.
CPCHAR [15] adopts Contrastive Learning for HAR to deal with class label scarcity. During pretraining, it

learns the temporal structure in data by predicting nearby features.
ColloSSL [21] leverages unlabeled IMU data from multiple devices for contrastive learning. It proposes a

device selection module and a contrastive sampling algorithm to select devices and data samples to calculate a
novel loss, Multi-view Contrastive Loss.
ClusterCLHAR [58] proposes a HAR framework using Contrastive Learning, which selects negatives by

unsupervised clustering methods based on SimCLR [3].
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Table 2. Performance comparison on cross-user experiment with 𝑛 = 10, 𝛼 = 25%, and 𝛽 = 40% for HAR with IMU.

Method HHAR Motion Shoaib HASC Average Weighted
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

FMUDA 50.96 48.49 66.21 62.61 50.21 48.96 37.69 25.45 51.27 46.38 49.88 45.37
CMUDA 48.85 46.48 65.18 61.54 50.04 48.47 35.12 23.39 49.80 44.87 48.50 43.96
Mixup 58.16 55.57 64.80 61.54 72.73 72.03 35.28 26.59 57.74 53.93 58.82 55.35
GILE 49.11 42.51 58.55 57.16 62.32 59.82 46.90 25.65 54.22 46.29 54.58 47.74

ColloSSL – – – – 52.80 52.26 – – – – – –
LIMU 65.81 60.40 63.69 60.93 71.48 71.11 54.44 13.79 63.86 51.57 64.78 53.25

CPCHAR 56.33 53.34 63.46 61.90 72.15 71.49 33.70 27.26 56.41 53.49 57.56 54.77
ClusterCLHAR 47.20 42.37 67.90 65.02 70.23 69.56 39.84 26.12 56.29 50.76 56.55 51.36
ContrastSense 68.35 66.43 73.26 71.82 78.46 78.23 44.70 34.92 66.19 62.85 67.03 63.92

Note that there is no existing work that specifically targets CL for domain generalization on HAR. We selected
the most relevant works as baselines for ContrastSense. Some CL methods, such as SimCLRHAR [53] and
MoCoHAR [59], are not included for comparison since ClusterCLHAR already outperforms them as reported in
[58]. FMUDA and CMUDA conduct domain-invariant learning on unlabeled data fromD𝑇 , which are inaccessible
in our scenarios. So we instead train the two models with the unlabeled data from D𝑆 . ColloSSL [21] requires
at least three synchronized devices worn by the participants thus it is only evaluated on Shoaib dataset in the
cross-user scenario. The accuracy and F1 score on each dataset are reported along with the mean accuracy and
F1 score across the four datasets for result comparison. In addition, considering the difference between datasets,
the weighted average accuracy and F1 score are also reported. The weight𝑤 (𝑖) for the 𝑖-th dataset is obtained
via:𝑤 (𝑖) = 𝑛𝑡𝑒𝑠𝑡 (𝑖)/

∑
𝑗 𝑛𝑡𝑒𝑠𝑡 ( 𝑗), where 𝑛𝑡𝑒𝑠𝑡 (𝑖) represents the number of test samples for the 𝑖-th dataset.

6.2.3 Implementation Details. The Adam optimizer is adopted to train the model along with the cosine annealing
learning rate decay [34]. The initial learning rates are set to be 1e-4 and 5e-4 during pretraining and fine-tuning,
respectively. The hyperparameters for IMU is set as follows: 𝑇 = 120, 𝜆1 = 0.7, 𝜆2 = 50,𝑚 = 0.999 and𝑀 = 1024.
The selection ratio 𝑟 in the similarity-based selection is set to 0.5, 0.8, 0.8, and 0.7 for HHAR, Motion, Shoaib, and
HASC datasets, due to the difference in the number of domains and data quality of datasets. More discussions on
the hyperparameters are presented in Appendix B.

6.2.4 Result Comparison. We evaluate the performance of ContrastSense in cross-user experiments with four
different datasets. We set the initial number of shots 𝑛 to 10, the percentage of source domain 𝛼 to 25%, and the
percentage of labeled source domain 𝛽 to 40%. Later, we also investigate the impact of varied 𝑛, 𝛼 , and 𝛽 .
Table 2 shows the results of ContrastSense in comparison to the baselines. With limited source domains and

scarce labels, ContrastSense achieves an average improvement of 8.9% in F1 score and 2.3% in accuracy over the
four datasets. Notably, the improvement in F1 scores is more substantial with more users in the dataset. Specifically,
on HHAR and Shoaib datasets, the F1 scores are improved by 6.0% (runner-up LIMU) and 6.2% (runner-up Mixup)
while on Motion and HASC datasets, the F1 scores are improved by 6.8% (runner-up ClusterCLHAR) and 7.7%
(runner-up CPCHAR). These results demonstrate that ContrastSense can better handle class label scarcity and
domain diversity across users than the baselines (a statistical test is provided in Appendix C). Note that on HASC
dataset, LIMU achieves slightly higher accuracy than ContrastSense but a much lower F1 score. The reason is that
the data in HASC dataset is highly imbalanced, where some classes have much more data than others. LIMU may
overfit to classes with sufficient data, whereas ContrastSense shows better robustness. Overall, ContrastSense
achieves better performance on cross-user scenarios than all eight baselines.
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Fig. 5. Performance comparison with varied settings on the cross-user experiment for HAR with IMU. The average F1 score
on the four datasets is presented. The error bar represents the standard deviation. ColloSSL is not included since it can only
be applied to the Shoaib dataset.

Different Shots of Labels. We vary the label shots number 𝑛, which influences the degree of class label
scarcity. In Fig. 5(a), with more labels provided, the performances of all models improve since more labels provide
more accurate sampled distributions for supervision. When 𝑛 is 1, 5, 10, 50, ContrastSense outperforms the best
baseline by 2.8%, 5.7%, 8.9%, and 5.7% on average in terms of F1 scores, respectively.
Different Percentages of Source Domains.We further vary the percentages of source domains 𝛼 , which

affects the degree of domain shifts to be experienced. We select four different settings, 𝛼 = 25%, 𝛼 = 45%,
𝛼 = 65%, and Leave-One-Domain-Out (LODO) settings. In Fig. 5(b), When 𝛼 is 25%, 45%, and 65%, ContrastSense
outperforms the best baseline by 8.9%, 6.1%, and 5.5% F1 score on average, respectively. In the LODO setting,
ContrastSense outperforms the best baseline by 2.5% F1 score. Besides, we notice that in the LODO setting,
ContrastSense does not outperform LIMU and CPCHAR on the HHAR and Motion datasets. This can be attributed
to the relatively mild domain shifts presented in both datasets under the LODO setting. However, ContrastSense
outperforms them in various settings, which demonstrates its robustness and generalizability.
Different Percentages of Labeled Source Domains.We further assess the impact of varied percentages

of labeled source domains 𝛽 , which influences the degree of domain shifts and the overfitting problem during
fine-tuning. Fig. 5(c) shows that ContrastSense on average outperforms the best baseline by 5.7%, 5.9%, 8.0%, and
6.2% in terms of F1 score over the four datasets when 𝛽 is 40%, 60%, 80%, and 100%, respectively. The results
suggest that ContrastSense may learn domain-invariant features that are more robust by utilizing the unlabeled
source domains. In contrast, domain-invariant features learned by the baselines could be less representative
and less robust on the target domains, if only labeled data from the labeled source domains D𝐿𝑆 is used. The
statistical tests are conducted on each setting based on the F1-score in Fig.5, and there is over 99.9% confidence to
conclude that ContrastSense outperforms those baselines in different settings (please see Appendix C). Besides, a
detailed results comparison on each dataset in varied settings is presented in Appendix D.

6.2.5 Ablation Study. An ablation study is conducted to validate the effectiveness of each design component
in ContrastSense, the result of which is presented in Table 3. By pretraining the model with a classic CL loss,
InfoNCE loss, 54.91% average F1 score is achieved. InfoNCE loss allows the model to extract useful information
from the unlabeled data. In contrast to InfoNCE loss, which uses all views augmented from different samples,
SInfo loss selects some negatives for contrast. Its performance is 5.1% better than that of InfoNCE loss in terms of
average F1 score. Such a boost can be attributed to the negative selection strategy, which omits some adjacent
samples and easily discernible ones from diverse domains. On the other hand, combining CDL with InfoNCE loss
escalates the performance, reflecting a 5.7% increase on the average F1 score. CDL drives the model to extract
domain-invariant information among D𝑆 to enhance its generalizability without any activity labels. Moreover,
a synergistic effect is observed when CDL is jointly optimized with SInfo loss, resulting in a 1.4% F1 score

, Vol. 1, No. 1, Article . Publication date: October 2024.



16 • Gaole et al.

Table 3. Ablation Study on HAR with IMU. It is based on the cross-user experiments with 𝑛 = 10, 𝛼 = 25%, and 𝛽 = 40%

Design∗ HHAR Motion Shoaib HASC Average Weighted
InfoNCE SInfo CDL PwP Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

✓ ✓ ✓ 68.35 66.43 73.26 71.82 78.46 78.23 44.70 34.92 66.19 62.85 67.03 63.92
✓ ✓ 68.27 66.33 72.34 70.64 76.74 76.51 43.85 34.19 65.30 61.92 66.08 62.95

✓ ✓ 65.73 62.88 72.30 69.47 76.54 76.22 44.50 33.76 64.77 60.58 65.47 61.64
✓ 64.66 60.79 71.02 69.34 76.25 76.02 43.77 33.85 63.92 60.00 64.71 61.01

✓ 54.94 51.17 69.98 68.13 71.19 70.20 37.83 30.13 58.48 54.91 58.80 55.36
* PwP refers to the parameter-wise penalty.

improvement on average compared with when just paired with InfoNCE loss. While SInfo loss and CDL both
enhance the robustness of the model, the results indicate that they are complementary, as they address distinct
challenges in the CL process. Last but not least, during the domain-invariant fine-tuning stage, the average F1
score is further improved by 1.2% with the PwP. When training with the PwP, the mean F1 score is 62.85 and the
standard deviation is 2.17. When training without PwP, the mean F1 score is 61.92 and the standard deviation is
2.88. The Wilcoxon signed-rank test shows the test statistic is 154.0 and the p-value is 0.035, which means there
is more than 95% confidence to conclude that the PwP is effective for improving performance. In addition to the
results in Table 3, a more detailed analysis of the effectiveness of CDL and the negative selection is provided in
Appendix E.

6.3 Gesture Recognition with Electromyography
6.3.1 Datasets. ContrastSense is evaluated with three public datasets on GR with EMG, i.e., MyoArmBand [6],
NinaPro DB4 datasets [40], and NinaPro DB5 datasets [40], which are abbreviated as Myo, DB4, DB5. To the best
of our knowledge, the Myo dataset is the largest public EMG dataset. The following introduces each dataset:
Myo dataset [6]. It collects the data of 40 subjects with a commercial EMG sensor, the Myo Armband. The

armband is worn by users on the forearm with a sampling rate of 200Hz, and 7 gestures are included, i.e., Neutral,
Hand Close/Open, Wrist Extension/Flexion, and Ulnar/Radial Deviation.

NinaPro DB4 [40]. It collects the EMG data of 4 females and 6 males using 12 Cometa electrodes. The sampling
rate is 2kHz. The first 8 electrodes are equally spaced around the forearm, which are used in our experiments.
NinaPro DB5 [40]. It contains the EMG data of 10 righthand subjects. Two Myo Armbands are deployed

around the elbow, one on the radio humeral joint and one closer to the hand.
Following [6], the window length of each sample is set to 52, and there is no overlapping between samples.

Besides, the EMG data in DB4 is down-sampled to 200Hz. Notably, NinaPro DB4 differs significantly from NinaPro
DB5 in terms of data collection procedures, devices used, and participants.

6.3.2 Baselines. The performance of ContrastSense is compared with three state-of-the-art baselines for GR
with EMG that are most related, i.e., Mixup, CALDA, and ConSSL. Other baselines in Section 6.2 are not used
since they are proposed specifically for IMU. As Mixup has been introduced in Section 6.2, the latter two are
briefly described as follows:
CALDA [63] propose a contrastive adversarial learning method for domain adaption, in which adversarial

learning aligns the domain distributions and the contrastive loss clusters samples with the same labels.
ConSSL [28] designs a domain adaptation framework with contrastive learning to overcome the domain shifts

across subjects. For each sample in the source domain, it selects the sample next to it as the positive and some
non-adjacent ones as negatives, and then the model is fine-tuned on the target domain.
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Fig. 6. Performance Comparison with varied settings on GR with EMG. (a) Performance with varied shots 𝑛. (b) Performance
with varied percentages 𝛼 . (c) Performance with varied percentages 𝛽 .

Table 4. Performance comparison on cross-user experiment with 𝑛 = 10, 𝛼 = 25%, and 𝛽 = 40% for GR with EMG.

Method Myo DB4 DB5 Average Weighted
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

CALDA 35.76 33.27 27.06 22.47 25.21 19.24 29.34 24.99 32.40 28.94
Mixup 55.04 52.98 33.66 30.42 36.99 32.87 41.90 38.75 48.08 45.46
ConSSL 60.82 59.66 26.90 22.80 32.89 30.17 40.21 37.54 49.91 47.94

ContrastSense 62.01 61.19 36.45 33.83 40.52 38.03 46.32 44.35 53.71 52.28

Since the target domain data is not accessible in the proposed scenario, CALDA is only trained in the source
domains, and ConSSL is fine-tuned on the labeled data in the source domains.

6.3.3 Implementation Details. The learning rate is set to 1e-3 for pretraining and fine-tuning. The𝑇 is 40, 𝑟 is 0.8,
and 𝜆2 is 4e3. The 𝜆1 is 0.7, 0.4, and 0.1 for Myo, DB4, DB5, respectively, considering their large difference in the
number of users. The rest of the hyperparameters are kept aligned with those used for IMU sensors.

6.3.4 Result Comparison. Table 4 shows the performance of ContrastSense and baselines in the cross-user
scenario on GR with EMG. On the Myo dataset, ContrastSense outperforms the best baseline by 1.2% average
accuracy and 1.5% average F1 score. On the DB4 dataset, the average accuracy and F1 score improvement over
the best baseline are 2.8% and 3.2%, respectively. As for the DB5 dataset, it outperforms the best baseline by 3.3%
average accuracy and 4.7% average F1 score. The average performance of ContrastSense reaches 46.32% accuracy
and 44.35% F1 scores, which outperforms the best baselines by 4.4% and 5.6%, respectively. The results indicate
the superior performance of ContrastSense compared with the baselines on GR with EMG.

Different Shots of Labels. Fig. 6(a) presents the results with varied shots of labeled data when 𝛼 = 25% and
𝛽 = 40%. When 𝑛 is 1, 5, 10, 50, the performance of ContrastSense outperforms the best baselines by 2.9%, 1.3%,
5.6%, and 1.0%, which shows the effectiveness of ContrastSense in handling class label scarcity.
Different Percentages of Source Domains. Fig. 6(b) presents the results with varied 𝛼 when 𝛽 = 40% and

𝑛 = 10. When 𝛼 is 25%, 45%, and 65%, ContrastSense outperforms the best baseline by 5.6%, 4.0%, and 4.3% on
average in terms of F1 score. In the LODO setting, ContrastSense outperforms the best baseline by 8.1% F1 score.
We observe some abnormal performance decrease comparing the results in the LODO setting with the results
when 𝛼 = 65%. The reason might be the data of the test user(s) randomly selected in some of the five splits are
quite different from the data used for training. The results show the generalizability of ContrastSense to handle
different amounts of unlabeled data from varied size of source domains.
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Table 5. Ablation Study on GR with EMG. It is based on the cross-user experiments with 𝑛 = 10, 𝛼 = 25%, and 𝛽 = 40%

Design* Myo DB4 DB5 Average Weighted
InfoNCE SInfo CDL PwP Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

✓ ✓ ✓ 62.01 61.19 36.45 33.83 40.52 38.03 46.32 44.35 53.71 52.28
✓ ✓ 61.40 60.68 36.25 33.51 40.28 37.96 45.98 44.05 53.24 51.88

✓ ✓ 59.06 57.92 35.00 32.86 38.62 36.86 44.27 42.55 51.21 49.78
✓ 60.40 58.99 34.80 33.08 40.08 37.24 45.09 43.10 52.29 50.58

✓ 58.06 56.87 34.10 31.92 37.64 35.13 43.27 41.31 50.23 48.64
* PwP refers to the parameter-wise penalty.
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Fig. 7. Effectiveness of the domain queues. (a) Performance with varied domain queues size. (b) Memory usage with and
without domain queues with varied numbers of negatives. (c) Performance with varied momentum update ratio.

Different Percentages of Labeled Source Domains. Fig. 6(c) presents the results with varied percentages 𝛽
when 𝛼 = 25% and 𝑛 = 50. When 𝛽 is 40%, 60%, 80%, and 100%, the average F1 score achieved by ContrastSense
are 1.2%, 2.2%, 2.3%, and 1.1% higher than the baselines, respectively. Statistical tests show that ContrastSense
consistently outperforms those baselines in different settings on GR with EMG (please see Appendix C).

6.3.5 Ablation Study. The ablation study presented in Table 5 justifies the effectiveness of each design in
ContrastSense for GR with EMG. While InfoNCE loss for CL achieves 41.31% F1 scores, it does not account for
adjacent negatives and domain shifts. In contrast, SInfo loss addresses these limitations and yields a boost of
1.8% average F1 score with negative selection. When CDL is integrated with InfoNCE loss, the performance is
further elevated by a 1.2% average F1 score. When both SInfo loss and CDL are included for the domain-invariant
pretraining, the performance improves by 2.7% in terms of average F1 score, compared with using InfoNCE loss.
When the PwP is further integrated, the mean F1 score is improved from 44.05 (standard deviation=1.41) to 44.35
(standard deviation=1.99). The Wilcoxon signed-rank test shows that there is over 80% confidence degree to
conclude that the PwP is effective (the t-value is 78.0, the p-value is 0.165). Compared with the ablation study on
IMU datasets, the improvements of the design components are smaller, which might be due to the difference in
modalities and datasets. These results show that ContrastSense is effective for different kinds of modalities and
applications.

6.4 Effectiveness of the DomainQueues
The domain queues in ContrastSense not only supply more features for CDL and SInfo loss but also save memory
usage during training. The effectiveness of domain queues is further discussed in this section with the IMU
datasets, and similar results can be obtained with the EMG datasets.
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Fig. 8. Performance comparison with varied shots of labels 𝑛 in different cross-domain scenarios.

40 60 80 100
Percentage  (%)

0
10
20
30
40
50

Av
er

ag
e 

F1
 sc

or
e 

(%
)

(a) Cross-device scenario

50 100
Percentage  (%)

0

20

40

60

80

Av
er

ag
e 

F1
 sc

or
e 

(%
)

(b) Cross-position scenario

40 60 80 100
Percentage  (%)

0
10
20
30
40
50

Av
er

ag
e 

F1
 sc

or
e 

(%
)

(c) Cross-user-device scenario

40 60 80 100
Percentage  (%)

0

20

40

60

80

Av
er

ag
e 

F1
 sc

or
e 

(%
)

(d) Cross-user-position scenario

LIMU Mixup GILE FMUDA CMUDA CPCHAR ClusterCLHAR ContrastSense

Fig. 9. Performance comparison with varied percentages 𝛽 in different cross-domain scenarios.

Fig. 7(a) shows that compared with training without the domain queues (only the features in the current batch
are used), training with the domain queues when 𝑀 = 1024 achieves a 5.2% F1 score improvement, thereby
substantiating the efficacy of the domain queues design. Besides, a larger domain queues size could improve
the quality of the domain-invariant features, since more samples from source domains may provide a more
realistic sampled domain distribution, allowing the encoder to align features from source domains more accurately.
However, when the domain queues contain too many features, it may be challenging for the model to conduct
positive-negative classification, resulting in the observed performance degradation in Fig. 7(a).
Fig. 7(b) shows that with a larger number of negatives for contrast, CL experiences a substantial surge in

memory usage when domain queues are absent. In contrast, the integration of domain queues leads to a marginal
increment in memory usage. The reason is that the utilization of domain queues empowers the model to directly
access the stored features. In contrast, the model trained without the use of domain queues needs to encode
negative samples to features from scratch, which uses much more memory than the domain queues.
However, the features from previous batches that are stored in the domain queues could be different from

the current features, which may hinder the model from learning high-quality features. To mitigate this issue,
ContrastSense employs the momentum update [16], the impact of which is presented in Fig. 7(c). When 𝑓𝑚 and 𝑔𝑚
are updated with a higher momentum update ratio, the stored features in the domain queues are more consistent,
thus achieving better positive-negatives discrimination during the domain-invariant pretraining. When the ratio
is 1.0, 𝑓𝑚 and 𝑔𝑚 are not updated, leading to suboptimal performance.

6.5 Overcoming Different Kinds of Domain shifts
The ability of ContrastSense to handle different cross-domain scenarios is further evaluated in this section. In the
cross-device and cross-user-device scenarios, the HASC dataset is used for results comparison. Other datasets are
excluded because they collect data from few devices. Cross-position and cross-user-position experiments are
conducted on the Shoaib dataset since the other datasets do not provide on-body position labels or only include
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Table 6. Performance comparison on cross-dataset experiment with 𝑛 = 50 for HAR with IMU. For example, when the HHAR
dataset is the target, the other three datasets are used for training, and the models are evaluated on the HHAR dataset.

Method
Target Dataset Average WeightedHHAR Motion Shoaib HASC

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

FMUDA 57.97 46.90 69.27 54.22 65.74 59.60 55.63 39.99 62.15 50.18 61.76 50.51
CMUDA 55.61 45.23 68.60 47.77 54.37 50.31 41.58 32.84 55.04 44.04 55.44 44.53
Mixup 57.97 42.74 47.94 28.92 64.46 54.89 42.18 28.09 53.11 38.66 54.78 40.89
GILE 58.47 43.21 63.92 42.25 60.91 49.61 32.18 28.98 53.87 41.01 54.46 41.91
LIMU 45.77 26.33 62.75 36.55 64.00 58.19 19.40 19.47 47.98 35.14 48.52 36.25

CPCHAR 55.90 35.77 10.50 6.54 64.29 55.29 57.03 33.29 46.93 32.73 50.88 36.13
ClusterCLHAR 35.10 23.41 11.81 7.31 45.53 39.77 33.77 21.77 31.55 23.07 29.89 21.55
ContrastSense 71.81 64.96 75.70 57.85 76.70 72.59 73.87 41.22 74.52 59.16 74.68 57.10

limited positions. The cross-device-position experiment is not conducted since Shoaib only includes one device.
As there are only five on-body positions in the Shoaib dataset, we randomly select two positions (domains) for
training, one for evaluation, and the rest for testing in the cross-position scenario. In all scenarios except for
the cross-dataset scenario, the percentage 𝛼 is fixed at 25% to align the experiment settings with the proposed
scenario in Fig. 1.

In the cross-dataset scenarios, the models are required to overcome domain shifts from users, devices, positions,
and collection procedures. For the IMU datasets, we focused on four common classes among the datasets: static,
walking, downstairs, and upstairs. For the EMG datasets, we considered five classes: neural, hand close, hand open,
wrist extension, and wrist flexion. Considering the limited number of datasets, one dataset is selected as the target
dataset, and the rest are used for training.

6.5.1 Cross-Device Scenario. Fig. 8(a) and Fig. 9(a) compare the performance of ContrastSense and baselines
in the cross-device scenario. When 𝑛 = 5, 10, 50, and 100, the F1 score improvements of ContrastSense over
the best baseline are 3.3%, 5.7%, 2.9%, and 3.5%, respectively. When 𝛽 = 40%, 60%, 80% and 100%, ContrastSense
achieves higher F1 scores than the best baseline by 2.9%, 2.0%, 5.3%, and 5.3%, respectively. The results suggest that
ContrastSense more effectively utilizes the scarce labels from limited D𝑆 to generalize across different devices.

6.5.2 Cross-Position Scenario. Fig. 8(b) shows that when 𝑛 = 5, 10, 50 and 100, ContrastSense outperforms the
best baseline by 11.6%, 7.7%, 1.2%, and 0.9% in terms of F1 scores, respectively. Besides, Fig. 9(b) shows the F1 score
gained with ContrastSense in comparison to the best baseline increases from 1.2% when 𝑛 = 50 and 𝛽 = 50% to
4.4% when 𝑛 = 50 and 𝛽 = 100%. Overall, the results suggest that ContrastSense can better deal with the domain
shifts across on-body positions with scarce labels and limited source domains.

6.5.3 Cross-User-Device Scenario. Fig. 8(c) and Fig. 9(c) present the performance of ContrastSense and baselines
with varied numbers of label shots 𝑛 and percentages 𝛽 , when presented with domain shifts caused by users
and devices. When 𝑛 = 5, 10, 50, and 100, ContrastSense outperforms the best baseline by 5.8%, 4.8%, 3.9%, and
3.9% on average in terms of F1 score. When 𝛽 = 40%, 60%, 80%, and 100% with 𝑛 fixed to 50, the performances
of ContrastSense over the best baseline are 3.9%, 3.1%, 1.2%, and 2.7%, respectively. The results show that
ContrastSense could handle domain shifts from users and devices simultaneously.

6.5.4 Cross-User-Position Scenario. The results of cross-user-position scenario are presented in Fig. 8(d) and Fig.
9(d). When 𝑛 = 5, 10, 50, and 100, ContrastSense achieves 4.1%, 7.5%, 10.1%, and 6.8% improvements on average in
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Table 7. Performance comparison on cross-dataset experiment with 𝑛 = 50 for GR with EMG.

Method
Target dataset Average WeightedMyo DB4 DB5

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

CALDA 28.03 19.46 28.43 27.62 27.74 24.68 28.07 23.92 28.06 21.90
Mixup 40.03 36.67 25.17 17.58 35.62 31.21 33.61 28.49 36.43 32.09
ConSSL 21.63 16.20 18.15 8.97 32.70 30.95 24.16 18.71 22.81 17.27

ContrastSense 39.24 38.02 30.39 28.56 35.75 31.23 35.16 32.78 37.01 35.15

Table 8. Inference Overhead on IMU sensor data

Metric FMUDA CMUDA CPCHAR GILE ColloSSL Mixup ClusterHAR LIMU ContrastSense

Inference time (ms) 3 4 455 11 4 6 7 40 21
CPU usage (%) 11 13 46 8 18 16 15 24 18

Memory usage (%) 0.83 0.84 0.93 0.95 0.79 0.83 0.84 0.90 1.48

terms of F1 score compared with the best baseline. When 𝛽 = 40%, 60%, 80%, and 100% with 𝑛 = 50, ContrastSense
outperforms the best baseline by 10.1%, 5.4%, 6.1%, and 7.1% on average in terms of F1 score. ContrastSense could
learn high-quality domain-invariant features when presented with different kinds of domain shifts.

6.5.5 Cross-Dataset Scenario. The results of the cross-dataset scenario are presented in Table 6 and Table
7. ContrastSense demonstrated a notable average accuracy improvement of 12.3% and an average F1 score
improvement of 9.0% on the IMU datasets. For the EMG datasets, the improvements of ContrastSense over
the best baselines are 1.6% in terms of accuracy and 4.3% in terms of F1 score. We acknowledge that while
ContrastSense achieves better results, the performance on EMG datasets suggests that there is a large room
for improvement. The reason might be that the large dataset gap between different EMG datasets makes the
domain-invariant features extracted from the source EMG datasets less applicable to the target EMG dataset.
Future work will focus on further exploring these cross-dataset challenges.

6.6 Computational Overhead of ContrastSense
The on-device inference overhead of ContrastSense is further analyzed in this section, using one Samsung Galaxy
S8 equipped with an Octa-core CPU and 4 GB RAM. The average inference time on ten samples, the average CPU
usage, and the total memory usage during operation on the mobile phone are included as the evaluation metric.
As shown in Table 8 and Table 9, the results demonstrate that ContrastSense achieves comparable inference

times of 21ms and 8ms for IMU and EMG data, respectively, matching the performance of baseline methods.
While the memory usage of ContrastSense is slightly higher, primarily due to its use of larger intermediate
features and a more complex model structure (e.g., the DeepSense model [66]), it remains within the affordable
range (only 1.48% for IMU data and 1.00% for EMG data) for modern mobile devices. Moreover, this overhead
can be mitigated through techniques such as model quantization and distillation [62]. Overall, the overhead is
affordable considering the performance gains of ContrastSense.
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Table 9. Inference Overhead on EMG sensor data

Metric CALDA Mixup ConSSL ContrastSense

Inference time (ms) 10 4 43 8
CPU usage (%) 15 13 13 14

Memory usage (%) 0.83 0.13 0.80 1.00

7 Discussions
We comprehensively evaluate ContrastSense across various datasets and settings, demonstrating its ability
to address domain shifts and class label scarcity. In this section, we further explore the practical adoption of
ContrastSense and its applicability to other modalities, and outline potential future directions.

7.1 Practical Adoption of ContrastSense for In-the-Wild Wearable Sensing
Real-life Use Scenarios. ContrastSense addresses the challenges of label scarcity and domain shifts in in-the-
wild wearable sensing scenarios (Fig. 1), making it applicable for real-life scenarios, such as intelligent healthcare
and human-computer interaction [20, 32]. For instance, wearable sensors on patients or the elderly can be utilized
for services like fall detection and sleep staging, aiding in disease diagnosis, prevention, and intervention [20, 45].
In human-computer interaction, interactive game control requires accurate gesture recognition, which can be
facilitated by hand-held devices or wearable sensors [32]. However, collecting labeled data for every patient or
game player for model training is impractical due to the labeling overhead and data privacy concerns, limiting the
amount of labeled data and the number of domains for training. In such cases, ContrastSense can be employed to
extract domain-invariant features from the unlabeled data and limited labeled data, which enhances the feasibility
of deploying pervasive computing solutions that blend into various real-world scenarios with less effort.
Enhancing the Real-life Deployability.While ContrastSense has achieved better performance compared

with the baselines, its performance, particularly on the HASC dataset, is still below expectations. To enhance real-
life deployability, future works may explore data augmentation techniques and deep learning-based data synthesis.
Methods such as mixup and Generative Adversarial Networks [35, 56] can be leveraged to synthesize realistic
data, thereby increasing data heterogeneity for improved domain alignment. Apart from the substantial domain
shifts, the challenges related to the HASC dataset also include imbalanced categories and potential inaccuracies
in labels collected through crowdsourcing. To handle those difficulties, methods like class re-sampling [18] and
label correction [13] would be further investigated.

7.2 Applying ContrastSense to Other Kinds of Modalities
In the experiments, ContrastSense has been evaluated in the context of HAR with IMU and GR with EMG. While
we are optimistic regarding its potential applicability to other time-series data or sensing modalities, certain
assumptions inherent to ContrastSense may limit its extension to diverse modalities. For instance, the time
window selection assumes adjacent samples within the window belong to the same class, which may not hold
for tasks characterized by frequent class changes, such as speech recognition. To address this challenge, it is
interesting to study using changing point detection algorithms (e.g., [23]) at class levels on the time sequences to
automatically determine 𝑇 . Furthermore, the exclusive consideration of time dimension characteristics might
result in suboptimal performance for modalities with spatial dimensions, such as LiDAR and Wi-Fi. Exploring
the definition of positives and negatives for CL based on spatial proximity [36] emerges as a potential direction
for further investigation. Our future endeavors will focus on extending ContrastSense to diverse modalities and
addressing these challenges to enhance its overall applicability.
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8 Conclusion
To deal with domain shifts and class label scarcity simultaneously for in-the-wild wearable sensing, this paper
proposes a novel domain-invariant CL framework, ContrastSense. ContrastSense can effectively utilize the
unlabeled data from the source domains to extract high-level domain-invariant features with CDL and SInfo
loss with negative selection. The domain-invariant encoder is fine-tuned with a parameter-wise penalty to
preserve the domain-invariant knowledge learned with pretraining. Extensive experiments are conducted with
different modalities, tasks, and domain heterogeneities. The results suggest that ContrastSense outperforms the
state-of-the-art baselines in varied settings.
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A Appendix: The Degrees of Domain Shifts in Different Scenarios
Different cross-domain scenarios are considered in Section 6 to provide a comprehensive evaluation of Con-
trastSense and selected baselines. A quantitative analysis based on the Maximum Mean Discrepancy (MMD) is
provided to show the degree of domain shifts between source and target domains across the considered datasets
and scenarios. MMD is a widely used metric for measuring the difference in data distributions between domains
[2]. A larger MMD value indicates a larger domain shift. The mean MMD between source and target domains
over five random splits, along with the standard deviations, are measured and reported. The results for the IMU
and EMG data are presented in Table 10 and Table 11.

Table 10. The mean MMD distances between source domains and target domains on the IMU datasets in different cross-
domain scenarios. The standard deviations of the MMD value are included in the parentheses.

Scenario Cross-user

Dataset HHAR Motion Shoaib HASC

MMD 0.0445 (0.0178) 0.0105 (0.0081) 0.0069 (0.0033) 0.0351 (0.0447)

Scenario Cross-device Cross-position Cross-user-device Cross-user-position

Dataset HASC Shoaib HASC Shoaib

MMD 0.1044 (0.0771) 0.1773 (0.0881) 0.0258(0.0150) 0.0314 (0.0126)

Scenario Cross-datasets

Target Dataset HHAR Motion Shoaib HASC

MMD 1.1627 (0) 0.2940 (0) 0.2425 (0) 0.5940 (0)

In the cross-device, cross-position, cross-user-device, and cross-user-position scenarios, only one dataset
is included for each, as explained in Section 6.5. In the cross-dataset scenarios, the standard deviations are
consistently 0 because the source and target domains remain the same across different splits. For example, when
the target domain is the HHAR dataset, the source domains are always the remaining three datasets.

As shown in Table 10, the MMD values for the HHAR and HASC datasets in the cross-user scenario are larger
than those for the other two IMU datasets, indicating larger domain shifts in the HHAR and HASC datasets. This
may explain the worse performance of methods on the HHAR and HASC datasets in Table 2 compared with the
results on the other two datasets. The MMD values for the cross-device and cross-position scenarios are higher
than those for the cross-user scenarios, suggesting that the discrepancies between data from different devices
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Table 11. The mean MMD distances between source domains and target domains on the EMG datasets in different cross-
domain scenarios.

Scenario Cross-user

Dataset Myo DB4 DB5

MMD 0.0577 (0.0254) 0.1579 (0.0916) 0.1427 (0.1325)

Scenario Cross-datasets

Target Dataset Myo DB4 DB5

MMD 0.4407 (0) 0.0782 (0) 1.3674 (0)
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Fig. 10. Sensitivity analysis with three key parameters in ContrastSense. The unit of 𝑇 is the number of samples, which
means the 𝑇 samples around the query sample are excluded from the time-window selection. For example, when 𝑇 = 120,
the 60 samples ahead of the query sample 𝑥𝑘 and the 60 samples after 𝑥𝑘 would be excluded.

and on-body positions are larger than those between different users. The cross-dataset scenario encompasses
multiple domain shifts simultaneously, resulting in a larger MMD distance compared with all other scenarios.
In Table 11, the MMD for the Myo dataset is smaller than that for the other two datasets in the cross-user

scenario, which may contribute to better performance of methods on the Myo dataset compared with their
performance on the other two datasets in Table 4.

B Appendix: Sensitivity Analysis
A sensitivity analysis is performed on HAR with IMU over several key parameter settings of ContrastSense,
including the time window length 𝑇 , the CDL weight 𝜆1, and the parameter-wise penalty weight 𝜆2. Similar
results can be obtained for GR with EMG.

B.1 Impact of the Time Window Length
As shown in Fig. 10(a), a greater number of adjacent samples are excluded from the contrast process with a larger
time window, which enhances the feature quality and improves the model performance. However, a larger time
window also increases the risk of discarding samples from different classes and leads to a performance decrease,
especially from classes that shift frequently in time-sequenced data. Specifically, while the optimal average F1
score across the four datasets is achieved with a time window of 𝑡 = 120 (the value we adopt), the model shows
the best performance on the HASC dataset at 𝑡 = 60 due to its rapid motion transitions. Therefore, we recommend
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shorter time windows for datasets with frequent activity changes. The possibility of applying automatic time
window length determination is further discussed in Section 7.

B.2 Impact of the CDL Weight
Fig. 10(b) shows the effect of the CDL weight 𝜆1. As 𝜆1 increases, the model acquires more domain-invariant
knowledge, enabling it to handle domain shifts more effectively. However, when 𝜆1 exceeds 0.7, the model’s
performance deteriorates. A possible reason is that if themodel prioritizes optimizing CDL, it may learn inadequate
high-level features from the unlabeled data for the downstream tasks. ContrastSense requires an appropriate
weight 𝜆1 for the learning with CDL and SInfo loss to ensure the production of sufficient high-level features for
the downstream tasks, as well as domain-invariant features to address the domain shifts.

B.3 Impact of the Parameter-wise Penalty Weight
The results displayed in Fig. 10(c) show the performance of ContrastSense with varied weight 𝜆2 for the parameter-
wise penalty. The parameter-wise penalty acts as a constraint during fine-tuning to prevent the loss of domain-
invariant knowledge acquired with CDL. A larger 𝜆2 imposes a greater penalty on adjusting the parameters in
the encoders that are crucial for domain-invariant knowledge. However, if 𝜆2 continues to rise, the penalties for
all parameters become overly high. Consequently, the model may become inadequately tuned for the tasks.

C Appendix: Statistical Tests on the Main Results
We conducted comprehensive statistical tests to rigorously evaluate the performance of ContrastSense. Friedman’s
test [7] was first performed to compare the overall differences among all methods. This was followed by Wilcoxon
signed-rank tests [7] to assess the pairwise differences between ContrastSense and each baseline method, as
recommended by prior works [7, 44]. These tests were applied to the F1 scores reported in the key results of this
paper, covering Table 2, Table 4, Table 6, Table 7, Figure 5, Figure 6, Figure 8, and Figure 9. The test statistics and
corresponding p-values are summarized in Table 12 and Table 13. Each row in the Wilcoxon signed-rank test
results represents the comparison between ContrastSense and a specific baseline method.

Table 12. The statistical tests compare the F1 scores of ContrastSense with the baselines on the IMU datasets. The values
outside the brackets represent the test statistics, while the values inside the brackets indicate the corresponding p-values.

Statistical Test Method Table 2 Table 6 Fig. 5 Fig. 8 Fig. 9

Friedman’s test – 118 (3.0e-16) 19.0 (2.7e-4) 1.6e3 (3.6e-197) 505.9 (2.7e-67) 500.7 (2.7e-66)

Wilcoxon test

ColloSSL 210 (9.5e-7) – – – –
LIMU 208 (2.9e-6) 10 (6.3e-2) 2.8e4 (9.5e-35) 2.5e3 (2.1e-13) 2.5e3 (1.7e-13)
Mixup 199 (5.2e-5) 10 (6.3e-2) 2.6e4 (2.3e-28) 2.5e3 (3.1e-13) 2.6e3 (1.4e-13)
GILE 210 (9.5e-7) 10 (6.3e-2) 2.9e4 (2.3e-41) 2.5e3 (9.0e-12) 2.5e3 (1.0e-12)

FMUDA 210 (9.5e-7) 10 (6.3e-2) 2.8e4 (2.2e-37) 2.5e3 (1.2e-12) 2.5e-3 (3.5e-12)
CMUDA 210 (9.5e-7) 10 (6.3e-2) 2.8e4 (3.5e-38) 2.5e3 (1.7e-12) 2.5e3 (2.2e-12)
CPCHAR 208 (2.9e-6) 10 (6.3e-2) 2.6e4 (4.9e-27) 2.4e3 (1.3e-10) 2.4e3 (1.4e-10)

ClusterHAR 195 (1.3e-4) 10 (6.3e-2) 2.8e4 (5.1e-37) 2.6e3 (1.2e-13) 2.6e3 (1.4e-13)

As shown in Table 12 and Table 13, the test statistic is 118, with a p-value of 3.0e-16 for the F1 score results in
Table 2, indicating more than 99.9% confidence that the methods perform differently. The Wilcoxon signed-rank
test further reveals that there is more than 99.9% confidence that ContrastSense outperforms the baseline methods
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Table 13. The statistical tests compare the F1 score of ContrastSense and the baselines on the EMG datasets. The values
outside the brackets represent the test statistics, while the values inside the brackets indicate the corresponding p-values.

Statistical Test Method Table 4 Table 7 Fig. 6

Friedman’s test – 49.3 (8.0e-6) 1.5 (0.472) 610.6 (1.6e-48)

Wilcoxon test
Mixup 118 (9.2e-5) 6.0 (0.125) 1.4e4 (1.5e-16)
ConSSL 120 (3.0e-5) 6.0 (0.125) 1.6e4 (1.4e-31)
CALDA 118 (9.2e-5) 6.0 (0.125) 1.4e4 (1.5e-16)

in Table 2, with an average F1-score improvement of 8.9% over the best baseline (Mixup). Similar conclusions are
drawn from the other results. The smallest p-value in Table 12 and Table 13 is 0.125, derived from the results
in Table 7. Although ContrastSense shows a 4.3% average F1-score improvement over Mixup in Table 7, its
improvement on the DB5 dataset is less pronounced. This may be due to Mixup’s effective augmentation of
samples that better approximate the data distribution of the DB5 dataset. Future work will explore enhanced data
augmentation techniques to further integrate them into the ContrastSense pipeline. Additionally, the p-value for
Friedman’s test in Table 7 is 0.472, likely due to the limited number of baselines and test cases in the cross-dataset
scenarios. Since Friedman’s test compares the ranks of different methods, a smaller number of methods (in
this case, only four) results in less pronounced rank differences. Overall, these statistical tests demonstrate that
ContrastSense consistently outperforms state-of-the-art baselines.

D Appendix: Results Comparison on Each Dataset
In the main paper, the average F1 score is reported on the IMU datasets and EMG datasets in Fig. 5 and Fig. 6,
respectively. To provide a detailed performance comparison, the results of ContrastSense and baselines on each
dataset are presented in Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, and Fig. 161.
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Fig. 11. Performance comparison with varied shots 𝑛 on the cross-user experiment for HAR with IMU.

As shown in Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, and Fig. 16, ContrastSense outperforms the baselines
in most cases and its average performance on the IMU and EMG datasets is consistently better (shown in Fig.
5). On the HHAR dataset, when 𝛽 is 40%, 80%, and 100%, ContrastSense achieves F1 scores that are 7.4%, 7.2%,
and 3.8% higher than the best baseline, respectively. We notice that some baselines may perform better than
ContrastSense in few cases, e.g., Mixup outperforms ContrastSense when 𝑛 = 1 on the HHAR dataset. The reason
1In Fig. 12, we omit results in the LODO setting on the HHAR dataset since there is only one test domain when 𝛼 = 65%, which corresponds
to the LODO setting. Similarly, in Fig. 13, results are excluded for HHAR and Shoaib datasets when 𝛽 = 60%, which is based on the fact that
the size of the labeled source domains remains consistent (one domain) at 𝛽 = 60% and 𝛽 = 40%.
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Fig. 12. Performance comparison with varied percentages 𝛼 on the cross-user experiment for HAR with IMU.
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Fig. 13. Performance comparison with varied percentages 𝛽 on the cross-user experiment for HAR with IMU.
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Fig. 14. Performance comparison with varied shots 𝑛 on the cross-user experiment for GR with EMG.
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Fig. 15. Performance comparison with varied percentages 𝛼 on the cross-user experiment for GR with EMG.

, Vol. 1, No. 1, Article . Publication date: October 2024.



ContrastSense • 31

40 60 80 100
Percentage  (%)

0

20

40

60

80
F1

 sc
or

e 
(%

)

(a) Myo

40 60 80 100
Percentage  (%)

0
10
20
30
40
50

F1
 sc

or
e 

(%
)

(b) NinaPro

40 60 80 100
Percentage  (%)

0
10
20
30
40
50

F1
 sc

or
e 

(%
)

(c) Cometa

CALDA Mixup ConSSL ContrastSense

Fig. 16. Performance comparison with varied percentages 𝛽 on the cross-user experiment for GR with EMG.

might be that Mixup augments the limited labeled data to more labeled data with larger diversity, which improves
the model performance when presented with larger label scarcity, whereas ContrastSense does not leverage
data augmentation techniques in the fine-tuning stage to improve data diversity. In the future, we will further
investigate the usage of data augmentation techniques or learning-based data synthesis [35, 56] to enhance the
real-life deployability of our method. Besides, we notice that in Fig. 15 on the Myo dataset, the performance of
ContrastSense and baselines in the LODO setting are worse than with a smaller 𝛼 . The reason might be users
with significantly different data distributions are randomly selected for test in some splits in the LODO setting.
Besides, we have conducted the statistical tests on those results in Appendix C, which suggest that ContrastSense
consistently outperforms those baselines in those settings. Please refer to Appendix C for more details about the
statistical tests.

E Appendix: Additional Ablation Study
More detailed ablation studies are conducted on the IMU datasets to present the effectiveness of the CDL and the
negative selection. Similar results can be obtained on the EMG dataset.

E.1 Effectiveness of the CDL
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Fig. 17. Visualization of features from three users. (a) The features learned without adopting CDL are separate, and (b) the
features learned with adopting CDL are well aligned.

To further understand the effect of CDL, the representations extracted without CDL and with CDL are visualized
in Fig. 17. It can be seen that the features of the three users are separate from each other due to the domain
discrepancy when trained only with InfoNCE loss. After CDL is incorporated, the features are aligned, which
further validates the effectiveness of CDL in extracting generalizable features.
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E.2 Effectiveness of the Negative Selection

Table 14. Effectiveness of the negative selection. All methods utilize the samples in the domain queues for a fair comparison.

Design HHAR Motion Shoaib HASC Average Weighted
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

W/ Both 64.66 60.79 71.02 69.34 76.25 76.02 43.77 33.85 63.92 60.00 64.71 61.01
W/ time window selection 58.76 55.65 69.68 67.49 75.96 75.53 41.39 31.98 61.45 57.66 62.27 58.74

W/ similarity-based selection 64.24 60.48 69.45 67.58 71.95 71.65 40.86 32.41 61.63 58.03 62.20 58.81
domain-wise InfoNCE 61.35 59.27 69.24 66.84 72.08 71.39 40.88 32.64 60.89 57.53 61.44 58.34

InfoNCE 54.94 51.17 69.98 68.13 71.19 70.20 37.83 30.13 58.48 54.91 58.80 55.36

An ablation study is further conducted to highlight the impact of the two steps involved in the negative
selection process for SInfo loss in Table 14. Compared with InfoNCE loss, domain-wise InfoNCE selects samples
within the same domain as the negatives, which prevents the model from capturing the domain-related knowledge.
It improves the average F1 score by 2.6% compared with using InfoNCE loss. In contrast, the similarity-based
selection in ContrastSense retains some negatives from different domains that are difficult to distinguish from
positives. Consequently, it yields an average F1 score of 58.03% and an average accuracy of 61.63%, surpassing
domain-wise InfoNCE. Domain-wise InfoNCE overlooks valuable information embedded in samples from various
domains, whereas the similarity-based selection effectively harnesses this information. When only the time
window selection is adopted, the average performance increases by 2.8% in terms of F1 score and 3.0% in
terms of accuracy, underscoring the positive impact of excluding adjacent samples to improve feature quality
during pretraining. When both steps are synergistically combined, the average F1 score and accuracy exhibit
improvements of 5.1% and 5.4% respectively, compared with the results obtained using InfoNCE loss. This
combination solidifies the effectiveness of both steps in enhancing the overall performance of the model.
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