
Certified Robustness against Sensor Heterogeneity in Acoustic Sensing

PHUC DUC NGUYEN, Nanyang Technological University, Singapore
YIMIN DAI, Nanyang Technological University, Singapore
XIAO-LI LI†, Institute for Infocomm Research (I2R), A*STAR, Singapore

RUI TAN, Nanyang Technological University, Singapore

Domain shifts due to microphone hardware heterogeneity pose challenges to machine learning-based acoustic sensing.

Existing methods enhance empirical performance but lack theoretical understanding. This paper proposes Certified Adaptive

Physics-informed transform (CertiAPT), an approach that provides formal certification on the model accuracy and improves

empirical performance against microphone-induced domain shifts. CertiAPT incorporates a novel Adaptive Physics-informed

Transform (APT) to create transformations toward the target microphone without requiring application samples collected by

the target microphone. It also establishes a theoretical upper bound on accuracy degradation due to microphone characteristic

differences on unseen microphones. Furthermore, a robust training method with an APT gradient update scheme leverages

APT and certification constraints to tighten the upper bound and improve empirical accuracy across sensor conditions.

Extensive experiments on three acoustic sensing tasks, including keyword spotting, room recognition, and automated speech

recognition, validate CertiAPT’s certified robustness and show accuracy gains, compared with the latest approaches. Our

implementation of CertiAPT is available at: https://github.com/bibom108/CertiAPT.
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ologies→ Neural networks; • Hardware→ Sensor applications and deployments.
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1 INTRODUCTION
Deep learning has brought substantial performance improvements in a range of sensing applications. However,

real-world sensing systems often suffer from domain shifts, as they heavily depend on the patterns learned

from the training data. Common factors attributed to domain shifts include environmental variability and

sensor heterogeneity that introduce changes to the data distribution. In this paper, we focus on addressing the

microphone heterogeneity in acoustic sensing applications. This issue, often overlooked, is in fact critical to

sensing performance. Figure 1a shows the frequency response curves (FRCs) of three microphones to the same

audio. The differences among the FRCs lead to inconsistencies in the data recorded by the microphones. In

particular, the FRC of a user’s microphone is generally different from those used to collect the training data for

training and validating a deep learning-based acoustic sensing model. The difference leads to a drop in accuracy
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(a) The FRCs.
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Fig. 1. Microphone heterogeneity and its impact. (a) FRCs of three microphones to the same audio. (b) Accuracy drops of
two speech recognition models when tested on data collected by various microphones.

from those obtained during the training and validation stages. Figure 1b shows the accuracy drops of two speech

recognition models, Baidu DeepSpeech2 [2] and OpenAI Whisper [72], where the latter is trained on a larger

dataset and considered a foundation model. Both models exhibit noticeable accuracy drops when tested with data

collected by the three microphones mentioned above.

Domain adaptation [51] offers a potential solution to the microphone heterogeneity challenge. It aims to

enable models trained on a source domain to generalize effectively to a target domain with a different data

distribution. This is achieved by measuring and minimizing the discrepancy or divergence between the two

domains [45, 65, 91, 118]. In the context of this paper, the training dataset for building the acoustic sensing model

forms the source domain, whereas the inference data collected by the user’s microphone forms the target domain.

Many domain adaptation techniques require large amounts of target-domain data, making them unpractical in

many real-world use scenarios. Few-shot domain adaptation techniques [58, 62, 63, 117] have been applied to

reduce the demand on target-domain data, but further reductions while maintaining accuracy are still desirable.

To this end, the Physics-Informed Machine Learning (PIML) [29] has received research attention. It integrates

physical laws and constraints into the learning process to improve the data efficiency of machine learning. By

exploiting the physics governing the domain shifts, PIML has shown promising domain adaptation performance

[87], because it can effectively shrink the search space for model optimization [112]. PIML can be also used to

generate more realistic data characterizing the target domain for better domain adaptation [55].

Despite the above advances, we still face a major challenge stemming from the uncertainties in the microphone

heterogeneity. The existing PIML approaches [55, 87, 112] are based on deterministic parametric physical laws,

which limit the learned models’ capacity due to nuanced variations and inaccuracy in the parameterization of the

underlying physical laws. Moreover, as a general limitation of all existing domain adaptation approaches applied to

address sensor heterogeneity, there is a lack of accuracy certification, i.e., the meaningful bounds of accuracy drop

are unavailable. As a result, although a certain approach may perform well on the tested microphones, it provides

no meaningful information regarding the sensing accuracy of the adapted models on unseen microphones. Under

a broader context, we performed a survey on the research papers presented at six sensing-related conferences

from 2020 to 2024 on the topics of domain shift, sensor heterogeneity, and cross-platform implementation. Out of

69 papers considered relevant (a majority of them is from IMWUT/UbiComp), only one paper [105], which is not

based on deep learning, provides accuracy certification. The survey results can be found in Appendix A.

In this paper, we present Certified Adaptive Physics-informed Transform (CertiAPT), a novel framework that

provides accuracy certification for domain shift caused by microphone heterogeneity while empirically improving

the accuracy of the adapted model. First, CertiAPT’s model adaptation only requires swift profiling of the target

microphone, which is agnostic to acoustic sensing applications. Second, CertiAPT provides a meaningful upper
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bound of the accuracy drop of the adapted model with respect to the source-domain model’s testing accuracy.

This accuracy certification process quantifies the model’s expected performance degradation in unseen target

domains without requiring direct testing on concrete target-domain data. As a result, it offers a guaranteed

performance assessment of the model in real-world domain shift scenarios. The core of CertiAPT is a novel

Adaptive Physics-informed Transform (APT) with a learnable parameter vector that captures the FRC as a

governing characteristic of microphone. Based on a recent accuracy certification theoretical framework developed

in [38], we leverage the APT to derive a tighter upper bound on accuracy degradation for target domain data.

Built upon APT, CertiAPT applies a proposed robust training method to improve the upper bound and the model’s

accuracy. The robust training method uses an APT gradient update scheme to complete domain adaptation under

the robustness criterion.

We evaluate the effectiveness of CertiAPT on three acoustic sensing applications, which are keyword spotting

(KWS), acoustic-based room recognition (ARR), and automated speech recognition (ASR), under open datasets

from [55] and our recordings collected from real-world environments. The tightness of the accuracy drop upper

bound given by CertiAPT is also evaluated. Empirically, CertiAPT achieves an improvement of 29.58% and 9.98%

over PhyAug [55], a physics-informed domain adaptation approach, and 18.66% and 8.01% over CosMix [64], a

recent contrastive learning domain adaptation method for limited target domain data, on the KWS and ARR

tasks, respectively. For the ASR task, where CosMix is not applicable, CertiAPT achieves an improvement of

10.2% over PhyAug.

Contributions of this paper are summarized as follows:

• We propose CertiAPT, a novel framework that provides a tighter upper bound of drop in accuracy when

operating in the source and target domains. CertiAPT is particularly designed to offer guarantee under

domain shift induced by microphone heterogeneity.

• We propose APT to enable transforms of source-domain data toward the target domain without requiring

target-domain application samples.

• We propose a robust training method that leverages our APT and certification constraints to further tighten

the theoretical bound and improve empirical accuracy of the adapted model.

• Our evaluation across three acoustic sensing applications shows that CertiAPT yields significant accuracy

improvements compared with the latest relevant domain adaptation approaches and provides formal

guarantees on model robustness.

2 RELATED WORK
■ Few-shot domain adaptation aims at addressing the domain shift problem with reduced target-domain

data, either labeled or unlabeled [83]. Several approaches [58, 66, 113] utilize Generative Adversarial Networks

(GANs) to generate additional labeled training data. Other studies focus on aligning the source and target domains

through various techniques, such as i) adversarial learning [62, 114] that minimizes domain discrepancy by

aligning feature representations, ii) optimal transport [78] that bridges the source-target gap by modeling domain

shifts as a transportation problem, and iii) test-time adaptation [95, 111] that adapts the model at inference time

to better handle target-domain data. However, to achieve the optimal results, the above approaches still require

considerable amounts of target-domain data, e.g., at least 50 to 100 samples in total [78]. Another line of research

uses PIML [87] for domain adaptation. PIML leverages physical constraints and abstract mathematical models

as prior knowledge to guide the model’s learning process. This can be achieved in several methods including i)

synthesizing data that follows physical laws [53, 60], ii) embedding physical constraints into the loss function

guiding the neural network model training [112], or iii) through a combination of both [34]. This paper presents

a new PIML approach following the first method.
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■ Distributionally robust optimization (DRO) is an approach for minimizing the worst-case expected loss

over a set of distributions close to the empirical distribution [74]. This optimization is often challenging, as it

requires managing uncertainty across a range of potential data distributions. There are two approaches to address

this challenge. The first approach adopts the duality method to relax the problem by converting it into a tractable

form in the dual space [7, 9]. The other approaches use the cutting-surface technique, which gradually narrows

the feasible region by generating new boundaries called cutting planes [6, 73]. In this paper, we adopt the first

approach to relax the constraints for our robust training method.

3 PRELIMINARIES
The notations used throughout this paper are summarized in Appendix B.

3.1 Certified Robustness
Certified robustness [46] provides a provable guarantee that a model maintains its accuracy within a bound

under a defined perturbation range, ensuring robustness in the presence of adverse or even adversarial conditions

[16, 27, 57]. Considering a classifier ℎ : X → Y, a given input 𝑥 , and the classifier output 𝑦 = ℎ(𝑥), we say ℎ
achieves certified robustness at 𝑥 with a radius 𝜖 , if ℎ(𝑥 + 𝛿) = 𝑦 for any perturbation 𝛿 satisfying ∥𝛿 ∥𝑝 ≤ 𝜖 ,
where ∥ · ∥𝑝 is the 𝐿𝑝 norm. However, the classifier may not achieve certified robustness for every input 𝑥 .

Thus, considering a data distribution D, 𝐵 = inf E(𝑥,𝑦)∼D [1∥𝛿 ∥𝑝≤𝜖 {ℎ(𝑥 + 𝛿) = 𝑦}] is the tight lower bound of ℎ’s

accuracy in the presence of input perturbations bounded by 𝜖 . Note that 1∥𝛿 ∥𝑝≤𝜖 {ℎ(𝑥 + 𝛿) = 𝑦} takes value 0 if
there exists a 𝛿 such that ℎ(𝑥 + 𝛿) ≠ 𝑦, and takes value 1 otherwise, where ∥𝛿 ∥𝑝 ≤ 𝜖 .
However, deriving 𝐵 analytically is often intractable. To make the analysis tractable, smoothed classifier [15]

is often used instead of the original classifier ℎ. It is defined as
˜ℎ(𝑥) = argmax𝑠∈Y P(ℎ(𝑥 + 𝑛) = 𝑠), where 𝑛

follows a zero-mean normal distribution with a standard deviation depending on 𝜖 . The smoothed classifier can

be implemented by yielding the majority of the classifier ℎ’s outputs when given many noisified versions of the

input 𝑥 , where the additive noise samples are drawn from the normal distribution. This randomization enables

one to derive a certified radius, i.e., a guaranteed neighborhood around any input where
˜ℎ will maintain the same

prediction. This technique can generalize across dataset D, without having to solve the generally more difficult

problem of computing 𝐵 directly.

In this paper, we focus on the impact of domain shift on the drop of accuracy from the source domain where

the model is trained upon to the target domain. Domain shift can be characterized by bounded distributional

perturbation. We consider source- and target-domain data distributions denoted byD = (X,Y) and ˜D = ( ˜X,Y),
which are related by𝑊 c

1
(D, ˜D) ≤ 𝜖 , where𝑊 c

1
(D, ˜D) is the 1-Wasserstein distance between the two distributions.

Specifically,𝑊 c
1
(D, ˜D) = inf

𝜋∈Γ (D, ˜D)
E(𝑥,𝑥 ′ )∼𝜋c(𝑥, 𝑥 ′), where c : R𝑛 × R𝑛 → R is a distance metric, Γ(D, ˜D) is the

set of all couplings of elements in D and
˜D, 𝜋 is the joint distribution. In the evaluation experiments conducted

in this paper, we set c as the Euclidean distance between 𝑥 and 𝑥 ′. The total variance of the two distributions is

defined as 𝑇𝑉 (D, ˜D) = 1

2

∫
Ω
|𝑓D (𝑥) − 𝑓 ˜D (𝑥) | 𝑑𝑥 , where 𝑓D (𝑥) and 𝑓 ˜D (𝑥) are the probability density functions

and Ω is the sample space. The following definitions and lemma [38] together describe the impact of domain

shift on accuracy drop.

Definition 1 (Parametrizable distribution pair). (D, ˜D) is a parametrizable distribution pair, if the following
three conditions are met:
(1) ∃𝑇 (·, ·) such that ∀𝑥1 ∼ D, ∀𝑥2 ∼ ˜D, ∃𝛼 , 𝑇 (𝑥1, 𝛼) = 𝑥2;
(2) ∃𝐸 (·), such that𝑊 𝑐

1
(D, ˜D) ≤ 𝐸 (𝛼);

(3) If 𝑇 (𝑥1, 𝛼1) = 𝑥2 and 𝑇 (𝑥2, 𝛼2) = 𝑥3, 𝑇 (𝑥1, 𝛼1 + 𝛼2) = 𝑥3.
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In Definition 1, 𝛼 is a constant parameter associated with the transform 𝑇 (·, 𝛼) that maps D to
˜D.

Definition 2 (Accuracy drop upper bound function). Given a parametrizable distribution pair (D, ˜D), any concave
function𝜓 (·, ·) meeting the following condition is called an accuracy drop upper bound function:

𝑇𝑉 (N (𝑥1, 𝜂),N(𝑥2, 𝜂)) ≤ 𝜓 (𝑑 (𝑥1, 𝑥2), 𝜂),∀𝑥1 ∼ D,∀𝑥2 ∼ ˜D, (1)

where 𝑑 (·, ·) is a distance function.

The smoothed classifier is now defined as
˜ℎ(𝑥) = argmax𝑠∈Y P(ℎ(𝑇 (𝑥, 𝛼 + 𝑛)) = 𝑠). We slightly abuse the

notation of
˜ℎ by letting E(𝑥,𝑦)∼D [ ˜ℎ(𝑥,𝑦)] and E(𝑥,𝑦)∼ ˜D [ ˜ℎ(𝑥,𝑦)] denote the accuracy of the smoothed classifier

˜ℎ

under D and
˜D, respectively.

Lemma 1 (Restated from [38]). For a parametrizable distribution pair (D, ˜D) and any𝜓 (·, ·) given by Definition 2,
by denoting 𝜖 = 𝐸 (𝛼) where 𝛼 is the parameter of the transform 𝑇 (·, 𝛼) mapping D to ˜D, we have���E(𝑥1,𝑦1 )∼D [ ˜ℎ(𝑥1, 𝑦1)] − E(𝑥2,𝑦2 )∼ ˜D [ ˜ℎ(𝑥2, 𝑦2)]

��� ≤ 𝜓 (𝜖, 𝜂). (2)

The certification algorithm, as detailed in Algorithm 2 of [38], computes the certified accuracy as the right-hand

side of the following inequality when given a running parameter 𝜖 and a fixed 𝜂:

E(𝑥2,𝑦2 )∼ ˜D [ ˜ℎ(𝑥2, 𝑦2)] ≥ E(𝑥1,𝑦1 )∼D [ ˜ℎ(𝑥1, 𝑦1)] −𝜓 (𝜖, 𝜂). (3)

It evaluates the model’s certified accuracy on domains that differ from the source domain by at most 𝜖 .

3.2 Robust Training
Robust training is a concept from adversarial learning that involves training the model using samples representing

the worst-case scenarios, i.e., samples that violate the certification constraints the most or pose the greatest

challenge to the model’s robustness. Formally, in the context of domain shift, the objective of robust training [22]

is defined as follows:

min

𝜃
sup

𝐾∈U
E(𝑥,𝑦)∼𝐾 [ℓ (𝜃, (𝑥,𝑦))], (4)

whereU is a set of all the neighbor distributions of the source domain distributionD. The objective is to enhance

the model’s performance on a distribution 𝐾 , where the model exhibits its worst-case performance (e.g., the loss

function ℓ attains its maximum value on 𝐾 ). The way the setU is constructed directly affects the optimization

process. The common practice of constructing the setU is to add a small perturbation in the input space, where
the magnitude of perturbation is controlled by a bound 𝜖 [15, 75]:U = {𝐾 |𝑥 ′ ∈ ˜D, 𝑥 ∈ D, | |𝑥 ′ − 𝑥 | |𝑝 ≤ 𝜖}. Note
that, as this paper focuses on acoustic sensing, the input space here refers to the space of Mel-Frequency Cepstral

Coefficients (MFCC).

However, for acoustic signals, constructing the setU in the input space using the 𝐿𝑝 norm cannot effectively

model the effect caused by microphone heterogeneity. Consider a monotonous-frequency sound represented by

𝑝 (𝑡) = 𝐴𝑠 sin(2𝜋 𝑓𝑠𝑡 + 𝜙𝑠 ), where 𝑝 (𝑡) is the sound pressure at time 𝑡 , 𝐴𝑠 is the amplitude of the sound wave, 𝑓𝑠 is

the frequency, and 𝜙𝑠 is the phase shift of the wave. The corresponding voltage induced by the microphone’s

diaphragm motion can be described by the following expression𝑉 (𝑡) = −𝑁𝑘 ·𝐴𝑠 · 2𝜋 𝑓𝑠 cos(2𝜋 𝑓𝑠𝑡 +𝜙𝑠 ), where 𝑁
is the number of turns in the microphone coil, 𝑘 is a constant that accounts for both the diaphragm’s mechanical

sensitivity and the strength of the magnetic field. Due to differences in the coil design and material of various

microphones, the conversion equations for transforming sound signals into electrical signals vary among different

microphones. This results in a domain shift in the collected data. Therefore, adding a small 𝐿𝑝 perturbation in the
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Fig. 2. Impact of microphone heterogeneity. (a) t-SNE visualization of samples in the same KWS class collected by three
microphones; (b) Variation in model performance on different training data sources. (c) Domain adaptation techniques and
the amount of target domain data required.

input space provides only a partial solution, failing to address the core issue. In Section 5.3, we will propose a

more efficient robust training approach.

4 PROBLEM STATEMENT
This paper addresses certification of acoustic sensing robustness against microphone hardware heterogeneity,

and how to improve the robustness by adjusting the sensing model.

4.1 A Motivating Example
Figure 2a presents the t-distributed stochastic neighbour embedding (t-SNE) [92] visualization of the data samples

in the same KWS class collected from different microphones when the KWS sound is emitted by the same speaker.

More details of the data collection process can be found in [55], which provides data as its artifact [1] reused in

this work. From the figure, the samples of the same class recorded by the three microphones follow different

distributions. These discrepancies among the recorded data cause a model trained on one microphone’s data to

perform poorly on data from others, as illustrated in Figure 2b. For instance, a model trained on Microphone 1

data can achieve a high testing accuracy of 99% on the same microphone. However, the testing accuracy drops

significantly to less than 20% on data from Microphone 2 or Microphone 3. Such drops are also observed when

data from Microphone 2 or 3 are used to train the model. One possible solution to address the above issue is

to adopt domain adaptation techniques during training. However, these techniques require a large amount of

target-domain data, which may not be available in certain applications. Figure 2c illustrates the relationship

between the model performance of two domain adaptation approaches, DSAN [117] and CoVi [63], with the

amount of target-domain data used. From the figure, when the target-domain data are limited (e.g., less than 5%),

the performance of these techniques is comparable to that achieved without using target-domain data. Another

limitation of most domain adaptation techniques is the lack of accuracy certification. As a result, the sensing

performance on target microphones is not guaranteed.

The above example shows the effect of the domain shift from one specific microphone to another. It provides

insights into the more general case considered by this paper, where a large training dataset, possibly collected by

many microphones, forms the source domain. As shown in Figure 1, such a general case still suffers from the

domain shift problem.
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Fig. 3. Overview of the CertiAPT framework. In the robust training procedure, the source-domain is 1○ transformed via
𝑇𝐴𝑃𝑇 , parameterized by 𝛼 , forming a domain ˜D′

1
. Next, it is 2○ processed through Frequency-Aware Distributionally Robust

Optimization (FA-DRO) to compute the gradient. This gradient is used to 3○ update 𝛼 . This process 4○ repeats for 𝑛 times.
The resulting 𝑛 domains are used to train the classifier, aiming to 5○ improve empirical accuracy on the target domain ˜D.
For certification, the model’s accuracy drop between source and any target domain ˜D𝑚 is 6○ theoretically upper-bounded
by𝜓 (𝜖), provided that the distance between the source domain and that target domain is 𝜖 .

4.2 Objectives
The theoretical result in Lemma 1 provides a pathway to certify a sensing model’s robustness against domain

shift. However, there are three issues in applying Lemma 1 and in improving certified robustness.

■ Issue 1: The work [38] shows that given a parametrizable distribution pair (D, ˜D) and its corresponding

transform 𝑇 (·, 𝛼), if 𝑐 in𝑊 𝑐
1
is Euclidean distance and 𝐸 (·) is 𝐿2 norm, then 𝑊 𝑐

1
(D, ˜D) ≤ 𝐸 (𝛼). Thus, when

applying Lemma 1 to a specific sensing application, it is desirable to find a transform 𝑇 (·, 𝛼) to map the data in

the source domain D to the data in a target domain
˜D, such that 𝑇 (·, 𝛼) satisfies the third condition of Lemma 1.

This condition ensures that random smoothing in the transform function (i.e.𝑇 (·, 𝛼 +𝑛)) remains bounded within

the input space, as described in Lemma 1 of [38]. Issue 1 is addressed in Section 5.2.

■ Issue 2: The above issue does not involve adjusting the classifier ℎ for improved accuracy. We aim to design a

robust training approach that is customized for acoustic sensing to fine-tune and optimize the classifier ℎ based

on certification criteria and empirical observation. This is the subject of Section 5.3.

■ Issue 3:While Definition 2 states the condition that𝜓 (·, ·) must satisfy, it does not provide a concrete function

to use. The work [38] has shown that when the distance function used by Definition 2 is Euclidean distance,

the error function erf

(
𝜖

2

√
2𝜂

)
can be a concrete𝜓 (𝜖, 𝜂). However, this only provides a loose upper bound on the

accuracy drop, as detailed in Section 5.4. It is desirable to find a tighter bound. Issue 3 is addressed in Section 5.4.

5 CertiAPT

5.1 Overview
This paper presents Certified Adaptive Physics-informed Transform (CertiAPT), a framework designed to mitigate

the impact of microphone heterogeneity on model accuracy, while providing accuracy drop guarantee. Figure 3

presents an overview of the CertiAPT framework, which includes the robust training phase and certification

phase.

During the robust training phase, unlike conventional methods that require target-domain data to learn

distributional shifts, CertiAPT leverages principles of sound acquisition by microphones, avoiding the need for

target-domain training data. CertiAPT introduces a novel Adaptive Physics-Informed Transform (APT) based on

the microphone’s FRC to enable transformations from source-domain data to simulate target-domain conditions.
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This approach requires only white noise samples for profiling and does not rely on any application-specific

samples from the target microphone during training. The robust training design of CertiAPT is founded upon two

key insights. First, since the input space distance between the source- and target-domain samples is often large,

the distance between the source-domain and the domain induced by the APT samples should also be increased to

better represent potential target-domain conditions. Second, the loss function should directly depend on APT

parameters, allowing the transformation to better simulate realistic microphone-induced domain shifts.

Our primary technical contributions for the first phase include the development of APT with learnable param-

eters, the design of a robust training framework called Frequency-Aware Distributionally Robost Optimization

(FA-DRO) that incorporates a novel loss term and facilitates direct optimization on the APT parameters.

The certification phase allows CertiAPT to establish a theoretical upper bound on accuracy degradation in the

presence of microphone heterogeneity, based on Lemma 1. The bound is a guarantee of the model accuracy on

target domains that differ from the source domain by at most 𝜖 , without requiring access to application-specific

target domain data. Our primary technical contribution for the second phase is the construction of a tighter

accuracy drop upper bound function for Lemma 1.

In the following subsections, we detail the proposed APT, the robust training on APT, and the new accuracy

drop upper bound. These designs together enable CertiAPT to perform reliably across diverse environments

without relying on target-domain data.

5.2 APT
In this section, we present APT to address Issue 1 outlined in Section 4.2. To apply Lemma 1 to microphone

heterogeneity, it is essential to define an effective transform function that satisfies the third condition in Defi-

nition 1. A potential candidate is the transform function proposed in [55], defined as 𝑇 (x) = F ⊗ x, where x is

the input after applying the short-time Fourier transform (STFT), F represents the target domain microphone’s

FRC, and ⊗ is the Hadamard product. This approach directly addresses the primary source of sensing variability:

differences in sensor transfer functions. Note that x is directly from the source-domain data, eliminating the need

for target-domain data. In addition, F can be obtained by analyzing the microphone’s response to white noise.

However, this function suffers from several limitations. First, the transform is static. Once the F is obtained, the
function becomes fixed, failing to capture more nuanced variations within the target domain. Second, the fixed

nature of this transform function hinders its integration into the certification process and robust training, both of

which require the application of random smoothing to the transform parameters to account for distributional

uncertainty. Lastly, the F is not always stable and accurately measurable. Practical scenarios often involve

environmental noise, hardware inconsistencies, and other factors that limit the estimation of F.
To address these limitations, we propose APT defined as 𝑇𝐴𝑃𝑇 (x, 𝛼) = (𝑒𝛼 ⊗ F) ⊗ x, where 𝛼 is a learnable

vector parameter with the same dimension as F. Here we choose an exponential function 𝑒𝛼 instead of 𝛼 to ensure

that the conversion equation satisfies the third condition in Definition 1, i.e., 𝑒𝛼1+𝛼2 = 𝑒𝛼1 ⊗ 𝑒𝛼2 . This condition
ensures that random smoothing in the transform function (i.e. 𝑇 (·, 𝛼 + 𝑛)) remains bounded within the input

space, as described in Lemma 1 of [38]. The formulation allows for dynamic adaptability and supports random

smoothing, addressing the limitations of the static transform while remaining efficient to profile. We optimize

this transform function, along with the model, through our proposed robust training in Section 5.3.

5.3 Robust Training with FA-DRO
We then address Issue 2 outlined in Section 4.2, i.e., training the model to enhance both certified and empirical

accuracy, by introducing the robust training framework of CertiAPT. Our main design is the Frequency-Aware

Distributionally Robust Optimization (FA-DRO), which is used to learn the worst-case shifts induced by𝑇𝐴𝑃𝑇 (𝑥, 𝛼).
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Fig. 4. Distribution of input space and embedding space distances across different classes. Each data point is color-coded
by class, representing the distance of the same sample recorded across different microphones. The horizontal and vertical
dashed lines are the mean of each distance, divide the distances into large and small regions, with the percentage of data
samples in each region annotated.

By optimizing for these extreme scenarios, the model learns to generalize across a range of shifts, thereby reducing

sensitivity to both severe and mild variations and improving the certified and empirical accuracy.

5.3.1 FA-DRO. Training the model on worst-case shift data enhances its ability to generalize across a spectrum

of shifts, thereby improving performance under both severe and mild shift conditions. To effectively capture the

worst-case scenario in robust training, it is necessary to define the distribution setU in Equation 4. A common

approach, beyond the unsuitable definition ofU as a small perturbation in the input space, is to constructU
using a ball of distributions, as proposed in prior works [9, 93]. This is typically expressed asU = {𝐾 |𝑊 ch

1
(D, 𝐾)

≤ 𝑎}, where ch is the cost function on the embedding space (formed by features extracted from an intermediate

layer of the model), defined as ch (𝑥 ′, 𝑥) = | |ℎ 𝑗 (𝑥 ′) − ℎ 𝑗 (𝑥) | |2, where ℎ is a classifier and ℎ 𝑗 (𝑥) is the 𝑗𝑡ℎ layer’s
output from ℎ with input 𝑥 . The 𝑗 is typically the second last layer. This construction is more reasonable for

addressing distribution shifts, as it encodes the worst-case constraint (i.e.𝑊 𝑐
1
(D, ˜D)) effectively.

However, this approach presents two key challenges. First, we empirically find that samples recorded on

different microphones often exhibit similar embedding representations (i.e., they are close in the embedding space)

while displaying semantic differences (i.e., they are distant in the input space). Figure 4 illustrates this relationship,

showing that most data samples cluster in regions of small embedding distances but large input distances. This

observation is consistent with the nature of domain shift, where the underlying data remains fundamentally the

same but exhibits value deviations due to sensor-induced variations. The current constraint only addresses the

former (embedding space similarity), while neglecting the latter (input space variations). Second, the current

definition of U and its integration into Equation 4 do not account for the specific transformation between

domains, as defined in Section 5.2. As a result, the robust training process becomes misaligned with the broader

CertiAPT framework, as it does not fully leverage the structured knowledge provided by 𝑇𝐴𝑃𝑇 .

To address the first problem above, we define the set U = {𝐾 |𝐾 ∈ DT ,𝑊 ch
1
(D, 𝐾) ≤ 𝑎,𝑊 cX

1
(D, 𝐾) ≥ 𝑏},

whereDT denotes the set of distributions generated from the original distributionD by all possible parameters 𝛼

introduced in the 𝑇𝐴𝑃𝑇 . The terms 𝑎 and 𝑏 are upper bound and lower bound, respectively, which will be relaxed

later. A key contribution here is the incorporation of the term𝑊
cX
1
, a constraint derived from our empirical

observations, where cX denotes the cost function defined on the input space. It is intentionally designed in a form

similar to𝑊
ch
1

so that it can be relaxed later using the same framework. This constraint is specifically aimed

at capturing data points that best represent the target domain. Further details on the construction of cX are
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(a) Euclidean distance. (b) Proposed distance.

Fig. 5. Comparison of normalized distance values calculated by Euclidean (left) and ours (right) during optimization. As the
objective is to maximize the distance, we expect the distance to increase.

deferred to the following section. We then introduce how to optimize the objective defined in Equation 4 with the

newU. We adopt the DRO framework in [9, 82], which is commonly used to seek the worst-case expected loss

among a ball of distributions, to relax and derive a computable objective for our robust training. This framework

requires each cost function to be convex and lower semi-continuous. The detailed derivation steps are provided

in Appendix C. The resulting optimization objective is given by:

min

𝜃 ∈Θ
E(𝑥,𝑦)∼D

[
sup

𝑥 ′=𝑇𝐴𝑃𝑇 (𝑥,𝛼 )
ℓ (𝜃, (𝑥 ′, 𝑦)) − 𝛾ch (𝑥 ′, 𝑥) + 𝛽cX (𝑥 ′, 𝑥)

]
. (5)

To address the second problem, we propose to update the gradient computed from the supremum in Equation 5

on the parameter 𝛼 of the APT function, rather than originally on the input data. Specifically,

𝛼𝑚+1 ← 𝛼𝑚 + ∇𝛼𝜆
[
𝜏ℓ

(
𝜃, (𝑥 ′𝑚, 𝑦)

)
− 𝛾ch (𝑥 ′𝑚, 𝑥 ′𝑚−1) + 𝛽cX (𝑥 ′𝑚, 𝑥 ′𝑚−1)

]
, (6)

where 𝜆 is the learning rate, 𝜏 , 𝛾 , and 𝛽 are the weights for the loss terms, and 𝑥 ′𝑚 = 𝑇 (𝑥 ′𝑚−1, 𝛼𝑚) with 𝑥 ′0 = 𝑥 .
Additionally, we introduce a small Gaussian noise to 𝛼 during training to further enhance the smoothed transform

function. The above gradient update aims at leveraging the strengths of PIML and robust training to search for

the practical worst-case scenarios induced by 𝑇𝐴𝑃𝑇 , where data samples are prone to misclassification due to

their divergence from the original data. Familiarizing the model with these scenarios can effectively address

microphone heterogeneity and improve accuracy on unseen microphones.

5.3.2 Frequency-aware Cost Function. In the previous section, the Wasserstein distance𝑊
cX
1
, with the cost

function (i.e., distance) cX, is introduced to identify samples that are more likely to belong to the target domain.

This objective focuses on training the model on samples that are likely to be misclassified due to their significant

distance from the original samples. Thus, a straightforward approach to identifying such samples is to look at the

cost function calculated by Euclidean distance between two samples. However, we observed that this objective

fluctuates significantly, as demonstrated in Figure 5a. This can lead to gradient vanishing or gradient exploding,

making the search for worst-case samples ineffective.

To address this problem, we propose a cost function, 𝑐𝑇 , that uses an alternative distance that takes into account

frequency information. Particularly, time-domain audio data is preprocessed by (DCT ◦ log ◦ STFT), where STFT
is a short-time Fourier transform, log is the logarithm function, DCT is a discrete cosine transform which is

linear, and ◦ denotes function composition. Thus, we have:

cX (𝑥 ′, 𝑥) = (DCT ◦ log) ((𝑒𝛼 ⊗ F) ⊗ 𝑆𝑥 ) − (DCT ◦ log) (𝑆𝑥 )
= (DCT ◦ log) ((𝑒𝛼 ⊗ F) ⊗ 𝑆𝑥 ⊘ 𝑆𝑥 )
= (DCT ◦ log) (𝑒𝛼 ⊗ F) ,
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Algorithm 1: Robust training with FA-DRO

1 Input: number of epoch 𝑁 ,𝑀 , source domain dataset D, empty dataset
ˆD, pre-trained weight 𝜃0, noise

𝜖 ∼ N(0, 𝜂), epoch list L, learning rate 𝜆, 𝜁 , weight loss 𝜏,𝛾, 𝛽 .
2 Output: learned weight 𝜃𝑛

3 Init: 𝜃 ← 𝜃0, ˆD ← D
4 for 𝑛 = 1, · · · , 𝑁 do
5 if 𝑛 ∈ L then
6 for (𝑥𝑖 , 𝑦𝑖 ) ∼ D do
7 𝛼1 ← N(0, 𝜂)
8 for𝑚 = 1, · · · , 𝑀 do
9 𝑥𝑚𝑖 ← 𝑇𝐴𝑃𝑇 (𝑥, 𝛼𝑚 + 𝜖)

10 𝛼𝑚+1 ← 𝛼𝑚 + ∇𝛼𝜆 +
{
𝜏ℓ (𝜃𝑛, (𝑥𝑚𝑖 , 𝑦𝑖 )) − 𝛾ch (𝑥𝑚𝑖 , 𝑥𝑚−1𝑖 ) + 𝛽

2
(𝑒𝛼𝑚F − 1)2

}
11 end
12 end
13 Append (𝑥𝑚𝑖 , 𝑦) to ˆD
14 end
15 for (𝑥𝑖 , 𝑦𝑖 ) ∼ ˆD do
16 𝜃𝑛+1 ← 𝜃𝑛 − 𝜁∇𝜃 ℓ (𝜃𝑛 ; (𝑥𝑖 , 𝑦𝑖 ))
17 end
18 end

where 𝑆𝑥 is the vector obtained from the STFT, 𝑥 = (DCT ◦ log) (𝑆𝑥 ), and ⊘ denotes the Hadamard division. To

maximize this term, we need to maximize 𝑒𝛼 ⊗ F. Thus, the objective function is now given by sup cT (𝑥, 𝑥 ′) =
sup 𝑒𝛼F. In this paper, we use an alternative formulation cT = 1

2
(𝑒𝛼F − 1)2. The cost function cT is convex and

lower semi-continuous, ensuring sufficient conditions for the DRO. As shown in Figure 5b, our proposed cT
has a smoother loss value and smaller error bound during optimization, thus mitigating the issues of gradient

vanishing and gradient exploding. Overall, the loss function for the 𝛼 parameter update is presented as follows.

L(𝛼) = −𝜏ℓ (𝜃, (𝑥 ′, 𝑦)) + 𝛾ch (𝑥 ′, 𝑥) − 𝛽cT (𝑥 ′, 𝑥). (7)

5.3.3 Overall Algorithm. The entire robust training pipeline is summarized in Algorithm 1. Our novelty is dashed

underlined. Specifically, we train a deep neural network for 𝑁 epochs on the dataset
ˆD, which is initialized by

source domain dataset D. This training uses standard loss function ℓ , e.g., cross-entropy for classification task.

For epochs in the list L, we update the parameter 𝛼 by Equation 7, augment the samples with𝑇𝐴𝑃𝑇 , and add those

samples into the new training set
ˆD. To ensure robustness for certification purposes, we employ a randomized

smoothing variant of APT by introducing a small Gaussian noise to the parameter 𝛼 . It is important to note

that while our robust training involves two objectives, the overall training time is moderate since𝑀 is small, as

shown in Section 6.6. Furthermore, as demonstrated in Section 6.5, the training process achieves significantly

faster convergence.

5.4 A Tighter Accuracy Drop Upper Bound
Finally, we address Issue 3 outlined in Section 4.2. The previous work [38] has shown that, when 𝑑 (·, ·) in
Definition 2 is Euclidean distance, the 𝜓 (𝑥, 𝜂) = erf

(
𝑥

2

√
2𝜂

)
is a valid accuracy drop upper bound function.
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Fig. 6. Our proposed accuracy drop upper bound function. (a) Comparison with the previous erf function. (b) Under various
levels of noisification intensity.

However, as shown in Figure 6a, this function with 𝜂 = 0.5 quickly rises to 1, even when the distance between

the two domains is small. This implies that the error function erf (·) only provides a loose bound. We propose a

tighter bound function as stated by the following theorem.

Theorem 1. 𝜓 (𝑑 (𝑥1, 𝑥2);𝜂) =
√︃
1 − 𝑒

−𝑑 (𝑥
1
,𝑥
2
)

8𝜂2 is an accuracy drop upper bound function meeting the conditions set
by Definition 2, where 𝑑 (·, ·) is Euclidean distance.

Proof can be found in the Appendix D. We demonstrate that this new 𝜓 function yields a tighter bound

compared with the one based on the error function erf (·). In Figure 6a, we compare the two functions with a

noisification intensity of 𝜂 = 0.5. The new𝜓 function is lower than the previous one, suggesting better tightness.

Figure 6b shows the corresponding bounds for various 𝜂 settings. For a larger 𝜂 setting, the corresponding bound

becomes tighter. This can be explained as follows. When the input values from the two domains cover a wider

range, we have higher confidence in believing that the obtained model accuracy and the corresponding difference

are reliable. In the rest of this paper, we use the tighter bound given by Theorem 1 for certification algorithm.

Note that Theorem 1 is a general result not specific to acoustic sensing.

6 EXPERIMENTS
In this section, we evaluate the effectiveness of CertiAPT in addressing microphone heterogeneity. We select

three application scenarios based on acoustic signals: keyword spotting (KWS), automated speech recognition

(ASR), and acoustic-based room recognition (ARR), where KWS is widely deployed in real-world applications

such as voice assistants, ARR is highly sensitive to environmental conditions and prone to domain shift-induced

accuracy drop, and ASR involves larger models and more complex data, thus providing a more comprehensive

evaluation of our approach. We use Honk [88], DeepSpeech2 [2], and an MLP as the classifier for KWS, ASR, and

ARR, respectively. In the following part, we first compare CertiAPT’s empirical accuracy with other methods

designed to mitigate domain gaps, including evaluation experiments conducted under two real-world settings

with seven different microphones. Then, we compare the proposed theoretical accuracy drop upper bound to

assess the bound’s tightness. Additionally, we evaluate the effect of incorporating robust training and the APT in

the framework. Finally, we conduct a convergence analysis, a measurement of training time, and an ablation

study to gain further insight into CertiAPT’s accuracy.

■Datasets: The KWS and ASR models are trained on 90% of the Google Speech Commands [101] and LibriSpeech

[68], respectively. For testing, we use data collected from five different microphones on the remaining 10% subset

of these two datasets [55]. For ARR, we use the acoustic room recognition dataset [55] recorded across 20 rooms

using three different smartphones. We pick 80% data from one of the phones for training and test on the remaining

20% data from all the phones. The preprocessing step follows the approach outlined in [55] to ensure a fair
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Table 1. Memory and runtime of the models in three tasks, measured on CPU.

Task Model Size (MB) Inference Time (ms)
ARR 2.74 0.65

KWS 1.88 38.49

ASR 79.16 645.69

Table 2. Baseline methods for comparision.

Method Classical DA Need target Need physical Robust training

domain data information

SOT [53] ✓ ✓
DSAN [117] ✓
CoVi [63] ✓
CosMix [64] ✓
SG-SCL [37] ✓
BPA [78] ✓
W-DRO [93] ✓
PhyAug [55] ✓

comparison. For consistency, we use accuracy as the evaluation metric for all three tasks. Specifically for ASR,

the accuracy is calculated as 100% −word error rate (WER).

■ Implementations: We present our hyper-parameter for each task in Appendix E. Our implementation is

based on PyTorch and is executed on an Intel Xeon Gold 6246 CPU and two NVIDIA Quadro RTX 8000 GPUs.

■ Baselines: In our evaluation, we classify baselines by four criteria: 1) whether they rely on deep learning,

2) whether they require target domain data, 3) whether they are physics-informed, and 4) whether they use

robust training techniques. The full list of the baselines is shown in the Table 2. Specifically, DSAN [117] is an

unsupervised domain adaptation method, using sub-domain information to align the source and target domain.

CoVi [63] is a supervised domain adaptation framework. CosMix [64] employs contrastive learning [11] combined

with mixup [107] to address the challenge of limited target domain data. SG-SCL utilizes domain labels to perform

contrastive learning for improved domain alignment. BPA [78] is a few-shot learning framework that leverages

optimal transport theory to approximate the transform function between different domains. W-DRO [93] is a

robust training approach that applies a Wasserstein constraint in the input space to identify worst-case scenarios.

PhyAug [55] uses a pure FRC-based transform.

■ Inference efficiency: To justify the choices of the backbone models used in the three tasks, we report the

inference efficiency on CPU in Table 1. The reported inference time is the average runtime over 10 runs on

batches of 64 samples. These models are lightweight and suitable for deployment in real-world applications.

6.1 Effectiveness in Addressing Microphone Heterogeneity
This section presents the quantitative results of the three applications to show the proposed CertiAPT’s effective-

ness in addressing microphone heterogeneity.

6.1.1 Keyword Spotting. Table 3 shows that CertiAPT outperforms other baseline methods across individual

microphones, achieving an average accuracy of 89.96%, which shows an improvement of 4.93% over the PhyAug on

average. Note that with the help of robust training, CertiAPT can outperform methods such as DSAN, CoVi, BPA,
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Table 3. Quantitative (accuracy) comparison among different testing microphones on KWS, where OD is the accuracy on the
source domain testing dataset. The best result is underlined. The final column shows the proportion of target domain data
used during training relative to the amount of source domain data.

Method OD Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Average

Target domain

data ratio (%)

SOT 30.46 31.78 29.09 32.25 21.16 27.47 28.70 -

Honk 91.91 76.14 72.69 77.35 76.73 74.28 78.18 0.00

W-DRO 93.09 79.60 78.42 80.61 78.50 81.17 81.90 0.00

PhyAug 90.17 85.30 84.45 85.61 81.38 83.28 85.03 0.03

CoVi 91.63 84.77 83.79 85.18 83.87 84.38 85.60 50.0

BPA 89.88 87.59 86.71 88.38 83.94 84.62 86.85 50.0

SG-SCL 91.29 88.84 87.53 88.95 87.97 87.20 86.63 50.0

CosMix 90.62 86.62 85.17 86.95 86.11 85.64 86.85 50.0

DSAN 92.64 87.84 87.89 88.21 88.72 86.71 88.67 50.0

CertiAPT 94.53 90.47 88.43 90.21 87.73 88.39 89.96 0.03

Table 4. Quantitative (average accuracy) comparison among different smartphones on ARR. For each smartphone, the model
is trained on the phone’s training data and tested on the testing data of all smartphones.

Method Phone 1 Phone 2 Phone 3 Avg

Target domain

data ratio (%)

W-DRO 46.31 63.67 63.46 58.49 0.00

SOT 50.54 69.47 60.10 60.04 -

DSAN 71.35 66.24 69.96 66.85 100

SG-SCL 64.47 71.20 77.82 71.16 100

BPA 90.01 91.52 51.43 77.65 100

CoVi 80.20 77.96 79.14 79.10 100

PhyAug 81.01 78.70 86.98 82.23 0.04

CosMix 77.14 87.09 84.44 82.89 100

CertiAPT 84.67 80.67 91.33 85.56 0.04

SG-SCL, and CosMix, even when these methods are trained with extensive target domain data, while requiring

only the FRC and no additional concrete target domain data. While the improvement over the second-best method,

DSAN, is approximately 1.3%, CertiAPT demonstrates significantly better coverage performance, as detailed in

Section 6.5.

6.1.2 Acoustic-based Room Recognition. Table 4 shows that CertiAPT achieves the highest overall accuracy of

85.56%. Even when additional target domain data comparable to the source domain data is used for training,

methods such as DSAN, CoVi, BPA, SG-SCL, and CosMix are unable to surpass CertiAPT’s performance. Among

these methods, although BPA performs well on two smartphones, it exhibits extremely poor result on the

remaining device, highlighting its lack of generalization. In contrast, PIML-based approaches, such as PhyAug

and CertiAPT, consistently demonstrate strong accuracy without requiring additional concrete target domain

data, as the incorporation of physical information provides greater robustness in this case.
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Table 5. Quantitative (accuracy) comparison between different testing microphones on ASR.

Method OD Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Average

W-DRO 93.56 77.69 70.05 79.74 59.96 61.19 73.70

PhyAug 93.06 85.13 80.29 84.86 79.47 69.71 82.09

CertiAPT 93.17 85.61 82.13 86.77 79.81 75.24 83.79

Table 6. Quantitative comparison of microphone characteristics, including noise floor, signal-to-noise ratio (SNR), total
harmonic distortion (THD), and dynamic range.

Microphone Noise Floor (dB) SNR (dB) THD (dB) Dynamic Range (dB)

M9 -44.8 38.2 -21.6 25.9

M10 -65.1 46.0 -11.7 22.3

M11 -72.9 44.8 -24.2 50.3

M12 -61.3 34.8 -9.7 21.1

M13 -59.3 51.1 -13.5 33.5

M14 -65.0 55.4 -25.8 25.5

M15 -70.0 39.4 -28.2 22.9

6.1.3 Automated Speech Recognition. Table 5 presents the accuracy results on the LibriSpeech dataset across

various microphones. CertiAPT achieves the highest accuracy across all five test sets, each exhibiting a domain

gap from the training data. We exclude the baselines that require the target domain data for training since such

data is not available for this task.

6.1.4 Real-world Experiments. We place seven different microphones, denoted as M9 to M15, in two different

environments, namely, Setup A and Setup B, for the KWS task. A comparison of the microphone characteristics

is summarized in Table 6. Specifically, Setup A, as illustrated in Figure 7a, is positioned in a hallway, with a

smartphone used as Speaker 1 and a laptop used as Speaker 2. Setup B, as illustrated in Figure 7b, varies the

microphone placement by putting M9 and M10 in a box, covering M11 and M12 with cloth to simulate in-pocket

placement, and putting M13 through M15 on the floor. As shown in Figure 7c, CertiAPT consistently outperforms

both the primary baseline PhyAug [55] and CosMix [64]. Notably, in Setup B, where microphones are subjected

to more severe distortions and obstructions, the performance of CosMix degrades significantly, with accuracy

often falling below 40%. In contrast, CertiAPT maintains higher accuracy across all microphones and consistently

outperforms CosMix and PhyAug under these challenging conditions. Our approach achieves approximately

60–70% accuracy under these challenging real-world conditions, demonstrating its practicality for deployment in

dynamic environments.

6.2 Certified Accuracy against Microphone Heterogeneity

Figure 8 illustrates the certified accuracy (i.e. E(𝑥2,𝑦2 )∼ ˜D [ ˜ℎ(𝑥2, 𝑦2)] = E(𝑥1,𝑦1 )∼D [ ˜ℎ(𝑥1, 𝑦1)] −𝜓 (𝜖, 𝜂)) on unseen

target domain data as provided by CertiAPT using Lemma 1. For a given example distance 𝜖 between the

source domain and the target domain, CertiAPT ensures a minimum accuracy with theoretical guarantees when

evaluated on target domain data, without requiring direct access to or testing on concrete target domain data. This

guarantee applies universally to all target domain data, provided that their distance from the source domain does

not exceed 𝜖 . Under the same 𝜖 and 𝜂, our proposed𝜓 function achieves significantly higher certified accuracy

compared with the erf() function from [38], especially under severe domain shift (i.e., larger 𝜖). Notably, our𝜓
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Fig. 7. Real-world experiments of the KWS task using seven microphones (M9–M15). (a) Setup A, where the microphones
are placed in a hallway, with a smartphone serving as Speaker 1 and a laptop as Speaker 2. (b) Setup B, where the placement
of the microphones are varied. (c) Model accuracy evaluated on recordings from Setup A and Setup B.
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Fig. 8. Certified accuracy comparison between our proposed𝜓 and𝜓 = erf() across various 𝜂 values, evaluated on the KWS
task. The model is trained on 𝜂 = 0.5.

provides non-trivial certified accuracy up to 𝜖 = 15, whereas erf() is limited to 𝜖 = 3 for 𝜂 = 1.5. In addition, we

empirically estimate the Wasserstein distance 𝜖 between the source and target domain data using the available

target domain samples, as illustrated by the blue regions in Figure 8. CertiAPT can certify the accuracy within

the range of 40% to 60%, demonstrating a significant and meaningful level of certified robustness. Additional

results for the ASR and ARR tasks are provided in Appendix F.
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Fig. 9. t-SNE visualization of transformed data samples of PhyAug and ours. Figure 9d shows the mean 𝐿2 distance between
target data from Mic 1 to original data and to transformed data of PhyAug and ours.
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Fig. 10. Evaluate the effect of DRO on PhyAug and CertiAPT framework.

6.3 Effectiveness of APT
To demonstrate the effectiveness of our proposed transform function within the CertiAPT framework in reducing

the domain gap, we plot a t-SNE visualization [92] based on the 𝐿2 distance metric in Figure 9. Using a sample

from a test set of the KWS task, we translate it to Microphone 1 using our proposed APT and compare it with the

same sample collected directly by Microphone 1. Additionally, we apply the transform function from PhyAug for

comparison. Our observations indicate that samples from PhyAug (green points) mostly overlap with the original

data (yellow points). In contrast, data generated by CertiAPT (blue points) show a much closer alignment with

the target domain of Microphone 1 (orange points) than PhyAug’s approach. The mean distance across samples

is shown in Figure 9d. This indicates that our transform function APT effectively minimizes the domain distance,

thus improving the overall accuracy.

6.4 Necessity of Robust Training
■ Effect of robust training: In this section, we validate the effectiveness of robust training, specifically the use

of DRO. Figure 10a compares the accuracy between PhyAug and PhyAug-DRO, a framework that applies the

naive DRO after PhyAug’s transform to further optimize the augmented sample. With the add-on robust training

framework, PhyAug’s accuracy on the KWS task improves by 1.38% on average. With the FA-DRO, CertiAPT’s

accuracy improves by 1.26% on average as shown in Figure 10b. These results underscore the effectiveness of
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Fig. 11. Robustness of approaches under noisy input with varying noise standard deviations 𝜎2noise.

Table 7. Quantitative comparison of uncertainty set approaches on KWS, ASR, and ARR tasks, displayed from top to bottom.

Method OD Mic 1 Mic 2 Mic 3 Mic 4 Mic 5 Average

CertiAPT-Rand 93.93 89.28 87.38 88.62 86.49 87.18 88.81

CertiAPT-𝐿𝑝 94.13 89.48 87.57 89.32 87.34 87.50 89.22

CertiAPT 94.53 90.47 88.43 90.21 87.73 88.39 89.96

CertiAPT-𝐿𝑝 91.67 80.22 68.76 78.92 78.72 64.53 77.14

CertiAPT-Rand 92.86 83.63 78.17 84.04 74.83 68.83 80.39

CertiAPT 93.17 85.61 82.13 86.77 79.81 75.24 83.79

CertiAPT-Rand - 80.20 77.42 82.89 - - 80.17

CertiAPT-𝐿𝑝 - 76.73 79.24 85.89 - - 80.62

CertiAPT - 84.67 80.67 91.33 - - 85.56

robust training frameworks, such as DRO and FA-DRO, in enhancing model’s performance by training the model

on worst-case shift data.

Additionally, we evaluate the effect of robust training when dealing with noise. As shown in Figure 11, PhyAug-

DRO outperforms PhyAug, particularly at higher noise levels (e.g., 1.0). Moreover, with the proposed FA-DRO,

CertiAPT achieves the highest accuracy for all the testing cases on the two noise levels.

■ Choice of uncertainty set: Table 7 compares the accuracy of different uncertainty set choices for the DRO.

These objectives continue to be employed for updating 𝛼 in𝑇𝐴𝑃𝑇 . CertiAPT-Rand is the framework that randomly

chooses the uncertainty set from the whole space and CertiAPT-𝐿𝑝 is the framework that chooses the uncertainty

set from the neighbor space with an 𝐿𝑝 norm constraint. CertiAPT outperforms CertiAPT-𝐿𝑝 across three tasks,

notably on ASR with an average improvement of around 5%. These results indicate that using a Wasserstein

distance-based uncertainty set, grounded in Lemma 1, effectively address the domain shift problem.

■ Effect of the cost function cT: As discussed in Section 5.3.2, the cost function cX in Equation 6 causes

unstable loss value, which is later addressed by our proposed cost function cT. We validate this claim using

Figure 12, which illustrates: FFT visualization of the original sample; FFT visualization after including cX, FFT
visualization after including cT on Equation 7, respectively; and FFT visualization of reference sample recorded

in a real environment. Notably, the sample corresponding to cT shows the closest resemblance to the target data,

whereas the sample from cX lacks several frequency bands, making it less realistic. This is due to cX causing

unstable gradients during the robust training with APT, as shown in Figure 5a, whereas cT provides greater

stability and accounts for frequency information during optimization. This frequency awareness is crucial as we

aim to calculate the gradient of the APT. Additionally, as shown in Figure 12e, robust training with cX leads to a

0.52% and 2.10% reduction in accuracy on KWS and ARR, compared to randomly initialized APT parameters. In
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Fig. 13. Comparison of CertiAPT’s convergence with other approaches, measured by test accuracy on target domain data
collected from five microphones.

contrast, incorporating the stable loss term cT during robust training results in samples that are more closely

aligned with the target domain, thereby enhancing overall performance.

6.5 Convergence Performance
Figure 13 represents the convergence of CertiAPT compared with five other approaches. CertiAPT consistently

demonstrates a smooth and rapid convergence in terms of accuracy as the training progresses. By around epoch

20, it achieves near-maximum accuracy, indicating a faster adaptation through robust training with physical
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Fig. 14. Training overhead of CertiAPT on the KWS task. (a) Training times (in minutes) of various methods, presented in
descending order. For CertiAPT, the red bar denotes the total time spent in the maximization phase (first stage), and the
orange bar corresponds to the minimization phase (second stage) in Algorithm 1. (b) Impact of the number of maximization
phases L and number of steps on each phase𝑀 on the training time and average accuracy.

information, even in the absence of target domain data. While PhyAug also integrates physical information,

its convergence rate is similar to that of DSAN and CoVi. This highlights the effectiveness of CertiAPT design,

founded on robust training with physical transformation and theoretical Wasserstein bound. Additionally,

CertiAPT shows a sustained high accuracy over time. In contrast, methods like DSAN, CosMix, and CoVi, which

heavily rely on target domain data for learning, require significantly more epochs to reach their peak accuracy

levels and exhibit more variability in their accuracy during the early stages of training. Similarly, BPA, which

must learn from multiple tasks in the target domain, converges slowly over time despite steady progress.

6.6 Computational Overhead
Figure 14a represents the training time of the KWS task on various methods. Standard training methods, such

as PhyAug, complete training in approximately 20 minutes, while domain adaptation methods like CoVi, BPA,

SG-SCL, DSAN, and CosMix require around 40 minutes. W-DRO takes slightly longer at approximately 50 minutes.

CertiAPT, our proposed method, has the longest training time at 60 minutes, with the FA-DRO phase accounting

for 40% of the total time and the remainder dedicated to training the main model. However, as demonstrated

in Section 6.5, CertiAPT achieves significantly faster convergence compared to other methods, mitigating the

impact of the increased training time.

In addition, the training time can be adjusted by modifying the hyperparameters of the FA-DRO, such as the

number of inner maximization steps𝑀 , and the number of outer phases L, to achieve a more efficient training

process without compromising robustness. As shown in Figure 14b, while CertiAPT achieves its best performance

using five maximization phases (L = 5) with 20 steps each (𝑀 = 20), resulting in a total training time of 58

minutes on the KWS task, this cost can be significantly reduced. For example, by reducing the number of phases

and steps, the training time can be brought down to approximately 20 minutes, which is comparable to ordinary

training time, while incurring only an accuracy drop of less than 1%. This demonstrates that CertiAPT remains

effective without introducing significant training overhead.

6.7 Ablation Study
In Figure 15, we evaluate the contribution of each component within the proposed framework. We begin with

the baseline accuracy on the KWS task across five microphones, which achieves an accuracy of 84.00%, and the

baseline accuracy for the ARR task is 82.23%. Introducing the simple robust training of DRO boosts the accuracy

with a gain of 1.59% on KWS and 2.07% on ARR. Further improvements are observed when performing robust

training on the proposed transformation APT, resulting in an accuracy increase of 3.23% on KWS and 0.25%

on ARR, suggesting that the domain induced by APT helps the model to generalize better. Additionally, the
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Fig. 15. Ablation study of CertiAPT framework on KWS and ARR. The metric is average accuracy.

effectiveness of FA-DRO is validated as it improves accuracy by 0.23% and 1.01% on the KWS and ARR tasks,

respectively.

7 DISCUSSION
■ Limitation: Despite demonstrating improvements in empirical results with theoretical guarantees, CertiAPT

has certain limitations. First, the search for worst-case samples during the robust training process can increase

the overall training time and impose a substantial memory burden, particularly when handling large datasets

such as LibriSpeech [68]. Second, the certified accuracy drop upper bound remains relatively loose compared to

the empirical results. In challenging scenarios, such as when the microphone records audio that is significantly

different from the original data or is placed further away from the speaker, this upper bound can become trivial,

i.e. ≥ 1.

■ Future work: Several promising research directions could be explored. First, optimizing the robust training

process to reduce computational overhead and memory usage is crucial. Efficient data augmentation strategies

[36], parallel processing, and memory-efficient algorithms could be investigated to address these challenges.

Second, enhancing theoretical guarantees to provide tighter accuracy bound would be beneficial, especially in

challenging conditions. This involves developing more robust certification methods and exploring alternative

mathematical frameworks to improve bound tightness.

8 CONCLUSION
This paper presents CertiAPT, a robust framework designed to handle domain shifts from sensor heterogeneity

in acoustic sensing applications with accuracy guarantees. Our approach incorporates a novel APT based on the

FRC, enabling target-like transformations of source data without target samples. Unlike prior methods, CertiAPT

provides certified robustness, reinforced by our robust training on APT. Extensive experiments demonstrate

that CertiAPT outperforms in handling domain shifts and noise, while offering non-trivial theoretical accuracy

bounds.
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Table 8. Heterogeneity papers presented at sensing-related conferences in 2020 to 2024.

Venue

Papers addressing heterogeneity Papers providing

related topics certification

IMWUT/UbiComp

[8, 10, 13, 17, 23, 30, 50, 56, 71, 77, 80, 89, 116]

-

[4, 14, 21, 26, 49, 54, 59, 61, 84, 86, 98, 100, 108]

SenSys [5, 18, 40, 44, 85, 97] -

IPSN [31, 41, 55, 90, 96, 105] [105]

IoTDI [20, 24, 28, 52, 76, 94] -

MobiCom

[12, 19, 25, 32, 42, 43, 47, 48, 99, 106, 115]

-

[69, 103, 104, 110]

MobiSys [3, 33, 35, 39, 67, 70, 79, 81, 102, 109] -

Total 69 1

Table 9. Summary of Notations

Notation Description
D Source domain distribution

˜D Target domain distribution

𝑇 (·, 𝛼) Transformation function with parameter 𝛼

𝜓 Accuracy drop upper bound function

𝜂 Standard deviation of noise in certified robustness

U Set of distributions in robust training

ℎ Classifier

˜ℎ Smoothed classifier

𝑐ℎ Cost function in the embedding space

𝑐𝑋 Cost function in the input space

𝜃 The parameters of the classifier

ℓ Loss function of the classifier

L(𝛼) Loss function of the transformation function

N(𝑥, 𝜂) Normal distribution with mean 𝑥 and standard deviation 𝜂

F Frequency response curve (FRC)

[118] Fuzhen Zhuang, Xiaohu Cheng, Ping Luo, Sinno Jialin Pan, and Qing He. 2015. Supervised Representation Learning: Transfer Learning

with Deep Autoencoders. In International Joint Conference on Artificial Intelligence, IJCAI.

A Survey of Papers on Domain Shifts
We surveyed papers presented at IMWUT/UbiComp, SenSys, IPSN, IoTDI, MobiCom, and MobiSys from 2020 to

2024, focusing on topics such as domain shift, sensor heterogeneity, and cross-platform implementation. The

survey results are presented in Table 8. Out of 69 relevant papers, only one paper [105] includes performance

certification.

B Notations
The notations used throughout this paper are summarized in Table 9.
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C Distributionally Robust Optimization (DRO)
This framework includes two steps. First, given U = {𝐾 |𝐾 ∈ DT ,𝑊 ch

1
(D, 𝐾) ≤ 𝑎,𝑊 cX

1
(D, 𝐾) ≥ 𝑏}, it uses

Lagrangian relaxation with two Lagrange multipliers 𝛾, 𝛽 to make Equation 4 more tractable, since the upper

bound 𝑎 and lower bound 𝑏 of the distribution balls inU are arbitrary.

min

𝜃 ∈Θ
sup

𝐾

E(𝑥,𝑦)∼𝐾 [ℓ (𝜃, (𝑥,𝑦))] − 𝛾𝑊 ch
1
(D, 𝐾) + 𝛽𝑊 cX

1
(D, 𝐾). (8)

The problem still involves a maximization over distributions K, requiring sampling lots of K until converging,

which is challenging due to the slow convergence and complexity of directly optimizing over an infinite-

dimensional space of distributions. Thus, the second step of the DRO is to simplify the maximization over

distributions K with a more tractable optimization problem over finite-dimensional Lagrange multipliers, which

ensures the problem remains computationally feasible. This can be done through Theorem 1 in [9], given that the

cost functions ch and cX are non-negative, lower semi-continuous, and satisfy ch (𝑥 ′, 𝑥) = 0 and cX (𝑥 ′, 𝑥) = 0

when 𝑥 = 𝑥 ′. Proposition 1 in [82] gives similar result given ch and cX are convex and continuous. The compact

notation of Equation 8 is expressed as follows:

min

𝜃 ∈Θ
E(𝑥,𝑦)∼D

[
sup

𝑥 ′=𝑇𝐴𝑃𝑇 (𝑥,𝛼 )
ℓ (𝜃, (𝑥 ′, 𝑦)) − 𝛾ch (𝑥 ′, 𝑥) + 𝛽cX (𝑥 ′, 𝑥)

]
. (9)

D Proof of Theorem 1
Proof. Given two distributions 𝑃 ∼ N(𝑥1, 𝜂2) and 𝑄 ∼ N(𝑥2, 𝜂2), we denote 𝑓 (𝑥), 𝑔(𝑥) as the probability

density functions of 𝑃 and 𝑄 . First, we prove
∫ √︁

𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 = 𝑒
−𝑑 (𝑥

1
,𝑥
2
)

8𝜂2
.∫ √︁

𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 =
1√︁
2𝜋𝜂2

∫
𝑒
(𝑥−𝑥

1
)2+(𝑥−𝑥

2
)2

−4𝜂2 𝑑𝑥

=
1√︁
2𝜋𝜂2

∫
𝑒
( (𝑥−

𝑥
1
+𝑥

2

2
)2

−2𝜂2 − (𝑥1−𝑥2 )
2

8𝜂2
)
𝑑𝑥

=
1√︁
2𝜋𝜂2

𝑒
− (𝑥1−𝑥2 )

2

8𝜂2

∫
𝑒

(𝑥− 𝑥1+𝑥2
2
)2

−2𝜂2 𝑑𝑥

=
1√︁
2𝜋𝜂2

𝑒
− (𝑥1−𝑥2 )

2

8𝜂2
√︁
2𝜋𝜂2 .

Given 𝑑 (𝑥1, 𝑥2) = (𝑥1 − 𝑥2)2, we obtain: ∫ √︁
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 = 𝑒

−𝑑 (𝑥
1
,𝑥
2
)

8𝜂2 . (10)

Next, we define the total variation distance as 𝑇𝑉 (𝑃,𝑄) = 1

2

∫
|𝑓 (𝑥) − 𝑔(𝑥) |𝑑𝑥 . Using the Cauchz inequality, we

have: |𝑓 (𝑥) − 𝑔(𝑥) | ≤ |
√︁
𝑓 (𝑥) −

√︁
𝑔(𝑥) | |

√︁
𝑓 (𝑥) +

√︁
𝑔(𝑥) | ≤ |

√︁
𝑓 (𝑥) −

√︁
𝑔(𝑥) |

√
2

√︁
𝑓 (𝑥) + 𝑔(𝑥). This leads to the
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Table 10. Hyper-parameters for KWS, ARR, and ASR.

Task Hyper-parameters

KWS

batch size = 64, 𝑁 = 50,𝑀 = 20, L = {0, 10, 20, 30, 40}, 𝜎2 = 0.5, optimizer = SGD

𝜁 = 0.001, 𝜆 = 0.1, 𝜏 = −0.1, 𝛾 = 1000, 𝛽 = −1.0.

ARR

batch size = 64, 𝑁 = 20,𝑀 = 20, L = {0, 10, 20, 30, 40}, 𝜎2 = 0.05, optimizer = Adam

𝜁 = 0.001, 𝜆 = {1.0, 0.1, 0.1}, 𝜏 = {−0.1,−0.01, 0.01}, 𝛾 = {10, 1.0, 1.0},
𝛽 = {−1.0,−0.001,−0.01}.

ASR

batch size = 32, 𝑁 = 40,𝑀 = 20, 𝜎2 = 0.5, optimizer = SGD, 𝜁 = 0.0003, 𝜆 = 0.1

𝜏 = −10−5, 𝛾 = 1.0, 𝛽 = −0.1.

following:

𝑇𝑉 (𝑃,𝑄) ≤
√
2

2

∫
|
√︁
𝑓 (𝑥) −

√︁
𝑔(𝑥) |𝑑𝑥

∫ √︁
𝑓 (𝑥) + 𝑔(𝑥)𝑑𝑥

≤
√
2

2

∫
|
√︁
𝑓 (𝑥) −

√︁
𝑔(𝑥) |𝑑𝑥

√︄∫
𝑓 (𝑥) + 𝑔(𝑥)

2

𝑑𝑥

=

√
2

2

∫
|
√︁
𝑓 (𝑥) −

√︁
𝑔(𝑥) |𝑑𝑥

≤
√
2

2

√︄∫
(
√︁
𝑓 (𝑥) −

√︁
𝑔(𝑥))2𝑑𝑥

√︄∫
1𝑑𝑥

=

√︄
1 −

∫ √︁
𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 . (11)

By combining (10) and (11), we have:

𝑇𝑉 (𝑃,𝑄) ≤
√︃
1 − 𝑒

−𝑑 (𝑥
1
,𝑥
2
)

8𝜂2 . (12)

That concludes the proof. □

E Hyper-parameters
We present our hyper-parameters for each task in Table 10. Specifically, 𝑁 and 𝜁 represent the number of epochs

and learning rate for model training, while 𝑀 and 𝜆 pertain to the FA-DRO process. L denotes the epoch at

which FA-DRO is applied, and 𝜎2 represents the standard deviation of the noise used for randomized smoothing.

The parameters 𝜏 , 𝛾 , and 𝛽 are the loss weights for Equation 7.

F Certified accuracy for ASR and ARR tasks
Certified accuracy for ASR and ARR tasks are presented in Figure 16 and Figure 17, respectively.
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Fig. 16. Certified accuracy comparison between our proposed𝜓 and𝜓 = erf() across various 𝜂 values, evaluated on the ASR
task.
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Fig. 17. Certified accuracy comparison between our proposed𝜓 and𝜓 = erf() across various 𝜂 values, evaluated on the ARR
task.
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